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Cascading hazard processes refer to a primary trigger such as heavy rainfall, seismic

activity, or snow melt, followed by a chain or web of consequences that can

cause subsequent hazards influenced by a complex array of preconditions and

vulnerabilities. These interact in multiple ways and can have tremendous impacts

on populations proximate to or downstream of these initial triggers. High Mountain

Asia (HMA) is extremely vulnerable to cascading hazard processes given the tectonic,

geomorphologic, and climatic setting of the region, particularly as it relates to glacial

lakes. Given the limitations of in situ surveys in steep and often inaccessible terrain,

remote sensing data are a valuable resource for better understanding and quantifying

these processes. The present work provides a survey of cascading hazard processes

impacting HMA and how these can be characterized using remote sensing sources. We

discuss how remote sensing products can be used to address these process chains,

citing several examples of cascading hazard scenarios across HMA. This work also

provides a perspective on the current gaps and challenges, community needs, and view

forward toward improved characterization of evolving hazards and risk across HMA.

Keywords: cascading hazards, High Mountain Asia, remote sensing, glacial lake outburst floods, landslides, risk

assessment

INTRODUCTION

Natural hazard-induced disasters exploit the vulnerabilities in society created by political, historical,
and cultural processes (Kelman, 2019). Disasters are sometimes considered as a single process or
one homogeneous event. Therefore, much scientific emphasis has been placed on understanding
the individual hazards, triggers or preconditions that may result in a single outcome, such as
a snow avalanche killing mountaineers, or an earthquake shaking down houses. However, these
disasters are frequently non-linear hazard process cascades. The ensemble of preconditioning
factors, triggering, and process cascades can entail greater human, infrastructure, or ecosystem
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exposure and higher risks than when singular isolated processes
are considered. The latter point was emphasized by Gill and
Malamud (2016), who considered accurate risk assessment to
be dependent on consideration of multi-hazards and process
cascades. Lacking such consideration, disaster impacts can
exceed the expectations of hazard mappers and disaster
response planners. We use the definitions of hazard, exposure,
vulnerability and risk from Schneiderbauer and Ehrlich (2004)
and the U.N. Framework for Disaster Risk Reduction (UNISDR,
2015) where: hazard refers to a physical event or phenomenon
that can be “single, sequential or combined in their origin
and effects”; exposure is the population, infrastructure or other
assets within the geographic region affected by the hazard; and
vulnerability is the characteristics of an organization (person,
group) to “cope with, resist and recover from the impact of a
natural or manmade disaster.” Risk is then defined as Hazard ∗

Exposure ∗ Vulnerability.
A cascading process can be defined as sequences of events

(not necessarily sequential) governed by cause and effect
relationships. The importance and relevance of cascading process
chains in the context of natural and man-made hazards has
been defined and examined in several ways. Kappes et al.
(2012) summarize the approaches to multi-hazards within
the context of risk assessment, emphasizing the challenges
and importance of considering amplified risk stemming from
cascading processes. Gill and Malamud (2016) emphasize the
differences between multi-layer single-hazard approaches and
multi-hazard approaches, suggesting that “ignoring interactions
between important environmental and anthropogenic processes
could distort management priorities, increase vulnerability to
other spatially relevant hazards or underestimate disaster risk.”
Recently a view and methodology has emerged of more complex
weblike systems of natural process causes and effects and
impacts on humans, infrastructure, and ecosystems. Pescaroli
and Alexander (2016) contest the simplified “toppling dominoes”
perspective of cause-effect. They argue that cascades happen non-
linearly and include many amplifying and subsidiary events,
where the compounding effects of natural hazard processes can
be phenomenologically distinct from the cause, and the impacts
also can be diverse and far ranging. In this sense, what is
commonly termed a process chain is often more of a process
web. The key is that one process cascades into one or more other
processes, some of which are hazards in their own right and can
create multiple disasters within a disaster.

Many recent disasters have contributed to scientific and
public understanding of multi-process linkages. For example,
the 2011 M9.0 Tohoku earthquake and tsunami propagated
and compounded the disaster at the Fukushima Daiichi
nuclear reactors, causing broad economic impacts that included
hundreds of billions of USD in direct losses and billions (USD)
more in losses in supply chain disruptions and continuing
agricultural losses (Lekkas et al., 2011; Kazama and Noda,
2012; IAEA, 2015). Complex process cause-and-effect webs
are documented within mountain areas, such as the Attabad
landslide and damming of the Hunza River in northern Pakistan
(Kargel et al., 2010). The dammed lake grew over 5 months
and caused deep, cascading social and economic impacts of

almost $4 billion USD (Cook and Butz, 2016). This was largely
due to a 90% severance of overland trade between China and
Pakistan until restoration of the KarakoramHighway 5 years later
(Haider, 2012). The disaster also had political (Sökefeld, 2012)
and geopolitical (Haider, 2012; Butz and Cook, 2015) impacts on
a strategic border.

The potential for such immense losses make it incumbent on
the scientific community, policy makers, and those developing
Decision Support Systems (DSS) to consider and evaluate
physical cascading process chains and webs to better integrate
physical models with economic and social models of cascading
impacts. A common feature of the examples from Japan and
Pakistan is that the process sequences can have compounding
interactions that quickly multiply in space and time, resulting in
substantial risks to society, infrastructure, and the environment
(Cardona et al., 2012). One challenge in characterizing
these complex interactions and connecting the processes
to community vulnerability and risk is limitations in data
availability, particularly in remote regions.

Satellite-based remote sensing offers a valuable and rapidly
developing set of tools that can improve hazard detection and
mitigation and disaster warning, response, and recovery. This
paper highlights the utility of remote sensing data for studies
of cascading hazard processes that are observable or informed
from the vantage point of space. We present case studies
from the HMA region to illustrate how remote sensing data
is used to monitor and model elements of these cascading
process chains and provide context for future opportunities.
We build on previous works (e.g., Kääb et al., 2005) to
summarize and reflect on the vast increase in data from new
remote sensing missions and the development of platforms
that enable rapid analysis to support hazard assessment and
disaster response. While much of the current research is
focused on understanding specific processes, we show how the
processes can connect and outline opportunities and challenges
in characterizing the full continuum from hazard to risk in
a dynamic and coupled way to support risk-mitigation and
disaster response efforts. The ultimate goal of this work is to
provide an accessible and applicable reference of remote sensing
capabilities that is of relevance to both scientists and in-country
decision makers. It is also intended to provide insight into
how remote sensing information can help governments advance
the Sendai Framework Priorities of understanding disaster risk,
strengthening disaster risk governance, and enhancing disaster
preparedness (UNISDR, 2015).

BACKGROUND

Thematic Scope
From a disaster management perspective, hazard assessments
that are stove-piped to consider the impacts of a singular
hazard can offer some tractable ways to map hazards but tend
to miss the broader assessment, such as economic and social
disruptions. Even in many “multi-hazard assessments” a set of
individually-derived hazard zones are overlain spatially, without
considering how each may interact. Moving from understanding
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the hazard to an accurate characterization of the risk requires
quantification of the end-to-end connections, interdependencies,
and consequences resulting from a chain of cascading events.
This study focuses more on how remote sensing products can
inform elements within the chain and provides examples of
how the connections between processes can be characterized.
This work also provides observations on the existing limitations
and gaps in taking a systems approach to incorporate multiple
conditioning, triggering, and cascading elements to better
represent disaster risk and societal impacts in support of risk
reduction strategies. We do not consider in detail the specific
impacts of disasters on people and infrastructure; however,
those human impacts also commonly occur in cascading chains
and webs that are complexly linked to the physical process
chains and webs.

Geographic Scope
Our HMA study region extends from the Hindu KushMountains
in Pakistan and Afghanistan to the eastern Himalaya covering
India and Bhutan, and north to Tien Shan, which is also
known as the extended Hindu Kush-Himalaya (Bolch et al.,
2019) (Figure 1). The region is seismically active, with the
Indian Plate subducting beneath the Eurasian Plate, resulting in
catastrophic earthquakes such as the April 2015 Gorkha Mw 7.8
event. In the southeast, the climate is defined by heavy rainfall
during the summer monsoon, while the western region receives
significant rain and snow from winter westerlies. HMA has the
largest concentration of glaciers outside of the poles and Alaska

and serves as a freshwater reservoir for over a billion people
(Immerzeel et al., 2010; Quincey et al., 2018). Global Land Ice
Measurements from Space (GLIMS) and the Randolph Glacier
Inventory (RGI) v6.0 have identified 95,536 glaciers across HMA
(Zhao et al., 2014). As of 2010, these glaciers were accompanied
by 7,368 glacial lakes covering an area of 779 km2 (Wang
et al., 2013; Zhang et al., 2015). Rapid glacial melting along
with other Earth surface processes pose significant downstream
hazards such as glacier outburst floods and landslides, which can
have major societal impacts. This is particularly important in
HMA, since a global study found that Nepal and Bhutan have
the greatest socioeconomic consequences from glacier outburst
floods (Carrivick and Tweed, 2016). Some common hazards and
cascading processes within HMA are outlined in Figure 2.

