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Mobile phones are virtually omnipresent. 

In 2008, 3.3 billion people—half the 

world population—use mobile phones, 

according to the International Telecommunications 

Union. By 2010, Nokia expects that there will be 

as many mobile phone users as toothbrush users (4 

billion). Over the past 10 years, the phone has ex-

panded from being just a phone 

to being a full multimedia unit, 

on which you can play games (see 

Figure 1), shoot photos, listen to 

music, watch television or video, 

send messages, and do video-

conferencing.

One factor leading to the wide-

spread adoption of mobile phones 

has been the dramatic improve-

ment in display technologies. Dis-

plays used to be monochromatic 

and small (48 × 84 pixels). Today, 

we have 24-bit (16.8 million col-

ors) displays with VGA resolution 

(640 × 480 pixels). Consequently, 

mobile phones have the potential 

to deliver graphics to the masses.

The mobile context differs vastly from the PC 

context. A mobile phone

is always with you,

is always connected to the network and can �nd 

its location and provide access to location-based 

services and navigation, and

supports applications that require a graphics- 

intensive user interface.

■

■

■

In addition, most mobile phones include a cam-

era, which allows many possibilities for better user 

interaction with the device, as well as augmented 

reality (AR) applications that combine digital im-

ages (rendered graphics models) with real-world 

images (such as those on a camera view�nder).

Standard mobile graphics APIs have laid the foun-

dation for much mobile graphics research and appli-

cations. For 3D graphics, there’s OpenGL ES, which 

is a low-level API based on the popular OpenGL, and 

M3G (JSR 184), which is designed on top of OpenGL 

ES and supports scene graphs, animation, and �le 

formats for mobile Java. Kari Pulli and his colleagues 

cover various uses of OpenGL ES and M3G.1 For 2D 

vector graphics, there’s OpenVG, a low-level API 

similar to OpenGL, and Scalable Vector Graphics 

API for mobile Java (JSR 226). A description of these 

and other related APIs appears elsewhere.2

By mobile, we mostly mean handheld devices. So, 

although aviation or car displays are certainly mo-

bile, they fall outside this article’s scope. Here, we 

aim to survey the state of mobile graphics research. 

We don’t address issues related to particular appli-

cations and development tools. We also don’t dis-

cuss mobile gaming in depth; Mark Callow and his 

colleagues provide a good overview of mobile-game 

development and distribution.3 Jörg Baus and his 

colleagues survey 2D and 3D maps for navigation, 

which is also mostly beyond this article’s scope.4 

Furthermore, we concentrate on interactive graph-

ics because noninteractive graphics can be simply 

rendered on other devices and rendered as simple 

bitmaps. For this reason, we also address user inter-

faces and handheld interaction techniques.

High-quality computer 

graphics let mobile-device 

users access more compelling 

content. Still, the devices’ 

limitations and requirements 

differ substantially from 

those of a PC. This survey 

of mobile graphics research 

describes current solutions in 

terms of specialized hardware 

(including 3D displays), 

rendering and transmission, 

visualization, and user 

interfaces.
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Handhelds’ limitations
Compared to the desktop, handheld devices are 

limited by

power supply,

computational power,

physical display size, and

input modalities.

Mobile devices’ fundamental problem is that 

they’re battery operated. Whereas many other 

aspects of computing follow Moore’s law, battery 

technology develops much more slowly. The dis-

play is one of the largest consumers of power, and 

graphics applications keep the display, often with a 

backlight, constantly on. Innovation is required at 

the hardware level for lower power consumption, 

while diligence is required at the software level for 

power-aware mobile applications. Finally, the de-

vices are small; even if more power were available, 

that power would turn into heat, which can dam-

age circuits unless the design process considered 

the thermal aspects early on.

Mobile device CPUs also have limited computing 

power. A related limitation is internal bandwidth 

for memory accesses, which increases more slowly 

than raw computing power and consumes much 

power. Another limitation is cost: mass-market 

consumer devices should be cheap, which limits 

the silicon budget. For example, only the most re-

cent high-end phones support �oating-point units. 

Having dedicated graphics hardware helps the de-

vices get by with lower-clock-rate CPUs.

Although the pixel pitch ratio is increasing at a 

stable rate, the requirements to keep the devices 

handheld and pocketable means that the devices’ 

physical size has an upper bound. Whereas the 

largest displays might have a diameter of up to 5 

inches, many devices have much smaller displays.

