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An overview of new and current developments in state of charge (SOC) estimating methods for battery is given where the focus
lies uponmathematical principles and practical implementations. As the battery SOC is an important parameter, which re
ects the
battery performance, so accurate estimation of SOC cannot only protect battery, prevent overcharge or discharge, and improve the
battery life, but also let the application make rationally control strategies to achieve the purpose of saving energy. 	is paper gives
a literature survey on the categories and mathematical methods of SOC estimation. Based on the assessment of SOC estimation
methods, the future development direction of SOC estimation is proposed.

1. Introduction

Rising crude oil prices and worldwide awareness of envi-
ronmental issues have resulted in increased development
of energy storage systems. 	e battery is one of the most
attractive energy storage systems because of its high e�ciency
and low pollution [1]. 	ere are several kinds of batteries
currently being used in industry: lead-acid battery, Ni-MH
battery, Ni-Cd battery, and Li-ion battery.	e battery has the
advantages of high working cell voltage, low pollution, low
self-discharge rate, and high power density. Batteries are used
commonly for portable utilities, hybrid electric vehicles, and
industrial applications [2].

SOC estimation is a fundamental challenge for battery
use. 	e SOC of a battery, which is used to describe its
remaining capacity, is a very important parameter for a con-
trol strategy [3]. As the SOC is an important parameter, which
re
ects the battery performance, so accurate estimation of
the SOC can not only protect battery, prevent overdischarge,
and improve the battery life but also allow the application to
make rational control strategies to save energy [4].However, a
battery is a chemical energy storage source, and this chemical
energy cannot be directly accessed. 	is issue makes the
estimation of the SOC of a battery di�cult [5]. Accurate
estimation of the SOC remains very complex and is di�cult
to implement, because battery models are limited and there
are parametric uncertainties [6]. Many examples of poor

accuracy and reliability of the estimation of the SOC are
found in practice [7].

	is paper presents a detailed review on existing mathe-
matical methods used in SOC estimation and further identi-
�es possible developments in the future.

2. Definition and Classification of
SOC Estimation

	e SOC is one of the most important parameters for
batteries, but its de�nition presents many di�erent issues [5].
In general, the SOC of a battery is de�ned as the ratio of
its current capacity (�(�)) to the nominal capacity (��). 	e
nominal capacity is given by themanufacturer and represents
the maximum amount of charge that can be stored in the
battery. 	e SOC can be de�ned as follows:

SOC (�) = � (�)��
. (1)

	e various mathematical methods of estimation are
classi�ed according to methodology. 	e classi�cation of
these SOC estimation methods is di�erent in the various
literatures. However, some literatures [5, 7] allow a division
into the following four categories.
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(i) Direct measurement: this method uses physical bat-
tery properties, such as the voltage and impedance of
the battery.

(ii) Book-keeping estimation: this method uses discharg-
ing current as the input and integrates the discharging
current over time to calculate the SOC.

(iii) Adaptive systems: the adaptive systems are self-
designing and can automatically adjust the SOC for
di�erent discharging conditions. Various new adap-
tive systems for SOC estimation have been developed.

(iv) Hybrid methods: the hybrid models bene�t from
the advantages of each SOC estimation method and
allow a globally optimal estimation performance.	e
literature shows that the hybrid methods generally
produce good estimation of SOC, compared to indi-
vidual methods.

Table 1 presents the speci�c SOC estimation methods in
view of the methodology. 	e applications of speci�c SOC
estimation methods in battery management system (BMS)
are consequentially di�erent.

3. Overview of SOC Estimating
Mathematical Methods

3.1. Direct Measurement. Direct measurement methods refer
to some physical battery properties such as the terminal volt-
age and impedance.Many di�erent direct methods have been
employed: open circuit voltage method, terminal voltage
method, impedance measurement method, and impedance
spectroscopy method.

