
74 July/August 2008 Published by the IEEE Computer Society 0272-1716/08/$25.00 © 2008 IEEE

Mobile Graphics Survey

The State of the Art in

Mobile Graphics Research
Tolga Capin ■ Bilkent University

Kari Pulli ■ Nokia Research Center Palo Alto

Tomas Akenine-Möller ■ Lund University

Mobile phones are virtually omnipresent.

In 2008, 3.3 billion people—half the

world population—use mobile phones,

according to the International Telecommunications

Union. By 2010, Nokia expects that there will be

as many mobile phone users as toothbrush users (4

billion). Over the past 10 years, the phone has ex-

panded from being just a phone

to being a full multimedia unit,

on which you can play games (see

Figure 1), shoot photos, listen to

music, watch television or video,

send messages, and do video-

conferencing.

One factor leading to the wide-

spread adoption of mobile phones

has been the dramatic improve-

ment in display technologies. Dis-

plays used to be monochromatic

and small (48 × 84 pixels). Today,

we have 24-bit (16.8 million col-

ors) displays with VGA resolution

(640 × 480 pixels). Consequently,

mobile phones have the potential

to deliver graphics to the masses.

The mobile context differs vastly from the PC

context. A mobile phone

is always with you,

is always connected to the network and can �nd

its location and provide access to location-based

services and navigation, and

supports applications that require a graphics-

intensive user interface.

■

■

■

In addition, most mobile phones include a cam-

era, which allows many possibilities for better user

interaction with the device, as well as augmented

reality (AR) applications that combine digital im-

ages (rendered graphics models) with real-world

images (such as those on a camera view�nder).

Standard mobile graphics APIs have laid the foun-

dation for much mobile graphics research and appli-

cations. For 3D graphics, there’s OpenGL ES, which

is a low-level API based on the popular OpenGL, and

M3G (JSR 184), which is designed on top of OpenGL

ES and supports scene graphs, animation, and �le

formats for mobile Java. Kari Pulli and his colleagues

cover various uses of OpenGL ES and M3G.1 For 2D

vector graphics, there’s OpenVG, a low-level API

similar to OpenGL, and Scalable Vector Graphics

API for mobile Java (JSR 226). A description of these

and other related APIs appears elsewhere.2

By mobile, we mostly mean handheld devices. So,

although aviation or car displays are certainly mo-

bile, they fall outside this article’s scope. Here, we

aim to survey the state of mobile graphics research.

We don’t address issues related to particular appli-

cations and development tools. We also don’t dis-

cuss mobile gaming in depth; Mark Callow and his

colleagues provide a good overview of mobile-game

development and distribution.3 Jörg Baus and his

colleagues survey 2D and 3D maps for navigation,

which is also mostly beyond this article’s scope.4

Furthermore, we concentrate on interactive graph-

ics because noninteractive graphics can be simply

rendered on other devices and rendered as simple

bitmaps. For this reason, we also address user inter-

faces and handheld interaction techniques.

High-quality computer

graphics let mobile-device

users access more compelling

content. Still, the devices’

limitations and requirements

differ substantially from

those of a PC. This survey

of mobile graphics research

describes current solutions in

terms of specialized hardware

(including 3D displays),

rendering and transmission,

visualization, and user

interfaces.

 IEEE Computer Graphics and Applications 75

Handhelds’ limitations
Compared to the desktop, handheld devices are

limited by

power supply,

computational power,

physical display size, and

input modalities.

Mobile devices’ fundamental problem is that

they’re battery operated. Whereas many other

aspects of computing follow Moore’s law, battery

technology develops much more slowly. The dis-

play is one of the largest consumers of power, and

graphics applications keep the display, often with a

backlight, constantly on. Innovation is required at

the hardware level for lower power consumption,

while diligence is required at the software level for

power-aware mobile applications. Finally, the de-

vices are small; even if more power were available,

that power would turn into heat, which can dam-

age circuits unless the design process considered

the thermal aspects early on.

Mobile device CPUs also have limited computing

power. A related limitation is internal bandwidth

for memory accesses, which increases more slowly

than raw computing power and consumes much

power. Another limitation is cost: mass-market

consumer devices should be cheap, which limits

the silicon budget. For example, only the most re-

cent high-end phones support �oating-point units.

Having dedicated graphics hardware helps the de-

vices get by with lower-clock-rate CPUs.

Although the pixel pitch ratio is increasing at a

stable rate, the requirements to keep the devices

handheld and pocketable means that the devices’

physical size has an upper bound. Whereas the

largest displays might have a diameter of up to 5

inches, many devices have much smaller displays.

Furthermore, mobile devices currently support

key-based interfaces through joypad and direction

keys and a numerical keyboard. On larger devices,

additional keys provide a better user experience

for complex tasks because keys can be dedicated to

speci�c tasks. Smart phones can’t easily use such

keys owing to limited physical space. Interaction

with touch-sensitive screens has emerged as an al-

ternative, but most solutions require two-handed

interaction, which causes additional attentional

overhead in users.

Finally, there’s an order of magnitude difference

between high- and low-end devices in graphics pro-

cessing and computational capacity. A particular

technique might run ef�ciently in one device but

be inef�cient on another. This requires solutions

■

■

■

■

that can scale down to low-end mobile phones and

up to larger devices, even PCs.

Industry and academia researchers have devel-

oped several solutions to these problems. The fol-

lowing sections describe the key approaches.

Graphics hardware
A given task, such as 3D rendering, can always

be done more ef�ciently on special-purpose hard-

ware than on a general-purpose CPU. It’s possible

to write a rendering engine fully in software ex-

ecuting on a CPU, providing maximum �exibility.

In fact, most mobile 3D engines are still software

implementations. However, dedicated graphics

hardware can provide both faster execution and

lower power consumption. Dedicated graphics

processing units (GPUs) are already available on

high-end smart phones. Some GPUs are available

on a separate chip, but often the GPU and CPU

are on the same chip, which decreases manufac-

turing costs.