Furthermore, mobile devices currently support 

key-based interfaces through joypad and direction 

keys and a numerical keyboard. On larger devices, 

additional keys provide a better user experience 

for complex tasks because keys can be dedicated to 

speci�c tasks. Smart phones can’t easily use such 

keys owing to limited physical space. Interaction 

with touch-sensitive screens has emerged as an al-

ternative, but most solutions require two-handed 

interaction, which causes additional attentional 

overhead in users.

Finally, there’s an order of magnitude difference 

between high- and low-end devices in graphics pro-

cessing and computational capacity. A particular 

technique might run ef�ciently in one device but 

be inef�cient on another. This requires solutions 

■

■

■

■

that can scale down to low-end mobile phones and 

up to larger devices, even PCs.

Industry and academia researchers have devel-

oped several solutions to these problems. The fol-

lowing sections describe the key approaches. 

Graphics hardware
A given task, such as 3D rendering, can always 

be done more ef�ciently on special-purpose hard-

ware than on a general-purpose CPU. It’s possible 

to write a rendering engine fully in software ex-

ecuting on a CPU, providing maximum �exibility. 

In fact, most mobile 3D engines are still software 

implementations. However, dedicated graphics 

hardware can provide both faster execution and 

lower power consumption. Dedicated graphics 

processing units (GPUs) are already available on 

high-end smart phones. Some GPUs are available 

on a separate chip, but often the GPU and CPU 

are on the same chip, which decreases manufac-

turing costs.

Although modern graphics engines, such as 

OpenGL ES 2.0, provide programmable compo-

nents—so-called shaders—a lot of functionality 

still isn’t programmable but consists of blocks of 

�xed functionality that can be parameterized and 

turned on or off. Fixing the functionality allows 

more ef�cient implementations and latency hid-

ing. Triangle setup, texture fetch and �ltering, and 

blending operations can be more ef�cient when 

implemented in dedicated logic.

The key to good graphics performance and low 

power consumption is to reduce the internal traf-

�c between the processing elements and the mem-

ory. So, mobile graphics solutions focus on how to 

compress and even completely avoid that traf�c. 

Reducing the traf�c is even more important be-

cause computation power increases more quickly 

than memory bandwidth. For example, John Ow-

ens reports that the yearly processing capability 

growth is about 71 percent, while dynamic RAM 

bandwidth grows only by 25 percent.5 This differ-

ence suggests that one should take great care when 

designing a GPU architecture.

Figure 1. 

High-quality 

graphics games 

have reached 

mobile devices. 
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Compression
Compression not only saves storage space, but it 

also reduces the amount of data sent over a net-

work or a memory bus. For GPUs, compression 

and decompression (codec) have two major tar-

gets: textures and buffers.

Textures are read-only images glued onto geomet-

rical primitives such as triangles. A texture codec 

algorithm’s core requirements include fast random 

access to the texture data, fast decompression, 

and inexpensive hardware implementation. The 

random-access requirement usually implies that a 

block of pixels is compressed to a �xed size. For ex-

ample, a group of 4 × 4 pixels can be compressed 

from 3 × 8 = 24 bits per pixel down to 4 bits per 

pixel, requiring only 64 bits to represent the whole 

group. As a consequence of this �xed-rate compres-

sion, most texture compression algorithms are lossy 

(for example, JPEG) and usually don’t reproduce the 

original image exactly. Because textures are read-

only data and usually compressed of�ine, the time 

spent compressing the image isn’t as important as 

the decompression time, which must be fast. Such 

algorithms are sometimes called asymmetric.

As a result of these requirements, developers have 

adopted Ericsson Texture Compression (ETC) as a 

new codec for OpenGL ES.6 ETC stores one base 

color for each 4 × 4 block of texels and modi�es 

the luminance using only a 2-bit lookup index per 

pixel. This technique keeps the hardware decom-

pressor small. Currently, no desktop graphics APIs 

use this algorithm.

Buffers are more symmetric than textures in 

terms of compression and decompression because 

both processes must occur in hardware in real time. 

For example, the color buffer can be compressed, 

so when a triangle is rendered to a block of pix-

els (say, 4 × 4) in the color buffer, the hardware 

attempts to compress this block. If this succeeds, 

the data is marked as compressed and sent back to 

the main memory in compressed form over the bus 

and stored in that form. Most buffer compression 

algorithms are exact to avoid error accumulation. 