Remote Sensing Data for Hazards
Research and Disaster Response
A dearth of ground data has hampered the timely study of
individual hazards and disasters, and limits the collective and
systematic regional assessment of hazard processes. This remains
a challenge, especially in countries where hydrological, geological,
and other needed data are not acquired or classified (GAPHAZ,
2017). Remote sensing allows the development of tools for
classifying, routinemonitoring andmodeling of cascading hazard
processes. Spatio-temporal data resolution has been a major
limitation in the application of remote sensing to high mountain
hazards (Kääb et al., 2005). However, a revolution in mountain
hazards assessment has been made possible in recent years

FIGURE 1 | Extent of the HMA Study area (Bolch et al., 2019). The location of case studies from Section “Case Studies of Cascading Hazards Over HMA” are

highlighted in the black triangles.
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FIGURE 2 | Conceptual diagram highlighting cascading hazard process. (A) Illustrates an outburst flood triggered at proglacial lakes, which can be further

exacerbated by additional elements such as landslides, avalanches and rockfalls and avalanches triggered by precipitation or seismic activity. (B) Shows a supra- or

englacial-flood event emanating from debris-covered glaciers. (C) Illustrates how a landslide triggered by seismic activity or precipitation can dam a river and cause

upstream lake expansion. (D) Shows how a landslide-dammed river could fail catastrophically, causing downstream propagation of flood waters and debris that

could cause potential societal impacts to populations and infrastructure.

by several new developments in Earth remote sensing: global
coverage by many civil satellites at high spatial resolution (a
few meters down to a few decimeters), reduced repeat times,
improved spectral resolution, expanded data availability and
lowered cost (much of the data being free), and vastly improved
computing capability and resources (e.g., cloud computing,
Google Earth Engine) that allow analysis of regional and global
datasets as never before. These developments have been key
in overcoming issues of widespread cloudiness, providing high
temporal and spatial resolution of long continuing process
cascades and their conditioning and impacts, processing of
thousands of images by scientists around the world, and enabling
more relevant applications that are more responsive to DSS and
public awareness of events – often in near real-time. Free data
access has expanded and enhanced the research community to

include scientists who could not otherwise participate in hazards
and disaster research, and has enabled global studies.

There are a variety of platforms (public and commercial),
observational strategies, and models based on remote sensing
data that are valuable for improving our understanding of how
to relate elements within the cascading hazard chain (Table 1).
A more in-depth description and link to all sources referenced
within this article are provided in Supplementary Table S1.
Publicly-available moderate resolution optical observations from
Landsat, ASTER and Sentinel-2 are valuable for mapping and
monitoring changes in glacial lakes, areas of landslide-dammed
lakes, or large landslides. Commercial imagery from companies
such as DigitalGlobe and Planet, among others, offer submeter
to meter-scale imagery and on-demand tasking for mapping
these features and collecting data during event response. These
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TABLE 1 | Description of relevant processes and elements involved in cascading hazards.

Relevance to cascading

processes

Associated geospatial data

(examples)

Methods and usages (examples) Link/References/Relevant sections in paper

(examples)

Trigger Precipitation Trigger for landslides and GLOF

events

Global Precipitation Measurement

(GPM)

Define extreme precipitation metrics to

characterize potential for landslide initiation,

GLOFs, etc.

Section “Extreme Precipitation” https://gpm.nasa.gov

Earthquakes Trigger for landslides and GLOF

events

USGS ShakeMap Ground motion and shaking intensity Section “Earthquakes”

https://earthquake.usgs.gov/data/shakemap/

Data Inputs Digital

Elevation

Models

(DEMs)

Glacial moraine degradation,

landslide detection, modeling

Tandem-X DEM, SRTM, GDEM, ALOS

World DEM, Generate with ASTER

imagery and, stereo commercial

imagery (e.g., Digital Globe, ALOS

PRISM, RapidEye)

Derived from stereo imagery, for use in

landslide runout models and landslide

classification algorithms

Sections “Glacial Lake Mapping,” “Surface Velocity and

Surging Glaciers,” “Glacier Outburst Floods,” and

“Downstream Movement”

Glacial lake

locations

Glacier outburst floods Landsat, Sentinel, ASTER, Planet,

WorldView

NDWI or manual delineation. Input to

outburst flood models and/or hazard/risk

assessments

Sections “Glacial Lake Mapping,” “Kyagar and

Khurdopin Glaciers, Karakoram: Ice-dammed GLOFs,”

“Changri Shar and Lhotse Glacier Outburst Floods,”

and “Langmale GLOF”; Zhang et al., 2015; Nie et al.,

2017; Rounce et al., 2017a

Lake

bathymetry

Potential outburst flood volume Lake bathymetry map derived from

sonar points interpolated within the lake

boundary

Use empirical area-volume relationships to

estimate lake volume. Lake bathymetry

fused into a DEM needed for outburst flood

modeling

Section “Changri Shar and Lhotse Glacier Outburst

Floods” and “Langmale GLOF”; Cook and Quincey,

2015; Haritashya et al., 2018; Lala et al., 2018

Presence of

permafrost

Preconditioning of slopes Global Permafrost Zonation Index (PZI) Decreased slope stability at the transition

from permafrost to non-permafrost zones,

Spatial coincidence between lower most

rock glacier distribution and the presence of

permafrost

Section “Preconditioning”; PZI: Gruber, 2012; RG:

Schmid et al., 2015

Presence of

glaciers and

snow

Avalanche potential near sites

of glacial lakes. Surge-like

behavior or sudden collapse of

glaciers

Landsat, Sentinel, ASTER, Planet,

WorldView, etc., Rock glacier

distribution (RG)

Band ratios or manual delineation,

Identification of potential avalanche sites,

Glacier bed overdeepenings

Section “Preconditioning” and “Surface Velocity and

Surging Glaciers”; GLIMS: Raup et al., 2007; RGI:

Linsbauer et al., 2016

Vegetation

Change

Preconditioning for landslides;

deforestation, landcover

burning, land conversion to

agriculture

Multi/hyper-spectral and radar, e.g.,

ASTER, OLI, Sentinel 2, Sentinel 1,

upcoming NISAR.

NDVI, LAI, Fuzzy C Means, fusion with

radar backscatter

Section “Preconditioning”; Hansen et al., 2013; Pathak,

2016; Hashim et al., 2017

Population Exposed population and

communities to hazards

OpenStreetMap R©, Nepal Census,

GoogleEarth; Global Rural-Urban

Mapping Project (GRUMP)

Intersect potential hazard zones with

population and urban zones to obtain

exposure estimates

Section “Downstream Movement and Impacts”;

https://openstreetmap.org; google.com/earth;

sedac.ciesin.columbia.edu/data/collection/grump-v1

Infrastructure/

Construction

Construction of new roads,

buildings, mines that may

destabilize slopes through

blasted bedrock, vegetation

removal, roof and pavement

runoff, draining rerouting

OpenStreetMap R©, gROADS, Google

Earth, Landsat, commercial imagery,

local departments of transportation

Mapping of impervious surfaces using

spectral characteristics and band ratios,

NDVI, radar DEM differencing, time series

analysis, multispectral image differencing

Section “Downstream Movement and Impacts”;

gROADS: Center for International Earth Science

Information Network[CIESIN] - Columbia University, and

Information Technology Outreach Services -[ITOS]-

University of Georgia (2013); http://openstreetmap.org;

Cui et al., 2019

(Continued)
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images are also being used to generate time series of high-
resolution (2–8 m) Digital Elevation Models (DEMs) that can
be used to quantify elevation and volume change of landforms
and glaciers. Composite mosaics of these high-resolution DEMs
are also fundamental for modeling landslides or outburst flood
runouts and producing accurate landslide inventories. Active
sensors, such as Synthetic Aperture Radar (SAR) from platforms
like Sentinel-1 and commercial SAR data from COSMO-
SkyMed and TerraSAR-X can highlight surface deformation
from earthquakes, hillslope movement for large, slow moving
landslides, and has been used to characterize freeze/thaw
processes and glacier volumes within the HMA region. Satellite
rainfall products such as the Global Precipitation Measurement
(GPM) mission can provide near real-time rainfall estimates at
0.1-degree coverage every 30 min. In addition to the remote
sensing platforms, models such as Land Data Assimilation
Systems (LDAS) and Global Climate Models (GCM) like the
GFDL Forecast-oriented Low Ocean Resolution (FLOR) model
assimilate remote sensing and in situ observations to provide
estimates of water supply, glacier modeling, and forecasted
hydrologic states across HMA that are valuable for understanding
the preconditioning, initiation and future outlook of cascading
hazard processes within this region.

REMOTE SENSING OF CASCADING
HAZARD PROCESSES

This section provides a survey of many of the remote sensing
data sources and methodologies relevant to the hazard processes
outlined in Figure 2. The goal here is to highlight the ways
in which the cascading hazard elements can be uniquely
observed, then Section “Case Studies of Cascading Hazards Over
HMA” will cite examples across HMA that show how these
processes can connect. Section “Synthesis of Gaps, View Forward
and Discussion” highlights opportunities and limitations for
monitoring andmodeling these cascading processes in the future.

Preconditioning
Preconditioning involves changes to the land surface that
increase the probability of having a triggering event and ensuing
hazard process chain or web. Conditioning processes include:
(1) freeze-thaw, which can cause frost shattering of bedrock
(Dredge, 1992) and generation of talus, or weakening or
creep of unconsolidated sediment (Daanen et al., 2012; Zhou
et al., 2018); (2) sustained rainfall or snowmelt, which can
destabilize soils (Cui et al., 2019); (3) chemical weathering,
which can weaken bedrock and generate talus (Avtar et al.,
2011); (4) thinning of glaciers and debuttressing (removal of
the physical support) of moraines or weakened bedrock or
tributary glaciers (Kääb et al., 2006); (5) thawing of permafrost
or ice-cored moraines; (6) gully erosion by surface streams or
subsurface piping, which can undermine glaciers, debris, or
bedrock; (7) prior earthquakes or joint fracturing of bedrock
(Pour and Hashim, 2017); (8) deforestation and other vegetation
changes (Pathak, 2016; Hashim et al., 2017); (9) construction
(Pathak, 2016); and commonly a combination, e.g., bedrock
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weathering, deforestation, land use conversion and construction,
and sustained precipitation (Cui et al., 2019), or bedrock
fracturing, vegetation change, and sustained precipitation (Pour
and Hashim, 2017). Commonly, minor landsliding itself can
destabilize slopes and condition them for larger subsequent
failures triggered by earthquakes or rainfall (Pathak, 2016).

