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ABSTRACT 

This report is a review of the pubhcly available literature on algorithms for 
detecting ships in Synthetic Aperture Radar (SAR) imagery, with the aim 
of recommending algorithms for inclusion in the Analysts' Detection Support 
System (ADSS). The ADSS is a software system being developed at DSTO 
for the automatic detection of targets in SAR imagery. We outline the moti- 
vations, theory and justifications of the various approaches so that educated 
comparisons and evaluations can be made. Most current research on ship de- 
tection is based on detecting the ship itself rather than its wake. Detection 
of ship wakes is not addressed in any depth. Ship detection systems generally 
consist of several stages: land masking; preprocessing; prescreening; and dis- 
crimination. We consider each of these stages in turn and discuss the various 
algorithms which have been used. A basic system for low to medium resolution 
single channel SAR imagery is recommended and suggestions for improvements 
and alternatives are made. 
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The State-of-the-Art in Ship Detection in Synthetic 
Aperture Radar Imagery. 

EXECUTIVE SUMMARY 

This report is a review of the pubhcly available literature on algorithms for detecting 

ships in Synthetic Aperture Radar (SAR) imagery, with the aim of recommending algo- 

rithms for inclusion in the Analysts' Detection Support System (ADSS). Our intention is 

not just to summarise the current state of affairs in the literature. We also aim to out- 

line the motivations, theory and justifications of the various approaches so that educated 

comparisons and evaluations can be made. 

The driving requirement at DSTO for ship detection in SAR imagery is wide area 

surveillance of the oceans surrounding Australia and especially to the North where tropical 

atmospheric conditions hinder surveillance with electro-optic sensors. Modern SAR sensors 

can generate large amounts of data in a short period of time and there is an obvious need for 

automatic detection. This is especially true in the context of ship surveillance where much 

of the imagery contains only open ocean. The ADSS is a software system being developed 

at DSTO for the automatic detection of targets in SAR imagery. It was designed with the 

intention of reducing imagery analysts' workloads in wide area surveillance operations by 

directing their attention to areas in the imagery of likely interest. 

The launch of the Seasat SAR system in 1978, verified that ships could be imaged 

with space-based SAR systems. It also revealed an unexpected richness of oceanographic 

phenomena. Seasat was followed by several other space-based SAR systems including 

ERSl, ERS2, Radarsat and SIR-C/XSAR. These systems have made high quality SAR 

imagery of the ocean readily available and operational surveillance of ocean ship traffic is 

now viable. Several near real-time operational ship monitoring systems using SAR imagery 

are now in place or are currently being developed. The prime examples are the Ocean 

Monitoring Workstation (OMW), the Alaska SAR Demonstration (AKDEMO) system, 

the European Community Joint Research Centre (JRC) system, and the Qinetiq's MaST 

system. The Norwegian Defence Research Establishment (NDRE) is an important player 

too and was behind the system Eldhuset reported on in 1996. 

Given the long history and ongoing interest there is an extensive literature on algo- 

rithms for ship detection in SAR imagery. While many papers begin with a brief review of 

the literature relevant to their application, only one general review has been found. That 

review, by Fingas and Brown, notes the lack of previous reviews but is itself limited. This 

report aims to fill that gap. 

There are two fundamentally different means of detecting ships in SAR imagery: de- 

tection of the ship target itself and detection of the ship wake. While it is clearly desirable 

to make use of both possibilities (and many ship detection systems do), in this report, we 

only focus on algorithms which detect the ship itself. This decision was made in order to 

limit the size of the report. It is anticipated that the detection of ship wakes will be the 

topic of a companion report. As a justification of this stance, we note that most current 

research on ship detection is based on detecting the ship rather than its wake. Among the 

reasons for this are: ship backscatter is robust and less dependent on sea state; stationary 
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ships have no wake; wakes are often not visible and especially at large radar incidence 

angles; and wake detection is more computationally expensive. 

We also comment that there is a bias in the open literature towards space based rather 

than airborne SAR systems. In theory this should make little difference to detection 

algorithms since the imaging principles for both platforms are the same. However, we note 

that space-based SAR imagery is generally single channel and lower resolution. Thus most 

ship detection algorithms in the Hterature are aimed at locating bright point-Hke targets 

in single channel imagery. Space based SARs also tend to have lower incidence angles 

which makes the detection problem harder. We add however, that the next generation of 

space-based SARs offer multi-channel polarimetric data and consequently there is a shift 

towards research on algorithms which make use of multi-channel data. 

Past research efforts on automatic target detection in SAR imagery have clearly demon- 

strated that no single detection algorithm will produce satisfactory results and a hierarchi- 

cal system of algorithms is needed. Thus ship detection systems generally consist of several 

stages: land masking; preprocessing; prescreening; and discrimination. In this report, we 

consider each of these stages in turn and discuss the various algorithms which have been 

used. Recommendations on algorithms for the ADSS are made in the final section. 

There are two main difficulties in making recommendations. First, different types of 

imagery require different algorithms. Resolution is of prime importance here but other 

factors such as polarisation and image processing are relevant too. Second, there is a lack 

of rigorous performance evaluation in the literature. Often the imagery is visually ground- 

truthed and some algorithms are very poorly tested with results only being presented for 

a handfull of images. This makes comparison of the various approaches difficult. Given 

this, our first recommendation is to: 

• specify a surveillance scenario; 

• decide on appropriate radar parameters and geometry; 

• set up well ground-truthed benchmark tests; 

• compare the different detection algorithms. 

