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Abstract
Flow visualization has been a very attractive component of scientific visualization research for a long time.
Usually very large multivariate datasets require processing. These datasets often consist of a large number of
sample locations and several time steps. The steadily increasing performance of computers has recently become
a driving factor for a reemergence in flow visualization research, especially in texture-based techniques. In this
paper, dense, texture-based flow visualization techniques are discussed. This class of techniques attempts to provide
a complete, dense representation of the flow field with high spatio-temporal coherency. An attempt of categorizing
closely related solutions is incorporated and presented. Fundamentals are shortly addressed as well as advantages
and disadvantages of the methods.
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1. Introduction

Flow visualization (FlowVis) is one of the classic subfields
of visualization, covering a rich variety of applications, from
the automotive industry, aerodynamics, turbomachinery de-
sign, to weather simulation, meteorology, climate modeling,
ground water flow and medical visualization. Consequently,
the spectrum of FlowVis solutions is very rich, spanning mul-
tiple technical challenges: 2D versus 3D solutions and tech-
niques for steady or time-dependent data.

Bringing many of those solutions in linear order (as neces-
sary for a text like this) is neither easy nor intuitive. Several
options of subdividing this broad field of literature are pos-
sible. Hesselink et al., for example, addressed the problem
of how to categorize techniques in their 1994 overview of
research issues [24] and consider dimensionality as a means
to classify the literature. In the following, several aspects are
discussed on an abstract level before literature is addressed
directly.

1.1. Classification

According to the different needs of the users, there are dif-
ferent approaches to flow visualization (cf. Figure 1):
� Direct flow visualization: This category of techniques

uses a translation that is as direct as possible for repre-
senting flow data in the resulting visualization. The result
is an overall picture of the flow. Common approaches are
drawing arrows (Figure 2, left) or color coding velocity.
Intuitive pictures can be provided, especially in the case
of two dimensions. Solutions of this kind allow immedi-
ate investigation of the flow data.

� Dense, texture-based flow visualization: Similar to direct
flow visualization, a texture is computed that is used to
generate a dense representation of the flow (Figure 2,
middle). A notion of where the flow moves is incorpo-
rated through corelated texture values along the vector
field. In most cases this effect is achieved through filter-
ing of texture values according to the local flow vector.
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Figure 1: Classification of flow visualization techniques—
(left) direct, (middle-left) texture-based, (middle-right) based
on geometric objects and (right) feature-based.

� Geometric flow visualization: For a better communica-
tion of the long-term behavior induced by flow dynam-
ics, integration-based approaches first integrate the flow
data and use geometric objects as a basis for flow visu-
alization. The resulting integral objects have a geometry
that reflects the properties of the flow. Examples include
streamlines (Figure 2, right), streaklines and pathlines.
These geometric objects are based on integration as op-
posed to other geometric objects, like isosurfaces, that
may also be useful for visualization. A description of
geometric techniques is presented by Post et al. [55].

� Feature-based flow visualization: Another approach
makes use of an abstraction and/or extraction step which
is performed before visualization. Special features are ex-
tracted from the original dataset, such as important phe-
nomena or topological information of the flow. Visual-
ization is then based on these flow features (instead of the
entire dataset), allowing for compact and efficient flow
visualization, even of very large and/or time-dependent
datasets. This can also be thought of as visualization of
derived data. Post et al. [56] cover feature-based flow
visualization in detail.

Figure 1 illustrates a classification of the aforementioned
classes and Figure 2 shows three typical examples. Note
that there are different amounts of computation associated
with each category. In general, direct flow visualization tech-
niques require less computation than the other three cate-
gories, whereas feature-based techniques require the most
computation. This overview focuses on the body of research
related to dense, texture-based techniques.

1.2. Spatial temporal and data dimensionality

Solutions in flow visualization differ with respect to the di-
mensionality of the flow data. Useful techniques for 2D flow
data, like color coding or arrow plots, sometimes lack similar
advantages in 3D. Here, the spatial dimensionality of the flow
data is indicated as either 2D, 2.5D or 3D. In our classifica-
tion the dimensionality of the results from each technique is

marked with a corresponding label indicating dimensionality
(see Figure 4).

By 2.5D we mean flow visualization restricted to surfaces
in 3D. We draw attention to the notion that in many cases
like CFD, the simulation sets all velocities on a surface to
zero. One way to approach this is to extrapolate the vector
field just inside the surface to the boundary. In any case, the
vector component normal to the surface is usually lost in
the visualization. Furthermore, another vector field can be
calculated on a surface, such as skin friction.

In addition to spatial dimension, temporal dimension (di-
mensionality with respect to time) is of great importance.
Firstly, velocity incorporates a notion of time—flows are of-
ten interpreted as differential data with respect to time (cf.
Equation 1), i.e. when integrating the data, instantaneous
paths such as streamlines may be obtained (cf. Equation 3).
We call this steady velocity time. Additionally, the flow data
itself can change over time resulting in time-dependent (or
unsteady) flow. We refer to this as unsteady velocity time.
The visualization must carefully distinguish between both.
Performing integration in the case of unsteady data results in
pathlines or streaklines as opposed to streamlines.

The distinction between steady and unsteady velocity time
is important especially when animation is used in the visu-
alization. Then, even a third notion of time, i.e. animation
time, may affect the visualization. Animation time can be an
arbitrary feature added to the visualization in order to create
motion. Sometimes, geometric objects like streamlines are
animated in order to show flow orientation, e.g. the motion
of color controlled by a color table [31]. Animation is also
often added to texture-based methods with the same goal in
mind. Special attention is required for correct interpretation
of animation time.

In many cases, further data dimensions, i.e. attributes are
supplied with the data, such as temperature, pressure or vor-
ticity in addition to spatial and temporal dimensions. The
dimension of the data values is also associated with the terms
multivariate and multi-field data. Flow visualization may also
take these values into account, e.g. by using color or isosur-
face extraction.

Although we do not have space to focus on experimen-
tal flow visualization, it is interesting to recognize that many
computational solutions more or less mimic the visual appear-
ance of well-accepted techniques in experimental visualiza-
tion (cf. particle traces, dye injection or Schlieren techniques
[77]).

1.3. Data sources

Computational flow visualization, in general, deals with data
that exhibits temporal dynamics like the results from (a)
flow simulation (e.g. the simulation of fluid flow through a
turbine), (b) flow measurements (possibly acquired through
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Figure 2: An example of circular flow at the surface of a ring to help illustrate our flow visualization classification: (left) direct
visualization by the use of arrow glyphs, (middle) texture-based by the use of LIC and (right) visualization based on geometric
objects, here streamlines.

laser-based technology) or (c) analytic models of flows (e.g.
dynamical systems [1], given as set of differential equations).

