The State of Solving Large
Incomplete-Information Games,
and Application to Poker

B Game-theoretic solution concepts prescribe
how rational parties should act, but to become
operational the concepts need to be accompa-
nied by algorithms. I will review the state of
solving incomplete-information games. They
encompass many practical problems such as
auctions, negotiations, and security applica-
tions. I will discuss them in the context of how
they have transformed computer poker. In short,
game-theoretic reasoning now scales to many
large problems, outperforms the alternatives on
those problems, and in some games beats the
best humans.
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parties should act in multiagent settings. This is non-

trivial because an agent’s utility-maximizing strategy
generally depends on the other agents’ strategies. The most
famous solution concept for this is a Nash equilibrium: a strat-
egy profile (one strategy for each agent) where no agent has
incentive to deviate from her strategy given that others do not
deviate from theirs.

In this article I will focus on incomplete-information games,
that is, games where the agents do not entirely know the state
of the game at all times. The usual way to model them is a game
tree where the nodes (that is, states) are further grouped into
information sets. In an information set, the player whose turn it
is to move cannot distinguish between the states in the infor-
mation set, but knows that the actual state is one of them.
Incomplete-information games encompass most games of prac-
tical importance, including most negotiations, auctions, and
many applications in information security and physical battle.

Such games are strategically challenging. A player has to rea-
son about what others’ actions signal about their knowledge.
Conversely, the player has to be careful about not signaling too
much about her own knowledge to others through her actions.
Such games cannot be solved using methods for complete-infor-
mation games like checkers, chess, or Go. Instead, I will review
new game-independent algorithms for solving them.

Poker has emerged as a standard benchmark in this space (Shi
and Littman 2002; Billings et al. 2002) for a number of reasons,
because (1) it exhibits the richness of reasoning about a proba-
bilistic future, how to interpret others’ actions as signals, and
information hiding through careful action selection, (2) the
game is unambiguously specified, (3) the game can be scaled to
the desired complexity, (4) humans of a broad range of skill exist
for comparison, (5) the game is fun, and (6) computers find
interesting strategies automatically. For example, time-tested
behaviors such as bluffing and slow play arise from the game-the-
oretic algorithms automatically rather than having to be explic-
itly programmed.

Game-theoretic solution concepts prescribe how rational
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Figure 1. Current Paradigm for Solving
Large Incomplete-Information Games.

Kuhn poker — a game with three cards — was
among the first applications discussed in game the-
ory, and it was solved analytically by hand (Kuhn
1950). On large-scale poker games, the best com-
puterized strategies for a long time were rule based.
Nowadays, the best poker-playing programs are
generated automatically using algorithms that are
based on game-theoretic principles.

There has been tremendous progress on equilib-
rium-finding algorithms since 2005. Two-player
zero-sum game trees with 10'2 leaves can now be
solved near optimally. However, many real games
are even larger. For example, two-player Limit
Texas Hold’em poker has 10'® leaves. For such large
games, abstraction algorithms have emerged as
practical preprocessors.

Most competitive poker-playing programs are
nowadays generated using an abstraction algo-
rithm followed by using a custom equilibrium-
finding algorithm to solve the abstracted game. See
figure 1. This paradigm was first used in Gilpin,
Sandholm, and Serensen (2007). Predecessors of
the paradigm included handcrafting small abstrac-
tions (Billings et al. 2003), as well as solving auto-
matically generated abstractions with general-pur-
pose linear programming algorithms (Gilpin and
Sandholm 2006; 2007a; 2007b).

In this article I will discuss abstraction algo-
rithms first and equilibrium-finding algorithms
second. After that I will address opponent exploita-
tion and other topics.
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Abstraction Algorithms

Abstraction algorithms take as input a description
of the game and output a smaller but strategically
similar — or even equivalent — game. The abstrac-
tion algorithms discussed here work with any
finite number of players and do not assume a zero-
sum game.

Information Abstraction

The most popular kind of abstraction is informa-
tion abstraction. The game is abstracted so that the
agents cannot distinguish some of the states that
they can distinguish in the actual game. For exam-
ple in an abstracted poker hand, an agent is not
able to observe all the nuances of the cards that she
would normally observe.

Lossless Information Abstraction. It turns out
that it is possible to do lossless information
abstraction, which may seem like an oxymoron at
first. The method I will describe (Gilpin and Sand-
holm 2007b) is for a class of games that we call
games with ordered signals. It is structured, but still
general enough to capture a wide range of strategic
situations. A game with ordered signals consists of
a finite number of rounds. Within a round, the
players play a game on a directed tree (the tree can
be different in different rounds). The only uncer-
tainty players face stems from private signals the
other players have received and from the unknown
future signals. In other words, players observe each



Any Nash equilibrium of the shrunken game corresponds
to a Nash equilibrium of the original game.

Theorem 1.
(Gilpin and Sandholm 2007b.)

others’ actions, but potentially not nature’s
actions. In each round, there can be public signals
(announced to all players) and private signals (con-
fidentially communicated to individual players).
We assume that the legal actions that a player has
are independent of the signals received. For exam-
ple, in poker, the legal betting actions are inde-
pendent of the cards received. Finally, the
strongest assumption is that there is a total order-
ing among complete sets of signals, and the pay-
offs are increasing (not necessarily strictly) in this
ordering. In poker, this ordering corresponds to the
ranking of card hands.

The abstraction algorithm operates on the sig-
nal tree, which is the game tree with all the agents’
action edges removed. We say that two sibling
nodes in the signal tree are ordered game isomorphic
if (1) if the nodes are leaves, the payoff vectors of
the players (which payoff in the vector material-
izes depends on how the agents play) are the same
at both nodes, and (2) if the nodes are interior
nodes, there is a bipartite matching of the nodes’
children so that only ordered game isomorphic
children get matched.

The GameShrink algorithm is a bottom-up
dynamic program that merges all ordered game
isomorphic nodes. It runs in O(n?) time, where n
is the number of nodes in the signal tree. Game-
Shrink tends to run in sublinear time and space in
the size of the game tree because the signal tree is
significantly smaller than the game tree in most
nontrivial games. The beautiful aspect of this
method is that it is lossless (theorem 1). A small
example run of GameShrink is shown in figure 2.

We applied GameShrink to Rhode Island
Hold’em poker (Gilpin and Sandholm 2007b).
That two-player game was invented as a testbed
for computational game playing (Shi and Littman
2002). Applying the sequence form to Rhode
Island Hold’em directly without abstraction yields
a linear program (LP) with 91,224,226 rows, and
the same number of columns. This is much too
large for (current) linear programming algorithms
to handle. We used GameShrink to shrink this,
yielding an LP with 1,237,238 rows and columns
— with 50,428,638 nonzero coefficients. We then

applied iterated elimination of dominated strate-
gies, which further reduced this to 1,190,443 rows
and 1,181,084 columns. GameShrink required less
than one second to run. Then, using a 1.65 GHz
IBM eServer p5 570 with 64 gigabytes of RAM (the
LP solver actually needed 25 gigabytes), we solved
the resulting LP in 8 days using the interior-point
barrier method of CPLEX version 9.1.2. In sum-
mary, we found an exact solution to a game with
3.1 billion nodes in the game tree (the largest
incomplete-information game that had been
solved previously had 140,000 (Koller and Pfeffer
1997)). To my knowledge, this is still the largest
incomplete-information game that has been
solved exactly.!

Lossy Information Abstraction. Some games are
so large that even after applying the kind of lossless
abstraction described above, the resulting LP
would be too large to solve. To address this prob-
lem, such games can be abstracted more aggres-
sively, but this incurs loss in solution quality.

