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Abstract—With the development of electric drive vehicles
(EDVs), the state-of-charge (SOC) estimation for lithium-ion
(Li-ion) batteries has become increasingly more important. Based
on the analysis of some of the most popular model-based SOC
estimation methods, the proportional-integral (PI) observer is
proposed to estimate the SOC of lithium-ion batteries in EDVs.
The structure of the proposed PI observer is analyzed, and the con-
vergence of the estimation method with model errors is verified.
To demonstrate the superiority and compensation properties of
the proposed PI observer, the simple-structure RC battery model
is utilized to model the Li-ion battery. To validate the results of
the proposed PI-based SOC estimation method, the experimental
battery test bench is established. In the validation, the urban
dynamometer driving schedule (UDDS) drive cycle is utilized, and
the PI-based SOC estimation results are found to agree with the
reference SOC, generally within the 2% error band for both the
known and unknown initial SOC cases.

Index Terms—Battery, electric vehicle, lithium-ion (Li-ion) bat-
tery, proportional-integral (PI) observer, sliding-mode observer,
state of charge (SOC).

I. INTRODUCTION

E LECTRIC drive vehicles (EDVs), including battery elec-

tric vehicles (BEVs), hybrid electric vehicles (HEVs), and

plug-in hybrid electric vehicles (PHEVs), are playing increas-

ingly more important roles worldwide. As one of the most

essential parts in EDVs, the traction battery greatly impacts the

performance of an EDV. Considered as the only viable solution

for EDVs at the present time, lithium-ion (Li-ion) batteries have

drawn increasingly more attention.

As an essential indicator for Li-ion batteries, state of charge

(SOC) is a key state to estimate the drive distance of an EDV.

If an accurate SOC can be obtained, the SOC range that can

be used could be extended. Thus, a smaller battery pack will
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be able to satisfy the demand of an EDV that right now is

equipped with a large battery pack. Thus, the price for the

battery pack can be dramatically decreased to further help the

market penetration of EDVs.

However, Li-ion batteries are electrochemical systems with

strong nonlinearity; they should not be overcharged or overdis-

charged to avoid damaging the batteries, shortening the battery

life, or even causing fire or explosion. To model such a strong

nonlinear system is very difficult. To draw states that cannot be

directly measured, such as the SOC and parameters of a battery,

would be even more difficult.

A number of methods to estimate the SOC of Li-ion batteries

have been reported in previous literature. The ampere-hour

counting (Coulomb counting, or current integration) method for

the calculation of battery SOC is simple and easy to implement;

however, it needs prior knowledge of initial SOC and suffers

from accumulated errors of noise and measurement error [1],

[2]. The open-circuit voltage (OCV) method is very accurate;

however, it needs a long rest time to estimate the SOC and,

thus, cannot be used in real-time applications [1]. Intelligent

algorithms, such as artificial neural networks, fuzzy logic, and

so forth, have been studied to estimate the SOC by treating the

battery as a black-box system [3], [4]. These methods can often

produce a good estimation of SOC due to the powerful ability to

approximate nonlinear functions. However, the learning process

is quite computational and complex; thus, it can hardly be used

in online applications.

SOC estimation methods based on battery models are the

most popular solutions. The main methodology is to apply the

measured input signals to the model and calculate the output

using the present and/or past states and parameters of the

model. The differences between the calculated and measured

values or the so-called errors are applied to an algorithm to

intelligently update the estimation of the model states. Such

model-based SOC estimation methods could be the Luenberger

observer [5]–[7], the Kalman filter [8]–[11], and the sliding-

mode observer [12]–[14].

The Luenberger observer was first proposed by Luenberger

[15] in 1966 and is now widely used in linear, nonlinear, and

time-varying systems. It was also introduced to estimate the

SOC of a battery and had good results [5]–[7]. The Kalman

filter uses the entire observed input data and output data to find

the minimum-mean-square-error estimation states of the true

states of the Li-ion batteries [11]. Hence, essentially, the main

idea of the Kalman filter is to use prior information, such as

input current and output terminal voltage, to minimize the error

to solve the best Kalman gain. This Kalman gain multiplying
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Fig. 1. Block diagram of different observer-based SOC estimation methods
for Li-ion batteries. (a) Block diagram of the common structure. (b) Block
diagram of a PI observer.

the error is feedback to correct the differences between the

model calculated states and the true states of the Li-ion battery.

From a certain perspective, the Kalman filter is an optimization

method of the Luenberger observer.

However, an accurate battery model is required for both the

Luenberger observer method and the Kalman filter method.