The first six categories listed above are related to climate
or extreme weather directly or by exposure of bedrock by
retreat/thinning of glaciers. Thawing of permafrost can take
ice-cemented and mechanically strong bedrock or debris to
a state of unconsolidation, thus creating a potential for new
groundwater drainage routes, surface erosion, slope creep
(gelifluction or solifluction) or other dynamics that locally did
not previously occur (Gruber and Haeberli, 2007; Stoffel and
Huggel, 2012; Haeberli et al., 2017). Conditioning processes
related to anthropogenic activities including deforestation, road
and building construction, and mining can also have a significant
impact on destabilizing slopes and causing landslides and other
erosion processes.

Each listed process may either generate weakened or
unconsolidated debris, weaken the support of the already
weak rock or ice masses, or re-route water flow. Penetration
of rainwater beneath hanging glaciers may decrease basal
shear stress on steeply sloping beds, leading to serac falls
(toppling blocks of ice). Road building and deforestation
for agriculture or urban expansion commonly contribute to
hillslope destabilization (Petley et al., 2007; Cui et al., 2019).
Preconditioning may happen hours to decades before a trigger
initiates a landslide or flood.

Preconditioning may result in new hazard processes arising
where previously they were rare. The formation and growth of
new glacial lakes similarly introduces new hazard processes. The
thawing of permafrost and transition of “polar” or cold-based
glaciers (completely frozen) to polythermal, and polythermal to
temperate glaciers (temperatures at or above the melting point at
the bed) is a logical consequence of increased warming in HMA
(Miles K. E. et al., 2018) and may contribute to a new propensity
for glacier surges or ice avalanches— some of immense scales
(Kääb et al., 2018).

Earthquakes
The Himalaya plate boundary is characterized by episodic
large earthquakes followed by periods of strain accumulation
(Khattri, 1987; Bilham, 2019). Mapping and defining how
quickly strain is accumulating across the plate boundary
zone is critical to improving seismic hazard assessment and,
together with other types of geomorphic mapping, will improve
characterization of active fault structures (Elliott et al., 2016).
The availability of satellite-based geodetic measurements has
increased significantly over the last 20 years, enabling more
routine observations of active tectonic processes. However, a
challenge with robustly characterizing earthquake hazard is the
short length of time for which good observations exist relative to
the often long repeat times for large earthquakes. Modeling the
spatiotemporal distribution of deformation around individual
fault zones or across plate boundaries can be used to assess
earthquake cycles; however, this is predicated on sufficient

in situ or remote sensing observations to validate these estimates
(e.g., Dal Zilio et al., 2019).

Synthetic Aperture Radar (SAR) provides a powerful
capability to assess coseismic activity and surface displacements
with centimeter to millimeter precision over large areas.
Interferometric SAR (InSAR) is designed to measure phase
changes between images along the satellite’s line-of-sight (LOS)
and can identify surface displacement using publicly-available
satellites such as Sentinel-1 and commercial platforms (e.g.,
ERS-1/2 SAR, ENVISAT ASAR, ALOS PALSAR, TerraSAR-X,
RADARSAT-2, COSMO-SkyMed, see Supplementary Table S1

for more details). The timescales at which these platforms are
relevant for characterizing displacement vary based on their
orbit, frequencies and revisit time but research is focusing
on how these types of measurements can be used to inform
crustal deformation. Global Navigation Satellite System (GNSS)
data provides high accuracy and temporal resolution surface
displacement information vital for providing a comprehensive
view of the rupture zone. The Gravity Recovery and Climate
Experiment (GRACE) has been used to understand temporal
variation in gravity due to great earthquakes such the 2011
Tohoku-Oki earthquake (Han et al., 2011, 2014). These
observations are coupled with in situ networks of geodetic
observations (e.g., UNAVCO) to improve rapid characterization
of earthquake hazards (e.g., Crowell et al., 2012; Melgar et al.,
2012). In addition to existing capabilities, new opportunities are
on the horizon to advance earthquake hazard assessment through
the synthesis of multiple satellite and in situ measurement
constellations, enabling rapid characterization and dissemination
of earthquake information.

Extreme Precipitation
Extreme precipitation events across HMA frequently occur
during the summer monsoon season in Nepal, northern India
and eastern Pakistan and during the winter westerlies within
the Karakoram region to the west. There are few consistent
and publicly available in situ estimates of precipitation across
this region so satellite products can provide insight into
the extreme precipitation patterns (storm intensity, duration,
and accumulation) that may impact cascading hazards, such
as landslides, glacier outburst floods, and flooding. NASA
satellite products such as the Tropical Rainfall Measuring
Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA)
(Huffman et al., 2010) and the Integrated Multi-satellitE
Retrievals for GPM (IMERG; Huffman et al., 2018) provide
spatiotemporal coverage over the region at 0.25 degree, 3-
hourly and 0.1 degree 30-min resolution, respectively with
approximately 4 h latency. Other satellite products such as
Climate Hazards group Infrared Precipitation with Stations
(CHIRPS; Funk et al., 2015) provides 0.05 degree products with
a 2 day to 3 weeks latency. While these gridded products are
of high value for continuity and coverage, one challenge with
satellite derived estimates is the strong orographic controls that
modulate precipitation over HMA’s complex topography. The
local variability in precipitation, particularly related to orographic
enhancement, can lead to errors in characterizing extreme rainfall
within the transition zone from the Indian to Tibetan plateau
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(e.g., Barros et al., 2004; Anders et al., 2006; Andermann et al.,
2011). Recent work has focused on downscaling the satellite
estimates by leveraging other observations of topography and
temperature to better characterize the constraints on extreme
precipitation (e.g., Mei et al., 2018); however, the availability of
in situ gauge data to validate these estimates remains a pressing
need within this region for improving satellite precipitation
retrievals over this area.

Landslides
Landslide Mapping

Landslides are pervasive events in mountainous environments,
causing billions of dollars in damages to infrastructure and
thousands of deaths annually (Kirschbaum et al., 2015; Froude
and Petley, 2018). Remote sensing of landslides with optical
imagery can be categorized into two groups: pixel based and
object-oriented analysis (OOA). With the availability of high
resolution satellite imagery, traditional pixel-based methods
that use the spectral characteristics of single pixels and ignore
spatial information have become inadequate for characterizing
geomorphic process such as landslides (Dou et al., 2015). In
OOA, pixels are transformed into objects based on spectral
homogeneity using image segmentation (Blaschke et al., 2004).
Spectral, textural, contextual, morphological and topographical
characteristics of the objects are used for landslide detection
(Sun et al., 2017). Comparative studies between the two methods
highlight superior performance of OOA compared to pixel-
based methods (Moosavi et al., 2014; Keyport et al., 2018).
SAR sensors have the advantage that they can “see” the land
surface during all weather conditions, which is particularly
valuable when trying to observe landslide changes during the
monsoon season. InSAR techniques have been used to study slow
moving landslides (<1–2 cm/year) (Liu et al., 2013; Tofani et al.,
2014; Ambrosi et al., 2018). Time series observation techniques
also known as Multi-Temporal InSAR (MT-InSAR) have been
developed (Ferretti et al., 2001, 2011; Berardino et al., 2002;
Hooper et al., 2004; Hooper, 2008) to mitigate unwanted phase
contributions by several different sources such as electronic
properties of the ground, atmospheric delay, inaccurate orbit,
and combined noises (Colesanti and Wasowski, 2006). In case
of rapid movement, the interferometric phase can be affected
by high phase gradients between neighboring pixels, leading
to difficulties in calculating precise displacements, or severe
coherence loss (decorrelation) when surface movement exceeds
the detectable displacement (Casu et al., 2011; Raspini et al.,
2015). For such cases, pixel offset tracking can be used as an
alternative method to infer two dimensional displacements using
SAR amplitude (Manconi et al., 2014; Bhattacharya et al., 2015;
Sun and Muller, 2016; Madson et al., 2019).

Landslides can also be mapped by the backscattered
energy difference using SAR imagery before and after a
landslide (Yamada et al., 2013; Konishi and Suga, 2018) or
with polarimetry-based approaches (Rodriguez et al., 2002;
Czuchlewski et al., 2003; Shimada et al., 2014; Shibayama et al.,
2015; Plank et al., 2016). Several polarimetric decomposition
methods have been developed for classifying land cover based

on scattering mechanisms (Cloude and Pottier, 1996, 1997;
Freeman and Durden, 1998). The launch of SAR sensors
with frequent revisit times such as TerraSAR-X, COSMO-
SkyMed, and Sentinel-1 significantly improve our ability to study
landslides using SAR. However, in mountainous environments
such as HMA, geometric distortions such as foreshortening,
shadow, and layover can be a severe limitation (Sun et al., 2016),
making landslide detection and monitoring difficult.

Digital Elevation Models generated from sources such as
aerial photographs (Casson et al., 2003; van Westen and Lulie
Getahun, 2003), high-resolution stereo imagery (Martha et al.,
2010; Lacroix, 2016; Nagai et al., 2017) and drone surveys
(Watson et al., 2019) have been successfully used for landslide
mapping and monitoring. Use of DEMs also enable additional
parameters to be calculated, such as depth and volume, which
is advantageous for all phases of landslide hazard assessment
(Tsutsui et al., 2007).