However, if the algorithm is lossy, the color data 

can be lossily compressed and later recompressed, 

and so on, until the accumulated error exceeds the 

threshold for what’s visible. This is called tandem 

compression, meaning that if compression fails, you 

must have a fallback that guarantees an exact color 

buffer—namely, sending the data uncompressed.7

Depth and stencil buffers might also be com-

pressed. The depth buffer deserves special men-

tion because its contents are proportional to 1/z, 

and when viewed in perspective, the depth values 

over a triangle remain linear. Depth-buffer com-

pression algorithms heavily exploit this property, 

which accounts for higher compression rates. A 

survey of existing algorithms appears elsewhere.8

Interestingly, all buffer codec algorithms are 

transparent to the user. All action takes place in the 

GPU and is never exposed to the user or program-

mer, so there’s no need for standardization. There’s 

no major difference for buffer codec on mobile 

devices versus desktops, but mobile graphics has 

caused renewed interest in such techniques.

Tiling architectures
Tiling architectures aim to reduce the memory traf-

�c related to frame-buffer accesses using a com-

pletely different approach. Tiling the frame buffer 

so that a small tile (such as a rectangular block of 

pixels) is stored on the graphics chip provides many 

optimization and culling possibilities. Commercial-

ly, Imagination Technologies and ARM offer mobile 

3D accelerators using tiling architectures. Their core 

insight is that a large chunk of the memory accesses 

are to buffers such as color, depth, and stencil.

Ideally, we’d like the memory for the entire frame 

buffer on-chip, which would make such memory 

accesses extremely inexpensive. However, this isn’t 

practical for the whole frame buffer, but storing a 

small tile of, say, 16 × 16 pixels of the frame buffer 

on-chip is feasible. When all rendering has been 

�nished to a particular tile, its contents can be 

written to the external frame buffer in an ef�cient 

block transfer. Figure 2 illustrates this concept.

However, tiling has the overhead that all the tri-

angles must be buffered and sorted into correct tiles 

after they’re transformed to screen space. A tiling 
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Figure 2. A tiling architecture. The primitives are being transformed 

and stored in external memory. There they are sorted into tile lists, 

where each list contains the triangles overlapping that tile. This makes it 

possible to store the frame buffer for a tile (for example, 16 × 16 pixels) 

in on-chip memory, which makes accesses to the tile’s frame buffer 

extremely inexpensive.
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unit creates, for each tile, a list of triangles overlap-

ping with that tile. Each tile can then be processed 

in turn or in parallel with others. This architecture’s 

main advantage is that frame-buffer accesses become 

inexpensive. This must be balanced with the cost of 

buffering and sorting the triangles.9 It’s still un-

known whether a traditional architecture or tiling 

is best. The optimal approach also depends on the 

content being rendered. For example, if the overdraw 

factor is high, the tiled approach can be a winner, 

but if there are many long but thin triangles, the 

traditional nontiled approach might work better.

Culling
Even better than compressing data is to avoid pro-

cessing it. To cull means “to select from a group,” 

and this often amounts to avoiding processing data 

that doesn’t contribute to the �nal image. One par-

ticular technique stores (in a cache) the maximum, 

Zmax, of the depth values in a block of pixels, and 

when rendering to this block, the GPU estimates 

conservatively whether the triangle is behind Zmax. 

If so, all per-pixel processing can be avoided in that 

block because the triangle will be hidden.10

A similar technique stores the minimum, Zmin, 

of the depth values and determines whether a tri-

angle is de�nitely in front of all rendered geometry 

in a block. If so, depth buffer reads can be avoided 

in the block.11 You can also use Zmin to handle 

other depth tests. These two techniques are often 

called Z-culling.

Another technique uses occlusion queries. The 

programmer renders, for example, a bounding box 

around a complex object, and the occlusion query 

counts how many fragments on the box are visible. 

If no fragments are visible, then the bounding box 

is hidden and rendering the complex object can be 

avoided. Another approach, called delay streams, can 

also be used for occlusion culling.12 The idea is to 

process the triangles as usual, write to the depth buf-

fer, and delay other per-pixel processing. Instead, the 

triangles are put in a �rst-in, �rst-out queue (that is, 

the delay stream). When the delay stream is full, the 

“occluding power”—that is, the Zmax values—builds 

up substantially. As the triangles leave the delay 

stream, they are tested against the Zmax values, and 

many fragments can be skipped because they’re now 

occluded by other surfaces.