Without an accurate battery model, neither of the two methods

could perform well. However, an accurate battery model is hard

to obtain, considering the inconsistency of cells, the operating

temperature, different SOC, and aging of batteries. Meanwhile,

even if there is such a battery model that is accurate enough

for SOC estimation, the computation complexity would make it

difficult to apply online.

The sliding-mode observer was introduced to estimate the

states of a battery [12]. As indicated in the paper, the sliding-

mode controller was robust in the presence of parameter un-

certainties and disturbances, and the sliding-mode observers

inherited such robust properties. In the sliding-mode observer,

the error of the terminal voltage goes through the sliding-mode

observer and feeds back to the battery model. It is robust under

modeling uncertainties, but the chatter problem can not be

ignored.

For the given three methods, feedback methods are the only

differences, and the structure of the three methods is nearly

the same, which is shown in Fig. 1(a). From the control theory

point of view, Fig. 1(a) could be considered as a control system.

The input signal is the voltage response of the real battery, and

the output signal is the voltage response of the battery model.

Thus, the feedback method could be considered as a controller.

The goal of such a controller is to force the calculated terminal

voltage to converge to the measured terminal voltage and

eventually force the states of the battery model to converge to

the true states of the battery.

Fig. 2. Equivalent circuit of the RC model of Li-ion batteries.

As far as a controller is concerned, the proportional-integral

(PI) controller, which is the most widely used control method,

is introduced in this paper, as shown in Fig. 1(b). The feed-

back method is replaced by the PI controller, which could be

referred to as the PI observer in the structure. The PI observer

is proposed to estimate the SOC of Li-ion batteries in this

paper.

It has been reported that the addition of the integrator of a PI

observer confers to the observer more robustness with respect

to modeling uncertainties [16]. Since there is always modeling

uncertainties for a battery model, the PI observer improves the

accuracy and speed of SOC estimation of Li-ion batteries.

II. BATTERY MODELING

It is difficult to obtain a battery model since Li-ion batter-

ies are considered to be complex electrochemical and strong

nonlinear systems. Attempts have been made to evaluate the

models for the estimation of Li-ion batteries, such as the Rint

Model [9], [17], [18], the first-order RC model [18]–[20], the

second-order RC model [8], [18], and the impedance model

[21]–[23]. Other models have also been researched based on

those previously mentioned, such as the hysteresis model [9].

Normally, the estimation would be more accurate if the model

can characterize the battery better, but it would also cause a

more complex computation problem. Considering the proper-

ties and advantages of the proposed PI observer, the simple first-

order RC model (referred to as the RC Model) is utilized in this

paper. The RC model may cause large model errors and model

uncertainties, but these are expected to be compensated by the

PI observer. Therefore, it can avoid the complex computation

and is robust to model errors and model uncertainties.

A. Introduction of RC Model

The RC model of Li-ion batteries is shown in Fig. 2. It

consists of a voltage source (Eo(z)), a resistor (R1), and a

parallel capacitor (C2) and resistor (R2). The voltage source

is a function of the SOC, which is denoted by z. The resistor

represents the battery inner resistance. Capacitor C2 and re-

sistor R2 are utilized to model the chemical diffusion of the

electrolyte with the Li-ion batteries.

In Fig. 2, the relationship between V2 and current I can be

obtained by considering the parallel R2 and C2, i.e.,

V̇2 = −
1

R2C2

V2 +
1

C2

I. (1)
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Meanwhile, according to circuit theory, the terminal voltage

can be calculated as follows:

Vo = Eo(z) + V1 + V2. (2)

In most studies, Eo is estimated using a model-based method,

and SOC is inferred from Eo. In this paper, the SOC is chosen

as the state instead of Eo. The definition of SOC of a battery is

the ratio of the remaining capacity to the nominal capacity of

the battery, which can be described as

SOC =
Remaining Capacity

Nominal Capacity
. (3)

If the initial SOC and the current SOC are denoted by z(0)
and z(t), respectively, the mathematical relationship can be

written as

z(t) = z(0) + ∆z = z(0) +

t
∫

0

ηiI(τ)

Cn

dτ (4)

where ∆z is the variation of battery SOC during time period 0

to t, I(τ) is the instantaneous battery current, ηi is the battery

Coulombic efficiency, and Cn is the nominal battery capacity.