Although modern graphics engines, such as

OpenGL ES 2.0, provide programmable compo-

nents—so-called shaders—a lot of functionality

still isn’t programmable but consists of blocks of

�xed functionality that can be parameterized and

turned on or off. Fixing the functionality allows

more ef�cient implementations and latency hid-

ing. Triangle setup, texture fetch and �ltering, and

blending operations can be more ef�cient when

implemented in dedicated logic.

The key to good graphics performance and low

power consumption is to reduce the internal traf-

�c between the processing elements and the mem-

ory. So, mobile graphics solutions focus on how to

compress and even completely avoid that traf�c.

Reducing the traf�c is even more important be-

cause computation power increases more quickly

than memory bandwidth. For example, John Ow-

ens reports that the yearly processing capability

growth is about 71 percent, while dynamic RAM

bandwidth grows only by 25 percent.5 This differ-

ence suggests that one should take great care when

designing a GPU architecture.

Figure 1.

High-quality

graphics games

have reached

mobile devices.

©
 2

0
0

8
 N

o
ki

a
.

76 July/August 2008

Mobile Graphics Survey

Compression
Compression not only saves storage space, but it

also reduces the amount of data sent over a net-

work or a memory bus. For GPUs, compression

and decompression (codec) have two major tar-

gets: textures and buffers.

Textures are read-only images glued onto geomet-

rical primitives such as triangles. A texture codec

algorithm’s core requirements include fast random

access to the texture data, fast decompression,

and inexpensive hardware implementation. The

random-access requirement usually implies that a

block of pixels is compressed to a �xed size. For ex-

ample, a group of 4 × 4 pixels can be compressed

from 3 × 8 = 24 bits per pixel down to 4 bits per

pixel, requiring only 64 bits to represent the whole

group. As a consequence of this �xed-rate compres-

sion, most texture compression algorithms are lossy

(for example, JPEG) and usually don’t reproduce the

original image exactly. Because textures are read-

only data and usually compressed of�ine, the time

spent compressing the image isn’t as important as

the decompression time, which must be fast. Such

algorithms are sometimes called asymmetric.

As a result of these requirements, developers have

adopted Ericsson Texture Compression (ETC) as a

new codec for OpenGL ES.6 ETC stores one base

color for each 4 × 4 block of texels and modi�es

the luminance using only a 2-bit lookup index per

pixel. This technique keeps the hardware decom-

pressor small. Currently, no desktop graphics APIs

use this algorithm.

Buffers are more symmetric than textures in

terms of compression and decompression because

both processes must occur in hardware in real time.

For example, the color buffer can be compressed,

so when a triangle is rendered to a block of pix-

els (say, 4 × 4) in the color buffer, the hardware

attempts to compress this block. If this succeeds,

the data is marked as compressed and sent back to

the main memory in compressed form over the bus

and stored in that form. Most buffer compression

algorithms are exact to avoid error accumulation.

However, if the algorithm is lossy, the color data

can be lossily compressed and later recompressed,

and so on, until the accumulated error exceeds the

threshold for what’s visible. This is called tandem

compression, meaning that if compression fails, you

must have a fallback that guarantees an exact color

buffer—namely, sending the data uncompressed.7

Depth and stencil buffers might also be com-

pressed. The depth buffer deserves special men-

tion because its contents are proportional to 1/z,

and when viewed in perspective, the depth values

over a triangle remain linear. Depth-buffer com-

pression algorithms heavily exploit this property,

which accounts for higher compression rates. A

survey of existing algorithms appears elsewhere.8

Interestingly, all buffer codec algorithms are

transparent to the user. All action takes place in the

GPU and is never exposed to the user or program-

mer, so there’s no need for standardization. There’s

no major difference for buffer codec on mobile

devices versus desktops, but mobile graphics has

caused renewed interest in such techniques.

Tiling architectures
Tiling architectures aim to reduce the memory traf-

�c related to frame-buffer accesses using a com-

pletely different approach. Tiling the frame buffer

so that a small tile (such as a rectangular block of

pixels) is stored on the graphics chip provides many

optimization and culling possibilities. Commercial-

ly, Imagination Technologies and ARM offer mobile

3D accelerators using tiling architectures. Their core

insight is that a large chunk of the memory accesses

are to buffers such as color, depth, and stencil.

Ideally, we’d like the memory for the entire frame

buffer on-chip, which would make such memory

accesses extremely inexpensive. However, this isn’t

practical for the whole frame buffer, but storing a

small tile of, say, 16 × 16 pixels of the frame buffer

on-chip is feasible. When all rendering has been

�nished to a particular tile, its contents can be

written to the external frame buffer in an ef�cient

block transfer. Figure 2 illustrates this concept.

However, tiling has the overhead that all the tri-

angles must be buffered and sorted into correct tiles

after they’re transformed to screen space. A tiling

Tiling

Rasterizer
pixel shader

Memory

Primitives

Primitives

Geometry Scene data

Transformed
scene data

Frame buffer

Tile lists

Primitives

per tile

Texture read

Write

RGBA/Z

On-chip
buffers

GPU

Figure 2. A tiling architecture. The primitives are being transformed

and stored in external memory. There they are sorted into tile lists,

where each list contains the triangles overlapping that tile. This makes it

possible to store the frame buffer for a tile (for example, 16 × 16 pixels)

in on-chip memory, which makes accesses to the tile’s frame buffer

extremely inexpensive.

 IEEE Computer Graphics and Applications 77

unit creates, for each tile, a list of triangles overlap-

ping with that tile. Each tile can then be processed

in turn or in parallel with others. This architecture’s

main advantage is that frame-buffer accesses become

inexpensive. This must be balanced with the cost of

buffering and sorting the triangles.9 It’s still un-

known whether a traditional architecture or tiling

is best. The optimal approach also depends on the

content being rendered. For example, if the overdraw

factor is high, the tiled approach can be a winner,

but if there are many long but thin triangles, the

traditional nontiled approach might work better.