We focus on visualization of data from computational flow
simulation, i.e. flow data given as a set of samples on a grid.
In many cases, the velocity information in a flow dataset
(encoded as a set of velocity vectors) represents the focus.
Therefore, flow visualization is strongly related to vector field
visualization, which may also deal with vector fields other
than velocity fields.

The relation of computational and experimental visualiza-
tion is worthy of mention. Experimental flow visualization,
as in a wind tunnel, is also used to validate computational
flow simulation. In such a case the computational visualiza-
tion needs to be set up in a way such that results can be easily
compared.

2. Fundamentals

Before outlining some of the most important texture-based
techniques, a short overview of common mathematics as well
as some general concepts with regard to the computation of
results are presented.

Flow simulations are often solutions to systems of PDEs,
such as the Navier Stokes, Euler or Advection-Diffusion
equations [82]. In general, discretized solution methods are
used. Noteworthy are finite volume (FV) and finite element
(FE) analysis, which subdivide the domain into small ele-
ments like hexahedral or tetrahedral cells. A solution is de-
fined on the computation grid in physical space: unstructured
for FE and structured curvilinear for FV solutions. In the dis-
cussion that follows, we assume that vector data are defined
on the grid nodes (cell vertices).

2.1. Reconstruction of flow data

An inherent characteristic of flow data is that derivative in-
formation is given with respect to time, which is laid out with

respect to an n-dimensional spatial domain � ⊆ Rn, e.g. n =
3 for representing 3D fluid flow. Temporal derivatives v of
nD locations p within the flow domain � are n-dimensional
vectors:

v = dp/dt, p ∈ � ⊆ Rn, v ∈ Rn, t ∈ R. (1)

A general formulation of (possibly unsteady) flow data v is

v(p, t) : � × � → Rn, (2)

where p ∈ � ⊆ Rn represents the spatial reference of the flow
data and t ∈ � ⊆ R represents the system time. For steady
flow data, the simpler case of v(p) : � → Rn is given (v not
dependent on t).

In results from nD flow simulation, such as from automo-
tive applications or airplane design, vector data v is usually
not given in analytic form, but requires reconstruction from
the discrete simulation output. The numerical methods used
for the flow simulation, such as finite element methods, out-
put simulation values usually on large-sized grids of many
sample vectors vi, which discretely represent the solution of
the simulation process. Furthermore, it is assumed that the
flow simulation is based on a continuous model of the flow
allowing continuous reconstruction of the flow data v. One
option is to apply a reconstruction filter h : Rn → R to com-
pute v(p) = ∑

i h(p − pi )vi . For practical reasons, filter h
usually has only local extent. Efficient procedures for finding
flow samples vi, which are nearest to the query point p, are
needed to do proper reconstruction.

2.2. Grids

In flow simulation, the vector samples vi usually are laid
out across the flow domain with respect to a certain type of
grid. Grid types range from simple rectilinear or Cartesian
grids to curvilinear grids to complex unstructured grids (cf.
Figure 3). Typically, simulation grids exhibit large variations
in cell sizes. This variety of cell sizes stems from the influence
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Figure 3: Grids involved in flow simulation—(a) Carte-
sian, (b) regular, (c) general rectilinear, (d) structured or
curvilinear, (c) unstructured and (f) unstructured triangular
[37,89].

of grid generation onto the flow simulation process. The qual-
ity of the grid model and its implementation impact the qual-
ity of the simulation results.

Although the principal theory of reconstruction from dis-
crete samples does not exhibit many differences with respect
to grid cell types, the practical handling does. While neigh-
bor searching might be trivial in a rectilinear grid, it usually
is not in a tetrahedral grid. Similar differences hold for the
problems of point location and vector reconstruction. In the
following we shortly describe some fundamental operations
which form the basis for visualization computations on sim-
ulation grids.

Starting with point location, i.e. the problem of finding the
grid cell in which a given nD-point lies, usually two cases
are distinguished. For general point location, special data
structures can be used that subdivide the spatial domain to
speed up the search. For iterative point location, often needed
during integral curve computation, algorithms are used that
efficiently exploit spatial coherence during the search. One
kind of such algorithms starts with an initial guess for the
target cell, checks for point containment and refines accord-
ingly afterward. This process is iterated until the target cell
is found. More details can be found in text books about flow
visualization fundamentals [53,68].

Beside point location, flow reconstruction, or interpola-
tion, within a cell of the dataset is a crucial issue. Often,
once the cell containing the query location is found, only
the sample vectors at the cell’s vertices are considered for
reconstruction. The approach used most often is first-order
reconstruction by performing linear interpolation within the
cell. For example, trilinear flow reconstruction may be used
within a 3D hexahedral cell.

After point location and flow reconstruction, visualization
begins: vectors can be represented with glyphs; virtual parti-
cles can be injected and traced across the flow domain. Nev-
ertheless, the computation of derived data may be necessary
to do more sophisticated flow visualization. Usually, the first
step is to request second-order gradient information for arbi-
trary points in the flow domain, i.e. ∇v|p, which gives infor-
mation about local properties of the flow (at point p) such as
flow convergence and divergence, or flow rotation and shear.
For feature extraction, flow vorticity ω = ∇ × v can be of
high interest. Further details about local flow properties can
be found in previous work [45,54].

2.3. Integration

Recalling that flow data in most cases is derivative informa-
tion with respect to time, the idea of integrating flow data over
time is natural to provide an intuitive notion of evolution in-
duced by the flow. One example is visualization by the use
of particle advection. A respective particle path p(t)—here
through unsteady flow—can be defined by

p(t) = p0 +
∫ t

τ=0
v(p(τ ), τ ) dτ, (3)

where p0 represents the location of the particle path at seed
time 0. Note that Equations 1 and 3 are complimentary to each
other. For other types of integral curves, such as streaklines
see previous work [36,68].

In addition to the theoretical specification of integral
curves, it is important to note that respective integral equa-
tions like Equation 3 usually cannot be resolved for the
curve function analytically, and thereby numerical integra-
tion methods are employed. The most simple approach is to
use a first-order Euler method to compute an approximation
pE(t)—one iteration of the curve integration is specified by

pE (t + 	t) = p(t) + 	t · v(p(t), t), (4)

where 	t usually is a very small step in time and p(t) denotes
the location to start this Euler step from. A more accurate but
also more costly technique is the second-order Runge-Kutta
method [57], which uses the Euler approximation pE as a
look-ahead to compute a better approximation pRK2(t) of the
integral curve:

pRK 2(t + 	t) = p(t) + 	t · (v(p(t), t)

+ v(pE (t + 	t), t))/2. (5)

Higher-order methods like the often used fourth-order Runge-
Kutta integrator utilize more such steps to better approximate
the local behavior of the integral curve. Also, adaptive step
sizes are used to compute smaller steps in regions of high
curvature.
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3. Dense and Texture-Based Flow Visualization

Dense, texture-based techniques in flow visualization gener-
ally provide full spatial coverage of the vector field. In our
classification we group these methods into the following cat-
egories based on their respective primitive: the fundamental
object upon which the algorithm is based. Our classification
subdivides the techniques based on their similarity.