Landslide and Avalanche Runout Analysis

Landslides and avalanches in high mountain regions may run
into glacial lakes or rivers, triggering secondary and tertiary
hazards such as outburst floods, the creation of landslide-
dammed lakes, or direct inundation of populated areas.
Remote sensing-derived landslide inventories help build an
understanding of volume-runout relationships and are reviewed
and demonstrated in Iverson et al. (1998), Metternicht et al.
(2005), Noetzli et al. (2006), Griswold and Iverson (2008), and
Rounce et al. (2017a).

Both empirical and numerical approaches are used to simulate
landslide runout (McDougall, 2017). Salzmann et al. (2004)
integrated optical remote sensing with GIS-based analysis of a
DEM to assess ice avalanche hazard potential. Noetzli et al. (2006)
also modeled rock-ice avalanches with a DEM. Iverson et al.
(1998) and Griswold and Iverson (2008) used volume-runout
relationships disaggregated by landslide type (i.e., rockfalls,
shallow debris flows, and volcanic lahars) to develop the
empirical LaharZ model. These approaches do not resolve many
small-scale physical processes nor do they allow for bifurcations,
but they are readily scalable. Prior knowledge of the general
environment helps bound simulated limits of potential runout.
For instance, rock-ice avalanche runout length has been found to
increase roughly 25% in glacial environments, compared to non-
glacial environments (Evans and Clague, 1994; Deline, 2001).

Recently, numerical modeling approaches such as r.avaflow
(Mergili et al., 2017) resolve finer scale physical process chains
involved in slope failure and deposition. DEM characteristics
are very influential in runout simulations. In general, elevation
data with high surface roughness – whether introduced by noise
or true roughness in very high resolution data – results in
an underestimation of runout lengths, likely due to simulated
momentum losses. McDougall (2017) therefore treat surface
roughness as a parameter in their DAN-W and DAN3D models.
Coarser DEMs generally result in shorter and wider runout
simulations when compared to observations (e.g., Muñoz-Salinas
et al., 2009; Anderson et al., 2016). Relative vertical accuracy
of DEMs mostly comes into play when delineating the distal
extent, even more so in flatter areas (Iverson et al., 1998). In
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highly dynamic, glacial environments, reference DEMs quickly
become outdated for runout modeling applications. ASTER-
derived DEMs have been used to capture crude changes in
topography left by deposits, given they are large enough (e.g.,
larger than 20–30 m, Huggel et al., 2007). High resolution
DEMs generated from commercial stereo pairs (e.g., Shean et al.,
2016; Shean, 2017) addresses this challenge, and time series
of DEMs allow for volumetric analysis of debris flow runout
(van Westen and Lulie Getahun, 2003). Recently, D-Claw has
coupled landslide and tsunami models in Alaska (George et al.,
2017), which could soon be applied to HMA with necessary
inputs and parameters. To address the uncertainty in runout
modeling estimates, it is often standard to consider a range of
runout volumes and other sensitivity analyses. These ranges of
deposition hazard zones assist decision makers and scientists in
considering areas more likely to be affected by landslides under a
range of scenarios.

Glacial Lakes
Glacial Lake Mapping

As glaciers melt and retreat, they become prone to develop
supra- and proglacial lakes, which can become glacier outburst
flood hazards (Benn et al., 2012). In HMA, both the number of
glacial lakes and their area have been rapidly increasing in recent
decades (Gardelle et al., 2011; Nie et al., 2017). The mapping of
these lakes is typically done using optical or SAR satellite imagery.

Optical imagery typically uses the normalized difference water
index (NDWI), which relies on the contrast between reflectance
in green or blue bands and absorption in the near-infrared bands
to map surface water (McFeeters, 1996). Corona, Hexagon, and
Landsat optical satellite imagery enabledmapping of select glacial
lakes since the early 1960s (e.g.,Watanabe et al., 2009), although it
was not until the 1990s that Landsat, and now Sentinel, provided
the temporal and spatial coverage to enable regional mapping
(e.g., Gardelle et al., 2011). Repeat mapping of these glacial
lakes also aids in the detection of glacier outburst floods on the
regional level (Veh et al., 2019). Given the plethora of imagery
being generated, new innovative methods such as algorithms
using Google Earth Engine (e.g., Kraaijenbrink et al., 2017) are
being developed to automatically analyze these large datasets.
For more detailed studies, higher resolution (0.3–3 m) satellite
imagery with improved temporal resolution (e.g., PlanetScope,
WorldView) enable near real-time monitoring of the filling and
potentially catastrophic drainage of supraglacial (e.g., Miles E. S.
et al., 2018), moraine-dammed (e.g., Byers et al., 2018), ice-
dammed (e.g., Steiner et al., 2018), and landslide-dammed lakes
(e.g., Kargel et al., 2016). Additionally, SAR images, which rely
on the backscattering intensity to delineate glacial lakes (e.g.,
Strozzi et al., 2012), provide reliable, repeat images of glacial lakes
that are unobstructed by clouds. However, these images are often
manually delineated to avoid errors associated with surface waves
and saturated sediments (e.g., Strozzi et al., 2012; Round et al.,
2017), so they are often only used over limited spatial extents.

Surface Velocity and Surging Glaciers

Studies have measured surface gradients and velocities to better
understand the development of glacial lakes and the link between

lake expansion and glacier mass loss (e.g., Quincey et al., 2007;
King et al., 2018). Major advances in feature tracking have
enabled surface velocities to be estimated for all glaciers in
HMA using optical imagery (Dehecq et al., 2019). New products
such as the Global Land Ice Velocity Extraction from Landsat
8 (GoLIVE) provide velocity estimates for any Landsat 8 image
pair. High-resolution optical imagery with short revisit times
such as PlanetScope (e.g., Steiner et al., 2018) or reliable SAR
images (e.g., Round et al., 2017) are also enabling detailed
investigation of seasonal surface velocities.

Surface velocities can be used to identify surging glaciers,
which are common in the Karakoram (Hewitt, 2007). A glacier
surge refers to the sudden movement of ice over a relatively
short period of time, causing notable mass redistribution and
potentially rapid glacier advance (Richardson and Reynolds,
2000). In the Karakoram, it is unclear whether surges are
controlled by warming thermal conditions or changes in the
hydrologic conditions (Quincey et al., 2015). Nonetheless,
surging glaciers are important to monitor as they may damage
property or infrastructure, and/or may block a valley and cause
an ice-dammed lake that is a potential outburst flood hazard
(Hewitt and Liu, 2010).

Glacier Outburst Floods

Glacier outburst floods refer to the sudden discharge of water
from a glacier (Carrivick and Tweed, 2013), which can have
runout distances of tens to hundreds of kilometers (Gunn, 1930;
Hewitt, 1982; Vuichard and Zimmermann, 1987; Richardson
and Reynolds, 2000; Reynolds, 2014; Gurung et al., 2017) and
cause extensive geomorphic and socioeconomic damages. The
flood water may be stored in a proglacial lake [often referred
to as a glacial lake outburst flood (GLOF), e.g., Vuichard and
Zimmermann, 1987], within the glaciers’ subsurface (e.g., Rounce
et al., 2017a), or behind an ice dam (e.g., Round et al., 2017).

The triggering mechanism that initiates these floods is
typically a dynamic event (e.g., an avalanche entering the lake,
extreme precipitation) or the destabilization of the damming
material (e.g., increase in hydrostatic pressure, piping). In HMA,
the main triggering mechanism for proglacial lakes is a mass
movement (avalanche or rockfall) entering the glacial lake, which
causes a displacement wave that can destabilize the terminal
moraine and cause a flood (Richardson and Reynolds, 2000;
Falátková, 2016). For the other types of outburst floods, the
triggering mechanism is typically caused by the destabilization
of the damming material, which may be linked to the ice
dam thawing, hydrostatic pressure exceeding the strength of
the dam, or hydrostatic pressure enabling the impounded
water to find more efficient drainage pathways. Given the
unpredictable nature of glacier outburst floods, remote sensing
has primarily been used to analyze floods following the events
(e.g., Rounce et al., 2017a; Byers et al., 2018) or to conduct
a first-pass hazard assessment for proglacial lakes (e.g., Worni
et al., 2014; Rounce et al., 2017b). The latter typically utilize
optical imagery and DEMs to identify potentially dangerous
glacial lakes that require further investigation, which may include
fieldwork and detailed flood modeling with a high-resolution
DEM (e.g., Lala et al., 2018).
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Downstream Movement and Impacts
Downstream Movement

Outburst floods mobilize large boulders that armor the channel
bed (Cook et al., 2018), leading to bank erosion, landslides,
and channel damming (Kattelmann, 2003). Large volumes of
sediment and woody debris are often mobilized and redeposited
in response to variations in channel morphology and stream
power (Costa and Schuster, 1988; Watanabe and Rothacher,
1996; Clague and Evans, 2000; Cenderelli andWohl, 2003), which
leave distinctive marks on the landscape. Remote sensing data,
primarily optical imagery and DEMs, are used to quantify the
extent and magnitude of downstream impacts. Change detection
techniques applied to optical imagery (e.g., PlanetScope) and
band ratios, such as the normalized difference vegetation index
(NDVI) and NDWI, can reveal areas of bank erosion and
river channel migration, respectively (Miles E. S. et al., 2018).
However, river channels are likely to be poorly resolved in
topographically confined reaches. Very high resolution satellite
imagery (e.g., WorldView) in some cases allows discrimination
of flow paths, river channel damming, and secondary hazards,
and is often made available for disaster response (Kargel
et al., 2016; Rounce et al., 2017a). Alternatively, SAR can
penetrate cloud cover, but exhibit data voids from layover
and shadow effects in steep topography (Robson et al., 2015).
Satellites such as Sentinel-1A and 1B have a 12-day revisit
cycle and provide 6-day frequency when imagery from both
satellites are used.