Culling
Even better than compressing data is to avoid pro-

cessing it. To cull means “to select from a group,”

and this often amounts to avoiding processing data

that doesn’t contribute to the �nal image. One par-

ticular technique stores (in a cache) the maximum,

Zmax, of the depth values in a block of pixels, and

when rendering to this block, the GPU estimates

conservatively whether the triangle is behind Zmax.

If so, all per-pixel processing can be avoided in that

block because the triangle will be hidden.10

A similar technique stores the minimum, Zmin,

of the depth values and determines whether a tri-

angle is de�nitely in front of all rendered geometry

in a block. If so, depth buffer reads can be avoided

in the block.11 You can also use Zmin to handle

other depth tests. These two techniques are often

called Z-culling.

Another technique uses occlusion queries. The

programmer renders, for example, a bounding box

around a complex object, and the occlusion query

counts how many fragments on the box are visible.

If no fragments are visible, then the bounding box

is hidden and rendering the complex object can be

avoided. Another approach, called delay streams, can

also be used for occlusion culling.12 The idea is to

process the triangles as usual, write to the depth buf-

fer, and delay other per-pixel processing. Instead, the

triangles are put in a �rst-in, �rst-out queue (that is,

the delay stream). When the delay stream is full, the

“occluding power”—that is, the Zmax values—builds

up substantially. As the triangles leave the delay

stream, they are tested against the Zmax values, and

many fragments can be skipped because they’re now

occluded by other surfaces.

With the advancement of programmable shaders,

more work is being put into pure computation. At

some point, it’s likely that the GPU will become com-

pute-bound—that is, limited in performance because

of too much computation. One solution is to spend

more time on shader compiler optimization, but that

only takes you so far. Another solution is to avoid

executing the pixel shader when you can determine

that the computation results won’t contribute to the

�nal image anyway. For example, consider a block

of pixels that are all in shadow (completely black).

If a high-level mechanism could determine conser-

vatively that these pixels are all in shadow, then per-

pixel shadow computations could be avoided.

This is another type of culling, and the basic idea

is implemented in the programmable culling unit

(PCU).13 The PCU executes the pixel shader once

over an entire block of pixels. For conservative out-

put, the computations are carried out using inter-

val arithmetic, so the input is the intervals of the

block’s in-parameters. The total number of instruc-

tions decreased from 48 to 71 percent, which indi-

cates that a performance increase of about 2 times

is possible. In addition, the memory bandwidth

usage decreased by 14 to 28 percent. Interestingly,

the PCU can also operate in a lossy mode. The pro-

grammer can activate this by instructing the pixels

to be killed if the contribution is less than, say, 1

percent of the maximum intensity. In such a case,

the threshold of when per-pixel processing should

commence provides a knob that the user can set to

trade off image quality for performance.

Adaptive voltage scaling
The techniques we just discussed are high-level so-

lutions. Other methods reduce power usage at the

hardware level. Several researchers have proposed

low-power GPUs with conventional power manage-

ment strategies. Bren Mochocki and his colleagues

analyze how such factors as resolution, frame rate,

level of detail, lighting, and texture maps affect pow-

er consumption of mobile 3D graphics pipeline stag-

es.14 On the basis of this analysis, they use dynamic

voltage and frequency scaling (DVFS) schemes for

different pipeline stages. Using a prediction strategy

for workloads for the different stages, DVFS could

decrease power consumption by 40 percent.

3D displays and rendering
Many solutions for mobile 3D displays don’t re-

quire additional peripherals, such as glasses or head

gear. Such displays are often called autostereoscopic

At some point, it’s likely that the GPU

will become compute-bound—that is,

limited in performance because of too

much computation.

78 July/August 2008

Mobile Graphics Survey

displays. Rendering to such displays can be more

expensive than rendering to a regular display. So,

specialized algorithms and hardware can help re-

duce the workload.

To give the sensation of 3D to a stationary ob-

server, a device must exploit a key source of 3D

perception: the binocular parallax. All autostereo-

scopic displays exploit the binocular parallax through

direction-dependent displaying. This means that the

device must provide different views for each eye.

Existing solutions employ either a volumetric,

multiview, or holographic display. The display most

applicable to mobile devices is the multiview dis-

play, which uses lens arrays or parallax barriers

to direct or select simultaneously displayed images

depending on the viewpoint. All these solutions

provide a single or multiple observer location from

where a stereo pair of images is visible, while other

positions yield unfocused or incorrect views.

Stereo rendering generally costs twice as much in

computation and bandwidth. However, for a larger

angle of usage (that is, larger than the angle between

the two eyes of an observer), some displays use even

more views, which requires more processing. Special-

ized hardware can potentially render to autostereo-

scopic displays more ef�ciently because the images

for the left and right eyes are similar. In contrast,

with a brute-force implementation, the scene is ren-

dered �rst to the left eye and then to the right eye.

However, it makes sense to render a single tri-

angle to both views before proceeding with the next

triangle.15 Aravind Kalaiah and Tolga Capin use this

rendering order to reduce the number of vertex

shader computations.16 Splitting the vertex shader

into view-independent (computed once) and view-

dependent parts can greatly reduce vertex shader

computations. In the following per-pixel processing

stage, a simple sorting procedure in a generalized

texture space greatly improves the texture cache hit

ratio, keeping the texture bandwidth close to that

of monoscopic rendering.15

In addition, Jon Hasselgren and Tomas Ak-

enine-Möller introduce approximate rendering in

the multiview pipeline, so that fragment colors in

all neighboring views can be approximated from

a central view when possible.15 When approxima-

tive rendering is acceptable, you can avoid many

per-pixel shader instruction executions. For stereo

rendering, about 95 percent of the computations

and bandwidth is avoided for the left view (the

right view must be rendered as usual).

Rendering and transmission
In parallel with advances in graphics hardware and

displays, we’re witnessing a dramatic increase in the

complexity of graphics models on mobile devices.