� Spot Noise techniques: These methods (Section 3.1) are
based on a technique introduced by Van Wijk [78]. In this
category, the basic primitive on which the algorithms op-
erate is the so-called spot: an ellipse or other shape that
is warped and distributed in order to reflect the charac-
teristics of a vector field.

� LIC techniques: The methods in this category (Sec-
tion 3.2) are derived from an algorithm introduced by
Cabral and Leedom [8], namely, line integral convolution
(LIC). The basic primitive here is a noise texture: the
properties of texture are convolved, or smeared, using a
kernel filter in the direction of the underlying vector field.

� Texture advection and GPU-based techniques: The prim-
itive in this case (Section 3.3) is a moving texel [50]. In-
dividual texels/texel properties, or groups of texels are
advected in the direction of the vector field. Many of
the techniques in this category utilize more computation
on the GPU (Graphics Processing Unit)—rather than the
CPU—in order to realize performance gains.

� Related techniques: Most of the dense, texture-based
flow visualization research falls into one of the previ-
ous categories. Related research that does not fit cleanly
into one of the previous classifications is discussed in
Section 3.4.

We have included a section of meta-research papers in Sec-
tion 4 after the individual research techniques. These papers
attempt to provide an alternative, higher-level framework that
incorporates many of the techniques discussed here.

3.1. Spot noise

Spot noise, introduced by Van Wijk [78], was one of the first
dense, texture-based techniques for vector field visualization.
Spot noise generates a texture by distributing a set of intensity
functions, or spots, over the domain. Each spot represents a
particle warped over a small step in time and results in a streak
in the direction of the local flow from where the particle is
seeded. A spot noise texture is defined by: [78]

f (x) =
∑

ai h(x − xi , v(xi )) (6)

in which h( ) is called the intensity function, ai is a scaling
factor, and xi is a random position. A spot is a function with
unity intensity value for the spot, e.g. a ellipse and its inte-
rior, and zero everywhere else. The summation denotes the

Figure 4: The spot noise hierarchy of related research. Chil-
dren in the hierarchy build upon the work of their parent.

Figure 5: A snapshot of the unsteady spot noise algorithm
[16]. Image courtesy of De Leeuw and Van Liere.

blending of each instance of the intensity function at random
positions.

The hierarchy shown in Figure 4 illustrates the relationship
amongst spot noise related methods. Follow-up research that
builds upon a previous technique is shown as a child in the
hierarchy. Children that share a common parent are presented
in chronological order of appearance when reading from left
to right. Each node in the hierarchy is labeled and the corre-
sponding description can be matched in the text of this article.
The dimensionality of the flow data used to generate the re-
sults is indicated for convenience. The time dimension label
is given a different shape to distinguish it from the spatial
dimensions. We believe the spot noise hierarchy (Figure 4)
and the LIC hierarchy (Figure 7) will be valuable assets in
helping the reader navigate the related research literature. In
what follows, we visit each node in the hierarchy in depth-
first-search order.

Comparative visualization: Spot noise has been used to sim-
ulate the results from the field of experimental flow visual-
ization [14]. First, the parameters of the spot noise technique
are tuned in order to simulate the smearing of oil on a surface.
A postprocessing step is then added to enhance the visual-
ization result such that it looks closer to the smearing of real
oil from experimental flow visualization.
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Figure 6: Visualization of flow past a box using (left) spot noise and (right) LIC.

Enhanced spot noise: One limitation of the original spot
noise algorithm was the inability to represent high, local ve-
locity curvature especially with high speeds. Enhanced spot
noise [12] by De Leeuw and Van Wijk addresses these chal-
lenges through the use of bent spot primitives.

Parallel and unsteady spot noise: In order to accelerate
the performance of enhanced spot noise towards interactive
frame rates, a parallel implementation of the algorithm was
introduced by De Leeuw [13]. The parallel implementation
was applied to the steering of a smog prediction simulation
and searching a very large data set resulting from a numerical
simulation of turbulence.

The first application of spot noise to unsteady flow is pre-
sented by De Leeuw and Van Liere [16] (Figure 5). The
motion of spots is modeled after particles in unsteady flow.
In order to visualize unsteady flow, the distribution of spots
with respect to the temporal domain is discussed. Unsteady
spot noise also introduces support for zooming views of the
vector field. Spot noise with zooming is also utilized by De
Leeuw and Van Liere when visualizing topological features
of 2D flow [10].

Spot noise related literature: A combination of both texture-
based FlowVis on 2D slices and 3D arrows for 3D flow vi-
sualization is employed by Telea and Van Wijk [74]. Arrows
denote the main characteristics of the 3D flow after clustering
and a 2D slice with spot noise visualization serves as context.
The focus of this work is on vector field clustering.

Löffelmann et al. [44] use anisotropic spot noise created
from a grid-shaped spot to visualize streamlines and timelines
concurrently on stream surfaces. Another interesting appli-

cation of spot noise is its use for the depiction of discrete
maps (noncontinuous flow) [43].

Spot noise has also been applied to the visualization of
turbulent flow [15] and in combination with the visualization
of flow topology [10,11]. We refer the reader to Post et al.
[55,56] for more on the subject of flow topology.

Spot noise versus LIC: A visual comparison of LIC (the
focus of the next section) and spot noise is shown in Figure 6.
Spot noise is capable of reflecting velocity magnitude within
the amount of smearing in the texture, thus freeing up hue
for the visualization of another attribute such as pressure,
temperature, etc. On the other hand, LIC is more suited for
the visualization of critical points which is a key element
in conveying the flow topology. The vector magnitudes are
normalized thus retaining lower spatial frequency texture in
areas of low velocity magnitude. De Leeuw and Van Liere
also compare spot noise to LIC [17]. They report that LIC
is better at showing direction than spot noise, but it does not
encode velocity magnitude. By flow direction, we refer to the
path along which a massless particle follows when injected
into the flow.

3.2. Line integral convolution

Line integral convolution (LIC), first introduced by Cabral
and Leedom [8], has spawned a large collection of research as
indicated in Figure 7. The original LIC method takes as input
a vector field on a 2D, Cartesian grid and a white noise texture
of the same size. Texels are convolved (or correlated) along
the path of streamlines using a filter kernel in order to create a
dense visualization of the flow field. More specifically, given
a streamline σ, LIC consists of calculating the intensity I for
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Figure 7: The LIC hierarchy of related research. Node labels correspond to paragraphs in the text, which then lead to specific
entries in the bibliography.

a pixel located at x0 = σ(s 0) by: [70]

I (x0) =
∫ s0+L/2

s0−L/2
k(s − s0)T (σ(s)) ds (7)

where T stands for an input noise texture, k denotes the filter
kernel, s is an arc length used to parameterize the streamline
curve and L represents the filter kernel length. See Figure 2
(middle) for a result. LIC was one of the first dense, texture-
based algorithms able to accurately reflect velocity fields with
high local curvature.