3.1.1. Open Circuit Voltage Method. 	ere is approximately a
linear relationship between the SOC of the lead-acid battery
and its open circuit voltage (OCV) given by

�OC (�) = �1 × SOC (�) + �0, (2)

where SOC(�) is the SOC of the battery at �, �0 is the battery
terminal voltage when SOC = 0%, and �1 is obtained from
knowing the value of �0 and �OC(�) at SOC = 100%. By (2),
the estimation of the SOC is equivalent to the estimation of
its OCV [8].	eOCVmethod based on theOCV of batteries
is proportional to the SOC when they are disconnected from
the loads for a period longer than two hours. However, such a
long disconnection time may be too long to be implemented
for battery [9].

Unlike the lead-acid battery, the Li-ion battery does not
have a linear relationship between the OCV and SOC [10]. A
typical relationship of Li-ion battery between SOC and OCV
is shown in Figure 1 [11].	eOCV relationship with SOCwas
determined from applying a pulse load on the Li-ion battery,
then allowing the battery to reach equilibrium [12].

	e relationship between the OCV and SOC cannot be
exactly the same for all batteries. Because the conventional
OCV-SOC di�ers among batteries, there is a problem in
that the relationship of the OCV-SOC should be measured
to estimate accurately the SOC. Lee et al. [13] proposed a

Table 1: Classi�cation of SOC estimating mathematical methods.

Categories Mathematical methods

Direct measurement

(i) Open circuit voltage method

(ii) Terminal voltage method

(iii) Impedance method

(iv) Impedance spectroscopy
method

Book-keeping estimation
(i) Coulomb counting method

(ii) Modi�ed Coulomb counting
method

Adaptive systems

(i) BP neural network

(ii) RBF neural network

(iii) Support vector machine

(iv) Fuzzy neural network

(v) Kalman �lter

Hybrid methods

(i) Coulomb counting and EMF
combination

(ii) Coulomb counting and Kalman
�lter combination

(iii) Per-unit system and EKF
combination
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Figure 1: Typical relationship between SOC and OCV [11].

modi�ed OCV-SOC relationship based on the conventional
OCV-SOC.	e SOCand the capacity of a lithium-ion battery
are estimated using the dual extended Kalman �lter with the
proposed method.

3.1.2. Terminal VoltageMethod. 	e terminal voltagemethod
is based on the terminal voltage drops because of the
internal impedances when the battery is discharging, so the
electromotive force (EMF) of battery is proportional to the
terminal voltage. Since the EMF of battery is approximately
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linear proportional to the SOC, the terminal voltage of battery
is also approximately linear proportional to the SOC. 	e
terminal voltage method has been employed at di�erent
discharge currents and temperatures [14]. But at the end of
battery discharge, the estimated error of terminal voltage
method is large, because the terminal voltage of battery
suddenly drops at the end of discharge [15].

3.1.3. Impedance Method. Among the techniques which have
been employed, impedance measurements provide knowl-
edge of several parameters, the magnitudes of which may
depend on the SOC of the battery. Although the impedance
parameters and their variations with SOC are not unique for
all battery systems, it appears to be imperative to perform a
wide range of impedance experiments for identi�cation and
use of impedance parameters for estimating the SOC of a
given battery [16, 17].

3.1.4. Impedance Spectroscopy Method. 	e impedance spec-
troscopy method measures battery impedances over a wide
range of ac frequencies at di�erent charge and discharge
currents. 	e values of the model impedances are found
by least-squares �tting to measured impedance values. SOC
may be indirectly inferred by measuring present battery
impedances and correlating them with known impedances at
various SOC levels [18, 19].

3.2. Book-Keeping Estimation. Book-keeping estimation
method uses battery discharging current data as input. 	is
method permits to include some internal battery e�ects as
self-discharge, capacity-loss, and discharging e�ciency.
Two kinds of book-keeping estimation methods have been
employed: Coulomb counting method and modi�ed Cou-
lomb counting method.

3.2.1. Coulomb Counting Method. 	e Coulomb counting
method measures the discharging current of a battery and
integrates the discharging current over time in order to
estimate SOC [20]. Coulomb counting method is done to
estimate the SOC(�), which is estimated from the discharging
current, �(�), and previously estimated SOC values, SOC(� −
1). SOC is calculated by the following equation:

SOC (�) = SOC (� − 1) + � (�)��
Δ�. (3)

But there are several factors that a�ect the accuracy of
Coulomb counting method including temperature, battery
history, discharge current, and cycle life [20].