Here, we highlight recent advances in rendering and

transmitting such models on mobile devices.

To overcome the complexity of representing the

mesh connectivity, numerous solutions convert in-

put mesh models to internal, more ef�cient repre-

sentations. Florent Duguet and George Drettakis’s

solution uses point-based graphics.17 They create

point samples from an input mesh as a preprocess

or procedurally on the �y and create a hierarchi-

cal representation of the object samples’ bounding

volumes. During rendering, the processing of the

hierarchy stops at a speci�ed depth, achieving �ex-

ible rendering that’s scalable to the mobile device’s

speed requirements and screen size. This approach

is also memory ef�cient because it doesn’t need to

keep the whole model in main memory.

An alternative approach eliminates rendering

nonimportant parts of the graphical content. Vidya

Setlur and her colleagues’ method considers the hu-

man perception system’s limitations for retargeting

2D vector animations for small displays.18 They aim

to preserve key objects’ recognizability in a vector

graphics animation by exaggerating the important

objects’ features and eliminating insigni�cant parts

during rendering. Instead of uniformly scaling down

the input to small displays, this perceptually based

solution uses nonuniform scaling of objects, based

on the objects’ importance in the scene.

Jingshu Huang and her colleagues try a dif-

ferent approach to rendering complex models on

small screens.19 Their MobilVis system adapts well-

known illustrative rendering techniques, such as

interactive cutaway views, ghosted views, silhou-

ettes, and selective rendering, to mobile devices to

more clearly convey an object’s shapes, forms, and

interior structures.

Although these solutions provide more ef�cient re-

sults than basic graphics rendering, they’re still lim-

ited by the devices’ processing power. Because mobile

devices are always connected to the network, remote

rendering becomes a viable alternative. Typically,

this technique uses a client–server approach. The

rendering occurs on a high-performance server or a

PC; the mobile client receives intermediate results

In parallel with advances in graphics

hardware and displays, we’re witnessing

a dramatic increase in the complexity of

graphics models on mobile devices.

 IEEE Computer Graphics and Applications 79

over a network connection and renders the �nal

results. Chun-Fa Chang and Shyh-Haur Ger pres-

ent an image-based remote-rendering solution,

where the client receives depth images from the

server and applies a 3D warping method, achiev-

ing near-real-time rates.20 Daoud Hekmatzada and

his colleagues present a nonphotorealistic render-

ing solution, based on drawing silhouettes and

contour lines as primitives.21

A related problem is the transmission of com-

plex models to mobile devices. Downloading such

models through the air requires much bandwidth.

In Xiaonan Luo and Guifeng Zheng’s solution for

transmitting meshes, the mobile device commu-

nicates with a wired IP server via an IP network

and a wireless channel.22 This solution is based on

a �exible progressive mesh coding technique that

adapts to different bit-rate and error-resilience

requirements, while minimizing computational

complexity usually associated with a transcoder.

Azzedine Boukerche and Richard W.N. Pazzi pres-

ent a streaming protocol for 3D virtual-environ-

ment exploration on mobile devices; they address

network transmission problems such as rate and

congestion control.23 Siddhartha Chattopadhyay

and his colleagues describe power-aware compres-

sion and transmission of motion capture data for

mobile devices.24

Several issues must be solved for remote ren-

dering, such as connectivity problems, latency

for transmitting user input, and rendered images.

Hybrid solutions that balance processing between

on-device and remote rendering present interest-

ing research possibilities.

Visualization and user interfaces
The key challenges in mobile visualization and

user interfaces relate to small displays and the

limited amount of interaction hardware compared

to the desktop (for example, there’s no mouse or

a full-size keyboard). Interaction is an important

component of most graphics applications.

Visualization
Presenting large amounts of graphical data and

complex user interface components more effec-

tively on small displays is a key research topic.

When the data complexity exceeds what mobile

displays can show, users must manually browse

through the large data. This can easily happen

when rendering and visualizing 2D data (such as

maps or documents) or 3D data (such as medical

data or city models). Scalable and zoomable user

interfaces also require such visualization tech-

niques. Luca Chittaro surveys problems and solu-

tions for visualizing �ve types of data for mobile

applications such as text, pictures, maps, physical

objects, and abstract data.25

Patrick Baudisch and Ruth Rosenholtz propose

the classi�cation of the two following approaches

to visualization on mobile devices.26

Overview + Detail. These approaches are based on dis-

playing two different views of the data simultane-

ously—one for context and one for detail. While the

user navigates around the large data in the context

view, the detailed view displays the area in focus.

Focus + Context. These approaches use a single view

into data, with nonuniform scaling of data ele-

ments. The most prominent solution is the �sh-

eye view, which magni�es the data in the user’s

attention and renders distant objects in progres-

sively smaller sizes. Fish-eye views are mostly used

in maps and menus.27

One example of this approach is speed-dependent

adaptive zooming. Tolga Capin and Antonio Haro

capture the device’s physical movement from

camera input, which they analyze to determine

scroll direction and magnitude.28 The zoom level

increases or decreases depending on the scroll’s

magnitude. For example, when a user moves a

phone, the view zooms out and the display shows

an overall view. When the user stops moving the

phone, the zooming level gradually increases and

the display shows a detailed view.

Benjamin Bederson and his colleagues devel-

oped DateLens, a �sh-eye interface for a calendar

on mobile devices.29 The user �rst sees an overview

of a large time period using a graphical representa-

tion of each day’s activities. Choosing a particular

day expands the area representing that day and

reveals the appointment list in context.

Recently, Amy Karlson and her colleagues proposed

AppLens and LaunchTile design solutions that adapt

the UI to multiple devices with different resolutions

and aspect ratios.30 AppLens uses a tabular �sh-eye

approach for integrated access and noti�cation for

nine applications. LaunchTile uses pure zooming

within a landscape of applications to accomplish the

same goals. A further development of LaunchTile is

the zoomable �sh-eye visualization of Zumobi, for

Web browsing on mobile devices (see Figure 3).