The research in LIC-based flow visualization described
here extends LIC in several directions: (1) adding flow orien-
tation cues, (2) showing local velocity magnitude, (3) adding
support for nonrectilinear grids, (4) animating the resulting
textures such that the animation shows the upstream and
downstream flow direction, (4) allowing real-time and inter-
active exploration, (5) extending LIC to 3D and (6) extending
LIC to unsteady vector fields. In the following, we visit the
LIC hierarchy of Figure 7 in depth-first-search order.

Curvilinear grids and unsteady LIC: Forssell [20] was early
to extend LIC to surfaces represented by curvilinear grids.
The original LIC method portrays a vector field with uniform
velocity magnitude. Forssell introduces a technique for dis-
playing vector magnitude. She also describes one approach
to animate the resulting LIC textures. Forssell and Cohen ex-
tend this work to visualize unsteady flow [21]. Their approach
modifies the convolution such that the filter kernel operates
on streaklines rather than streamlines. In other words, they
modify the LIC algorithm to trace a path that incorporates
multiple time steps.

Fast LIC: Many algorithms are built on fast LIC introduced
by Stalling and Hege [70]. Fast LIC is approximately one
order of magnitude faster than the original. The speedup is
achieved through two key observations: (1) fast LIC min-
imizes the computation of redundant streamlines present in
the original method and (2) fast LIC exploits similar convolu-
tion integrals along a single streamline and thus re-uses parts
of the convolution computation from neighboring streamline

texels. They also introduce support for filtered images at ar-
bitrary resolution.

Parallel fast LIC: Amongst the first parallel implementa-
tions of fast LIC is that of Zöckler et al. [90]. The proposed
algorithm computes animation sequences on a massively
parallel distributed memory computer. Parallelization is per-
formed in image space rather than in time in order to take
advantage of the strong temporal coherence between frames.
Luckily, as we shall see later, flow visualization research in
this area has evolved far enough such that expensive paral-
lel processing hardware is not always necessary to achieve
interactive visualization [28,29,38,79]. However, for 3D and
unsteady flow there is still need for parallelization. For the
sake of completeness, we also mention the work of Cabral
and Leedom on parallelization of LIC [7] although this is a
parallel processing version of the original LIC algorithm, not
fast LIC.

Fast LIC on surfaces: Battke et al. [2] extend fast LIC to
surfaces represented by arbitrary grids in 3D. The approach
by Forssell and Cohen [21] was limited to surfaces repre-
sented by curvilinear grids. The method works by tessellat-
ing a given surface representation with triangles. The trian-
gles are packed (or tiled) into texture memory and a local
LIC texture is computed for each triangle. The results pre-
sented here are limited to relatively small simple surface rep-
resentations composed of equilateral triangles (1,600–4,000
triangles).

Volume LIC: Interrante and Grosch [25,26] visualize true
3D flow using the fast LIC algorithm as a starting point.
Clearly, there are perceptual challenges related to 3D flow
visualization such as occlusion, depth perception and visual
complexity. Volume LIC introduces the use of halos in order
to enhance depth perception such that the user has a better
chance at perceiving the 3D space covered in the visualization
(Figure 8). Areas of higher velocity magnitude are mapped
to higher texture opacity. It is interesting to note that with
the introduction of halos, we are then able to identify dis-
tinct entities in the 3D field, a property generally not present
in other LIC techniques. Thus, the 3D LIC takes a step in
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Figure 8: A result from the Volume LIC method [25,26].
Image courtesy of Interrante and Grosch.

the direction of being a geometric flow visualization tech-
nique where discrete integral objects such as streamlines
can be distinguished. Without introducing some notion of
sparseness into the visualization, the results would not be
very useful. However, with the introduction of sparseness, a
trade-off is made between flow field coverage and reducing
occlusion.

Enhanced fast LIC and LIC with normal: Two useful exten-
sions to the fast LIC algorithm are introduced by Hege and
Stalling [22] and Scheuermann et al. [64]. Hege and Stalling
[22] experiment with higher order filter kernels in order to
enhance the quality of the resulting LIC textures.

In the case of slices, vector components orthogonal to the
slice are removed when using texture-based and geometric
methods for visualization results. Scheuermann et al. [64]
address this missing orthogonal vector field component by
extending fast LIC to incorporate a normal component into
the visualization.

DLIC: Sundquist [71] presents an extension to fast LIC,
DLIC (Dynamic LIC), in order to visualize time-dependent
electromagnetic fields. According to Sundquist, the motion
of the field is not necessarily along the direction of the field
itself in the case of electromagnetic fields. The algorithm pro-
posed here handles the case of when the vector field and the
direction of the motion of the field lines are independent. Con-
ceptually, there are two vector fields used in this approach:
(1) the electromagnetic field itself and (2) the vector field that
describes the evolution of streamlines as a function of time.

Multivariate LIC: Urness et al. [76] present an extension to
fast LIC that incorporates a new coloring scheme that can be
used to incorporate multiple 2D scalar and vector attributes.
Color weaving assigns a specific attribute represented by a
color to an individual streamline thread in the visualization.
The streamline patterns may interweave and thus so may the
color patterns. Using multiple colors allows visualization of
more than one variate in the result. Their second contribution
is called texture stitching: an extension to the idea presented
by Kiu and Banks [34], namely multifrequency LIC. How-

Figure 9: Dye injection is used to highlight areas of the flow
in combination on the boundary surface of an intake port and
combustion chamber.

ever, in the case of Urness et al. [76] the multifrequency noise
textures are used to highlight regions of interest as opposed
to velocity magnitude as by Kiu and Banks [34].

Dye injection: Shen et al. address the problem of directional
cues in LIC by incorporating animation and introducing dye
advection into the computation [66]. The simulation of dye
may be used to highlight features of the flow. In addition,
they incorporate volume rendering methods that map a LIC
texture onto a 3D surface. Thus the user is able to visualize the
dye throughout the volume. We point out that the modeling
of dye transport is not always physically correct since dye is
dispersed not only by advection, but also by diffusion. Note
that dye advection techniques can be classified differently.
Dye injection can result in discrete geometric objects used
to visualize the flow, and thus, could be classified as a group
of geometric visualization techniques. Dye injection is also
implemented by some of the texture advection and GPU-
based techniques described in Section 3.3.

Again, in Shen et al. we see the notion of a sparser visu-
alization in order to see into the 3D flow. The resulting 3D
visualization approaches that of a geometric technique such
as the use of streamsurfaces. And just as with the other geo-
metric techniques, the notion of where to place or inject the
dye into the flow becomes important. Figure 9 illustrates the
use of dye injection.