Since z(0) is a constant for any given situation, (4) can be

rewritten as

ż =
ηi
Cn

I. (5)

If V2 and z are chosen as the states of the battery model, the

state function can be written as

{

V̇2 = − 1
R2C2

V2 +
1
C2

I
ż = ηi

Cn

I.
(6)

However, output equation (2) is not expressed directly with

these two states but with Eo(z). The relationship between SOC

and Eo(z) is nonlinear, and it is not easy to draw a mathematical

interpretation for it. To deal with this problem and simplify

the computation, a gain scheduling method [24] is introduced,

which typically employs an approach whereby the nonlinear

system is decomposed into a number of linear subsystems. For

a given nonlinear system, the relationship between SOC and

Eo(z) can be divided into several sections, and the subsystem

in each section is considered to be linear, as shown in Fig. 3.

Hence, the relationship can be written in the short SOC

interval as follows for the ith SOC interval (i− 1) ·∆SOC ≤

SOCi ≤ i ·∆SOC:

Eo = ai · SOCi + bi (7)

where ∆SOC is the SOC interval length (∆SOC = 10% in this

paper).

For the ith SOC interval (i−1) ·∆SOC≤SOCi≤ i ·∆SOC,

the corresponding set (ai, bi) can be calculated from the curve

and will be maintaned constant in the ith SOC interval. The pa-

rameters of the approximation of the relationship between SOC

and OCV are listed in Table I. The measured and approximated

curves of the relationship between SOC and OCV are shown in

Fig. 3. Approximation of the relationship between SOC and OCV.

TABLE I
PARAMETERS OF THE APPROXIMATION OF THE

RELATIONSHIP BETWEEN SOC AND OCV

Fig. 3. The two curves are consistent, indicating that such an

approximation is reasonable with sufficient accuracy.

According to the given explanation, the output equation can

be described as

Vo = V2 + ai · z + bi +R1 · I. (8)

The state-space function with the additional state z can be

rewritten as
{

ẋ = Ax+Bu
y = Cx+Du

(9)

where

A =

[

− 1
R2C2

0

0 0

]

B =

[

1
C2ηi

Cn

]

C = [ 1 ai ] , D = R1

x =

[

V2

z

]

, y = Vo − bi, u = I.

B. Observability of the Battery Model

In control theory, observability measures how well the in-

ternal states of a system can be inferred by knowledge of its
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external outputs. A system is said to be observable if it is

possible to determine the states from the observation of the

output over a finite time interval. The concept of observability

is useful in solving the problem of reconstructing immeasurable

state variables from measurable variables [25].

To assure that the states of the Li-ion batteries could be

estimated by the described battery model, the observability of

the model needs to be analyzed. The observability matrix [25]

of the battery model can be written as

O =

[

C
CA

]

=

[

1 ai
− 1

R2C2

0

]

. (10)

In practical situations, under no circumstance would −1/
R2C2 or ai be zero; hence, the observability matrix would al-

ways be full rank. It means that the battery model is observable

under any operation condition; thus, it is possible to estimate

the internal states of the Li-ion batteries.

III. PROPORTIONAL-INTEGRAL OBSERVER DESIGN

Based on the analysis previously stated, the design procedure

of the SOC estimation method based on the PI observer is

described in this section. To demonstrate the properties of the PI

observer, such as robustness to model uncertainties and model

errors, two systems are considered, namely, the linear system

and the nonlinear system.

A linear system is given as follows, which could be used to

describe a class of dynamical systems with acceptable accuracy

(referred to as System 1):

{

ẋ = Ax+Bu
y = Cx+Du.

(11)

Comparing (11) with (9), it is clear that these two systems are

the same. Hence, if no modeling error or other nonlinearities

are considered, the battery model could be fully regarded as a

linear system. Thus, in this section, the PI observer is applied to

such a linear system first, and the convergence of the designed

PI observer is proved.

However, owing to nonlinear effects in battery systems, such

as modeling errors, capacity variation, and so forth, System 1

could not be sufficient to model such a nonlinear system. The

nonlinear part should be added to the system for a Li-ion battery

model, and a nonlinear system could be described as follows

(referred to as System 2) [26]–[28]:

{

ẋ = Ax+Bu+ Ev(t)
y = Cx+Du

(12)

where E is used to describe the influence by the nonlinearities

to the different states, and such relationships could be obtained

by experiments and some “try and error” approaches; v(t)
describes the nonlinearities of the plant and may be a nonlinear

function of time. v(t) is referred to as disturbance in this paper,

as shown in Fig. 4.

Considering the special applications of the battery for EDVs,

the disturbance could be caused by temperature, sensor noise,

and so on. Taking temperature as an example, the variation rate

Fig. 4. Approximation of the relationship between SOC and OCV.

could be very slow, and thus, v̇(t) ≈ 0 when the temperature

is considered. For sensor noise, it is considered to be Gaussian

noise with a zero-mean value. Even some sensor failure occurs

(take the current sensor drift for example), it could also be

considered to be slow changing, and thus, v̇(t) ≈ 0 could also

be assumed. Hence, in this paper, the simplest case v̇(t) = 0

is assumed, and the following statements are based on this

assumption. Besides, for practical applications, it is assumed

that limt→∞ v(t) would always exist but not necessarily equal

to zero.