With the advancement of programmable shaders, 

more work is being put into pure computation. At 

some point, it’s likely that the GPU will become com-

pute-bound—that is, limited in performance because 

of too much computation. One solution is to spend 

more time on shader compiler optimization, but that 

only takes you so far. Another solution is to avoid 

executing the pixel shader when you can determine 

that the computation results won’t contribute to the 

�nal image anyway. For example, consider a block 

of pixels that are all in shadow (completely black). 

If a high-level mechanism could determine conser-

vatively that these pixels are all in shadow, then per-

pixel shadow computations could be avoided.

This is another type of culling, and the basic idea 

is implemented in the programmable culling unit 

(PCU).13 The PCU executes the pixel shader once 

over an entire block of pixels. For conservative out-

put, the computations are carried out using inter-

val arithmetic, so the input is the intervals of the 

block’s in-parameters. The total number of instruc-

tions decreased from 48 to 71 percent, which indi-

cates that a performance increase of about 2 times 

is possible. In addition, the memory bandwidth 

usage decreased by 14 to 28 percent. Interestingly, 

the PCU can also operate in a lossy mode. The pro-

grammer can activate this by instructing the pixels 

to be killed if the contribution is less than, say, 1 

percent of the maximum intensity. In such a case, 

the threshold of when per-pixel processing should 

commence provides a knob that the user can set to 

trade off image quality for performance.

Adaptive voltage scaling
The techniques we just discussed are high-level so-

lutions. Other methods reduce power usage at the 

hardware level. Several researchers have proposed 

low-power GPUs with conventional power manage-

ment strategies. Bren Mochocki and his colleagues 

analyze how such factors as resolution, frame rate, 

level of detail, lighting, and texture maps affect pow-

er consumption of mobile 3D graphics pipeline stag-

es.14 On the basis of this analysis, they use dynamic 

voltage and frequency scaling (DVFS) schemes for 

different pipeline stages. Using a prediction strategy 

for workloads for the different stages, DVFS could 

decrease power consumption by 40 percent.

3D displays and rendering
Many solutions for mobile 3D displays don’t re-

quire additional peripherals, such as glasses or head 

gear. Such displays are often called autostereoscopic 

At some point, it’s likely that the GPU  

will become compute-bound—that is, 

limited in performance because of too 

much computation.
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displays. Rendering to such displays can be more 

expensive than rendering to a regular display. So, 

specialized algorithms and hardware can help re-

duce the workload.

To give the sensation of 3D to a stationary ob-

server, a device must exploit a key source of 3D 

perception: the binocular parallax. All autostereo-

scopic displays exploit the binocular parallax through 

direction-dependent displaying. This means that the 

device must provide different views for each eye.

Existing solutions employ either a volumetric, 

multiview, or holographic display. The display most 

applicable to mobile devices is the multiview dis-

play, which uses lens arrays or parallax barriers 

to direct or select simultaneously displayed images 

depending on the viewpoint. All these solutions 

provide a single or multiple observer location from 

where a stereo pair of images is visible, while other 

positions yield unfocused or incorrect views. 

Stereo rendering generally costs twice as much in 

computation and bandwidth. However, for a larger 

angle of usage (that is, larger than the angle between 

the two eyes of an observer), some displays use even 

more views, which requires more processing. Special-

ized hardware can potentially render to autostereo-

scopic displays more ef�ciently because the images 

for the left and right eyes are similar. In contrast, 

with a brute-force implementation, the scene is ren-

dered �rst to the left eye and then to the right eye.

However, it makes sense to render a single tri-

angle to both views before proceeding with the next 

triangle.15 Aravind Kalaiah and Tolga Capin use this 

rendering order to reduce the number of vertex 

shader computations.16 Splitting the vertex shader 

into view-independent (computed once) and view-

dependent parts can greatly reduce vertex shader 

computations. In the following per-pixel processing 

stage, a simple sorting procedure in a generalized 

texture space greatly improves the texture cache hit 

ratio, keeping the texture bandwidth close to that 

of monoscopic rendering.15

In addition, Jon Hasselgren and Tomas Ak-

enine-Möller introduce approximate rendering in 

the multiview pipeline, so that fragment colors in 

all neighboring views can be approximated from 

a central view when possible.15 When approxima-

tive rendering is acceptable, you can avoid many 

per-pixel shader instruction executions. For stereo 

rendering, about 95 percent of the computations 

and bandwidth is avoided for the left view (the 

right view must be rendered as usual).