Figure 3.

Zumobi’s user

interface.

The interface

platform

supports a

zoomable

Web-browsing

experience on

mobile devices.

C
o
u
rt

es
y

o
f

Z
u
m

o
b

i
(w

w
w

.z
u
m

o
b

i.
co

m
).

80 July/August 2008

Mobile Graphics Survey

Another problem is visualizing the location of

off-screen objects because small mobile displays

can’t display all data at once. Solutions to this

problem augment the detailed view with visual

references to off-screen objects. For example, Bau-

disch and Rosenholtz use the “street lamp” meta-

phor, with an associated halo that includes a red

arc at the detailed view’s borders.26 Figure 4 illus-

trates the Halo approach.

3D user interfaces
Three-dimensional user interfaces are a key ap-

plication of visualization on mobile devices, es-

pecially those with autostereoscopic displays.

Creating 3D interfaces that approach the rich-

ness of 3D reality has long been a research tar-

get of several other research groups, particularly

for desktop environments. Ben Shneiderman and

Catherine Plaisant analyzed the features of effec-

tive 3D interfaces, primarily for desktop and near-

to-eye display domains, and proposed numerous

guidelines.31 These include making better use of

occlusion, shadows, and perspective; minimizing

the number of steps in navigation; and improving

text readability with better rendering and contrast

with the background.

Graphics hardware support for OpenGL ES 2.0

in a mobile phone opens up new possibilities for

user interfaces owing to the programmable nature

of that API. Because 3D UI rendering solutions de-

veloped for desktop computers don’t scale down

well to mobile devices, a different set of widgets

must be developed. In Figure 5, photos, videos, and

applications drop down at the far end and move

toward the front. The user can “catch” a photo, vid-

eo, or application and make it active. This includes

showing the video or photo in higher resolution or

activating the application. Programmable vertex

and pixel shaders render depth-of-�eld effects and

motion blur. These shaders also animate “wobbly”

windows using vertex skinning.

Directly manipulating content
Mobile devices are currently limited in the mode of

interaction they provide to users. However, direct-

manipulation interfaces provide a more intuitive

interaction than current key-modal and menu-

based systems.31 Users can manipulate individual

objects, each with a direct display representation.

They apply actions directly to objects by selecting

them and then choosing a command. Graphi-

cal representation is key for direct manipulation:

users manipulate, through selection events and

moving a pointing device, a graphical or iconic

representation of the underlying data. Dragging

an object by the pointer is an example of this in-

teraction mode.

Recently, stylus- and thumb-based interaction

with touch-sensitive screens has emerged as a

solution for mobile direct manipulation.32 Stylus-

based interaction, although accurate for selecting

objects in a small screen, requires both hands and

has caused additional attentional overhead.33 To

overcome this problem, researchers have devel-

oped one-handed thumb-based interaction. Ap-

ple’s iPhone is the most prominent example; with

a multitouch capacitive touch screen, it lets us-

ers interact with applications and type using their

thumbs. Karlson and her colleagues have further

developed several high-level gestures for more in-

tuitive interaction with their zoomable user inter-

face solution.30

Researchers have also incorporated physical sensors

such as accelerometers in mobile devices for richer

user interaction.34 However, such sensors produce

error buildup over time. One way to overcome this

is by merging relative continuous data from physical

sensors with absolute but potentially intermittent

data. This approach has provided good results and

could lead to reliable tracking solutions.

Figure 4. The

Halo approach

displays arcs

at the detailed

view’s borders.

The ring’s radius

is proportional

to the distance.

Figure 5. A

sequence of

images from

the SocialRiver

user interface.

Using OpenGL

ES 2.0,

SocialRiver

implements

motion blur,

depth of �eld,

and vertex

skinning. Video

input can also

be composited.
Courtesy of The Astonishing Tribe AB (www.tat.se).

Image courtesy of Patrick Baudisch and Ruth Rosenholtz.

 IEEE Computer Graphics and Applications 81

Alternatively, researchers have proposed several

solutions where incoming camera video estimates

phone motion and interacts with the user’s physi-

cal environment.28 With camera-based interac-

tion, users move the pointer or change the view by

moving the phone instead of interacting with the

screen or keypad. Correctly interpreting the ob-

jects’ observed motion or the camera’s global mo-

tion from video requires accurate tracking. Among

the recent solutions, Jari Hannuksela and his col-

leagues propose region-based matching that uses

a sparse set of features for motion analysis and a

Kalman �lter-based tracker for estimation.35 Capin

and Haro’s solution tracks individual corner-like

features observed in the entire incoming camera

frames.28 This lets the tracker recognize sudden

camera movements of arbitrary size, as long as at

least some features from the previous frame are

still visible. The tradeoff is that the tracker can’t

detect rotations.

Augmented reality
AR, which augments video with graphics, can be

contrasted with virtual reality, which renders ev-

erything with computer graphics, and telepresence,

which conveys reality somewhere else by trans-

mitting video and audio. Whereas many mobile-

graphics applications resemble desktop-graphics

applications (only with more constraints and less

performance), AR provides a user experience on

a mobile system that’s different from, and better

than, the desktop user experience. Here, we dis-

cuss some early AR systems.

One early example of mobile AR is the Touring

Machine.36 The main system consisted of a back-

pack loaded with a computer and batteries. The user

wore a head-mounted display and camera and held

a tablet and stylus for input. The system worked as

a campus tour guide, displaying the building names

and related information over the buildings on its

optical-see-through head-mounted display. Two

surveys cover the basic components and problems

of AR37 and developments in the late 1990s.38

Jun Rekimoto and Katashi Nagao’s Navicam was

an early handheld AR system.39 It consisted of a

handheld display that showed real-time camera

imagery. The images were passed to a workstation

for analysis. If the system recognized color-coded

ID tags, it would superimpose situation-sensitive

information over the camera image and display it

on the device. This kind of video-see-through sys-

tem has many advantages over optical-see-through

systems. Optical systems are open-loop control

systems that require a good world model and ac-

curate tracking of the user’s eye position. A video

system provides a much easier closed-loop control

system because it analyzes the image, localizes the

annotated object only with respect to the camera,

and overlays the annotations with the target.