DEMs are fundamental inputs when modeling downstream
flood propagation, either in first-pass GIS-based assessments
(e.g., Huggel et al., 2004; Mergili and Schneider, 2011; Watson
et al., 2015; Rounce et al., 2017b) or in physically-based
hydrodynamic models (e.g., Westoby et al., 2014a, 2015; Worni
et al., 2014; Lala et al., 2018). Spatial and temporal resolution
is a limitation in the HMA region where only 30 m resolution
global products are widely available, such as the Shuttle Radar
Topography Mission (SRTM) or ALOS World 3D (AW3D30)
DEMs. These global products are less suited to the application
of higher-order (e.g., 2D and 3D) hydrodynamic models that can
account for sediment entrainment and deposition (Westoby et al.,
2014a,b), and rapidly varying topography that constricts flow to
produce hydraulic ponding and attenuation of peak discharge
(Clague and Evans, 2000; Carrivick, 2006; Carrivick et al., 2013).
The production of the HMA DEM products (Shean, 2017) and
access to high-resolution stereo imagery for DEM generation
(e.g., Kougkoulos et al., 2018; Miles E. S. et al., 2018), presents
new opportunities for retrospective or predictive modeling of
high-magnitude flows (e.g., Watson et al., 2019), and to conduct
analyses relevant to disaster response timescales such asmodeling
landslide-dammed lake formation. DEM generation with high
temporal and spatial resolution could one day be achieved
using satellite constellations with daily revisit capabilities and
favorable stereo geometry. DEMs can also be used to quantify
topographic change associated with the cascading hazard floods
through multi-temporal differencing. Consideration of multiple
data sources and assessment methods (Table 1) is essential to
produce analyses relevant at disaster response timescales, but

also for subsequent analyses aimed at an improved process-based
understanding of the event.

Human Impacts: Impacts on Populations and

Infrastructure

The risks of physical hazards to populations and infrastructure
can also be cascading, referred to here as cascading
socioeconomic impacts. In addition to a glacier outburst
flood or landslide directly causing fatalities and/or damage to
roads, bridges or buildings, shocks from these hazards can trigger
breakdowns in supply chains. A flooded field can cause direct
losses to farmers, while a blocked road can result in substantial
economic losses for farmers unable to get their goods to market,
thereby impacting supplies in nearby towns. Floods can also
instigate water quality issues, such as contamination, which
may result in health impacts to populations affected by the
disaster. Social issues related to disasters including gender-based
violence, mental health issues, unemployment, alcoholism and
loss of educational facilities have also been documented (e.g.,
Tierney, 2006; World Bank, 2011; Deloitte Access Economics,
2016). Broader or more diffuse but potentially serious cascading
socioeconomic impacts may also occur. For instance, an event
that destroys a hydroelectric project or school or prevents
employees from reaching their work site may propagate through
the economy over time by limiting the supply of electrical energy
or skilled workers. The resilience of populations to respond
and reduce risk to disasters is highly linked to societal income,
educational attainment, and the strength of financial sectors
across local to regional governments (Toya and Skidmore, 2007).

Many mountain valleys, especially in HMA, are dotted with
villages, hydropower plants, and other infrastructure, which
are often connected by winding and precariously positioned
transportation networks.Where settlements are in the path of any
hazard in the cascading process, the results can be catastrophic.
However, not all people in a flood route, for example, are equally
at risk (Carey, 2005).

Allen et al. (2016a) used Census India data to quantify social
vulnerability to GLOFs in Himachal Pradesh. They find that
certain districts have relatively low risk due to low levels of social
vulnerability, even though potentially threatening glacial lakes
are located upstream. Their remote sensing and GIS modeling
analysis forecasted dramatically increased GLOF hazard across
most districts in the coming decades, which will likely alter
community risk. In the Karakoram, Hewitt and Liu (2010)
describe hundreds of villages, as well as highways, bridges, and
tourist facilities at risk from GLOFs. They report 1.8 million
people, 38 million hectares of irrigated land, and six hydroelectric
plants as being at risk, most of which are in China’s Tarim
Basin, downstream of the glaciated Yarkand River valley in the
Karakoram (Hewitt, 2014).

Remote sensing data can play a pivotal role in rapidly assessing
the impacts following an event or series of cascading processes,
providing insight into vulnerabilities prior to the triggering
event and tracking recovery. Following the 2015 Gorkha
Earthquake in Nepal, data from the Visible Infrared Imaging
Radiometer Suite (VIIRS) “Day-Night Band” sensor aboard
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the NASA/NOAA Suomi National Polar-Orbiting Partnership
satellite, was able to identify the reduced light emissions
in the affected area based on pre- and post-event imagery
(Schultz and Molthan, 2015). This product has also been
used during other disasters to monitor power outages and
recovery, such as following Hurricanes Maria and Sandy (Cole
et al., 2017; Wang et al., 2018). SAR data can also provide
rapid information on estimated building damage to response
communities following major events (e.g., Yun et al., 2015;
Karimzadeh et al., 2017; Sharma et al., 2017). The same
types of optical data relevant to landslide mapping are also
valuable for inundation mapping following flooding events (e.g.,
Uddin and Shrestha, 2011), assessment of agricultural impacts
(e.g., Sivakumar, 2005), and socioeconomic impact assessments
looking at building and road damages. Harnessing the power
of remote sensing data can provide a physical baseline to
identify the vulnerability of critical economic and demographic
sectors, which may then be used along with regional economic
information to establish strategies and policies for adaptation
investments to promote economic growth while increasing
resilience (Hill et al., 2012).

CASE STUDIES OF CASCADING
HAZARDS OVER HMA

To provide context for how remote sensing data may inform
the interactions between elements in the cascading hazard chains
or webs, we provide six case studies across HMA that represent
a range of conditions under which cascading hazard processes
have occurred. Here we explore the observational or monitoring
strategies before or after these events, the data relevant to address
the cascading hazard elements, and opportunities for improved
integration of modeling and observational data for characterizing
potential future hazards.

Gorkha Earthquake
On April 25, 2015, Nepal was rocked by a M7.8 earthquake,
followed by five aftershocks >M6.0 in the following 6 weeks,
including a M7.3 event. Together, these events killed >9,000
people, and triggered thousands of landslides (e.g., Kargel et al.,
2016; Zekkos et al., 2017; Roback et al., 2018). While tens
of thousands of landslides were triggered coseismically, many
others occurred in the weeks following the main quake. In
the steep Himalayan topography where most of the mapped
landslides occurred, some traversed the valley and blocked
rivers, causing temporary lakes to form (Figure 3). These
lakes constituted significant secondary (to the landslides) or
tertiary (to the earthquake) hazards, since a burst of their dams
could cause flooding weeks or months after the earthquake
while valley inhabitants were working to recover from the
earthquake itself.

Remote sensing data played a key role in responding to,
and understanding the hazards posed by these landslides (e.g.,
Lacroix, 2016). For example, Kargel et al. (2016) overlaid
landslide distributions (mapped from optical imagery) on a map
of surface deformation from a JAXA ALOS-2 interferogram to

better understand the relationships between mass movement
occurrence and ground motion. They also described how an
international group of volunteers analyzed imagery in near real-
time to identify potential risks. One site in particular, on the
upper Marsyangdi River, illustrated the role remote sensing
served in this disaster. At least 20 landslides occurred in the
relatively low-gradient alluvial sediments in the valley bottom
(as opposed to the ridgetop failures that characterized most
of the mass movements), more than half of which occurred
in the days to weeks following the main earthquake. The
chronology of their failures was only determined due to the
frequency with which high-resolution satellite imagery (primarily
by DigitalGlobe) were acquired. The largest landslide, about
2 km upstream of the village of Lower Pisang, dammed the
Marsyangdi River, impounding a lake 2.5 × 104 m2 in area
(Figure 3). Unfortunately, the monsoon prevented further useful
acquisitions of optical data to continue monitoring the site;
however, the lake later drained naturally and did not cause
downstream flooding.

Jure Landslide
On August 2, 2014, a huge landslide occurred in Jure village of
Sindupalchowk district, Nepal after 2 days of torrential rainfall
(van der Geest and Schindler, 2016). The mass movement
resulted in 156 deaths and destroyed a 1 km section of the
Arniko highway. The landslide also dammed the Sun Koshi
river, forming a 3 km long lake that inundated many houses,
farms and infrastructure upstream (IFRC, 2014) (Figure 4).
Ultimately, the Nepalese Army reduced the lake volume by
blasting off part of the landslide blockade to facilitate water
release (Acharya et al., 2016).

Khanal and Gurung (2014) mapped the landslide, dam,
and lake using a post-event IRS-P6 LISS-IV Mx image of
August 5, 2014. The landslide had a maximum width of
0.81 km at the bottom, total length of 1.26 km, and area of
0.71 km2. Roy et al. (2014) analyzed high-resolution images
from WorldView (2.4 m) from 2001 to 2014, which clearly
indicated the slope section on which the landslide occurred was
unstable, since multiple smaller landslides were apparent prior to
the larger failure.