One approach is to use a lossy version of
GameShrink where siblings are considered ordered
game isomorphic if their children can be approxi-
mately matched in the bipartite matching part of
the algorithm (Gilpin and Sandholm 2007b; 2006).
However, lossy GameShrink suffers from three
drawbacks.

First, the resulting abstraction can be highly
inaccurate because the grouping of states into
buckets is, in a sense, greedy. For example, if lossy
GameShrink determines that hand A is similar to
hand B, and then determines that hand B is simi-
lar to hand C, it will group A and C together,
despite the fact that A and C may not be very sim-
ilar. The quality of the abstraction can be even
worse when a longer sequence of such compar-
isons leads to grouping together extremely differ-
ent hands. Stated differently, the greedy aspect of
the algorithm leads to lopsided buckets where large
buckets are likely to attract even more states into
the bucket.

Second, one cannot directly specify how many
buckets lossy GameShrink should yield (overall or
at any specific betting round). Rather, there is a
parameter (for each round) that specifies a thresh-
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{01}, {23, {1}, {K2}}

Figure 2. GameShrink Applied to a Tiny Two-Player Four-Card Poker Game.

(The game consists of two jacks and two kings) (Gilpin and Sandholm 2007b). Next to each game tree is the range of the information fil-
ter, which shows the abstraction. Dotted lines denote information sets, which are labeled by the controlling player. Open circles are chance
nodes with the indicated transition probabilities. The root node is the chance node for player 1’s card, and the next level is for player 2's
card. The payment from player 2 to player 1 is given below each leaf. In this example, the algorithm reduces the game tree from 113 nodes

to 39 nodes.

old of how different states can be and still be con-
sidered the same. If one knows how large an LP can
be solved, one cannot create an LP of that size by
specifying the number of buckets directly; rather
one must use trial-and-error (or some variant of
binary search applied to the setting of multiple
parameters) to pick the similarity thresholds (one
for each round) in a way that yields an LP of rough-
ly the desired size.

The third drawback is scalability. The time need-
ed to compute an abstraction for a three-round
truncated version of two-player Limit Texas
Hold’em was more than a month. Furthermore, it
would have to be executed in the inner loop of the
parameter guessing algorithm of the previous para-
graph.

Expectation-Based Abstraction Using Clustering
and Integer Programming. In this subsection I
describe a new abstraction algorithm that elimi-
nates the above problems (Gilpin and Sandholm
2007a). It is not specific to poker, but for concrete-
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ness [ will describe it in the context of two-player
Texas Hold'em.

The algorithm operates on an abstraction tree,
which, unlike the signal tree, looks at the signals
from one player’s perspective only: the abstraction
is done separately (and possibly with different
numbers of buckets) for different players. For Texas
Hold’em poker, it is initialized as follows. The root
node contains (52 choose 2) = 1326 children, one
for each possible pair of hole cards that a player
may be dealt in round 1. Each of these children has
(50 choose 3) children, each corresponding to the
possible 3-card flops that can appear in round 2.
Similarly, the branching factor at the next two lev-
els is 47 and 46, corresponding to the 1-card draws
in rounds 3 and 4, respectively.

The algorithm takes as input the number of
buckets, K,, allowed in the abstraction in each
round, . For example, we can limit the number of
buckets of hands in round 1 to K; = 20. Thus, we
would need to group (that is, abstract) each of the



(52 choose 2) = 1326 hands into 20 buckets. We
treat this as a clustering problem. To perform the
clustering, we must first define a metric to deter-
mine the similarity of two hands. Letting w, /, and
d be the number of possible wins, losses, and draws
(based on the rollout of the remaining cards), we
compute the hand'’s value as w + d/2, and we take
the distance between two hands to be the absolute
difference between their values. This gives us the
necessary ingredients to apply clustering to form k
buckets, for example, k-means clustering (algo-
rithm 1).

Algorithm 1 is guaranteed to converge, but it
may find a local optimum. Therefore, in our imple-
mentation we run it several times with different
starting points to try to find a global optimum. For
a given clustering, we can compute the error
(according to the value measure) that we would
expect to have when using the abstraction.

For the later rounds we again want to determine
the buckets. Here we face the additional problem of
determining how many children each parent in the
abstraction tree can have. For example, we can put
a limit of K, = 800 on the number of buckets in
round 2. How should the right to have 800 children
(buckets that have not yet been generated at this
stage) be divided among the 20 parents? We model
and solve this problem as a 0-1 integer program
(Nemhauser and Wolsey 1999) as follows. Our
objective is to minimize the expected error in the
abstraction. Thus, for each of the 20 parent nodes,
we run the k-means algorithm presented above for
values of k between 1 and the largest number of
children we might want any parent to have, MAX.
We denote the expected error when node i has k
children by c;,. We denote by p; the probability of
getting dealt a hand that is in abstraction class i
(that is, in parent i); this is simply the number of
hands in i divided by (52 choose 2). Based on these
computations, the following 0-1 integer program
finds the abstraction that minimizes the overall
expected error for the second level:

. K; MAX
min Y pi > CikXik
i=1 k=1
Ky MAX
s.t. > kxix < K»
i=1 k=1
MAX
Z Xik = 1 Vi
k=1
Xik € {0,1}

The decision variable x; , is set to 1 if and only if
node i has k children. The first constraint ensures
that the limit on the overall number of children is
not exceeded. The second constraint ensures that
a decision is made for each node. This problem is a
generalized knapsack problem, and although NP-
complete, can be solved efficiently using off-the-
shelf integer programming solvers (for example,
CPLEX solves this problem in less than one second
at the root node of the branch-and-bound search

tree).
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minimum and maximum hand values.
2. Assign each hand to the nearest centroid.

hand values.

4. Repeat steps 2 and 3 until convergence.

Algorithm 1. k-means Clustering for Poker Hands.

We repeat this procedure for round 3 (with the
round-2 buckets as the parents and a different
(larger) limit (say, K; = 4,800) on the maximum
number of buckets. Then we compute the bucket-
ing for round 4 analogously, for example with K, =
28,800.

Overall, our technique optimizes the abstraction
round by round in the abstraction tree. A better
abstraction (even for the same similarity metric)
could conceivably be obtained by optimizing all
rounds in one holistic optimization. However, that
seems infeasible. First, the optimization problem
would be nonlinear because the probabilities at a
given level depend on the abstraction at previous
levels of the tree. Second, the number of decision
variables in the problem would be exponential in
the size of the initial abstraction tree (which itself
is large), even if the number of abstraction classes
for each level is fixed.

Potential-Aware Abstraction. The expectation-
based abstraction approach previously described
does not take into account the potential of hands.
For instance, certain poker hands are considered
drawing hands in which the hand is currently weak,
but has a chance of becoming very strong. Since
the strength of such a hand could potentially turn
out to be much different later in the game, it is
generally accepted among poker experts that such
a hand should be played differently than another
hand with a similar chance of winning, but with-
out as much potential (Sklansky 1999). However,
if using the difference between probabilities of
winning as the clustering metric, the abstraction
algorithm would consider these two very different
situations similar.

One possible approach to handling the problem
that certain hands with the same probability of
winning may have different potential would be to
consider not only the expected strength of a hand,
but also its variance. Although this would likely be
an improvement over basic expectation-based
abstraction, it fails to capture two important issues
that prevail in many sequential imperfect infor-
mation games, including poker.

First, mean and variance are a lossy representa-
tion of a probability distribution, and the lost

1. Create k centroid points in the interval between the

3. Adjust each centroid to be the mean of their assigned
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Round r-1

Figure 3. States and Transitions Used in Potential-Aware Abstraction.

In our potential-aware abstraction algorithm, the similarity of states is measured based on the states’ transition his-
tograms to buckets at the next round. This definition is then operationalized by conducting bottom-up passes in the

abstraction tree so those later-round buckets get defined first.

aspects of the probability distribution over hand
strength can be significant for deciding how one
should play in any given situation.