Whereas NaviCam was tethered to a worksta-

tion, Daniel Wagner and Dieter Schmalstieg cre-

ated the �rst autonomous handheld AR system.40

They ported ARToolkit (www.hitl.washington.

edu/artoolkit), a popular library for many AR

demos that tracks camera position with respect to

square markers, to a PDA. The system of�oaded

the tracking to a server for faster frame rates, and

the graphics rendering used a proprietary subset

of OpenGL. Soon after, other researchers imple-

mented similar systems on mobile phones, such

as Mathias Möhring and his colleagues, who im-

plemented their own tracker,41 and Anders Hen-

rysson and his colleagues, who adapted Wagner’s

ARToolkit port to Symbian.42 Both these systems

used OpenGL ES for graphics rendering.1

AR is also useful in gaming, and several games

feature an AR phone. In Mosquito Hunt by Sie-

mens, virtual mosquitoes are drawn over live video

from a camera. By moving the phone and track-

ing the motion �ow in the camera, users try to

zap the mosquitoes. In Marble Revolution2 (www.

bit-side.com/311.html), the motion �ow guides a

marble through a maze. Kick Real (www.kickreal.

de) shows a soccer ball on the ground that users

can kick. AR Tennis tracks markers on a table to

anchor a tennis �eld and tracks additional mark-

ers on players’ phones for a collaborative or com-

petitive tennis game (see Figure 6).42

Most mobile AR systems use markers to track the

camera’s relative position with respect to objects or

use optical �ow to track the phone motion. More

recently, some systems have done away with mark-

ers. The PhoneGuide is a museum guide based on

camera phones (see the Projects in VR article in

Figure 6. In

AR Tennis, the

camera tracks

markers on the

table and the

other player’s

camera. The

players attempt

to bounce

the ball back

and forth in a

virtual tennis

court.

C
o
u
rt

es
y

o
f

A
n

d
er

s
H

en
ry

ss
o
n

.

82 July/August 2008

Mobile Graphics Survey

this issue for more on this).43 As Figure 7 illustrates,

the PhoneGuide determines the user’s approximate

location using Bluetooth beacons, so the vision sys-

tem only needs to distinguish between a smaller

set of objects. The system splits the input image

into bins, each bin produces a global feature vector

consisting of various histograms and ratios (colors,

intensities, edges, and so on), and a neural net-

work uses the inputs for recognition. Herbert Bay

and his colleagues also created a museum guide.44

Their system runs on a tablet PC and uses local

scale-invariant Speeded Up Robust Features (SURF)

to recognize objects. Such local feature matchers

work better even if the objects have different back-

grounds or are partially occluded. SURF has also

been ported to camera phones.45

The primary remaining challenges in mobile AR

are object recognition and real-time tracking for

unprepared markerless environments. Overcom-

ing these challenges allows annotating views with

labels or arrows pointing to objects of interest.

A secondary problem is seamlessly blending the

graphics objects with the real scene with correct

occlusions and shading. This requires modeling

the environment and the current illumination

levels in real time on the device.

Clearly, we need specialized graphics hardware

for power-ef�cient graphics, but much research

remains to be done. We believe that the best way

around the battery capacity problem is to continue

work on all fronts, which includes more ef�cient

high-level graphics hardware algorithms, intelligent

low-level power management, and clever software

techniques for rendering and transmission. This

also includes handling large, complex models and

data sets. For both software and hardware tech-

niques and algorithms, it would be convenient to

have a knob that the user can turn to trade off im-

age quality and operation time. Approximate ren-

dering for graphics hardware is a �eld that hasn’t

been investigated thoroughly, and we expect that

many new innovations will emerge.

Autostereoscopic displays can provide a major

breakthrough on mobile devices before it does so

on desktops. Interestingly, several such displays

can already switch between displaying a standard

2D image and conveying a 3D autostereoscopic

experience. Graphics APIs could easily add sup-

port for these displays. For 3D TV and video, open

issues in standardization organizations still exist.

The main practical obstacle for autostereoscopic

displays is creating content that fully bene�ts

from such displays.

User interfaces is an area where much innovation

will happen at every level. The low-level APIs, such

as OpenVG and OpenGL ES are there, but using 3D

so that it truly enhances the user experience is still

an active research issue. Multimodal interfaces that

integrate voice, gesture, stylus or �nger input, and

keyboard input with interactive graphics and sound

rendering, and take human perceptual and cogni-

tive capabilities into account, will create interaction

that’s easier and more fun. Games are traditionally

good at creating interfaces that are naturally easy to

use; hopefully, these UI aspects will become more

widespread in mobile UIs.

Because most mobile devices have a camera,

exploring how we can integrate AR functionality

into such cameras is worth exploring. However,

the killer AR application has yet to be discovered.

The future of mobile graphics is exciting, and our

community will continue to invent new algo-

rithms, techniques, and applications that exploit

the context of mobility.

Acknowledgments
The Swedish Foundation for Strategic Research sup-

ported Tomas Akenine-Möller through a grant on

mobile graphics, and additional support came from a

Knowledge Foundation visualization grant. The Euro-

pean Commission FP7 3DPHONE project (grant FP7-

213349) and FP6 3DTV project (grant FP6-511568)

supported Tolga Capin.

References
 1. K. Pulli et al., Mobile 3D Graphics with OpenGL ES

and M3G, Morgan Kaufmann, 2007.

 2. K. Pulli, “New APIs for Mobile Graphics,” Proc. SPIE

Figure 7. The

PhoneGuide.

The user points

a camera

phone to an

object in a

museum (left).

A Bluetooth

beacon gives

an approximate

location

(top right).