Rendering and transmission
In parallel with advances in graphics hardware and 

displays, we’re witnessing a dramatic increase in the 

complexity of graphics models on mobile devices. 

Here, we highlight recent advances in rendering and 

transmitting such models on mobile devices.

To overcome the complexity of representing the 

mesh connectivity, numerous solutions convert in-

put mesh models to internal, more ef�cient repre-

sentations. Florent Duguet and George Drettakis’s 

solution uses point-based graphics.17 They create 

point samples from an input mesh as a preprocess 

or procedurally on the �y and create a hierarchi-

cal representation of the object samples’ bounding 

volumes. During rendering, the processing of the 

hierarchy stops at a speci�ed depth, achieving �ex-

ible rendering that’s scalable to the mobile device’s 

speed requirements and screen size. This approach 

is also memory ef�cient because it doesn’t need to 

keep the whole model in main memory.

An alternative approach eliminates rendering 

nonimportant parts of the graphical content. Vidya 

Setlur and her colleagues’ method considers the hu-

man perception system’s limitations for retargeting 

2D vector animations for small displays.18 They aim 

to preserve key objects’ recognizability in a vector 

graphics animation by exaggerating the important 

objects’ features and eliminating insigni�cant parts 

during rendering. Instead of uniformly scaling down 

the input to small displays, this perceptually based 

solution uses nonuniform scaling of objects, based 

on the objects’ importance in the scene.

Jingshu Huang and her colleagues try a dif-

ferent approach to rendering complex models on 

small screens.19 Their MobilVis system adapts well-

known illustrative rendering techniques, such as 

interactive cutaway views, ghosted views, silhou-

ettes, and selective rendering, to mobile devices to 

more clearly convey an object’s shapes, forms, and 

interior structures.

Although these solutions provide more ef�cient re-

sults than basic graphics rendering, they’re still lim-

ited by the devices’ processing power. Because mobile 

devices are always connected to the network, remote 

rendering becomes a viable alternative. Typically, 

this technique uses a client–server approach. The 

rendering occurs on a high-performance server or a 

PC; the mobile client receives intermediate results 

In parallel with advances in graphics 

hardware and displays, we’re witnessing 

a dramatic increase in the complexity of 

graphics models on mobile devices. 
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over a network connection and renders the �nal 

results. Chun-Fa Chang and Shyh-Haur Ger pres-

ent an image-based remote-rendering solution, 

where the client receives depth images from the 

server and applies a 3D warping method, achiev-

ing near-real-time rates.20 Daoud Hekmatzada and 

his colleagues present a nonphotorealistic render-

ing solution, based on drawing silhouettes and 

contour lines as primitives.21

A related problem is the transmission of com-

plex models to mobile devices. Downloading such 

models through the air requires much bandwidth. 

In Xiaonan Luo and Guifeng Zheng’s solution for 

transmitting meshes, the mobile device commu-

nicates with a wired IP server via an IP network 

and a wireless channel.22 This solution is based on 

a �exible progressive mesh coding technique that 

adapts to different bit-rate and error-resilience 

requirements, while minimizing computational 

complexity usually associated with a transcoder. 

Azzedine Boukerche and Richard W.N. Pazzi pres-

ent a streaming protocol for 3D virtual-environ-

ment exploration on mobile devices; they address 

network transmission problems such as rate and 

congestion control.23 Siddhartha Chattopadhyay 

and his colleagues describe power-aware compres-

sion and transmission of motion capture data for 

mobile devices.24

Several issues must be solved for remote ren-

dering, such as connectivity problems, latency 

for transmitting user input, and rendered images. 

Hybrid solutions that balance processing between 

on-device and remote rendering present interest-

ing research possibilities.

Visualization and user interfaces
The key challenges in mobile visualization and 

user interfaces relate to small displays and the 

limited amount of interaction hardware compared 

to the desktop (for example, there’s no mouse or 

a full-size keyboard). Interaction is an important 

component of most graphics applications.

Visualization
Presenting large amounts of graphical data and 

complex user interface components more effec-

tively on small displays is a key research topic. 