Second, the approach based on mean and vari-
ance does not take into account the different paths
of information revelation that hands take in
increasing or decreasing in strength. For example,
two hands could have similar means and vari-
ances, but one hand may get the bulk of its uncer-
tainty resolved in the next round, while the other
hand needs two more rounds before the bulk of its
final strength is determined. The former hand is
better because the player has to pay less to find out
the essential strength of his hand.

To address these issues, we introduced potential-
aware abstraction, where we associate with each
state of the game a histogram over future possible
states (Gilpin, Sandholm, and Sgrensen 2007); see
figure 3. This representation can encode all the per-
tinent information from the rest of the game (such
as paths of information revelation), unlike the
approach based on mean and variance.

As in expectation-based abstraction, we use a
clustering algorithm and an integer program for
allocating children. They again require a distance
metric to measure the dissimilarity between differ-
ent states. The metric we now use is the L,-distance
over the histograms of future states. Specifically, let
S be a finite set of future states, and let each hand
i be associated with a histogram, h,, over the future
states S. Then, the distance between hands i and j

1S
dist(i,j) = | (hi(s) = hi (s))”.
seS

Under this approach, another design dimension
of the algorithm is in the construction of the pos-
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sible future states. There are at least two prohibi-
tive problems with this vanilla approach as stated.
First, there are a huge number of possible reachable
future states, so the dimensionality of the his-
tograms is too large to do meaningful clustering
with a reasonable number of clusters (that is, small
enough to lead to an abstracted game that can be
solved for equilibrium). Second, for any two states
at the same level of the game, the descendant
states are disjoint. Thus the histograms would have
nonoverlapping supports, so any two states would
have maximum dissimilarity and thus no basis for
clustering.

For both of these reasons (and for reducing
memory usage and enhancing speed), we coarsen
the domains of the histograms. First, instead of
having histograms over individual states, we use
histograms over abstracted states (buckets, that is,
clusters), which contain a number of states each
(and we use those buckets’ centroids to conduct
the similarity calculations). We will have, for each
bucket, a histogram over buckets later in the game.
Second, we restrict the histogram of each bucket to
be over buckets at the next round only (rather than
over buckets at all future rounds). However, we
introduce a technique (a bottom-up pass of con-
structing abstractions up the tree) that allows the
buckets at the next round to capture information
from all later rounds.

One way of constructing the histograms would
be to perform a bottom-up pass of a tree represent-
ing the possible card deals: abstracting round 4
first, creating histograms for round 3 nodes based
on the round 4 clusters, then abstracting round 3,
creating histograms for round 2 nodes based on
the round 3 clusters, and so on. This is indeed what
we do to find the abstraction for round 1.
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Figure 4. Potential-Aware Versus Expectation-Based Abstraction.
(Gilpin and Sandholm 2008a).

However, for later betting rounds, we improve
on this by leveraging our knowledge of the fact
that abstracted children of any bucket at the level
above should only include states that can actually
be children of the states in that bucket. We do this
by multiple bottom-up passes, one for each bucket
at the round above. For example, if a round-1
bucket contains only those states where the hand
consists of two aces, then when we conduct
abstraction for round 2, the bottom-up pass for
that level-1 bucket should only consider future
states where the hand contains two aces as the
hole cards. This enables the abstraction algorithm
to narrow the scope of analysis to information that
is relevant given the abstraction that it made for
earlier rounds.

In the last round there is no need to use the
potential-aware techniques discussed above since
the players will not receive any more information,
that is, there is no potential. Instead, we simply
compute the fourth-round abstraction based on
each hand’s probability of winning (based on dif-
ferent possible rollouts of the cards), using cluster-
ing and integer programming as in expectation-
based abstraction.

Comparison of Expectation-Based Versus Poten-
tial-Aware Abstraction. Now, which is better,
expectation-based or potential-aware abstraction?
Both types of abstraction algorithms run very

quickly compared to the time to even approxi-
mately solve the abstracted game, so the compari-
son comes down to how good the approximate
equilibria are when generated from abstractions of
each of the two types. It turns out that this
depends on the granularity that the abstraction is
allowed to have! (This in turn is dictated in prac-
tice by the speed of the equilibrium-finding algo-
rithm that is used to approximately solve the
abstracted game.) We conducted experiments on
this question in the context of Rhode Island
Hold’em so that we could solve the abstracted
game exactly (Gilpin and Sandholm 2008a). For
both types of abstraction algorithms we allowed
the same number of abstract buckets at each of the
three rounds of the game. We denote an abstrac-
tion granularity by the string K,-K,-K,. For exam-
ple, 13-25-125 means 13 first-round buckets, 25
second-round buckets, and 125 third-round buck-
ets. The abstraction granularities we considered
range from coarse (13-25-125) to fine (13-205-
1774). At this latter granularity an equilibrium-pre-
serving abstraction exists (Gilpin and Sandholm
2007b). In the experiments we fix the first-round
granularity to 13 (which allows for a lossless solu-
tion in principle due to suit isomorphisms), and
vary the granularity allowed in rounds two and
three. Figure 4 shows the results when the pro-
grams generated with these two abstraction meth-
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ods were played against each other. For very coarse
abstractions, the expectation-based approach does
better. For medium granularities, the potential-
aware approach does better. For fine granularities,
the potential-aware approach does better, but the
difference is small. Interestingly, the expectation-
based approach never yielded a lossless abstraction
no matter how fine a granularity was allowed.

These conclusions hold also when (1) compar-
ing the players against an optimal player (that is,
an equilibrium strategy), or (2) comparing each
player against its nemesis (that is, a strategy that
exploits the player as much as possible in expecta-
tion), or (3) evaluating the abstraction based on its
ability to estimate the true value of the game.

These conclusions also hold for a variant of the
expectation-based algorithm that considers the
square of the probability of winning (v, = (w; +
d/2)?), rather than simply the probability (Zinke-
vich et al. 2007). A motivation for this is that the
hands with the higher probabilities of winning
should be more finely abstracted than lower-value
hands. This is because low-value hands are likely
folded before the last round, and because it is
important to know very finely how good a high-
value hand one is holding if there is a betting esca-
lation in the final round. Another suggested moti-
vation is that this captures some of the variance
and “higher variance is preferred as it means the
player eventually will be more certain about their
ultimate chances of winning prior to a show-
down.” The version of this we experimented with
is somewhat different than the original since we
are using an integer program to allocate the buck-
ets, which enables nonuniform bucketing.

One possible explanation for the crossover
between expectation-based and potential-aware
abstraction is that the dimensionality of the tem-
porary states used in the bottom-up pass in the
third-round (which must be smaller than the num-
ber of available second-round buckets in order for
the clustering to discover meaningful centroids) is
insufficient for capturing the strategically relevant
aspects of the game. Another hypothesis is that
since the potential-aware approach is trying to
learn a more complex model (in a sense, clusters of
paths of states) and the expectation-based model is
trying to learn a less complex model (clusters of
states), the former requires a larger dimension to
capture this richness.

The existence of a cross-over suggests that for a
given game — such as Texas Hold’em — as com-
puters become faster and equilibrium-finding algo-
rithms more scalable so games with finer-grained
abstractions become solvable, the potential-aware
approach will become the better method of choice.