The system

recognizes

the image

and provides

additional

information

(bottom right).

©
 2

0
0
7

 I
EE

E.

 IEEE Computer Graphics and Applications 83

Electronic Imaging: Multimedia on Mobile Devices II,

SPIE, 2006, pp. 1–13.

 3. M. Callow, P. Beardow, and D. Brittain, “Big Games,

Small Screens,” ACM Queue, Nov./Dec. 2007, pp. 2–12.

 4. J. Baus, K. Cheverst, and C. Kray, “Map-Based Mobile

Services,” Map-Based Mobile Services Theories, Methods

and Implementations, Springer, 2005, pp. 193–209.

 5. J.D. Owens, “Streaming Architectures and Technology

Trends,” GPU Gems 2, Addison-Wesley, 2005, pp.

457–470.

 6. J. Ström and T. Akenine-Möller, “iPACKMAN: High-

Quality, Low-Complexity Texture Compression for

Mobile Phones,” Proc. ACM Siggraph/Eurographics Conf.

Graphics Hardware, ACM Press, 2005, pp. 63–70.

 7. J. Rasmusson, J. Hasselgren, and T. Akenine-Möller,

“Exact and Error-Bounded Approximate Color Buffer

Compression and Decompression,” Proc. ACM

Siggraph/Eurographics Symp. Graphics Hardware,

Eurographics Assoc., 2007, pp. 41–48.

 8. J. Hasselgren and T. Akenine-Möller, “Ef�cient

Depth Buffer Compression,” Graphics Hardware

2006: Eurographics Symp. Proc., A K Peters, 2006,

pp. 103–110.

 9. I. Antochi et al., “Scene Management Models and

Overlap Tests for Tile-Based Rendering,” Proc.

EUROMICRO Symp. Digital System Design, IEEE CS

Press, 2004, pp. 424–431.

 10. S. Morein, “ATI Radeon HyperZ Technology,” Proc.

Workshop Graphics Hardware (Hot3D), ACM Press, 2000;

www.graphicshardware.org/previous/www_2000/

presentations/ATIHot3D.pdf.

 11. T. Akenine-Möller and J. Ström, “Graphics for the

Masses: A Hardware Rasterization Architecture

for Mobile Phones,” ACM Trans. Graphics (Proc.

Siggraph), vol. 22, no. 3, 2003, pp. 801–808.

 12. T. Aila, V. Miettinen, and P. Nordlund, “Delay

Streams for Graphics Hardware,” ACM Trans.

Graphics (Proc. Siggraph), vol. 22, no. 3, 2003, pp.

792–800.

 13. J. Hasselgren and T. Akenine-Möller, “PCU: The

Programmable Culling Unit,” ACM Trans. Graphics

(Proc. Siggraph), vol. 26, no. 3, 2007, article 92.

 14. B.C. Mochocki et al., “Signature-Based Workload

Estimation for Mobile 3D Graphics,” Proc. 43rd

Ann. Conf. Design Automation (DAC 06), ACM Press,

2006, pp. 592–597.

 15. J. Hasselgren and T. Akenine-Möller, “An Ef�cient

Multi-View Rasterization Architecture,” Proc.

Eurographics Symp. Rendering, Eurographics Assoc.,

2006, pp. 61–72.

 16. A. Kalaiah and T. Capin, “Uni�ed Rendering Pipeline

for Autostereoscopic Displays,” Proc. 3DTV Conf.,

IEEE Press, 2007, pp. 1–4.

 17. F. Duguet and G. Drettakis, “Flexible Point-Based

Rendering on Mobile Devices,” IEEE Computer

Graphics and Applications, vol. 24, no. 4, 2004, pp.

57–63.

 18. V. Setlur et al., “Retargeting Vector Animation for Small

Displays,” Proc. 4th Int’l Conf. Mobile and Ubiquitous

Multimedia (MUM 05), ACM Press, 2005, pp. 69–77.

 19. J. Huang et al., “Interactive Illustrative Rendering

on Mobile Devices,” IEEE Computer Graphics and

Applications, vol. 27, no. 3, 2007, pp. 48–56.

 20. C.-F. Chang, and S.-H. Ger, “Enhancing 3D Graphics

on Mobile Devices by Image-Based Rendering,” Proc.

3rd IEEE Paci�c Rim Conf. Multimedia (PCM 02),

LNCS 2532, Springer, 2002, pp. 1105–1111.

 21. D. Hekmatzada, J. Meseth, and R. Klein, “Non-

Photorealistic Rendering of Complex 3D Models on

Mobile Devices,” Proc. 8th Ann. Conf. Int’l Assoc.

Mathematical Geology, vol. 2, Alfred-Wegener-

Stiftung, 2002, pp. 93–98.

 22. X. Luo and G. Zheng, “Progressive Meshes Transmission

over a Wired-to-Wireless Network,” Wireless Networks,

vol. 14, no. 1, 2006, pp. 47–53.

 23. A. Boukerche and R.W.N. Pazzi, “Performance

Evaluation of a Streaming-Based Protocol for

3D Virtual Environment Exploration on Mobile

Devices,” Proc. Int’l Symp. Modeling Analysis and

Simulation of Wireless and Mobile Systems (MSWiM

06), ACM Press, 2006, pp. 20–27.

 24. S. Chattopadhyay, S.M. Bhandarkar, and K. Li,

“Human Motion Capture Data Compression by

Model-Based Indexing: A Power Aware Approach,”

IEEE Trans. Visualization and Computer Graphics, vol.

13, no. 1, 2007, pp. 5–14.

 25. L. Chittaro, “Visualizing Information on Mobile

Devices,” Computer, vol. 39, no. 3, 2007, pp. 40–45.

 26. P. Baudisch and R. Rosenholtz, “Halo: A Technique

for Visualizing Off-Screen Objects,” Proc. SIGCHI

Conf. Human Factors in Computing Systems (CHI 03),

ACM Press, 2003, pp. 481–488.