According to the definition of the PI observer, the PI observer

is designed as follows:
{

˙̃x = Ax̃+Bu+Kp(y − ỹ) +Ki2w
ẇ = Ki1(y − ỹ).

(13)

Note that variable w is defined as the integral of the differ-

ence (y − ỹ). Vectors Kp ∈ R
2×1 and Ki1 ∈ R

1×1 Ki2 ∈ R
2×1

are the proportional and integral gains, respectively. The design

block of the PI observer is given in Fig. 4.

The ideal Li-ion battery model is considered first. The PI

observer is applied to System 1, and according to e = x̃− x,

the following equations could be obtained:
{

ė = Ae−KpCe+Ki2w
ẇ = −Ki1Ce.

(14)

These equations could be rewritten as follows:
(

ė
ẇ

)

= Ae

(

e
w

)

(15)

where Ae =

[

A−KpC Ki2

−Ki1C 0

]

.
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Substituting parameters Kp =

[

Kp1

Kp2

]

and Ki2 =

[

Ki21

Ki22

]

with matrix Ae, we have

Ae =

[

A−KpC Ki2

−Ki1C 0

]

=

⎡

⎣

− 1
R2C2

−Kp1
−Kp1

ai Ki21

−Kp2
−Kp2

ai Ki22

−Ki1 −Ki1ai 0

⎤

⎦ . (16)

Ae could be arbitrarily assigned if and only if the system

without disturbance is observable. Since observability is proved

in Section II, parameters Kp, Ki1, and Ki2 can be selected

using the LQ method or the pole place method to assure Ae is

Hurwitz, indicating that the system would converge. Hence, we

can conclude that e → 0 and w → 0 as t → ∞, which means

that the estimation states would converge to the true states.

Second, the unknown disturbance is considered, which

would lead to modeling a more accurate battery characteristics.

The PI observer is applied to System 2; when ex = x̃− x,

ev = w − v, and Ki2 = E are assumed, the error equations

could be obtained as follows:

{

ėx = Aex −KpCex +Ki2ev
ẇ = −Ki1Cex.

(17)

These equations could be rewritten as

(

ėx
ẇ

)

=

[

A−KpC Ki2

−Ki1C 0

](

ex
ev

)

. (18)

Hence

(

ėx
ėv

)

= Ae

(

ex
ev

)

−

[

0

I

]

v̇. (19)

Since v̇ = 0 for the certain application in this paper, as

previously stated, this equation could be rewritten as follows:

(

ėx
ėv

)

= Ae

(

ex
ev

)

. (20)

Ae could be arbitrarily assigned if and only if the following

matrix pair is observable:

([

A E
0 0

]

, [C 0 ]

)

(21)

which is equivalent to the following equation:

rank

{[

A Ki2

C 0

]}

= n+ r (22)

where r is the dimension of disturbance v, and it is assumed

to be 1 in this paper. Since n = 2 in this paper, the rank of the

matrix should be 3.

Fig. 5. Configuration of battery test workbench.

Substitute the parameters of the battery model into the matrix,

we get

rank

{[

A Ki2

C 0

]}

= rank

⎧

⎨

⎩

⎡

⎣

− 1
R2C2

0 Ki21

0 0 Ki22

1 ai 0

⎤

⎦

⎫

⎬

⎭

= 3 (23)

which is full rank, and the rank is 3. The conditions are satisfied;

hence, Ae could be arbitrarily assigned.

Kp and Ki1 could be selected by utilizing the LQ method or

the pole place method, such that Ae is Hurwitz, as previously

stated. If Ae is Hurwitz, the system would converge. Hence,

from the given analysis, we can conclude that ex → 0 and ev →

0 as t → ∞, which means that when t → ∞, x̃ would converge

to x. Take Li-ion battery model in this paper for example, the

estimated SOC would converge to the true SOC.

IV. EXPERIMENTAL VERIFICATION

A. Experiment Equipment and the Configuration

To identify the battery model and verify the proposed

PI-based SOC estimation method, an experimental battery test

bench is established.

As shown in Fig. 5, the battery test workbench consists of

a battery cycler Arbin BT2000, a computer, and a MicroAuto-

Box. The battery test equipment is responsible for charging and

discharging the Li-ion batteries according to the required cur-

rent profiles. The current sensor measures the current of the bat-

tery. The MicroAutoBox is controlled by a computer through

MATLAB/Simulink to acquire the data of the battery. The PI

observer algorithm is programmed in MATLAB/Simulink, and

the algorithm is downloaded; it could run in the MicroAutoBox

to calculate the SOC of the battery based on the PI observer.