Problems with Lossy Information Abstraction.
In single-agent settings, lossy abstraction has the
desirable property of monotonicity: As one refines
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the abstraction, the solution improves. There is
only a weak analog of this in (even two-player
zero-sum) games: If the opponent’s strategy space
is not abstracted lossily at all, refining our player’s
abstraction causes our player to become less
exploitable. (Exploitability is measured by how
much our player loses to its nemesis in expecta-
tion. This can be computed in reasonably sizeable
games by carrying out a best-response calculation
to our agent’s strategy.) There are no proven guar-
antees on the amount of exploitability as a func-
tion of the coarseness of the lossy information
abstraction used. Furthermore, sometimes the
exploitability of a player increases as its abstraction
or its opponent’s abstraction is refined (Waugh et
al. 2009a). This nonmonotonicity holds for infor-
mation abstraction even if one carefully selects the
least exploitable equilibrium strategy for the play-
er in the abstracted games. The nonmonotonicity
has been shown in small artificial poker variants.
For Texas Hold’em (even with just two players),
experience from years of the AAAI Computer Pok-
er Competition suggests that in practice finer
abstractions tend to yield better strategies. Howev-
er, further research on this question is warranted.

Another problem is that current lossy abstrac-
tion algorithms do not yield lossless abstractions
even if enough granularity is allowed for a lossless
abstraction to exist. For the expectation-based
abstraction algorithm this can already be seen in
figure 4, and this problem arises in some games
also with the potential-aware abstraction algo-
rithm. One could trivially try to circumvent this
problem by running lossless GameShrink first, and
only running a lossy abstraction algorithm if the
abstraction produced by GameShrink has a larger
number of buckets than desired.

Strategy-Based Abstraction. It may turn out that
abstraction is as hard a problem as equilibrium
finding itself. After all, two states should fall in the
same abstract bucket if the optimal action proba-
bilities in them are (almost) the same, and deter-
mining the action probabilities is done by finding
an equilibrium.

This led us to develop the strategy-based abstrac-
tion approach. It iterates between abstraction and
equilibrium finding. The equilibrium finding oper-
ates on the current abstraction. Once a (near) equi-
librium is found for that abstraction, we redo the
abstraction using the equilibrium strategies to
inform the bucketing. Then we find a near equilib-
rium for the new abstraction, and so on.

We have applied this approach for the AAAI
Computer Poker Competition. However, definitive
results have not yet been obtained on the
approach because for the fine-grained abstractions
used in the competition (about 102 leaves in the
abstracted game tree), approximate equilibrium
finding takes months on a shared-memory super-



computer using 96 cores. Therefore, we have so far
had time to go over the abstraction/equilibrium
finding cycle only twice. Future research should
explore this approach more systematically both
experimentally and theoretically.

Action Abstraction

So far in this article I have discussed information
abstraction. Another way of making games easier
to solve is action abstraction, where in the abstract-
ed game the players have fewer actions available
than in the original game. This is especially impor-
tant in games with large or infinite action spaces,
such as No-Limit poker. So far action abstraction
has been done by selecting some of the actions
from the original game into the abstracted game,
although in principle one could generate some
abstract actions that are not part of the original
game. Also, so far action abstractions have been
generated manually.? Future research should also
address automated action abstraction.

Action abstraction begets a fundamental prob-
lem because real opponent(s) may select actions
outside the abstract model. To address this, work
has begun on studying what are good reverse map-
pings (figure 1), that is, how should opponents’
actions that do not abide to the abstraction be
interpreted in the abstracted game? One objective
is to design a reverse mapping that tries to mini-
mize the player’s exploitability. Conversely, one
would like to have actions in one’s own abstraction
that end up exploiting other players’ action
abstractions. These remain largely open research
areas, but some experimental results already exist
on the former. In No-Limit poker it tends to be bet-
ter to use logarithmic rather than linear distance
when measuring how close an opponent’s real bet
is to the bet sizes in the abstraction (Gilpin, Sand-
holm, and Serensen 2008). Furthermore, a ran-
domized reverse mapping that weights the abstract
betting actions based on their distance to the
opponent’s real bet tends to help (Schnizlein,
Bowling, and Szafron 2009). As with information
abstraction, in some games refining the action
abstraction can actually increase the player’s
exploitability (Waugh et al. 2009a).

Phase-Based Abstraction,
Real-Time Equilibrium Finding,
and Strategy Grafting

Beyond information and action abstraction, a
third form of abstraction that has been used for
incomplete-information games is phase-based
abstraction. The idea is to solve earlier parts (which
we call phases) of the game separately from later
phases of the game. This has the advantage that
each part can use a finer abstraction than would be
tractable if the game were solved holistically. The
downside is that gluing the phases together sound-

ly is tricky. For one, when solving a later phase sep-
arately from an earlier phase, a strategy may dis-
close to the opponent information about which
exact later phase version is being played (in poker,
information about the private cards the player is
holding). From the perspective of the later phase
alone this will seem like no loss, but from the per-
spective of the entire game it fails to hide informa-
tion as effectively as a holistically solved game.

This approach has been used to tackle two-play-
er Texas Hold’em poker in two (or in principle
more) phases. The first phase includes the early
rounds. It is solved offline. To be able to solve it,
one needs a model of what would happen in the
later rounds, that is, what are the payoffs at the
end of each path of the first phase. The first
approach was to assume rollout of the cards in the
later phase(s), that is, no betting and no folding
(Billings et al. 2003). Better results were achieved
by taking the strategies for the later phase(s) direct-
ly from strong prior poker bots or from statistical
observations of such bots playing if the bots’ strate-
gies themselves are not available (Gilpin and Sand-
holm 2007a). I call this bootstrapping with base
strategies.

It has also been shown experimentally that hav-
ing the phases overlap yields better results than
having the phases be disjoint. For example, the
first phase can include rounds 1, 2, and 3, while
the second phase can include rounds 3 and 4
(Gilpin and Sandholm 2007a). Or the first phase
can include all rounds, and the second phase a
more refined abstraction of one or more of the lat-
er rounds.

The second phase can be solved in real time dur-
ing the game so that a finer abstraction can be used
than if all possible second-phase games would
have to be solved (that is, all possible sequences of
cards and actions from the rounds before the start
of the second phase) (Gilpin and Sandholm
2007a). Whether or not the second phase is solved
offline or in real time, at the beginning of the sec-
ond phase, before the equilibrium finding for the
second phase takes place, the players’ beliefs are
updated using Bayes’ rule based on the cards and
actions each player has observed in the first phase.

The idea of bootstrapping with base strategies
has been extended to base strategies that cover the
entire game, not just the end (Waugh, Bard, and
Bowling 2009). The base strategies can be comput-
ed using some abstraction followed by equilibrium
finding. Then, one can isolate a part of the
abstracted game at a time, construct a finer-grained
abstraction for that part, require that Player 1 fol-
low his base strategy in all his information sets
except those in that part (no such restriction is
placed on the opponent), and solve the game
anew. Then one can pick a different part and do
this again, using the same base strategy. Once all
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Figure 5. Progress on Algorithms for Solving Two-Player Zero-Sum Games.

the parts (which constitute a partition of the infor-
mation sets where it is Player 1’s turn to move)
have been finished, we have a strategy for Player 1.
Then, a strategy for Player 2 is computed analo-
gously. This grafting approach allows one to focus
on one part of the game at a time with fine abstrac-
tion while having a holistic view of the game
through the base strategies. In principle this can
increase the player’s exploitability, but in practice
it improves performance. Similar approaches can
be used for more than two players, but nothing has
been published on that yet.

Equilibrium-Finding Algorithms
for Two-Player Zero-Sum Games.

So far I have discussed abstraction. I will now move
to algorithms for solving the (abstracted) game.
This section focuses on two-player zero-sum
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games. The next section covers more general
games.

The most common solution concept (that is,
definition of what it means to be a solution) is
Nash equilibrium. A strategy for an agent defines
for each information set where it is the agent’s turn
to move a probability distribution over the agent’s
actions. The two agents’ strategies form a Nash
equilibrium if neither agent can benefit in expec-
tation by deviating from her strategy given that
the other agent does not deviate from his.