The Jure landslide site was reactivated following the 2015
Gorkha earthquake. As part of this study, five COSMO-SkyMed
X-band SAR images collected after the earthquake between
May 5–29, 2015 were used to measure the earthquake triggered
deformation applying the InSAR technique. On the outcrop of
the Jure landslide scarp, surface deformation of about 0.3 m in
line-of-sight (LOS) direction, was measured by stacking three
post-seismic InSAR pairs using small baseline subset (SBAS)
analysis (Berardino et al., 2002). As shown in Figure 4, most
scarps with very steep slopes were masked out in the analysis due
to their low interferometric coherence. From these observations,
we confirm that deformation rates are reduced from the head
scarp to the main body, and also that deformation at the toe
of the landslide is not significant. This result demonstrates
how InSAR measurement can be used to identify slow-moving
landslide processes prior to the main failure, especially using
X-band SAR images.
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FIGURE 3 | (a) Location of a landslide-dammed lake upstream of Lower Pisang village from a 11 May 2015 RapidEye composite of bands NIR, red, and blue (Planet

Team, 2018). (b) Shows a point cloud of the Marsyangdi River (April 2018) from Watson et al. (2019), derived from UAV imagery processed following a structure from

motion with multi-view stereo workflow. (c) Shows the landslide dammed lake that formed following the Gorkha earthquake and was monitored by Kargel et al.

(2016).

Kyagar and Khurdopin Glaciers,
Karakoram: Ice-Dammed GLOFs
In the last two centuries, Kyagar Glacier has caused more
than 30 GLOFs due to its surging behavior (Hewitt and Liu,
2010; Yin et al., 2018). In response to these frequent GLOFs,
an early warning system was installed between 2011 and 2013
based on remote sensing and terrestrial observation stations
that monitor glacier surges, development of an ice-dammed
lake, and downstream water levels (Haemmig et al., 2014). Two
of its recent GLOFs in 2015 and 2016 were assessed using
high-resolution DEMs along with optical and SAR imagery to
understand Kyagar’s surge cycle and its role in the GLOFs (Round
et al., 2017). They used Landsat, Sentinel-1, TanDEM-X and
TerraSAR-X to estimate 80 glacier surface velocity fields, which
were able to capture both the interannual and seasonal surge
cycle. These images were also used to monitor changes in the
extent of the ice-dammed lake, which showed repeated filling
and drainage. The lake’s volume was estimated to be >70 million
m3 based on the lake extent and a high-resolution DEM, which
is much smaller than the flood volumes from previous years
(Qinghua, 1991).

A similar study on Khurdopin Glacier used a high-resolution
DEM with optical imagery from Planet and Landsat, which
provided enough clear-sky images to monitor the speed-up of
the glacier and the subsequent growth and drainage of an ice-
dammed glacial lake (Steiner et al., 2018) (Figure 5). Khurdopin
Glacier also has a long history of GLOFs, which led local
villages to develop an early warning system that uses bonfires
at night or gunfire during the day to alert subsequent posts

down valley of the flood (Iturrizaga, 2005). Given the frequent
and repetitive nature of these events in the Karakoram, recent
advances in remote sensing provide opportunities to improve
existing early warning systems and could enable monitoring
at the regional level. The examples of Kyagar and Khurdopin
Glaciers highlight the importance of routine production and
release of high-resolution DEMs (e.g., Shean, 2017), and the need
to further develop automated methods for integrating optical and
SAR imagery to provide improved spatial and temporal coverage
over targeted areas.

Changri Shar and Lhotse Glacier
Outburst Floods
Meltwater storage on debris-covered glaciers varies seasonally
and inter-annually. Some ponds coalesce and persist, whereas
others drain seasonally upon interception with englacial conduits
(Benn et al., 2012; Miles et al., 2017; Watson et al., 2017).
Inhibited meltwater drainage leads to supra- and en-glacial water
accumulation, and an increased likelihood of sporadic drainage.
Three high magnitude drainage events were reported in the
Everest region of Nepal in 2015–2017, one from a supraglacial
lake that formed over 4 months in 2017 on Changri Shar Glacier
(Miles E. S. et al., 2018), and two from supra- and en-glacial
water stored on Lhotse Glacier in 2015 and 2016 (Rounce et al.,
2017b) (Figure 6). Both events hadminor socioeconomic impacts
relating to bridge and trail destruction.

Optical satellite imagery was essential to reconstruct the
events. The lake evolution on Changri Shar Glacier was observed
using 25 PlanetScope satellite images from March to October
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FIGURE 4 | Earthquake triggered landslide deformation measured from COSMO-SkyMed SAR imagery for the period between May 5–29, 2015. Background is a

true color RapidEye image from October 11, 2014 (Planet Team, 2018). SAR Imagery is provided by the Italian Space Agency via the CEOS Working Group on

Disasters Landslide Pilot.

2017. Detailed spatiotemporal lake observations would not have
been possible using Landsat or Sentinel-2 due to cloud cover
and longer revisit times (Miles E. S. et al., 2018). Surface and
englacial flow paths were interpreted with the aid of DEM
differencing using Pléiades imagery, which revealed surface
elevation changes associated with the flood, including englacial
conduit collapse, channel incision, and landslide initiation
(Figure 6). A pre-event Pléiades DEM was also used to
estimate the volumetric growth of the lake by filling the surface
depressions. Bank erosion and channel migration associated with
the downstream movement of the flood was quantified using
multi-temporal NDVI and NDWIs, and revealed changes up to

FIGURE 5 | Elevation change on the Khurdopin Glacier during the build-up

(2015–2016) and surge phase (2017) from Steiner et al. (2018). Background is

a Sentinel-2 composite of bands NIR, red, blue (20 September 2017).

11 km downstream before the narrow river channel topography
precluded further observations.

Optical satellite imagery was also critical in the reconstruction
of the Lhotse Glacier outburst floods. WorldView-1, 2 and
GeoEye-1 were used to assess the draining and filling of
supraglacial ponds before and after the 2015 and 2016 outburst
floods. These high-resolution images enabled the water stored in
supraglacial ponds to be estimated, which ultimately revealed that
most of the water was sourced in the glacier’s subsurface.

Both studies reveal the rapid accumulation and drainage of
water is likely to be prevalent across debris-covered glaciers,
but observations have previously been limited or unreported.
Trends of increased supraglacial water storage and a predicted
increase in GLOF events with climatic warming, perhaps with
an associated time lag (Harrison et al., 2018), will make
monitoring these ephemeral lakes and larger proglacial lakes
more important. The formation of the Changri Shar Lake was
reported on social media several days prior to the drainage
event, highlighting that monitoring methodologies developed
using remote sensing data could be used to issue information
relating to hazards and potential cascading interactions. In the
case of the Lhotse outbursts, which involved englacial water
storage, such observations are more difficult, although changes in
supraglacial water storage likely reflect the accumulation of water
stored englacially as well.

Langmale GLOF
On April 20, 2017, a massive rockfall from Saldim Peak (6388 m)
entered Langmale glacial lake, which generated a displacement
wave that breached its moraine dam (Byers et al., 2018). The
resulting flood carved new canyons, scoured Barun River’s
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floodplain, and deposited copious volumes of sediment in the
village of Yangle Kharka about 6.5 km downstream (Figure 7).
The floodwaters were temporarily dammed immediately above
the village of Barun Bazaar at the confluence of the Barun and

Arun Rivers. The impounded lake was 2–3 km long and 500 m
wide. This displaced 10 families and threatened to impact 80
others (Shakya and Sabha, 2017). Fortunately, the lake drained
naturally within 24 h of its formation.

FIGURE 6 | Location of debris-covered glacier outburst flood events 2015–2017 in the Everest region of Nepal. Background is a RapidEye composite of bands NIR,

red, blue (13 November 2017) (Planet Team, 2018).

FIGURE 7 | Location of the Langmale outburst flood. Background is a Sentinel-2 image composite of bands NIR, red, blue (19 November 2017).
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On the day of the flood, several villagers in upper Langmale
valley reported hearing a large avalanche, but nobody witnessed
the mass wasting due to thick fog (Byers et al., 2018). These
observations were supported by a fresh scar on Saldim Peak
and newly deposited debris on the Langmale Glacier, which was
apparent in optical imagery. The poor weather also hampered
efforts by the Nepalese Army to visit the upper Barun valley to
determine the source of the flood. Reconstruction of the event
was based on eyewitness accounts, field surveying, helicopter
overflights, remote sensing, and detailed modeling of the
GLOF process chain. Specifically, WorldView-2 and PlanetScope
imagery showed the catastrophic drainage of the lake, and a
numerical GLOF model with a high-resolution DEM was used
to reconstruct the entire GLOF process chain (Byers et al., 2018).

The GLOF from Langmale glacial lake showed that the
rockwalls surrounding these glacial lakes are unstable, and even
an outburst flood from a relatively small glacial lake can have
significant downstream impacts. In theMakalu-BarunValley, this
event raised concern amongst the local communities about a
potential GLOF from the much larger Lower Barun glacial lake
(Haritashya et al., 2018), which has an area of∼1.8 km2 compared
to the pre-flood area of Langmale Lake (0.083 km2). A first-
pass, remote sensing hazard and risk assessment classified Lower
Barun glacial lake as high risk due to its large size, ice-cored
moraine, potential for an avalanche, rockfall and/or upstream
GLOF to enter the lake, and potential for severe downstream
impacts (Rounce et al., 2017a). Given the high risk, more detailed
modeling of potential GLOF process chains is needed and these
results should be disseminated to the local community members.