The experimental battery test workbench is also established

according to the configuration previously stated, as shown in

Fig. 6.

B. Identification Method and the Results

For convenience, the data to obtain the relationship between

SOC and OCV are used to identify the battery model. The least

squares method is introduced to calculate the best set of R1, R2,

and C2. The identification results are listed in Table II.

The identification results, compared with the original mea-

sured data, are depicted in Fig. 7. The figure shows that the

terminal voltage calculated by the model generally fits the

measured terminal voltage well. However, in the lower part of
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Fig. 6. Experimental battery test workbench.

TABLE II
PARAMETERS OF THE IDENTIFICATION RESULTS

Fig. 7. Identification results.

Fig. 7, large errors exist, particularly when the current quickly

varies. These can be considered to be caused by the modeling

error and model uncertainties. From the given discussion, it is

clear that the RC model could generally model the characteris-

tics of the Li-ion battery but with large model errors.

To verify the proposed PI-based SOC estimation method

for Li-ion batteries, the urban dynamometer driving schedule

(UDDS) drive cycle is utilized. The UDDS drive cycle is widely

used to test vehicle performance, while it is also introduced to

verify the performance of EDVs in recent days. The UDDS

drive cycle used in this paper is the current demand of the

battery pack while the EDV is applied by the speed profile of the

traditional UDDS drive cycle. Since only a battery cell is tested

in this paper, the UDDS drive cycle is scaled down according

Fig. 8. UDDS current profile.

Fig. 9. SOC estimation results when the initial SOC is given.

to the voltage and the capacity. Fig. 8 shows the UDDS current

profile that is scaled down and used in this paper.

To demonstrate the validation results, the reference SOC

should first be defined. The ampere-hour (Ah) counting method

is simple and has good accuracy when the initial SOC is given

and the current sensor is accurate enough, particularly when

the test is in a short time in a confined laboratory environment.

Hence, the Ah-counting method is chosen as the reference SOC

in this paper. Before the validation starts, the battery is charged

to full according to the battery specifications. The initial SOC

of the reference SOC is identical, and thus, the reference SOC

could be known during the whole experiment.

The validation procedure is divided into two cases. In the

first case, the initial SOC is assumed to be given for the PI

observer. Hence, when the experiment starts, the estimated

SOC is the same as the reference SOC. The estimation results

in such a situation are given in Fig. 9. In the beginning, the

SOC diverges a little since the model is not so accurate. Then,

the estimated SOC quickly converges to the reference SOC

and keeps on tracing it with small errors. It indicates that the

proposed method could estimate the SOC of the Li-ion batteries

with small errors when the initial SOC is given, even if there are

large model errors in the simple battery model.

In the second case, the initial SOC is assumed to be unknown

for the PI observer. In this case, the initial SOC of the PI
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Fig. 10. SOC estimation results when the initial SOC is unknown.

observer is set to be 60%, while the reference SOC is actually

100%. The results of this experiment are shown in Fig. 10. In

the figure, the estimated SOC is different at the beginning, with

40% error. Then, the estimated SOC quickly increases, converg-

ing to the reference SOC. Even with some overshoots, it comes

to the steady state quickly. Then, the estimated SOC stays

with the reference SOC, overlapping with small errors, most of

which are confined to ±2% error band. It indicates that the pro-

posed PI-based SOC estimation method can compensate the

initial SOC error and make the estimated SOC converge to the

reference SOC quickly. Meanwhile, when it comes to the steady

state, the SOC estimation errors are maintained small thereafter.

From the previous discussions, it can be concluded that the PI

observer works well in the SOC estimation of Li-ion batteries.

The PI observer estimates the SOC with a small error, even with

a simple battery model, compensating for the modeling errors

and modeling uncertainties.

V. CONCLUSION

A battery SOC estimation algorithm based on a PI observer

has been proposed for Li-ion batteries. Acceptable accuracy

has been verified by experiments on battery bench testing for

both known and unknown initial SOC. The PI-based SOC

estimation has a simple structure and is easy to implement.

The compensation properties of the PI observer demonstrate

that a simple RC model can be utilized to model the Li-ion

battery. The estimated SOC with the PI observer converges to

the reference SOC quickly, and the SOC estimation errors are

maintained in a small band. Most of the errors of the PI-based

SOC estimation method are confined to ±2% when compared

with the reference SOC that is based on Coulomb counting with

known initial SOC.
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