Formally, the Nash equilibria of two-player zero-
sum sequential games are the solutions to

s T s T

TRy A = ey iy A M
where X and VY are polytopes defining the players’
strategies and A is the payoff matrix (Romanovskii
1962; Koller, Megiddo, and von Stengel 1996; von
Stengel 1996). When the minimizer plays a strate-



gy x € X and the maximizer plays y € VY, the
expected utility to the maximizer is y'Ax and,
since the game is zero-sum, the minimizer’s
expected utility is -yTAx. Problem 1 can be
expressed as a linear program (LP) whose size is lin-
ear in the size of the game tree. Thus the problem
is solvable in polynomial time. Today’s best gener-
al-purpose LP solvers can solve games with up to
107 or 108 leaves in the game tree (corresponding
to nonzero entries in A) (Gilpin and Sandholm
2006). For example, losslessly abstracted Rhode
Island Hold’em poker has a 10° x 10¢ payoff matrix
containing 50 million nonzeros, and solving it (to
near machine precision) with CPLEX’s barrier
method (an interior-point LP method) took a week
and used 25 gigabytes of RAM (Gilpin and Sand-
holm 2007b). Interestingly, on these kinds of prob-
lems the barrier method does better than the sim-
plex method.

The LP approach does not scale to most inter-
esting games. For instance, the payoff matrix A in
(1) for two-player Limit Texas Hold’em poker has
dimension 10'* x 10'* and contains more than
10'® nonzero entries. There has been tremendous
progress in developing equilibrium-finding algo-
rithms in the last few years, spurred in part by the
AAAI Computer Poker Competition, (see figure 5).
These new algorithms find an e-equilibrium, that
is, strategies x € X and y € VY such that neither
player can benefit more than € in expectation by
deviating from her strategy.

Algorithms Based on
Smoothing and Gradient Descent

In this section I will describe recent custom equi-
librium-finding algorithms based on smoothing
and gradient descent.

Extending the Excessive Gap Technique to
Sequential Games and Making it Scalable. In
this section I will describe the first custom equilib-
rium-finding algorithm for sequential incomplete-
information games (Gilpin et al. 2007; Hoda et al.
2010). It took equilibrium finding to a new level by
solving poker games with 10'2 leaves in the game
tree (Gilpin, Sandholm, and Serensen 2007), and it
found an e-equilibrium with a small € (0.027 small
bets per hand in abstracted Limit Texas Hold’em).
It remains one of the fastest equilibrium-finding
algorithms in practice.

The algorithm is an adaptation of Nesterov’s
excessive gap technique (Nesterov 2005a; 2005b)
to sequential games, and it also includes tech-
niques for significantly improving scalability both
in terms of time and memory usage.

Problem 1 can be stated as

min f(x) = max o(y) (2)

where
f (x) = max yTAx and o(y) = min yTAx.
ye Xe
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such that

4|All /DxDy
N+1 Ox0Oy ’

0<F(xN) —o(yN) <

of three subproblems of the form

Theorem 2.
(Nesterov 2005a, 2005b).

The functions fand ¢ are respectively convex and
concave nonsmooth functions. The left-hand side
of equation 2 is a standard convex minimization
problem of the form

min{h(x): x e X} . 3)
First-order methods for solving equation 3 are
algorithms for which a search direction at each
iteration is obtained using only the first-order
information of h, such as its gradient or subgradi-
ent. When & is nonsmooth, subgradient algo-
rithms can be applied, but they have a worst-case
complexity of O(1/e?) iterations (Goffin 1977).
However, that pessimistic result is based on treat-
ing h as a black box where the value and subgradi-
ent are accessed through an oracle. For nonsmooth
functions with a suitable max structure, Nesterov
devised first-order algorithms requiring only
O(1/¢) iterations.

The key component of Nesterov’s smoothing
technique is a pair of prox-functions for the sets X
and VY. These prox-functions are used to construct
smooth approximations f, ~ fand ¢, ~ ¢. To obtain
approximate solutions to equation 2, gradient-
based algorithms can then be applied to f, and ¢,,.

We say that a function is a prox-function if it is
strongly convex and its minimum is zero. Assume
dy and d,, are prox-functions for the sets X and Y
respectively. Then for any given p > 0, the smooth
approximations f,, ~ fand ¢, ~ ¢ are

fu(x) = max{y'Ax - pdy(y) : y € Y},

0,(y) == min{y"Ax + pdx(x) : x € X}.

Let D, := max{d, (x): x € X}, and let 6, denote the
strong convexity modulus of d . Let D, and o, be
defined likewise for Y and d,,.*

For an algorithm based on theorem 2 to be prac-
tical, the subproblems (equation 4) must be solv-
able quickly. They can be phrased in terms of the

There is a procedure (algorithm 4 presented later)
based on the above smoothing technique that after N
iterations generates a pair of points (xN, y¥) € X x Y

Furthermore, each iteration of the procedure performs
some elementary operations, three matrix-vector
multiplications by A, and requires the exact solution

max{g'x—dx(0} or max{g'y —dy(y)}. 4
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There is a way to construct nice prox-functions for

sequence form games.

Theorem 3.
(Hoda et al. 2010).

initial (4, d., dy)
A

1. nd = s e= T
2. %:= Vi3 (0)
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3.y":= Vdj, (@Ax>
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5. Return (u%, 45, x°, y°)

Algorithm 2.
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Algorithm 3.

conjugate of the functions d, and d,. The conju-
gate of d : Q — R is the function d* : R" - R
defined by

d*(s) := max{s"x — d(x) : x € Q}.
If d is strongly convex and Q is compact, then the
conjugate d* is Lipschitz continuous, differentiable
everywhere, and

Vd*(s) = argmax{s'x — d(x) : x € Q}.
If the prox-function’s conjugate and the conju-
gate’s gradient are computable quickly (and the
prox-function is continuous, strongly convex, and
differentiable), we say that the prox-function is
nice (Hoda et al. 2010). With nice prox-functions
the overall algorithm is fast.
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In normal form (also known as bimatrix) games,
the strategy of each player lives in a simplex, that
is, the probabilities on her actions sum to one. For
the k-dimensional simplex A, the entropy function

k
dx)=Ink+ Zx,- Inx;,

i=1

and the FEuclidean distance function

k

d(x) = %;m - 12
are nice prox-functions.

In multistep games, the strategies live in a more
complex space. The common way to represent
multistep games of perfect recall is the sequence
form (Romanovskii 1962; Koller, Megiddo, and
von Stengel 1996; von Stengel 1996). Our theorem
3 enables the use of Nesterov’s excessive gap tech-
nique for these games.

Nesterov’s Excessive Gap Technique (EGT). For
Hy, Hy >0, consider the pair of problems:

fuy (%) = max{y'Ax — pydy(y) 1 y € I},

O (y) = min{y"Ax + prdq(x) : x € X'}.
Algorithm 4 generates iterates (x*, y*, p, pf) with
B, 1, decreasing to zero and such that the fol-

lowing excessive gap condition is satisfied at each
iteration:

f}ly(x) < ¢;:X(Y)~ (5)

From equation 4 and the fact f(x) > ¢(y), we see
that

0<0(y) —f(x) SpxDx + pyDy. (6)
Consequently, f(x*) = ¢(y*) when p¥ and 1}, are
small.

Algorithm 2 finds a starting point that satisfies
the excessive gap condition (equation 5).

Algorithm 3 decreases p and p,, while main-
taining equation 5.

If the input (u,, Uy, X, y) to algorithm 3 satisfies
equation §, then so does (', py, X*, y*) as long as
© satisfies 12/(1 - ©) < 1y 1y, 6 6y, /||A|* (Nesterov
2005a).