Kedarnath Flood and Debris Flow
From June 15 to 17, 2013, an unprecedented hydrometeorological
event occurred, which filled Chorabari Lake and induced a snow
avalanche and debris slide that triggered an outburst flood from
the lake (Das et al., 2015; Allen et al., 2016b; Bhambri et al.,
2016). The outburst flood paired with the extreme rainfall caused
severe flooding that devastated the downstream region, which
included multiple mass wasting events along the Mandakini and
Saraswati rivers and associated tributaries (Figure 8). Farther
downstream, several other landslides blocked the river at various
points, forming temporary lakes that subsequently outburst and
caused a massive flood and debris flow (Sati and Gahalaut,
2013; Ziegler et al., 2014). The Kedarnath disaster killed more
than 6,000 people and also affected 30 hydropower plants (Allen
et al., 2016b), causing a total economic loss >$3.8 billion (World
Bank, 2014). It also damaged countless roads and bridges, which
stranded 100,000 individuals who were taking part in an annual
Hindu pilgrimage to Kedarnath Temple.

A high altitude meteorological station at the base camp of
Chorabari Glacier recorded 325 mm of rainfall in 24 h (Bhambri
et al., 2016), while a downstream location observed as much
as 680 mm in 2 days (Rautela, 2018). According to the Indian
Meteorological Department and Geological Survey of India, this
rain was ∼375% more than the daily mean during the monsoon
period (Dube et al., 2014).While Chorabari Lake is not connected
to the glacier and not always brimful, its lack of outlet and
the surrounding topography cause it to be uncharacteristically

predisposed to infilling during an extreme snowmelt or rain
event (Allen et al., 2016b). An analysis of Corona and Cartosat-
1 satellite images paired with the SRTM DEM suggested that the
high-intensity rainfall that occurred in the valley filled the lake
with an estimated maximum volume of 0.43 m3 × 106 before its
breach (Das et al., 2015).

Reconstruction of the hydrometeorology conditions prior to
the event using climate data from automatic weather stations,
TRMM precipitation, and MODIS snow cover data, revealed
the Kedarnath disaster was exacerbated by previous monsoon-
driven precipitation, especially heavy rainfall on June 10 and
11 and summer snowmelt from the end of May that led to
slope saturation (Durga Rao et al., 2014; Allen et al., 2016b).
Bhambri et al. (2016) used a combination of multispectral
satellite data including Resourcesat Linear Imaging Self-Scanning
sensor (LISS) IV images, panchromatic Cartosat-2 (1 m), and
WorldView-2 (2 m), to identify 137 flash flood-induced debris
flow events. They also observed a ∼500% increase in flood-
affected area by the Mandakini River along with a change in the
course of theMandakini and Saraswati rivers. Martha et al. (2015)
used Resourcesat-2 LISS-IV, GeoEye-1, and Cartosat-2a to map
3,472 new and 1,401 reactivated landslides due to this event.

SYNTHESIS OF GAPS, VIEW FORWARD
AND DISCUSSION

The case studies highlighted in Section “Case Studies of
Cascading Hazards Over HMA” provide insight into how
satellite remote sensing data can be used to investigate the
complexities of cascading effects in HMA. These case studies
also demonstrate the need for better integrated methods for
monitoring and predicting cascading hazard process chains and
webs to determine at risk populations and infrastructure and
to build resilience for current and future hazards. This section
offers a perspective on future opportunities to address gaps and
challenges in our current capabilities to more systematically
understand cascading hazards and risks over HMA.

Challenges and Gaps
The case studies from Section “Case Studies of Cascading
Hazards Over HMA” show that remote sensing is a valuable
resource for monitoring and modeling cascading hazards;
however, with the exception of sites that are prone to repeat
events (e.g., GLOFs from Kyagar and Khurdophin Glacier
surges), most studies in HMA are still performed retroactively.
These case studies showcase the tremendous opportunities that
exist in both present-day and future missions that may be used
to limit the risks associated with these cascading hazards. At
present, some of the major limitations result from the complex
terrain in HMA that cause issues for the generation of DEMs in
steep topography or geometric distortions in SAR data, and from
the difficulty of obtaining optical or stereo imagery during the
monsoon. Furthermore, while the individual elements associated
with these cascading hazards are well known (e.g., extreme
rainfall, landslides, outburst floods), we still have relatively few
observations that can be used to develop our understanding
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FIGURE 8 | Aerial view of Kedarnath town with (a) pre and (b) post-event RapidEye imagery from November 1, 2012 and November 13, 2013 (Planet Team, 2018).

(c) Shows provides a broader view of the source areas, location of the Chorabari Lake, and direction of flooding associated with the Kedarnath debris flow (right).

and improve our ability to model these cascading hazards.
As a result, the state of science in effectively characterizing
or modeling the linkages between cascading hazard elements
remains limited within this region and should be an area of
concentrated research going forward.

Given that DEMs are fundamental for our ability to observe
and model these cascading hazards, the recent advances
in generating multi-temporal high-resolution DEMs (see
Opportunities: Missions, Modeling, Technologies) provides
unique opportunities to advance our understanding of specific
elements of the triggering mechanisms. For example, few
observations exist of landslide and avalanche volumes and
runout lengths in HMA, which is a critical input for any
GLOF assessment. New and planned missions that will produce
additional ground control points (e.g., ICESat-2) provide
opportunities to minimize the errors/uncertainty associated
with steep topography and thereby more accurately quantify the
volume change in steep topography.

Additionally, given the reactionary nature of most existing
studies, efforts should be made in HMA to continue to collect
baseline data that is essential for effective hazard assessments,
modeling, and relief efforts. For example, high-resolution optical
imagery and the VIIRS “Day-Night Band” sensor provide unique
opportunities to characterize land, buildings, and transportation
networks that could supplement OpenStreetMap and other
existing datasets. While the improved spatiotemporal resolution
of commercial optical imagery (e.g., Planet and DigitalGlobe) is
starting to provide fairly regular images of HMA, even during the
monsoon season, monitoring efforts should seek to integrate SAR
data that can provide earth observations through cloud cover.

The integration of these various datasets, the new observations
that may help constrain models of individual elements of
the cascading hazards, and improved modeling of the various
cascading hazard branches will greatly advance our ability to
monitor these hazards and assist risk-mitigation efforts.

Open Data
The availability and openness of satellite data have improved
in recent years but still remains both the most fundamental
gap and largest opportunity to advance our understanding of
cascading hazard and risk processes. Table 1 highlights some of
the existing Earth Observation data products and tools that may
be valuable to address elements within different cascading hazard
settings. Supplementary Table S1 provides an expanded list of
remote sensing assets.

Open science is also critical to advancing our understanding
of cascading hazards over this region. Inventories of previous
events, such as landslides or glacial lakes, are key for calibrating
and validating hazard assessment models. One tremendous set of
event-based catalogs over HMA are landslide inventoriesmapped
following the 2015 Nepal Earthquakes. Many of these are publicly
available, including Kargel et al. (2016) (4,312 landslides),
Williams et al. (2018) (5,578 landslides), Martha et al. (2017)
(15,551 landslides), Roback et al. (2018) (24,915 landslides),
and Tiwari et al. (2017) (14,670 landslides). Other basin-specific
inventories are freely accessible over the transboundary Koshi
basin (5,653 landslides) (Zhang et al., 2016). There are also
global landslide inventories with reasonable coverage over HMA
such as NASA’s Global Landslide Catalog, which has been
used to identify spatiotemporal trends in landslide patterns
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(Kirschbaum et al., 2015). Regional and global landslide maps
(Kirschbaum, 2015; Stanley and Kirschbaum, 2017) can also
provide context for the distribution of this particular hazard over
HMA. The GLIMS Glacier Database1, and glacial lake databases
(e.g., Rounce et al., 2017a) also provide open access data points to
construct hazard maps and ultimately link elements together for
better identification of potential cascading hazard areas.

In addition to having historical inventories for calibration
and validation of hazards models, remote sensing data and
model products, including socioeconomic data, are openly
available through NASA’s Distributed Active Archive Centers
(DAACs) and other open data efforts such as OpenStreetMap R©.
However, the availability of ground-based physical data on
hydrology and geology of HMA lags satellite data availability
and is another need within this region. Through NASA’s High
Mountain Asia Program, teams of scientists are contributing
to a Glacial Melt Toolbox (GMELT) that includes in situ,
remotely sensed, and modeled products that are geared toward
improving understanding of regional changes to water resources,
and induced impacts through the analysis of HMA’s glaciers,
lakes, snow, permafrost, precipitation, and land surface2.

Opportunities: Missions, Modeling,
Technologies
New remote sensing products, models, and technologies either
in operation or on the horizon are contributing to an advanced,
systems-focused understanding of cascading hazard processes.
New NASA and ESA missions highlight improved capabilities
for characterizing the atmosphere, surface and subsurface
in support of disaster response, monitoring, and recovery
(see Supplementary Material Section 1 and Supplementary

Table S1). Additionally, there are many publicly available
platforms that provide open data and visualization capabilities to
support disaster response. These include, but are not limited to
the Hazard Data Distribution System (HDDS), NASA Disaster
Portal, Sentinel-Asia Disaster Management Support System,
the European Commission Copernicus Emergency Management
Service (Copernicus EMS), the Sentinel-Hub Playground and
EO browser, and ESA’s geohazards exploitation platform (GEP).
More information on these capabilities are outlined in the
Supplementary Material Section 2.