When the data complexity exceeds what mobile 

displays can show, users must manually browse 

through the large data. This can easily happen 

when rendering and visualizing 2D data (such as 

maps or documents) or 3D data (such as medical 

data or city models). Scalable and zoomable user 

interfaces also require such visualization tech-

niques. Luca Chittaro surveys problems and solu-

tions for visualizing �ve types of data for mobile 

applications such as text, pictures, maps, physical 

objects, and abstract data.25

Patrick Baudisch and Ruth Rosenholtz propose 

the classi�cation of the two following approaches 

to visualization on mobile devices.26

Overview + Detail. These approaches are based on dis-

playing two different views of the data simultane-

ously—one for context and one for detail. While the 

user navigates around the large data in the context 

view, the detailed view displays the area in focus.

Focus + Context. These approaches use a single view 

into data, with nonuniform scaling of data ele-

ments. The most prominent solution is the �sh-

eye view, which magni�es the data in the user’s 

attention and renders distant objects in progres-

sively smaller sizes. Fish-eye views are mostly used 

in maps and menus.27

One example of this approach is speed-dependent 

adaptive zooming. Tolga Capin and Antonio Haro 

capture the device’s physical movement from 

camera input, which they analyze to determine 

scroll direction and magnitude.28 The zoom level 

increases or decreases depending on the scroll’s 

magnitude. For example, when a user moves a 

phone, the view zooms out and the display shows 

an overall view. When the user stops moving the 

phone, the zooming level gradually increases and 

the display shows a detailed view.

Benjamin Bederson and his colleagues devel-

oped DateLens, a �sh-eye interface for a calendar 

on mobile devices.29 The user �rst sees an overview 

of a large time period using a graphical representa-

tion of each day’s activities. Choosing a particular 

day expands the area representing that day and 

reveals the appointment list in context.

Recently, Amy Karlson and her colleagues proposed 

AppLens and LaunchTile design solutions that adapt 

the UI to multiple devices with different resolutions 

and aspect ratios.30 AppLens uses a tabular �sh-eye 

approach for integrated access and noti�cation for 

nine applications. LaunchTile uses pure zooming 

within a landscape of applications to accomplish the 

same goals. A further development of LaunchTile is 

the zoomable �sh-eye visualization of Zumobi, for 

Web browsing on mobile devices (see Figure 3).

Figure 3. 
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Another problem is visualizing the location of 

off-screen objects because small mobile displays 

can’t display all data at once. Solutions to this 

problem augment the detailed view with visual 

references to off-screen objects. For example, Bau-

disch and Rosenholtz use the “street lamp” meta-

phor, with an associated halo that includes a red 

arc at the detailed view’s borders.26 Figure 4 illus-

trates the Halo approach.

3D user interfaces
Three-dimensional user interfaces are a key ap-

plication of visualization on mobile devices, es-

pecially those with autostereoscopic displays. 

Creating 3D interfaces that approach the rich-

ness of 3D reality has long been a research tar-

get of several other research groups, particularly 

for desktop environments. Ben Shneiderman and 

Catherine Plaisant analyzed the features of effec-

tive 3D interfaces, primarily for desktop and near-

to-eye display domains, and proposed numerous 

guidelines.31 These include making better use of 

occlusion, shadows, and perspective; minimizing 

the number of steps in navigation; and improving 

text readability with better rendering and contrast 

with the background.

Graphics hardware support for OpenGL ES 2.0 

in a mobile phone opens up new possibilities for 

user interfaces owing to the programmable nature 

of that API. Because 3D UI rendering solutions de-

veloped for desktop computers don’t scale down 

well to mobile devices, a different set of widgets 

must be developed. In Figure 5, photos, videos, and 

applications drop down at the far end and move 

toward the front. The user can “catch” a photo, vid-

eo, or application and make it active. This includes 

showing the video or photo in higher resolution or 

activating the application. Programmable vertex 

and pixel shaders render depth-of-�eld effects and 

motion blur. These shaders also animate “wobbly” 

windows using vertex skinning.

Directly manipulating content
Mobile devices are currently limited in the mode of 

interaction they provide to users. However, direct-

manipulation interfaces provide a more intuitive 

interaction than current key-modal and menu-

based systems.31 Users can manipulate individual 

objects, each with a direct display representation. 

They apply actions directly to objects by selecting 

them and then choosing a command. Graphi-

cal representation is key for direct manipulation: 

users manipulate, through selection events and 

moving a pointing device, a graphical or iconic 

representation of the underlying data. Dragging 

an object by the pointer is an example of this in-

teraction mode.