We are now ready to describe Nesterov’s exces-
sive gap technique specialized to equation 1 (see
algorithm 4). By theorem 2, algorithm 4 — which
we will refer to as EGT — finds an e-equilibrium in
O(1/e) iterations. Furthermore, for games with
ordered signals, each iteration runs in linear time
in the size of the game tree (Hoda et al. 2010).

Heuristics. EGT can be sped up by applying heuris-
tics that decrease u, and p,, faster, while main-
taining the excessive gap condition (4) (Gilpin et
al. 2007). This leads to faster convergence in prac-
tice without compromising any of the theoretical
guarantees.

The first heuristic is based on the following
observation: although the value t = 2/(k + 3) com-
puted in step 2(a) of EGT guarantees the excessive



gap condition (equation 5), this is potentially an
overly conservative value. Instead we can use an
adaptive procedure to choose a larger value of .
Since we then can no longer guarantee equation 5
a priori, we do a posterior verification, which occa-
sionally necessitates an adjustment in the parame-
ter 1.

The second heuristic is motivated by the obser-
vation that after several iterations, one of u, and
py may be much smaller than the other. This
imbalance is undesirable because the larger one
contributes the most to the worst-case bound
(equation 6). Hence, every so many iterations we
perform a balancing to bring these values closer
together. The balancing consists of repeatedly
shrinking the larger one of p, and p,,.

We also observed that after such balancing, the
values of p, and uy can sometimes be further
reduced without violating the excessive gap condi-
tion (equation 5). We thus include a final reduc-
tion step in the balancing.

Experiments on automatically abstracted poker
games show that each of the two heuristics tends
to reduce € by about an order of magnitude. Those
experiments also show that using the entropy
prox-function at the leaves performs better than
using the Euclidian prox-function.

Decomposed Game Representation to Save
Memory. One attractive feature of first-order meth-
ods like EGT is that the only operation performed
on the matrix A is a matrix-vector product. We can
thus exploit the problem structure to store only an
implicit representation of A (Gilpin et al. 2007).
This representation relies on a certain type of
decomposition that is present in games with
ordered signals. For example, the betting sequences
that can occur in most poker games are independ-
ent of the cards that are dealt. We can decompose
the payoff matrix based on these two aspects.

For ease of exposition, we explain the concise
representation in the context of Rhode Island
Hold’em. The payoff matrix A can be written as

Aq
A= Ay
Az
where
A = Fi1®By,
A, = F,®B;, and
A3 = F3®B3+SoW

for much smaller matrices F,, B, S, and W. The
matrices F; correspond to sequences of moves in
round i that end with a fold, and S corresponds to
the sequences in round 3 that end in a showdown.
The matrices B; encode the betting structures in
round i, while W encodes the win/lose/draw infor-
mation determined by poker hand ranks. The sym-
bol ® denotes the Kronecker product. The Kro-
necker product of two matrices B € R™" and C e
RP*1 is

EGT (A, dx, dy)

1, (u(/’)t’v Hg;; XO/ YO) = lnltlal(A/ dX/ dy)
2. Fork=0,1,...:
@ 1= &
(b) Ifk iseven: //shrink uxy
i (uI;(H/ Xk+1, yk+l) =
Shrink(A, l’ll/(Y/ ﬂli;; T, Xk/ Yk, dX/ dy)
ii. p§t o=k

(c) Ifkisodd: //shrink py

i (u1§}+1, yk+1, Xk+1) =
shrink(- A", u¥ 1§, t, y¥, x5, dy, dx)

i, pkrt

=k

Algorithm 4.

buC - buC
B®C= : € R XM,

bm 1 C bmn C

Given the above decomposed representation of
A, the space required is sublinear in the size of the
game tree. For example, in Rhode Island Hold’em,
the dimensions of the F, and F, matrices are 10 x
10 and 70 x 70 respectively. The dimension of the
F, and S matrices are 490 x 490. The dimensions of
By, B,, and B, are 13 x 13, 205 x 205, and 1,774 x
1,774, respectively. By contrast, the matrix A is
883,741 x 883,741. Furthermore, the matrices F,
B, S, and W are themselves sparse, so we capitalize
on the Compressed Row Storage (CRS) data struc-
ture that only stores nonzero entries. Table 1
demonstrates that the decomposed game repre-
sentation enables equilibrium finding in the large.

Speeding Up the Matrix-Vector Products Using
Parallelization and Sampling. The matrix-vector
operations dominate the run time of first-order
algorithms like EGT. They can be parallelized on
multiple cores with near-perfect efficiency (Gilpin
et al. 2007). For further speedups, one can sample
the payoff matrix A to construct a sparser matrix,
and then run the algorithm on the latter. One can
also redo the sampling dynamically if overfitting
to the sparser matrix occurs (Gilpin and Sandholm
2010).

Poker Players Created. In 2008, the Association
for the Advancement of Artificial Intelligence
(AAAI) held the third annual AAAI Computer Pok-
er Competition, where computer programs sub-
mitted by teams worldwide competed against each
other. We generated our players using lossy
abstraction algorithms followed by equilibrium
finding in the abstracted game using the EGT algo-
rithm described above. GS4-Beta placed first (out
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Name

10k
160k
RI

Texas
GS4

CPLEX IPM CPLEX Simplex

0.082 GB >0.051 GB 0.012 GB
2.25 GB >0.664 GB 0.035 GB
25.2 GB > 3.45 GB 0.15 GB
> 458 GB > 458 GB 2.49 GB
> 80,000 GB > 80,000 GB 43.96 GB

Table 1.

Memory footprint of CPLEX interior-point method (IPM), CPLEX simplex,
and our memory-efficient version of EGT. 10k and 160k are lossy abstractions
of Rhode Island Hold’em, and RI is lossless. Texas and GS4 are lossy abstrac-
tions of Texas Hold’em.

The algorithm finds an e-equilibrium in

2V2-e-k(A)-In2||A|/e) - VD

first-order iterations, where ||-| is the Euclidean matrix
norm, D is the maximum Euclidean distance between
strategies, and k(A) is a condition measure of A.

Theorem 4.
(Gilpin and Sandholm 2008a).

of nine) in the Limit Bankroll Competition and
Tartanian placed third (out of four) in the No-Lim-
it Competition. Tartanian actually had the highest
winning rate in the competition, but due to the
winner determination rule for the competition, it
got third place.

A Gradient-Based Algorithm with O(log 1/¢)
Convergence. Recently we developed a gradient-
based equilibrium-finding algorithm that finds an
e-equilibrium exponentially faster: in O(log 1/¢)
iterations (Gilpin, Pefla, and Sandholm 2008). It
uses as a subroutine a procedure we call smoothing,
which is a recent smoothing technique for non-
smooth convex optimization (Nesterov 2005b).
The algorithm is unlike EGT in that there is only
one function that is being optimized and
smoothed instead of two. Also unlike in EGT, the
target € needs to be specified in advance. This is
used to set the constant pu that is used as the mul-
tiplier on the prox-function. Unlike in EGT, p does
not change inside smoothing.

We showed that smoothing can be extended to
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sequential games. This entailed developing a cus-
tom dynamic program.

We added an outer loop that decreases € by a fac-
tor e in between calls to smoothing. The key was
then to prove that each such call to smoothing
uses only a constant number of first-order itera-
tions (gradient steps). It follows immediately that
the overall algorithm runs in O(log 1/e) first-order
iterations (theorem 4).

Experiments verified that this algorithm con-
verges faster than EGT, and the speed difference
increases systematically the smaller € is. Current
work includes developing robust software imple-
mentations of this algorithm that can scale to the
large.

Our O(log 1/¢) convergence rate matches the
best known convergence rate: that of interior-
point methods. At the same time, our algorithm —
being a first-order method — is scalable while cur-
rent interior-point methods require a prohibitive
amount of memory.