Multifrequency LIC: Kiu and Banks propose to use a mul-
tifrequency noise for LIC [34]. The spatial frequency of the
noise is a function of the magnitude of the local velocity.
Long, fat streaks indicate regions of the flow with higher
velocity magnitude.
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One problem with many curvilinear grid LIC algorithms
is that the resulting LIC textures may be distorted after being
mapped onto the geometric surfaces, since a curvilinear grid
usually consists of cells of different sizes. Mao et al. propose
a solution to the problem by using multigranularity noise as
the input image for LIC [46].

OLIC and FROLIC: Wegenkittl et al. address the problem
of direction of flow in still images with their OLIC (Oriented
LIC) approach [84]. By orientation, they mean the upstream
and downstream directions of the flow, not visible in the orig-
inal LIC implementation. Conceptually, the OLIC algorithm
makes use of a sparse texture consisting of many separated
spots that are smeared in the direction of the local vector field
through integration. A fast version of OLIC, called FROLIC
(Fast Rendering of OLIC), is achieved by Wegenkittl and
Gröller [83] via a trade-off of accuracy for time. FROLIC ap-
proximates the simulated droplet trace resulting from OLIC
with a sequence of disks of varying intensity, with disk in-
tensity increasing towards the downstream direction.

Animated FROLIC [4] achieves animation of the result
via a color-table and is based on the observation that only
the colors of the FROLIC disks need to be changed. Each
pixel is assigned a color-table index that points to a specific
entry in the color-table. Color-table animation then changes
the entries of the color-table itself rather than the pixels of
the corresponding image.

LIC on surfaces: Mao et al. [47] extend the original LIC
method by applying it to surfaces represented by arbitrary
grids in 3D. Former LIC methods targeted at surfaces were
restricted to structured grids [20,21,66]. Also, mapping a
computed 2D LIC texture to a curvilinear grid may intro-
duce distortions in the texture. Mao el al. propose solutions
to overcome these limitations. The principle behind their al-
gorithm relies on solid texturing [52]. The convolution of a
3D white noise image, with filter kernels defined along the
local streamlines, is performed only at visible ray-surface
intersections.

This idea has an advantage over that of Battke et al. [2]
in that it avoids what can be a timely and complex assembly
of triangles into texture space. However, ray-tracing is also
costly. The method here is view-point dependent and required
relatively lengthy processing time for an unstructured mesh
composed of 10,000 triangles.

A significant body of research is dedicated to the extension
of LIC onto boundary surfaces. Teitzel et al. [73] present
an approach that works on both 2D unstructured grids and
directly on triangulated grids in 3D space. This topic itself is
the subject of a survey by Stalling [69].

UFLIC: Shen and Kao [67] extend the original LIC algorithm
to handle unsteady flows. Their extension, called UFLIC (Un-
steady Flow LIC), handles the case of unsteady flow fields
by introducing a new convolution filter that better models

Figure 10: An LIC visualization showing a simulation of
flow around a wheel [59]. The appropriate choice of transfer
function results in a sparser noise texture. Image courtesy of
Rezk-Salama et al. [59].

the nature of unsteady flow. The convolution is done along
pathlines (as opposed to streamlines). They improve upon
the shortcomings of the previous unsteady LIC attempt pre-
sented by Forssell and Cohen [21]. According to Shen and
Kao, Forssell and Cohen’s approach has multiple limitations
including: (1) lack of clarity with respect to spatial coherence,
(2) deriving current flow values from future flow values, (3)
unclear exposition with respect to temporal coherence and
(4) lack of accurate time stepping. All of these problems are
addressed by UFLIC. Shen and Kao also apply UFLIC to
the visualization of time-dependent flow to parameterized
surfaces. UFLIC is also extended using a parallel implemen-
tation by Shen and Kao [65].

AUFLIC: AUFLIC (Accelerated UFLIC) is an extension to
UFLIC that enhances performance times [41]. The princi-
ple behind AUFLIC is to save, reuse, and update pathlines
in a vector field seeding strategy. AUFLIC requires approxi-
mately one half of the time required by UFLIC and generates
similar results.

3D LIC: Rezk-Salama et al. [59] propose rendering methods
to effectively display the results of 3D LIC computations.
They utilize texture-based volume rendering in an effort to
provide exploration of 3D LIC textures at interactive frame
rates. Like Interrante [26], they address the perceptual prob-
lems posed by dense, 3D visualization. They approach these
challenges through the use of transfer functions and clipping
planes, as in Figure 10. Transfer functions allow the user to
see through portions of the LIC textures deemed uninterest-
ing by the user. In addition to conventional clipping planes,
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Figure 11: A comparison of 3 LIC techniques: (left) UFLIC [65], (middle) ELIC [51], and (right) PLIC [81]. Image courtesy
of Verma et al. [81].

Rezk-Salama et al. also use clipping with arbitrary closed-
surface geometries.

The use of transfer functions and geometric clipping ob-
jects are interesting choices for dealing with the perceptual
problems associated with 3D. In some sense, these can be
compared with the seeding problem of the geometric class of
visualization techniques. Seeding strategies address where to
start streamlines and other integration-based geometric ob-
jects. Selective seeding of geometric objects in 3D is of-
ten considered a key to successful visualization. However,
knowledge of the proper seed locations is a requisite for
this approach. And just as proper seed placement is a requi-
site when using geometric objects, knowledge of the transfer
function(s) and closed-object clipping geometries is required
in the case of 3D LIC.

Geometric LIC: We make a distinction between geometric
flow visualization and dense, texture-based flow visualiza-
tion. However, these two topics are closely coupled. Concep-
tually, the path from using geometric objects to texture-based
visualization is obtained via a dense seeding strategy. That
is, densely seeded geometric objects result in an image sim-
ilar to that obtained by dense, texture-based techniques [30].
Likewise, the path from dense, texture-based visualization to
visualization using geometric objects is obtained using some-
thing such as a sparse texture for texture advection [84].

Here we have grouped together techniques that synthesize
LIC results by mapping a precomputed LIC texture onto ge-
ometric primitives such as streamlines. By using geometric
primitives, researchers hope to speed up performance times
of the LIC results. The drawback of these methods is that they
require careful seeding strategies to gain the complete cov-
erage of the flow field offered by traditional LIC techniques.

Motion map: Jobard and Lefer use a motion map [31] in
order to animate 2D steady flows. First, the domain is covered

completely with streamlines. Next, a color is mapped to the
streamlines and a color-table animation technique is used to
animate the flow. It offers the advantage of saving memory
and computation time since only one image of the flow has
to be computed and stored in the motion map data structure.
This technique is not applicable to unsteady flow however. It
relies on a one-time cost of computing a set of streamlines.