Recently, stylus- and thumb-based interaction 

with touch-sensitive screens has emerged as a 

solution for mobile direct manipulation.32 Stylus-

based interaction, although accurate for selecting 

objects in a small screen, requires both hands and 

has caused additional attentional overhead.33 To 

overcome this problem, researchers have devel-

oped one-handed thumb-based interaction. Ap-

ple’s iPhone is the most prominent example; with 

a multitouch capacitive touch screen, it lets us-

ers interact with applications and type using their 

thumbs. Karlson and her colleagues have further 

developed several high-level gestures for more in-

tuitive interaction with their zoomable user inter-

face solution.30

Researchers have also incorporated physical sensors 

such as accelerometers in mobile devices for richer 

user interaction.34 However, such sensors produce 

error buildup over time. One way to overcome this 

is by merging relative continuous data from physical 

sensors with absolute but potentially intermittent 

data. This approach has provided good results and 

could lead to reliable tracking solutions.

Figure 4. The 

Halo approach 

displays arcs 

at the detailed 

view’s borders. 

The ring’s radius 

is proportional 

to the distance. 

Figure 5. A 

sequence of 

images from 

the SocialRiver 

user interface. 

Using OpenGL 

ES 2.0, 

SocialRiver 

implements 

motion blur, 

depth of �eld, 

and vertex 

skinning. Video 

input can also 

be composited. 
Courtesy of The Astonishing Tribe AB (www.tat.se).

Image courtesy of Patrick Baudisch and Ruth Rosenholtz.
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Alternatively, researchers have proposed several 

solutions where incoming camera video estimates 

phone motion and interacts with the user’s physi-

cal environment.28 With camera-based interac-

tion, users move the pointer or change the view by 

moving the phone instead of interacting with the 

screen or keypad. Correctly interpreting the ob-

jects’ observed motion or the camera’s global mo-

tion from video requires accurate tracking. Among 

the recent solutions, Jari Hannuksela and his col-

leagues propose region-based matching that uses 

a sparse set of features for motion analysis and a 

Kalman �lter-based tracker for estimation.35 Capin 

and Haro’s solution tracks individual corner-like 

features observed in the entire incoming camera 

frames.28 This lets the tracker recognize sudden 

camera movements of arbitrary size, as long as at 

least some features from the previous frame are 

still visible. The tradeoff is that the tracker can’t 

detect rotations.

Augmented reality
AR, which augments video with graphics, can be 

contrasted with virtual reality, which renders ev-

erything with computer graphics, and telepresence, 

which conveys reality somewhere else by trans-

mitting video and audio. Whereas many mobile-

graphics applications resemble desktop-graphics 

applications (only with more constraints and less 

performance), AR provides a user experience on 

a mobile system that’s different from, and better 

than, the desktop user experience. Here, we dis-

cuss some early AR systems. 

One early example of mobile AR is the Touring 

Machine.36 The main system consisted of a back-

pack loaded with a computer and batteries. The user 

wore a head-mounted display and camera and held 

a tablet and stylus for input. The system worked as 

a campus tour guide, displaying the building names 

and related information over the buildings on its 

optical-see-through head-mounted display. Two 

surveys cover the basic components and problems 

of AR37 and developments in the late 1990s.38

Jun Rekimoto and Katashi Nagao’s Navicam was 

an early handheld AR system.39 It consisted of a 

handheld display that showed real-time camera 

imagery. The images were passed to a workstation 

for analysis. If the system recognized color-coded 

ID tags, it would superimpose situation-sensitive 

information over the camera image and display it 

on the device. This kind of video-see-through sys-

tem has many advantages over optical-see-through 

systems. Optical systems are open-loop control 

systems that require a good world model and ac-

curate tracking of the user’s eye position. A video 

system provides a much easier closed-loop control 

system because it analyzes the image, localizes the 

annotated object only with respect to the camera, 

and overlays the annotations with the target.