Algorithm Based on Counterfactual
Regret Minimization (CFR)

Soon after we developed an EGT-based algorithm
for sequential games, another algorithm, counter-
factual regret (CFR) was introduced that can also
find an e-equilibrium with small € in games with
1012 leaves in the game tree (Zinkevich et al. 2007).
It is based on totally different principles than the
gradient-based equilibrium-finding algorithms
described above. Specifically, it is based on regret
minimization principles, and it is crafted cleverly
so they can be applied at individual information
sets (usually they are employed in the space of
strategies; that would not scale to large sequential
games).

The average overall regret for agent i, R?’ is how
much better off i would have been on average in
repetitions 1..N of the game by using his or her
best fixed strategy than by having played the way
he or she did. If both players have average overall
regret less than ¢, then Agent 1’s time-averaged
strategy and Agent 2's time-averaged strategy con-
stitute a 2e-equilibrium.

The design by Zinkevich et al. starts by studying
one information set I and player i’s choices made
in I. Define counterfactual utility u,c, I) to be the
expected utility given that information set I is
reached and all players play using strategy ¢ except
that player i plays to reach I. Formally, letting n°(h,
h') be the probability of going from history & to h’,
and letting Z be the set of terminal histories:

Pnepnrez i (MnC (h, Wu;(h')

ui(o,I) = )

For all actions a e A(l), define o|,_, , to be a strategy
profile like ¢ except that player i always chooses
action a in I. The immediate counterfactual regret is



R yimm (I ) =

N
%HIE%}) ;nflf(l)(ui(ﬁt\ma/l) —ui(c', 1))

This is the player’s regret in its decisions at I in

terms of counterfactual utility, with an additional

weighting term for the counterfactual probability

that I would be reached if the player had tried to do

so. Denoting

RYx(I) = max{RY,,, (I),0}

it turns out that that the average overall regret can
be bounded by the local ones:
RY <3 R (D).
Iel;
The key is that immediate counterfactual regret
can be minimized by controlling only o,(I). The

CFR algorithm maintains for all I €I, for all a
e A

RY(,0) =

1.

N Zﬂg,‘u)(”i(ﬁtllﬂm I)- ui(o'tz 1))
t=1

Let the positive counterfactual regret be
RY* (I, a) = max{R} (I,a), 0}.

The CFR algorithm simulates the players playing
the game repeatedly. Actions for each agent are
selected in proportion to their positive counterfac-
tual regret. (If no action has positive counterfactu-
al regret, then the action is selected randomly.) The
output is a strategy for each agent; it is the time-
averaged strategy computed from the agent’s
strategies in repetitions 1..N.

CFR can be sped up by sampling the chance
moves, that is, sampling bucket sequences in the
abstraction, rather than considering all the histo-
ries that lead to the information set that is being
updated. This enables approximately 750 itera-
tions per second on a Texas Hold’em abstraction,
and yields a smaller € faster (Zinkevich et al. 2007).
Other forms of sampling can also be used (Lanctot
et al. 2009). By theorem 5, CFR runs in O(1/¢?) iter-
ations (and the chance sampling incurs only a lin-
ear increase in the number of iterations) which is
significantly worse than the O(1/¢) and O(log(1/¢))
guarantees of the smoothed gradient based tech-
niques described above. In practice, on Texas
Hold’em abstractions with 1012 leaves, CFR is run
for about a billion sampled iterations while EGT
needs to be run only for about a hundred itera-
tions. On the other hand, each sampled CFR itera-
tion runs much faster than an iteration of those
other algorithms: EGT takes hours per iteration
(even when the matrix-vector products are paral-
lelized across 96 cores). Our initial direct compar-
isons between EGT and CFR on small and medium-
sized games show that either can have a significant

Theorem 5.
(Zinkevich et al. 2007.)

overall speed advantage over the other depending
on the game.

A Practical Use of Imperfect Recall

All of the results above are for games with perfect
recall, which includes most games played by com-
puters. A recent idea has been to model a game of
perfect recall like poker as a game of imperfect
recall by allowing the player to use fine-grained
abstraction at the poker round that she is in and
then forgetting some of those details of that round
s0 as to be able to have a larger branching factor in
the information abstraction for the next round
while keeping the overall abstracted game size
manageable (Waugh et al. 2009b). Such imperfect
recall abstracted games have been approached
using CFR, but there are no convergence guaran-
tees.

Equilibrium-Finding
Algorithms for Multiplayer
and Nonzero-Sum Games

While the abstraction methods discussed earlier
are for n-player general-sum games, the equilibri-
um-finding algorithms above are for two-player
zero-sum games. The problem of finding a Nash
equilibrium in two-player general-sum games is
PPAD-complete even in normal form games with
complete information (Daskalakis, Goldberg, and
Papadimitriou 2008; Chen and Deng 2006), sug-
gesting that there likely is no polynomial-time
algorithm for all instances. The PPAD-complete-
ness holds even when payoffs are restricted to be
binary (Abbott, Kane, and Valiant 2005). With
three or more players, the problem becomes FIXP-
complete even in the zero-sum case (Etessami and
Yannakakis 2007).

To my knowledge the best equilibrium-finding
algorithms for general multiplayer incomplete-
information games are continuation methods
(Govindan and Wilson 2003). They perturb the
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Let A; be the difference between i’s highest
and lowest payoff in the game. With the

CFR algorithm, RY, .., () < Aj\/[A;[/VN
and thus RY < A;|Z;|\/]JAi]/VN, where
[Ail = maxy:player (h)= i [A(
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Hand Values, O = best possible hand
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Figure 6. A Qualitative Model for a Simplified Poker Game.

(Ganzfried and Sandholm 2010). Player 1’s action regions are on the left, Play-

er 2's on the right.

game by giving agents fixed bonuses, scaled by 2,
for each of their actions. If the bonuses are large
enough (and unique), they dominate the original
game, so the agents need not consider their oppo-
nents’ actions. There is thus a unique pure-strate-
gy equilibrium easily determined at A = 1. The con-
tinuation method can then be used to follow a
path in the space of A and equilibrium profiles for
the resulting perturbed game, decreasing A until it
is zero, at which point the original game has been
solved. The algorithm scales better for games that
can be represented in a structured way using mul-
tiagent influence diagrams (Blum, Shelton, and
Koller 2006). However, even then it has only been
applied to relatively small games.

Leveraging Qualitative Models

A recent idea that scales to significantly larger
games takes advantage of the fact that in many set-
tings it is easier to infer qualitative models about
the structure of equilibrium than it is to actually
compute an equilibrium. For example, in
(sequences of) take-it-or-leave-it offers, equilibria
involve accepting offers above a certain threshold
and rejecting offers below it. Threshold strategies
are also common in auctions and in deciding when

28 Al MAGAZINE

to make and break partnerships and contracts. In
poker, the cards in the hand are private signals,
and in equilibrium, often the same action is taken
in continuous regions of the signal space (for
example, Ankenman and Chen [2006]). The idea
of using qualitative models as an extra input for
equilibrium finding has been applied to continu-
ous (and finite) multiplayer Bayesian games, a
broad class of imperfect-information games that
includes many variants of poker (Ganzfried and
Sandholm 2010). Figure 6 shows an example of a
qualitative model for a simplified poker game.

Given a qualitative model that is correct, there is
a mixed integer linear feasibility program (MILFP)
that finds an equilibrium (a mixed strategy equilib-
rium in games with a finite number of types and a
pure strategy equilibrium in games with a continu-
um of types) (Ganzfried and Sandholm 2010). The
paper also presents extensions of the algorithm to
games with dependent private signal distributions,
many players, and multiple candidate qualitative
models of which only some are correct. Experi-
ments show that the algorithm can still compute
an equilibrium even when it is not clear whether
any of the models are correct, and an efficient pro-
cedure is given for checking the output in the event
that they are not correct. The MILFP finds an exact
equilibrium in two-player games, and an e-equilib-
rium in multiplayer games. It also yields a MILFP
for solving general multiplayer imperfect-informa-
tion games given in extensive form without any
qualitative models. For most of these games classes,
no prior algorithm was known.