3.2.2. Modi�ed Coulomb Counting Method. To improve the
Coulomb counting method, a new technique called modi-
�ed Coulomb counting method is proposed. 	e modi�ed
Coulomb counting method uses the corrected current to
improve the accuracy of estimation.

	e corrected current is the function of discharging cur-
rent. 	ere is a quadratic relationship between the corrected
current and discharging current of battery. By practice of

experimental data, corrected current is calculated by the
following form:

�� (�) = �2�(�)2 + �1� (�) + �0, (4)

where �2, �1 and �0 are constant values obtained from the
practice experimental data.

In modi�ed Coulomb counting method, SOC is calcu-
lated by the following equation:

SOC (�) = SOC (� − 1) + �� (�)��
Δ�. (5)

	e experimental results show that the accuracy of the
modi�ed Coulomb counting method is superior to the
conventional Coulomb counting method.

3.3. Adaptive Systems. Recently, with the development of
arti�cial intelligence, various new adaptive systems for SOC
estimation have been developed.	enewdevelopedmethods
include back propagation (BP) neural network, radial basis
function (RBF) neural network, fuzzy logicmethods, support
vector machine, fuzzy neural network, and Kalman �lter.	e
adaptive systems are self-designing ones that can be automat-
ically adjusted in changing systems. As batteries have been
a�ected by many chemical factors and have nonlinear SOC,
adaptive systems o�er good solution for SOC estimation [5].

3.3.1. BP Neural Network. BP neural network is the most
popular type in arti�cial neural networks. 	e BP neural
network is applied in SOCestimation due to their good ability
of nonlinear mapping, self-organization, and self-learning
[1]. As the problem de�ned, the relationship between the
input and target is nonlinear and very complicated in SOC
estimation [21]. 	e arti�cial neural network based SOC
indicator predicts the current SOC using the recent history
of voltage, current, and the ambient temperature of a battery
[22].

	e architecture of the SOC estimating BP neural net-
work is shown in Figure 2. 	e architecture of BP neural
network contains an input layer, an output layer, and a hidden
layer. Input layer has 3 neurons for terminal voltage, discharge
current, and temperature, hidden layer has 	 neurons, and
output layer has only one neuron for SOC [1].

	e total input of a neuron in hidden layer is calculated
by the following form:

net
� =
3
∑
�=1
��V�� + �, (6)

where net
� is total input of the hidden layer neuron �; �� is
input to the hidden layer neuron � from input layer neuron

; V�� is weight between the input layer neuron 
 and hidden
layer neuron �; � is bias of the hidden layer neuron �.

	e activation function applied to neuron in hidden layer
is the hyperbolic tangent function which is calculated by the
following equation:

ℎ� = � (net
�) =
1 − �−2net��
1 + �−2net��

. (7)
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Figure 2: 	e architecture of the SOC estimating BP neural network [1].

	etotal input of the neuron � in output layer is calculated
by

net � =
�
∑
�=1
ℎ��� + �, (8)

where net � is total input of the output layer neuron �; ℎ� is
input to the output layer neuron from hidden layer neuron 
;
�� is weight between the hidden layer neuron 
 and output
layer neuron; � is bias of the output layer neuron �; 	 is
number of neurons in the hidden layer.

	e activation function applied to neuron � in output
layer is the sigmoid function as the following equation:

� = � (net �) = 1
1 + �−net � . (9)

3.3.2. RBF Neural Network. 	e RBF neural network is a
useful estimation methodology for systems with incomplete
information. It can be used to analyze the relationships
between one major (reference) sequence and the other
comparative ones in a given set. 	e RBF neural network has
been used in SOC estimation. 	e method was tested with
data which was from battery experiments. Results show that

the operation speed and estimation accuracy of estimating
model can meet the demands in practice, and the model has
certain value of application [23, 24].

In [1], the RBF neural network SOC estimation method
uses the input data of the terminal voltage, discharging
current, and temperature of battery to estimate the SOC for
LiFePO4 battery under di�erent discharging conditions. 	e
experimental data are found to be in close agreement.