PLIC: Verma et al. present a method for visual compari-
son of streamlines and LIC called PLIC [81] (Pseudo-LIC).
They attempt to identify the relevant parameters to generate
LIC-like images from a dense set of streamlines and for gen-
erating streamline-like images through the use of different
filters used for convolution. By experimenting with different
input textures for LIC, both streamline-like images and LIC-
like results can be obtained. ELIC (enhanced LIC), placed
here because of its visual comparison with PLIC, builds on
the original LIC algorithm in four ways: (1) by incorporating
an algorithm to improve the delineation of streamlines, (2)
increasing the image contrast, (3) removing texture distortion
introduced by applying LIC to curvilinear grids and (4) using
color to highlight flow separation and reattachment bound-
aries. A visual comparison between UFLIC [65], ELIC [51],
and PLIC is shown in Figure 11.

Hierarchical LIC: Bordoloi and Shen [5] introduce a hier-
archical approach to LIC based on a quadtree data structure
used to support level of detail (LOD). The idea is to replace
portions of the vector field of lower complexity with rectan-
gular LIC texture-mapped patches. The LIC texture is taken
from a previously calculated LIC image of a straight vector
field. Here, complexity is a direct function of the amount of
curl in the local vector field.

Decoupled LIC: Li et al. [40] present a technique for the
visualization of 3D flow based on texture mapped primitives,
namely streamlines. They decouple the visualization into a
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Figure 12: The classification of texture advection and GPU-based techniques. The columns indicate the primitive used during
advection while the rows indicate the advection scheme.

preprocessing type stage that computes the streamlines and
a stage which maps various textures to the streamlines com-
puted in the first stage. The result is volume rendered at inter-
active frame rates. To address the perceptual challenges posed
by 3D visualization, depth cues, lighting effects, silhouettes,
shading and interactive volume culling are described.

3.3. Texture advection and GPU-based techniques

In this section we describe research based on moving texels
or moving groups of texels, i.e. texture-mapped polygons
whose motion is directed by the vector field. Figure 12 shows
an overview of the different techniques and classifies them
according to two properties: (1) the advection scheme used
and (2) the primitive used during advection. Some of the
literature focuses mainly on the integration scheme used to
advect textures or texels. By the term texel means texture
element. Some methods focus on the mapping to advected
primitives and some focus on both. Figure 12 also shows the
dimensionality of the flow data. In our discussion, we visit
the methods in clockwise order starting at 12 o’clock. Within
each sub-block the methods are listed in chronological order.
This is because the mapping of texel properties between two
time steps in the visualization is not 1-to-1 in this case. For a
more detailed discussion see Jobard et al. [28,29].

One characteristic common to many of the texture advec-
tion techniques in this section [28,29,38,48] is the use of
backward coordinate integration (or backward advection).
None of the methods described here use forward advection
(i.e. forward integration) and individual texels as a primi-
tive. This is because the combination of forward integration
and texel primitives leaves holes in the visual domain after
the forward integration computation [29]. Given a position,
x0(i , j) = (i , j) of each particle in a 2D flow, backward in-
tegration over a time interval h determines its position at a
previous time step [28]:

x−h(i, j) = x0(i, j) +
∫ h

τ=0
v−τ (x−τ (i, j)) dτ (8)

where h is the integration step, x−τ (i , j) represents interme-
diary positions along the pathline passing through x0(i, j),

Figure 13: A screen shot from the image based flow visual-
ization algorithm. Image courtesy of Van Wijk [79].

and vτ is the vector field at time τ . We note that the meth-
ods in this category are generally implemented in an iterative
fashion. That is for each animated frame an integration is
performed over a small time-step h, followed by an update
of visual properties. This is opposed to geometric methods in
which a longer particle path may be computed over several
time steps before the results are displayed.

IBFV: Image based flow visualization (IBFV) by Van Wijk
[79] is one of the fastest algorithms for dense, 2D, unsteady
vector field representations (Figure 13). It is based on the ad-
vection and decay of textures in image space. Each frame of
the visualization is defined as a blend between the previous
image, warped according to the flow direction, and a num-
ber of background images composed of filtered white noise
textures. One reason it is faster than many texture-based flow
visualization methods is because it reduces the number of
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Figure 14: Snapshots from the visualization of a time-dependent surface mesh composed of 79 K polygons with dynamic geometry
and topology [38].

integration computations that need to be performed via ad-
vecting small quadrilaterals rather than individual pixels.

Moving textures: Max and Becker were early to introduce the
idea of moving textures in order to visualize vector fields [48].
One of the primary goals of this work was to use textures in
motion to produce near-real-time animation of flow. Texture-
mapped triangles are advected, or distorted, in the direction
of the flow. Also, applying this technique to 3D flows with
no modification provides results that are difficult to perceive,
at least in the case of a still image.

ISA and IBFVS: IBFV has been extended to the visualization
of flow on surfaces [38,80]. Van Wijk presents an extension
called IBFVS, IBFV for Surfaces. Laramee et al. [38] present
a similar dense, texture-based visualization technique on sur-
faces for unsteady flow called ISA (Image Space Advection).
Both methods produce animated textures on arbitrary 3D
triangle meshes in the same manner as the original IBFV
method. Textures are generated, advected and blended in im-
age space. The methods generate dense representations of
time-dependent vector fields with high spatio-temporal cor-
relation. While the 3D vector fields are associated with arbi-
trary triangular surface meshes, the generation and advection
of texture properties is confined to image space. Both spot
noise and LIC-like results can be attained. In both techniques,
[38,40] fast frame rates are achieved in part by exploiting the
GPU.

Van Wijk’s method is applied to potential field visualiza-
tion and surface visualization. Laramee et al.’s algorithm is
applied to unsteady flow on boundary surfaces of large, com-
plex meshes from computational fluid dynamics, dynamic
meshes with time-dependent geometry and topology. It has
also been applied to medical simulation data as well as iso-
surfaces [39]. Figure 14 shows the results applied to a time-
dependent geometry and topology.

3D IBFV: IBFV has also been applied to the visualization
of 3D flow [75]. The problem of how to see inside the flow

volume is addressed by varying both the noise sparsity, rem-
iniscent of Interrante and Grosch [26], and through varying
the opacity of the rendered volume similar to Rezk-Salama
et al. [59]. In order to achieve sparseness, Telea and Van Wijk
inject empty holes of noise into the 3D field, in addition to
the noise described by the original IBFV. One important com-
ponent of their method is to define a threshold value which
eliminates all close-to-transparent texel values. One disad-
vantage of the method is that the range of velocity values it
can display is limited: A texel property cannot be advected
by more than one slice along the z axis of the volume in one
animation frame. This problem is addressed by Weiskopf and
Ertl [87].