Whereas NaviCam was tethered to a worksta-

tion, Daniel Wagner and Dieter Schmalstieg cre-

ated the �rst autonomous handheld AR system.40 

They ported ARToolkit (www.hitl.washington.

edu/artoolkit), a popular library for many AR 

demos that tracks camera position with respect to 

square markers, to a PDA. The system of�oaded 

the tracking to a server for faster frame rates, and 

the graphics rendering used a proprietary subset 

of OpenGL. Soon after, other researchers imple-

mented similar systems on mobile phones, such 

as Mathias Möhring and his colleagues, who im-

plemented their own tracker,41 and Anders Hen-

rysson and his colleagues, who adapted Wagner’s 

ARToolkit port to Symbian.42 Both these systems 

used OpenGL ES for graphics rendering.1

AR is also useful in gaming, and several games 

feature an AR phone. In Mosquito Hunt by Sie-

mens, virtual mosquitoes are drawn over live video 

from a camera. By moving the phone and track-

ing the motion �ow in the camera, users try to 

zap the mosquitoes. In Marble Revolution2 (www.

bit-side.com/311.html), the motion �ow guides a 

marble through a maze. Kick Real (www.kickreal.

de) shows a soccer ball on the ground that users 

can kick. AR Tennis tracks markers on a table to 

anchor a tennis �eld and tracks additional mark-

ers on players’ phones for a collaborative or com-

petitive tennis game (see Figure 6).42

Most mobile AR systems use markers to track the 

camera’s relative position with respect to objects or 

use optical �ow to track the phone motion. More 

recently, some systems have done away with mark-

ers. The PhoneGuide is a museum guide based on 

camera phones (see the Projects in VR article in 

Figure 6. In 

AR Tennis, the 

camera tracks 

markers on the 

table and the 

other player’s 

camera. The 

players attempt 

to bounce 

the ball back 

and forth in a 

virtual tennis 

court.
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this issue for more on this).43 As Figure 7 illustrates, 

the PhoneGuide determines the user’s approximate 

location using Bluetooth beacons, so the vision sys-

tem only needs to distinguish between a smaller 

set of objects. The system splits the input image 

into bins, each bin produces a global feature vector 

consisting of various histograms and ratios (colors, 

intensities, edges, and so on), and a neural net-

work uses the inputs for recognition. Herbert Bay 

and his colleagues also created a museum guide.44 

Their system runs on a tablet PC and uses local 

scale-invariant Speeded Up Robust Features (SURF) 

to recognize objects. Such local feature matchers 

work better even if the objects have different back-

grounds or are partially occluded. SURF has also 

been ported to camera phones.45

The primary remaining challenges in mobile AR 

are object recognition and real-time tracking for 

unprepared markerless environments. Overcom-

ing these challenges allows annotating views with 

labels or arrows pointing to objects of interest. 

A secondary problem is seamlessly blending the 

graphics objects with the real scene with correct 

occlusions and shading. This requires modeling 

the environment and the current illumination 

levels in real time on the device.

Clearly, we need specialized graphics hardware 

for power-ef�cient graphics, but much research 

remains to be done. We believe that the best way 

around the battery capacity problem is to continue 

work on all fronts, which includes more ef�cient 

high-level graphics hardware algorithms, intelligent 

low-level power management, and clever software 

techniques for rendering and transmission. This 

also includes handling large, complex models and 

data sets. For both software and hardware tech-

niques and algorithms, it would be convenient to 

have a knob that the user can turn to trade off im-

age quality and operation time. Approximate ren-

dering for graphics hardware is a �eld that hasn’t 

been investigated thoroughly, and we expect that 

many new innovations will emerge.

Autostereoscopic displays can provide a major 

breakthrough on mobile devices before it does so 

on desktops. Interestingly, several such displays 

can already switch between displaying a standard 

2D image and conveying a 3D autostereoscopic 

experience. Graphics APIs could easily add sup-

port for these displays. For 3D TV and video, open 

issues in standardization organizations still exist. 

The main practical obstacle for autostereoscopic 

displays is creating content that fully bene�ts 

from such displays. 

User interfaces is an area where much innovation 

will happen at every level. The low-level APIs, such 

as OpenVG and OpenGL ES are there, but using 3D 

so that it truly enhances the user experience is still 

an active research issue. Multimodal interfaces that 

integrate voice, gesture, stylus or �nger input, and 

keyboard input with interactive graphics and sound 

rendering, and take human perceptual and cogni-

tive capabilities into account, will create interaction 

that’s easier and more fun. Games are traditionally 

good at creating interfaces that are naturally easy to 

use; hopefully, these UI aspects will become more 

widespread in mobile UIs.

Because most mobile devices have a camera, 

exploring how we can integrate AR functionality 

into such cameras is worth exploring. However, 

the killer AR application has yet to be discovered. 

The future of mobile graphics is exciting, and our 

community will continue to invent new algo-

rithms, techniques, and applications that exploit 

the context of mobility. 
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