3.3.3. Fuzzy Logic Method. Fuzzy logic method provides a
powerfulmeans ofmodeling nonlinear and complex systems.
In [25], a practical method of estimating SOC of battery
system has been developed and tested for several systems.
	e method involves the use of fuzzy logic models to
analyze data obtained by impedance spectroscopy and/or
Coulomb counting methods. In [26], a fuzzy logic-based
SOC estimation method has been developed for lithium-ion
batteries for potential use in portable de�brillators. 	e ac
impedance and voltage recovery measurements have been
made which are used as the input parameters for the fuzzy
logic model.

Singh et al. [27] presented an estimation system which
can select features in data base to develop fuzzy logic models
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for both available capacity and SOC estimation, simply by
measuring the impedance at three frequencies. In [28], the
SOC is estimated by an improved Coulomb metric method,
and the time-dependent variation is compensated by using
a learning system. 	e learning system tunes the Coulomb
metric method in such a way that the estimation process
remains error free from the time-dependent variation. 	e
proposed learning system uses the fuzzy logic models, which
is not used for estimation of SOC but performs as a compo-
nent of learning system.

3.3.4. Support Vector Machine. 	e support vector machine
(SVM) has been applied for classi�cation in various domains
of pattern recognition. 	e SVM has also been applied for
regression problem, even the regression problem inherently
more di�cult than classi�cation problem. 	e SVM used as
a nonlinear estimation system is more robust than a least-
squares estimation system because it is insensitive to small
changes [29].

Hansen and Wang [29] investigated the application of
a SVM to estimate the SOC of lithium-ion battery. 	e
SVM based estimator not only removes the drawbacks of the
Coulomb counting SOC estimator but also produces accurate
SOC estimates.

3.3.5. Fuzzy Neural Network. Fuzzy neural network (FNN)
has been used in many applications, especially in identi�ca-
tion of unknown systems. In nonlinear system identi�cation,
FNNcan e�ectively �t the nonlinear systemby calculating the
optimized coe�cients of the learning mechanism [30].

Lee et al. [31] investigated a so� computing technique for
estimating battery SOC of individual batteries in a battery
string.	e so� computing approach uses a fusion of an FNN
with B-spline membership functions and a reduced-form
genetic algorithm.

3.3.6. Kalman Filter. Using real-timemeasurement road data
to estimate the SOC of battery would normally be di�cult or
expensive tomeasure. In [32], application of the Kalman �lter
method is shown to provide veri�able estimations of SOC for
the battery via the real-time state estimation.

Yatsui and Bai [33] presented a Kalman �lter based SOC
estimation method for lithium-ion batteries. Experimental
results validate the e�ectiveness of Kalman �lter during the
online application. Barbarisi et al. [34] presented an extended
Kalman �lter (EKF) to estimate the concentrations of the
main chemical species which are averaged on the thickness of
the active material in order to obtain the SOC of the battery,
by using the terminal current and voltage measurements.

Based on unscented Kalman �lter (UKF) theory and
a comprehensive battery model, a novel SOC estimation
method is proposed in [35]. 	e results show that UKF
method is superior to extended Kalman �lter method in SOC
estimation for battery. Sun et al. [36] presented an adaptive
UKF method to estimate SOC of a lithium-ion battery for
battery electric vehicles.	e adaptive adjustment of the noise
covariance in the SOC estimation process is implemented by
an idea of covariance matching in the UKF context.

3.4.HybridMethods. 	eobject of hybridmodels is to bene�t
from the advantages of each method and obtain a glob-
ally optimal estimating performance. Since the information
contained in the individual estimating method is limited,
hybrid method can maximize the available information,
integrate individual model information, and make the best
use of the advantages of multiple estimating methods thus
improving the estimation accuracy. 	e literatures show that
the hybrid methods generally produce good SOC estimating
results compared to individual methods [37–39]. 	e hybrid
methods combine di�erent approaches such as direct mea-
surement method and book-keeping estimation method.