3D Texture Advection: Kao et al. discuss the use of 3D and
4D texture advection for the visualization of 3D fluid flows
[32]. The results show sparse texture noise in order to vi-
sualize inside the 3D vector field. Formidable challenges are
introduced by the memory requirements involved in using 3D
and 4D textures. The proposed method does not work well
for the case of flows containing critical points for incoming
flows from the grid boundary.

GPU-based LIC: Heidrich et al. [23] exploit pixel tex-
tures to accelerate LIC computation. Pixel textures are an
OpenGL extension by SGI that provides the functionality of
dependent textures in combination with multipass rendering.
Heidrich et al.’s implementation supports 2D, steady vector
fields only, and achieves sub-second computation times for
LIC image generation. While this method could be catego-
rized as a GPU-accelerated LIC technique, we position it here
due to its comparability with the following texture advection
techniques [27,88] that use the same proposed OpenGL ex-
tension, handle unsteady flow and thus can be considered an
extension of this technique.

LEA: Jobard et al. [27] introduce a GPU-assisted texture
advection technique for the dense visualization of 2D, un-
steady flow. While the method of Max and Becker [49]
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Figure 15: Three images taken from an animation of an unsteady vector field created with the Lagrangian-Eulerian advection
algorithm. [28,29] Image courtesy of Jobard et al.

advects textures based on coarse triangular meshes, Jobard
et al. advect textures on a per-pixel basis by means of pixel
textures, which are used in a similar way as by Heidrich et al.
[23]. The gray-scale texture from the previous time step is
dragged along the flow field by modifying the texture coordi-
nates for the dependent texture lookup according to the flow
data. Nearest-neighbor sampling is combined with an update
of fractional texture coordinates to represent subtexel motion
and, at the same time, maintain a high contrast. An itera-
tive injection of additional noise is used to compensate for a
possible loss of contrast over time. Jobard et al. also discuss
the treatment of inflow at boundaries, image enhancement by
color masking and the use of dye advection. Because of the
limited functionality of the graphics hardware that supports
pixel textures, the implementation requires many rendering
passes and advects a texture of size 2562 at approximately
two frames per second. Moreover, the maximum resolution
of textures is restricted to 2562.

Jobard et al. extend this method to the more flexible
Lagrangian-Eulerian Advection (LEA) scheme [28] for the
visualization of unsteady, 2D flow. Here, they rely on a CPU
implementation that leads to better advection quality, higher
speed, and no limitations of the maximum flow size. Particle
paths are integrated as a function of time, referred to as the
Lagrangian step, while the color distribution of the image
pixels is stored in a texture and updated in place (Eulerian
step). The temporal coherence of the advected noise textures
is transformed into spatial coherence by blending textures
from subsequent time steps, i.e. each still frame depicts the
instantaneous structure of the flow, whereas an animated se-
quence of frames still reveals the motion of the advected tex-
ture. Jobard et al. demonstrate that the combination of noise
and dye advection is useful for an effective visualization and
exploration of unsteady flow. Some results from the technique
are shown in Figure 15. This work is extended by Jobard et al.
[29] in order to improve the quality of dye advection.

Weiskopf et al. [86] present a GPU-accelerated version
of the LEA algorithm using per-fragment operations. The

GPU-based texture advection by Weiskopf et al. [88] sup-
ports bilinear dependent texture lookups without taking into
account the update of fractional coordinates. Therefore, this
approach is mainly suitable for dye advection at high frame
rates. Weiskopf et al. also demonstrate how GPU-accelerated
visualization of unsteady, 3D flows can be implemented with
pixel textures.

UFAC: Weiskopf et al. [85] introduce a generic texture-based
framework for visualizing 2D, time-dependent vector fields.
They propose unsteady flow advection convolution (UFAC)
as an application of the framework for visualizing unsteady
fluid flow. Also, their approach can reproduce other tech-
niques such as LEA [29], IBFV [79], UFLIC [65], and DLIC
[71]. Weiskopf et al. describe a GPU-accelerated implemen-
tation that, among other things, allows the user to trade-off
quality for speed.

3.4. Related dense, texture-based methods

The literature described here is not, in general, as strongly
interrelated as the literature in the spot noise, LIC, texture ad-
vection and GPU-based categories. For this reason we sought
an alternative schema in order to relate the different tech-
niques. Figure 16 shows the related methods and classifies
them based on the density of their results. In this case each
technique is given a subjective rating on a sparse-to-dense
scale. Sparse results look more like the results from flow vi-
sualization using geometric objects whereas dense techniques
produce results resembling spot noise or LIC. These methods
do not fit cleanly into one of the previous categories; nonethe-
less, they are important to the dedicated topic and are briefly
outlined here. Reading from top to bottom in Figure 16, we
visit the techniques in chronological order.

Texture Splats: As an extension of the technique of splatting
from volume rendering, Crawfis and Max [9] introduce the
notion of texture splats for flow visualization. Being a vol-
ume rendering technique, it is targeted at the depiction of 3D
vector fields. As with Rezk-Salama et al. [59], it is a selective
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Figure 16: Related dense, texture-based flow visualization
methods. Each method is compared with respect to the density
of the resulting visualization.

transfer function that ultimately decides which subsets of the
3D data are shown and which are not. The transfer functions
are used to emphasize or suppress spatial regions as opposed
to ranges of data values.

Texture Transport: The texture transport method of Becker
and Rumpf [3] introduces a mathematical framework based
on the solution of a time-dependent transport equation. La-
grangian coordinates are computed from the transport equa-
tion and visualized using a texture mapping. The results in
this case resemble those from the geometric class of solutions.
Individual lines in the texture can be distinguished. The major
drawback of this approach is the computation time required.

Furlike Texture: Khouas et al. synthesize LIC-like images in
2D with furlike textures [33]. Their technique is able to locally
control attributes of the output texture such as orientation,
length, density and color via a model based on filaments
resembling fur.

Diffusion and Unsteady Diffusion: Preußer and Rumpf [58]
as well as Diewald et al. [18] borrow a well known technique
from image analysis for visualization of fluid flow. The non-
linear, anisotropic diffusion equations from image analysis
are adopted and applied to vector fields. A noisy texture cov-
ering the domain is strongly smoothed along integral lines
while still retaining and enhancing edges in directions or-
thogonal to the flow, i.e. streamline-aligned diffusion. Suc-
cessively coarse patterns representing the vector field can
also be generated. It is applied to 2D, 2.5D, and 3D vector
fields [18,58]. In the case of 3D, the resulting enhanced edges
are discretized and resemble streamlines or streamribbons. In
this case, occlusion becomes an important issue because the
3D results appear somewhat cluttered.