 27. K. Hornbaek and M. Hertzum, “Untangling the

Usability of Fisheye Menus,” ACM Trans. Computer–

Human Interaction, vol. 14, no. 2, 2007, article 6.

 28. T. Capin and A. Haro, “Mobile Camera Based

User Interaction,” Handbook of Research on User

Interface Design and Evaluation for Mobile Technology,

Information Science Reference, 2008, pp. 541–555.

 29. B. Bederson et al., “Datelens: A Fisheye Calendar

Interface for PDAs,” ACM Trans. Computer–Human

Interaction, vol. 11, no. 1, 2004, pp. 90–119.

 30. A.K. Karlson, B.B. Bederson, and J. Sangiovanni,

“AppLens and launchTile: Two Designs for One-

Handed Thumb Use on Small Devices,” Proc. SIGCHI

Conf. Human Factors in Computing Systems (CHI 05),

ACM Press, 2005, pp. 201–210.

 31. B. Shneiderman, and C. Plaisant, Designing the User

Interface, 4th ed., Addison-Wesley, 2004.

 32. S.J.V. Nichols, “New Interfaces at the Touch of a

84 July/August 2008

Mobile Graphics Survey

Fingertip,” Computer, vol. 40, no. 8, 2007, pp. 12–15.

 33. J. Pascoe, N. Ryan, and D. Morse, “Using While

Moving: HCI Issues in Fieldwork Environments,”

ACM Trans. Computer–Human Interaction, vol. 7, no.

3, 2000, pp. 417–437.

 34. K. Hinckley et al., “Sensing Techniques for Mobile

Interaction,” Proc. 13th Ann. ACM Symp. User

Interface Software and Technology (UIST 00), ACM

Press, 2000, pp. 91–100.

 35. J. Hannuksela, P. Sangi, and J. Heikkilä, “Vision-

Based Motion Estimation for Interaction with Mobile

Devices,” Computer Vision and Image Understanding,

vol. 108, nos. 1–2, 2007, pp. 188–195.

 36. S. Feiner et al., “A Touring Machine: Prototyping 3D

Mobile Augmented Reality Systems for Exploring the

Urban Environment,” Proc. 1st Int’l Symp. Wearable

Computers, IEEE CS Press, 1997, pp. 74–81.

 37. R. Azuma, “A Survey of Augmented Reality,” Presence:

Teleoperators and Virtual Environments, vol. 6, no. 4,

1997, pp. 355–385.

 38. R. Azuma et al., “Recent Advances in Augmented

Reality,” IEEE Computer Graphics and Applications,

vol. 21, no. 6, 2001, pp. 34–47.

 39. J. Rekimoto and K. Nagao, “The World through the

Computer: Computer Augmented Interaction with

Real World Environments,” Proc. 8th Ann. ACM

Symp. User Interface and Software Technology (UIST),

ACM Press, 1995, pp. 29–36.

 40. D. Wagner and D. Schmalstieg, “First Steps towards

Handheld Augmented Reality,” Proc. 7th IEEE Int’l

Symp. Wearable Computers (ISWC 03), IEEE CS Press,

2003, pp. 127–136.

 41. M. Möhring, C. Lessig, and O. Bimber, “Video

See-Through AR on Consumer Cell-Phones,” Proc.

3rd IEEE and ACM Int’l Sym. Mixed and Augmented

Reality (ISMAR 04), IEEE Press, 2004, pp. 252–253.

 42. A. Henrysson, M. Billinghurst, and M. Ollila, “Face

to Face Collaborative AR on Mobile Phones,” Proc.

4th IEEE and ACM Int’l Symp. Mixed and Augmented

Reality (ISMAR 05), IEEE Press, 2005, pp. 80–89.

 43. E. Bruns et al., “Enabling Mobile Phones to Support

Large Scale Museum Guidance,” IEEE MultiMedia,

vol. 14, no. 2, 2007, pp. 16–25.

 44. H. Bay, B. Fasel, and L. Van Gool, “Interactive

Museum Guide: Fast and Robust Recognition of

Museum Objects,” Proc. 1st Int’l Workshop Mobile

Vision, Springer Verlag, 2006.

 45. W.-C. Chen et al., “Ef� cient Extraction of Robust

Image Features on Mobile Devices,” Proc. Int’l Symp.

Mixed and Augmented Reality (ISMAR 07), IEEE Press,

2007, pp. 281–282.

Tolga Capin is an assistant professor in Bilkent Uni-

versity’s Department of Computer Engineering. He has

contributed to various mobile graphics standards. His

research interests include mobile graphics platforms,

human–computer interaction, and computer anima-

tion. Capin received his PhD in computer science from

the Ecole Polytechnique Federale de Lausanne. Contact

him at tcapin@cs.bilkent.edu.tr.

Kari Pulli is a research fellow at Nokia Research

Center. He has been an active contributor to several

mobile graphics standards and recently wrote a book

about mobile 3D graphics. Pulli received a PhD in

computer science from the University of Washington

and an MBA from the University of Oulu. Contact

him at kari.pulli@nokia.com.

Tomas Akenine-Möller is a professor in Lund

University’s Department of Computer Science. His

research interests are graphics hardware for mobile

devices and desktops, new computing architectures,

collision detection, and high-quality rapid rendering.

Akenine-Möller received his MSc in computer science

and engineering from Lund University and his PhD in

graphics at the Chalmers University of Technology. He

received the best paper award at Graphics Hardware

2005 with Jacob Ström for the ETC texture compres-

sion scheme, which is now part of the OpenGL ES

API. Contact him at tam@cs.lth.se.

Silver Bullet

Security Podcast

Check out a free series of interviews

with host Gary McGraw,

featuring in-depth interviews

with security gurus, including

• Jon Swartz of USA Today

• Avi Rubin of Johns Hopkins, and

• Bruce Schneier of BT Counterpane

Sponsored by Cigital and

IEEE Security & Privacy magazine

Stream it online

or download to your iPod...