3.4.1. Coulomb Counting and EMF Combination. A new
SOC estimation method that combines direct measurement
method with the battery EMFmeasurement during the equi-
librium state and book-keeping estimation with Coulomb
counting method during the discharge state has been devel-
oped and implemented in a real-time estimation system [37].

Any battery will lose capacity during cycling. In order
to calculate SOC and remaining run-time (RRT) accurately
and to improve the SOC estimation system capability to cope
with the aging e�ect, a simple Qmax adaptation algorithm
is introduced. In this algorithm the stable conditions of the
charge state are exploited in order to adapt Qmax with the
aging e�ect.

	is paper has proved that the Qmax adaptation algo-
rithm can improve the SOC and RRT estimation accuracy
even for a fresh battery. Since a battery loses capacity during
cycling, it is concluded that the Qmax adaptation algorithm
will increase substantially the SOC and the RRT estimation
accuracy.

3.4.2. Coulomb Counting and Kalman Filter Combination.
Wang et al. [38] proposed a new SOC estimation method,
denoted as “KalmanAhmethod,”which uses theKalman�lter
method to correct for the initial value used in the Coulomb
counting method. In KalmanAh method, the Kalman �lter
method is used to make the approximate initial value con-
verge to its real value.	en the Coulomb counting method is
applied to estimate the SOC for the long working time. 	e
SOC estimation error is 2.5% when compared with the real
SOC obtained from a discharge test. 	is compares favorably
with an estimation error of 11.4% when using Coulomb
counting method.

3.4.3. Per-Unit System and EKF Combination. Kim and Cho
[39] described the application of an EKF combined with a
per-unit (PU) system to the identi�cation of suitable battery
model parameters for the high accuracy SOC estimation of
a lithium-ion degraded battery. To apply the battery model
parameters varied by the aging e�ect, based on the PU system,
the absolute values of the parameters in the equivalent circuit
model in addition to the terminal voltage and current are
converted into dimensionless values relative to a set of base
value. 	e converted values are applied to dynamic and
measurement models in the EKF algorithm.
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4. The Future of SOC Estimation

Since the energy storage systems have been highlighted in
portable electronics and hybrid electric vehicle applications,
the estimate accuracy of SOC becomes increasingly impor-
tant. In recent years,many scholars have done a lot of research
on SOC estimation. 	e estimate accuracy has improved
constantly, and it can be expected that intense research and
development e�orts are already on track. In order to further
improve SOC estimates, combined with some literatures,
anticipated improvements for the further research include the
following areas.

(i) Do further research on the hybrid methods, such as
combining direct measurement method and book-
keeping estimation method to achieve good results in
online SOC estimation.

(ii) 	e existing estimationmethod should be put into use
in various kinds of batteries. Do further research on
the practical universal application of the methods.

(iii) Deepen further research on improve the SOC estima-
tion system capability to cope with the aging e�ect of
battery.

(iv) Study on more novel arti�cial intelligence methods
and improving their training algorithms to achieve
the estimate accuracy of SOC. In addition, new
methods on complex terrain are the focus of future
research.

(v) To further improve the estimating performance of the
neural network method, the optimal search methods
for the optimal number of neurons in hidden layer
need to be investigated and integrated in the neural
network method.

(vi) Do further research on the adaptive parameter esti-
mation. 	e models have the ability to automatically
adapt to various kinds of batteries, various discharg-
ing conditions, and the di�erent aged batteries.

(vii) Establish themore accurate evaluation system and the
standard for measurement of performance of SOC
estimation method.

5. Conclusions

	is paper presented a review on estimating of battery SOC
under di�erent discharging conditions. Four categories of
estimating mathematical methods, which have their own
characteristics, were discussed. Papers were selected to
emphasize the diversity of estimatingmathematical methods.
Some of these methods have good performances at �xed
discharging current condition, while others perform better
in varied discharging current condition. It is di�cult to
evaluate the performance of various methods, as the existing
applications were in di�erent discharging condition and
di�erent size of battery. 	e developments of various SOC
estimate methods are expected to be valuable in battery
applications such as BMS in hybrid electric vehicles. Based
on the development history of SOC estimation, the future

development directions of SOC estimating are proposed in
the end.
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