Technologies leveraging a combination of sensors from
daily optical imagery (Planet, Sentinel-2) and SAR (Sentinel-
1) are being developed to monitor lake expansion, with the
goal of transitioning from retrospective analysis to near real-
time monitoring. Through open source platforms such as
Google Earth Engine or using open source algorithms that
can be implemented in the cloud, many of these monitoring
technologies may provide a feasible path toward more routine
monitoring of cascading hazard elements, a key component
of providing rapid response and improved planning for future
hazard and risk. Continuous monitoring platforms are also
being developed to automate ground deformation workflows
on regional (e.g., Raspini et al., 2018) or global scales (e.g.,

1https://nsidc.org/glims
2https://nsidc.org/data/highmountainasia

González et al., 2016). The COMET-LiCS platform3 automates
the processing of Sentinel-1 data to generate interferograms,
coherence maps, and ground displacement data for active
tectonic regions globally.

Improved long-term, high-resolution DEM datasets from
past, present, and future satellite missions will enable regional
quantitative analysis of cascading hazards. Continued tasking
of existing submeter satellite imagery constellations (e.g.,
DigitalGlobeWorldView/GeoEye, AIRBUS/CNES Pléiades) have
the potential to offer sub-weekly monitoring of priority sites
(e.g., proglacial lakes, landslide-prone corridors) and fill critical
gaps in existing regional coverage, providing a continuous DEM
basemap with timestamps for future change detection studies.
Integrating additional commercial submeter constellations (e.g.,
Planet SkySat-C satellites with 0.9 m ground sample distance
stereo imagery, Earth-i satellites) will further improve regional
coverage and response capabilities. Ongoing processing of freely
available ASTER imagery will continue the existing 2000-2019
DEM record that can be used for decadal-scale analyses of
glacier mass balance. Other high-resolution swath-mapping
missions (e.g., Cartosat-2, off-nadir campaigns with Planet Dove
constellation) can provide repeat, regional DEM coverage, with
slightly lower resolution and accuracy.

Perhaps one of the most exciting opportunities in the coming
years will involve mass production and release of orthoimagery
and stereo DEMs derived from the declassified Corona, Gambit,
and Hexagon missions of the 1960s–1980s (Maurer and Rupper,
2015), which offer extensive coverage over Asia. Recent efforts
focused on production workflows for Hexagon Mapping Camera
imagery with ∼5–10 m GSD (Maurer and Rupper, 2015; Dehecq
et al., 2019; Maurer et al., 2019), providing lower-resolution
DEMs with regional coverage, but often containing data gaps
over snow or exposed ice, which in some cases can be resolved
in higher resolution (<5 m) Corona imagery.

With improved scanning capabilities and modern, automated,
open-source photogrammetry tools such as the Ames Stereo
Pipeline (Beyer et al., 2018), MicMac (Rupnik et al., 2017),
SETSM (Noh et al., 2015) in high-performance computing
environments, large archives of high-resolution DEMs can also
be generated from these image sources. When combined with
data from modern sensors, these historical archives potentially
provide a near ∼60-year high-resolution DEM time series from
the early 1960s to present. Stereo pairs from commercial imagery
such as from DigitalGlobe have been used to create DEMs over
HMA with unprecedented accuracy and resolution (Shean et al.,
2016). These multi-temporal DEMs have been used to estimate
ice flow and changes on glaciers in HMA (Kutuzov et al., 2018;
Shean et al., 2018) as well as landslide distributions (Watson
et al., 2019). The interferometric SAR constellation TanDEM-
X/TerraSAR-X also provides a global, high-resolution DEM at
12 m posting, with unprecedented accuracy, though at present
this product is only publically available at a resolution of 90 m4.

In addition to satellite data that will be provided through new
and upcoming satellite missions, there are a suite of modeling and

3https://comet.nerc.ac.uk/COMET-LiCS-portal/
4https://tandemx-science.dlr.de/
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data assimilation systems that may help to better characterize the
cascading hazard process chains. LDASmodeling platforms, such
as the Land Information System (LIS), and GCMs can provide
important hydrologic and atmospheric inputs for characterizing
the triggering factors that may exacerbate or modulate elements
in the cascading hazard chain. GMELT provides many of these
modeling outputs and forecasted products to help quantify
potential changes over HMA on scales that could inform hazard
processes, such as how glacier changes may influence glacial lake
distributions, areas, and potential glacial outburst floods or how
changes in permafrost may affect landslide distributions. Other
efforts such as flood routing models can provide a framework
for exploring the connectivity among elements in the cascading
hazard chains and webs such as the behavior for how a GLOF
may impact downstream populations (Westoby et al., 2015;
Schwanghart et al., 2016; Rounce et al., 2017a).

Risk Assessment and Future Change
Inherent to addressing societal impacts and risk from cascading
hazards is to better quantify the assets and socioeconomic
indicators that make populations at risk. There are many
globally-available datasets that can inform exposed elements,
including population (GPW v4; Table 1), roads and buildings
(OpenStreetMap; Table 1), and other transportation corridors
(national-level data). While valuable for quantifying exposure,
to ultimately get to risk calculations, loss and damage or
vulnerability relationships need to be established (Huggel et al.,
2018).Modeling frameworks such as RiskScape5 have successfully
been implemented to estimate the impact of natural hazards
in New Zealand (RiskScape, 2019; King and Bell, 2006). Such
open source frameworks could provide future opportunities to
derive cost, impact, and risk estimates for cascading hazards
within HMA; however, they are still largely limited by a dearth
of vulnerability data (including socioeconomic and financial
information) that is needed to accurately parameterize loss and
damage curves to derive risk.

National and regional heterogeneity in hazard assessment
techniques is inevitable due to differences in Data Availability,
technological capabilities, and management authorities, which
translate hazard assessments into a risk management strategy.
International guiding documents such as the Global Assessment
Report (GAR15) put out by the United Nations Office for
Disaster Risk Reduction (UNISDR, 2015) is the fourth in the
series prepared by the UNISDR based on the recommendations
and agreements of the 168 member states participating in
the Hyogo Framework for Action. The 2015 GAR’s theme is
Making Development Sustainable: The Future of Disaster Risk
Management and provides context and guidance on the multi-
faceted umbrella of disaster risk management in both current
and future environments. The UNISDR is also preparing the
Global Risk Assessment Framework (GRAF; UNISDR, 2019),
which seeks to improve understanding and management of
current and future risks by providing actionable tools, data, and
examples at different spatiotemporal scales to decision makers.
At a regional level, technical guidance documents from scientific

5https://www.riskscape.org.nz/

working groups such as Glacier and Permafrost Hazards in
Mountains (GAPHAZ) provide guidelines and standards for
hazard assessments that collate the current state of knowledge,
modeling tools, and remote sensing data (GAPHAZ, 2017).
Multi-temporal standardized valuations for the same geographic
areas are essential to monitor and mitigate against the changing
hazard environment.

In addition to quantifying the risk, understanding how hazard
and risk may change over time due to climate change is critical.
Climate change, including shifts in precipitation and the ability
of surface water to reach the bed of glaciers, is thought to
have already resulted in dramatically changing behavior in
some regions (e.g., Gilbert et al., 2018). Climate change may
herald new glacier dynamical behaviors in permafrost regions
of HMA and worldwide, including sudden or gradual shifts in
the locations of hazard dynamics such as GLOFs (e.g., Allen
et al., 2016a). Data from GCMs offer a window into future
behavior of HMA as the climate warms, including decreasing
glacial volume (Brun et al., 2017; Farinotti et al., 2019), glacier
stagnation (Dehecq et al., 2019), role of black carbon in glacial
melting (Kopacz et al., 2011; Warren, 2013), and improved
conditions for glacial lake development (Quincey et al., 2007;
Linsbauer et al., 2016). However, more work needs to be done
to improve the resolution of climate models in order to better
resolve precipitation extremes, preconditioning factors and other
meteorological forcing data that will have a direct impact on
the changing nature of cascading hazard processes in the future.
New data on precipitation extremes over HMA is available
within the GMELT toolbox, including satellite precipitation
metrics and GCM projections of precipitation (NSIDC, 2019).
Further research is also needed to quantify how climate change
may exacerbate or alter elements and connections within
cascading hazards chains over HMA. In addition to improving
our understanding of these impacts, it is vital to also work
with national and local governments and local communities to
communicate the science being developed (e.g., Frey et al., 2018).
Improved knowledge of these processes will support creation of
actionable DSSs and development plans that ultimately will help
to build resilience of cascading hazard impacts at the local level.

CONCLUSION

This work provides a survey of how remote sensing data may
inform characterization, mapping, and modeling efforts for
cascading hazard processes, chains, and webs across HMA. At
present, the cascading process chain is broken down into specific
elements in order to highlight opportunities and challenges in
our ability to observe and model each element using remote
sensing. As these fields advance and more observations become
available to constrain models, research on connecting these
individual elements as interconnected systems will become more
feasible. Through illustrating how cascading hazard elements
can be evaluated individually as well as in a sequence through
example case studies, this work highlights the opportunities
for using remote sensing data and derived products to inform
hazard evolution within this region under changing climatic and
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socioeconomic conditions. Given the availability of new and open
data sources, model products and technologies as well as team
efforts to compile databases such as GMELT, there are a wealth of
opportunities on the horizon for more systematic considerations
of cascading hazard processes and their impacts. These data and
tools can also enable the community to move from retrospective
analysis to near real-time routine monitoring and forecasting.
We emphasize here the potential for using remote sensing
data and modeled products to consider cascading hazards as
an integrated system. However, along with the availability and
development of new data products for this region, it is vital to
advance the processing systems that are best suited to handle
these large volumes of data, including cloud computing and open
source platforms. We encourage future studies to consider the
propagation of triggers all the way through to societal impacts so
that this information may be both scientifically accurate as well as
societally relevant and provide actionable information to increase
societal resilience to these hazards.
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