Bürkle et al. extend this technique to the case of time-
dependent flow [6]. Instead of streamline-like patterns,

streakline patterns are generated. A blending strategy, com-
parable to noise or dye injection, is introduced in order to pro-
vide the new time-dependent texture necessary for the case of
long-term flow evolution. They propose a solution based on
the blending of different results from the transport diffusion
evolution started at successively incremented times. Again,
the disadvantage of this approach is the required computa-
tional time. Also, no attempt is made to apply this method to
time-dependent 3D flow, a formidable challenge.

Contrast Analysis: Sanna et al. [63] focus on the issue of
encoding another scalar value into the texture used to visu-
alize the flow, in addition to flow direction, orientation and
local magnitude of the field. It is an extension of a previous
technique called TOSL—Thick Oriented Streamline Algo-
rithm [62]. Areas of higher scalar values are characterized
by higher contrast levels in the texture and streamline tones
are generated in order to highlight these areas. The goal is
to allow an additional variable into the visualization beyond
previous techniques.

MRF: Taponecco and Alexa apply Markov Random Field
(MRF) texture synthesis methods to vector fields [72]. The
results resemble a mixture of traditional texture-based meth-
ods and geometric methods. In the resulting texture, distinct
streamline patterns can be seen. One drawback to this method
is performance. MRF texture synthesis methods may require
hours of computation time. How it may be applied to unsteady
flow is an open question.

4. Comparisons and Discussion

In this section we briefly introduce literature that compares
and discusses dense, texture-based techniques at a meta-level.
Sanna et al. also provide a summary of this area of research,
with a different classification [61]. The methods are classified
according to the dimensionality outlined here in Section 1.2.

Flow Textures: Erlebacher et al. [19] present a class of flow
visualization algorithms called flow textures within a com-
mon conceptual framework. Flow textures are textures that
encode dense, 2D, time-dependent representations of flow.
The framework allows important ingredients of flow texture
algorithms to be understood with respect to spatial and tem-
poral correlation. A subset of the more recent visualization
techniques is described.

User Studies: Laidlaw et al. [35] present one of the few find-
ings related to human-computer interaction (HCI). They at-
tempt to assess some different visualization techniques from
the viewpoint of the user in terms of searching for and classi-
fying critical points in the flow and predicting where a particle
may end after advection. Error was highest for the LIC tech-
nique in conjunction with classifying critical points and the
prediction of particle advection. This is probably due to the
fact that LIC images do not distinguish between upstream
and downstream flow. User error was higher than expected
for all methods. Hedgehog techniques and LIC were also
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associated with high error for locating critical points. The
authors postulate that this was because in many cases critical
points near the borders of the vector field were difficult to
identify.

5. Conclusions and Future Prospects

Texture-based flow visualization algorithms are effective,
versatile, and applicable to a wide spectrum of applications. A
large number of techniques have been developed and refined.
In general, which techniques are best depends strongly on
the goal of the visualization, such as for exploration, detailed
analysis, or presentation and on the kind of data involved.
Therefore, we believe that a large variety of techniques should
be available in order to allow researchers to choose the most
suitable one.

The problem of dense, 2D, unsteady flow visualization is
close to being solved [79]. And with recent follow-up work
[38,80], unsteady flow visualization on surfaces is not far
behind. However, the generalization to 3D flow fields is still
unsolved, especially in the case of unsteady flow. Hardware,
arguably, will not be the primary bottleneck to solving this
challenge, but perceptual issues will. Perceiving three spatial
and three data dimensions directly is a difficult job for the
human eye and brain. So far, techniques based on geometric
objects and particle animation generalize better to 3D fields.

The scale of numerical flow simulations, and thus the
size of the resulting datasets, continues to grow rapidly—
generally faster than the size of computer memory. For these
reasons more simplification strategies must be conceived,
such as spatial selection (slicing, regions of interest), geom-
etry simplification and feature extraction.

Slicing in a 3D field reduces the problem to 2D, allowing
use of good 2D techniques, but care must be taken with in-
terpretation, as the loss of the third dimension may lead to
physically irrelevant results and wrong interpretation. Taking
a single 3D time slice from a 3D time-dependent dataset has
similar dangers. Other spatial selections such as 3D region-
of-interest selection are less risky, but may lead to loss of con-
text. Reduction of data dimension, such as reducing vector
quantities to scalars will give more freedom of choice in vi-
sualization techniques (such as using volume rendering), but
will not lead to much data reduction. Geometry simplification
techniques such as polygon mesh decimation, levels-of-detail
or multiresolution techniques will be effective in managing
very large datasets and interactive exploration, enabling users
to trade accuracy with response time. Some areas that need
additional work are:

� dense visualization techniques in 3D,
� multifield visualization with scalar, vector and tensor

data,
� handling and exploring huge time-dependent flow

datasets,

� user studies for evaluation, validation and field testing of
flow visualization techniques,

� visualization of inaccuracy and uncertainty [42,60],
� more robust feature extraction techniques, especially in

the case of 3D flow.

We also note that much of the research literature presented
here demonstrates methods operating on structured, uniform
resolution grids. However, the grids used in the private, com-
mercial industry sector are often adaptive resolution and un-
structured, especially in the case of CFD [37,38]. Thus, fur-
ther research is necessary in order to integrate many of the
these methods into practical industrial applications.
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84. R. Wegenkittl, E. Gröller and W. Purgathofer. Animat-
ing Flow Fields: Rendering of Oriented Line Integral
Convolution. In Computer Animation ’97 Proceedings,
IEEE Computer Society, pp. 15–21, June 1997.

85. D. Weiskopf, G. Erlebacher and T. Ertl. A Texture-
Based Framework for Spacetime-Coherent Visualization
of Time-Dependent Vector Fields. In Proceedings IEEE
Visualization ’03, IEEE Computer Society, pp. 107–114,
2003.

86. D. Weiskopf, G. Erlebacher, M. Hopf and T.
Ertl. Hardware-Accelerated Lagrangian-Eulerian Tex-
ture Advection for 2D Flow Visualizations. In Proceed-
ings of the Vision Modeling and Visualization Confer-
ence 2002 (VMV-01), pp. 439–446, Nov. 21–23, 2002.

87. D. Weiskopf and T. Ertl. GPU-Based 3D Texture Ad-
vection for the Visualization of Unsteady Flow Fields.
In WSCG 2004 Conference Proceedings, Short Papers,
pp. 259–266, February 2004.

88. D. Weiskopf, M. Hopf and T. Ertl. Hardware-
Accelerated Visualization of Time-Varying 2D and 3D
Vector Fields by Texture Advection via Programmable
Per-Pixel Operations. In Proceedings of the Vision Mod-
eling and Visualization Conference 2001 (VMV 01),
pp. 439–446, Nov. 21–23, 2001.

89. R. Yagel, D. M. Reed, A. Law, P. Shih and N. Shareef.
Hardware Assisted Volume Rendering of Unstructured
Grids by Incremental Slicing. In Proceedings 1996 Sym-
posium on Volume Visualization, pp. 55–62, Sept. 1996.
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