Experiments suggest that modeling a finite game
with an infinite one with a continuum of types can
significantly outperform abstraction-based ap-
proaches on some games. Thus, if one is able to con-
struct a correct qualitative model, solving the MIL-
FP formulation of the infinite approximation of a
game could potentially be the most efficient ap-
proach to solving certain classes of large finite
games (and the only approach to solving the infi-
nite version). The main algorithm was used to
improve play in two-player limit Texas hold’em by
solving endgames. In addition, experiments dem-
onstrated that the algorithm was able to efficiently
compute equilibria in several infinite three-player
games.

Solving Multiplayer Stochastic
Games of Imperfect Information

Significant progress has also been made on equi-
librium finding in multiplayer stochastic games of
imperfect information (Ganzfried and Sandholm
2008; 2009). For example, consider a No-Limit
Texas Hold’em tournament. The best way to play
differs from how one should play an individual
hand because there are considerations of bankroll
management (one gets eliminated once one runs



out of chips) and the payoffs are based on ranks in
the tournament rather than chips. This becomes
especially important near the end of a tournament
(where the antes are large). One simple strategy
restriction is to always go all-in or fold in Round 1
(that is, once the private cards have been dealt but
no public cards have). In the two-player case, the
best strategy in that restricted space is almost opti-
mal against an unrestricted opponent (Miltersen
and Serensen 2007). It turns out that if all players
are restricted in this way, one can find an e-equi-
librium for the multiplayer game (Ganzfried and
Sandholm 2008; 2009). The algorithms have an
inner loop to determine e-equilibrium strategies
for playing a hand at a given state (stack vector,
one stack of chips per player) given the values of
possible future states. This is done for all states. The
iteration of the outer loop adjusts the values of the
different states in light of the new payoffs obtained
from the inner loop. Then the inner loop is exe-
cuted again until convergence, then the outer
loop, and so on.

For instance, fictitious play can be used for the
inner loop and policy iteration for solving Markov
decision processes for the outer loop. Several other
variants were also studied. None of the variants are
guaranteed to converge, but some of them have
the property that if they converge, they converge
to an equilibrium. In practice, both the inner and
outer loop converge quickly in all of the tested
variants. This suggests that fictitious play is anoth-
er promising algorithm for multiplayer imperfect-
information games.

Opponent Exploitation

So far I have discussed approaches based on game
theory. A totally different approach is to try to
learn to exploit opponents.

Two-player zero-sum games have the nice prop-
erty that our player can only benefit if the oppo-
nent does not play an equilibrium strategy. Fur-
thermore, it does not matter which equilibrium
strategies are selected: if (x, y) and (x', y’) are equi-
libria, then so are (x, y’) and (x’, y). However, even
in two-player zero-sum games, an equilibrium
strategy might not maximally exploit an opponent
that does not play equilibrium. In multiplayer
games, there is the further complications of equi-
librium selection.

There is a long history of opponent-exploitation
research in Al (for example, by building models of
opponents). That has also been studied for poker
(for example, Billings et al. [1998], Southey et al.
[2005], and Bard and Bowling [2007]). In practice
— at least in large games like Texas Hold’em (even
in the two-player case), even with relatively large
numbers of hands to learn from — those approach-
es are far inferior to the game-theory-based

approaches. For example, our poker player that was
constructed using potential-aware abstraction and
EGT, and used no learning, won the Bankroll Com-
petition in the AAAI 2008 Computer Poker Com-
petition. This was noteworthy because the Bankroll
Competition is designed to favor learning programs
that can take advantage of weak opponents.

One weakness in the learning approach is the
get-taught-and-exploited problem (Sandholm 2007):
An opponent might play in a way to teach the
learner a model, and then exploit the learner that
attempts to use that model. Furthermore, the
opponent might lose significantly less from the
teaching than he gains from the exploitation.

One recent approach that has been pursued
both at University of Alberta’s poker research
group (Johanson, Zinkevich, and Bowling 2007;
Johanson and Bowling 2009) and mine is to start
with a game-theory-based strategy and then adjust
it in limited ways to exploit the opponent as we
learn more about the opponent. This already yield-
ed a win in the Bankroll Competition in the AAAI
2009 Computer Poker Competition, and is a prom-
ising direction for the future.

There are some fundamental limits, however.
Can this be done in a safe way? That is, can one
exploit to some extent beyond the game-theoretic
equilibrium strategy while still maintaining at least
the same expected payoff as the equilibrium strat-
egy? Recently Sam Ganzfried and I proved that this
is impossible. So, in order to increase exploitation,
one needs to sacrifice some on the game-theoretic
safety guarantee.

Additional Topics

Beyond what I discussed so far, there are other
interesting developments in the computation of
solutions to incomplete-information games. Let
me briefly discuss some of them here.

One question is whether Nash equilibrium is the
right solution concept. In two-player zero-sum
games it provides a safety guarantee as discussed
above, but in more general games it does not
because equilibrium selection can be an issue. Even
in two-player zero-sum games, the equilibrium
strategy may not play the rest of the game opti-
mally if the opponent makes a mistake. Various
equilibrium refinements can be used to prune such
equilibrium strategies from consideration, and
there has been some work on computing equilibri-
um strategies that honor such refinements (for
example, (Miltersen and Segrensen 2010; 2006;
2008)). In multiplayer games there is also the pos-
sibility of collusion (coordination of strategies
and/or information), and there are coalitional
equilibrium refinements (for example, Milgrom
and Roberts [1996], Moreno and Wooders [1996],
and Ray [1996]).
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There is also work on other general classes of
games. An optimal polynomial algorithm was
recently developed for repeated incomplete-infor-
mation games (Gilpin and Sandholm 2008b).
Work has also been done on Kriegspiel (chess
where the players do not observe each others’
moves), but the best-performing techniques are
still based on sampling of the game tree rather
than game-theoretic approaches (Ciancarini and
Favini 2009). There has been work on computing
commitment (Stackelberg) strategies (where Play-
er 1 has to commit to a mixed strategy first, and
then Player 2 picks a strategy) in normal form
games, with significant security applications (for
example, Conitzer and Sandholm [2006]; Jain et
al. [2010]). Recently that was studied also in
sequential incomplete-information games (Letch-
ford and Conitzer 2010; Kiekintveld, Tambe, and
Marecki 2010).

Conclusions

There has been tremendous progress on solving
incomplete-information games in the last five
years. For some rather large games like two-player
Rhode Island Hold’em, an optimal strategy has
been computed. An optimal strategy is not yet
known for any variant of Texas Hold’em, but in
two-player Limit Texas Hold’em — a game that is
frequently used in competitions among profes-
sional poker players — computers have surpassed
humans. In the No-Limit and multiplayer variants
humans remain ahead.

This is a very active and fertile research area. I
hope this article helps newcomers enter the field,
spurs interest in further pushing the boundary of
what is computationally possible, and facilitates
adoption of these approaches to additional games
of importance, for example, negotiation, auctions,
and various security applications.
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Notes

1. The reader is invited to play against this strategy at
www.cs.cmu.edu/~gilpin/gsi.html.

2. An extreme form of action abstraction is to restrict
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analysis to a small number of strategies and conduct
equilibrium analysis among them (Wellman 2006).

3. The operator norm of A is defined as ||A|| := max{y” Ax:
[Ix]], |ly]] < 1}, where the norms ||x]], ||y|| are those associ-
ated with o, and o,,.
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