The only complete systems to have extensive and convincing publicly available reports 

of their performance are the OMW, AKDEMO, SUMO and Eldhuset systems. On this 

basis we recommend the following basic system for low to medium resolution single channel 

SAR imagery: 

• land masking using a shore-line database with a buffer zone included; 

• a simple moving window adaptive threshold algorithm (with the two parameter 

CFAR being the preferred option); 

• clustering of detected pixels; 

• discrimination of false alarms using elementary target measurements; 

• human supervision and discrimination of the final detections; 
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We note that this system can be applied to higher resolution imagery if an initial down 

sampling step is included. Once this basic system is in place, improvements and alterna- 

tives can be considered. We discuss the details of this basic system and make suggestions 

for improvements and alternatives. 

We believe that while many of the suggested refinements and alternatives may result in 

improved performance, the most significant gains are likely to come from future research 

on polarimetric imagery and better false alarm discrimination. Much of this research will 

be based on Envisat ASAR and Radarsat-2 data. 
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1    Introduction 

This report is a review of the published Hterature on algorithms for detecting ships 

in Synthetic Aperture Radar (SAR) imagery with the aim of describing algorithms for 

potential inclusion in the Analysts' Detection Support System (ADSS). Our intention is 

not just to summarise the current state of affairs in the literature. We also aim to outline 

the motivations, theory and justifications of the various results and approaches so that 

educated comparisons and evaluations can be made. 

Modern SAR sensors can generate large amounts of data in a short period of time and 

there is an obvious need for automatic detection of targets of interest. This is especially 

true in the context of ship surveillance where much of the imagery contains only open 

ocean. Automation also has the potential to guarantee consistency and predictabihty. At 

DSTO, a software system called the ADSS is being developed for the automatic detection 

of targets in SAR imagery, see [101] and [100]. The ADSS was designed with the intention 

of reducing imagery analysts' workload in wide area surveillance operations by directing 

their attention to areas in the imagery of likely interest. The design and development 

of the ADSS is ongoing. The driving requirement for ship detection with SAR imagery 
at DSTO is wide area surveillance of the oceans surrounding Australia and especially 

the oceans to the North where tropical atmospheric conditions hinder surveillance with 

electro-optic sensors. 

While many papers on ship detection begin with a brief review of the relevant liter- 

ature, only one general review has been found. That review, by Fingas and Brown [37], 

notes the lack of previous reviews. While the Fingas and Brown review is worthwhile, it 

is clearly limited. Its scope includes optical sensors and it cites less than 30 papers in 

total. It is also very brief being only 7 pages long. Of the many other papers on ship 

detection, good overviews may be found in Yeremy et al. [142], Wackerman et al. [135], 

Henschel et al. [47], Eldhuset [32] and Wahl [138]. A snap shot of the state-of-the-art 

in the year 2000, can be found in the Fall issue of Backscatter [11]. This issue contains 

amongst other items, summaries of workshops on "Ship Detection for Fisheries Monitor- 

ing" [59], "Ship Detection with Satellite-based Sensors" [132] and "Ship Detection from 

Airborne Platforms" [36]. Another snap shot of activity was provided by the symposium 

on "Emerging and Coastal Applications of wide swath SAR" held in March 1999 at the 

Johns Hopkins University Applied Physics Laboratory. The proceedings were published 

in Johns Hopkins APL Technical Digest, Volume 21, Number 1, 2000. Among the papers 

of interest are [44], [56], [94], [89], [82] and [126]. Many other meetings on ship detection 

have been held but the proceedings are not readily available. 

We do not attempt to completely cover the topic of ship detection in SAR imagery 

and two restrictions have been placed on the scope of this report. First, there are two 
fundamentally different means of detecting ships in SAR imagery: detection of the ship 

target itself and detection of the ship wake. While it is clearly desirable to make use of 

both possibilities (and many ship detection systems do), we will only focus on algorithms 

which detect the ship itself. This decision was made in order to limit the size of the report. 

It is anticipated that the detection of ship wakes will be the topic of a companion report. 

As a justification of this stance, we note that most current research on ship detection is 

based on detecting the ship rather than its wake.  Among the reasons for this are: ship 
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backscatter is robust and less dependent on sea state; stationary ships have no wake; wakes 

are often not visible and especially at large radar incidence angles; and wake detection is 

more computationally expensive. 

The second limit to the scope of this report relates to the expertise in the group at 

DSTO behind the development of the ADSS. The skills of this group are founded on rig- 

orous approaches using mathematical modelling and statistical hypothesis testing. There- 

fore, less rigorous techniques such as artificial neural networks, genetic programming, etc., 

will not be covered in detail. We will indicate such possibilities with some representative 

papers but we will not delve into the details. This perspective agrees with that of Oliver 

and Quegan who note in the introduction to their book [86] that ad hoc methods rarely 

prove to be robust and rigorous approaches are preferred. 

We also note that not all work on ship detection is being published in the open lit- 

erature. Given the nature of the topic, it is to be expected that many reports are of 

defence significance and therefore not publicly available. It is also the case that some of 

the research is commercially sensitive and therefore only pubHshed as internal reports or 

not at all. The prime example of this is Qinetiq's ship detection system, MaST. The only 
reference we found to MaST was the web page [96]. Similarly, not all the documentation 

for Satlantic's ship detection system, the OMW, is readily available. For example, Yeremy 
et al. [142], cite the internal Satlantic report [95], by Plache and Henschel. Where possible 

such internal reports have been obtained (although [95] could not be). Also, some work 
has not been published at all. For instance, the bibliography of the IGARSS'Ol conference 

lists the papers: "Comparison and Validation of Different Algorithms for (Merchant and 

Fishing) Ship Detection with Spaceborne SAR Data" by P-L. Prison et al; and "Improve- 

ment and Validation of Ship Detection by SAR Interferometry" by A. Arnaud; yet these 

papers did not appear. 

Past research efforts on automatic target detection in SAR imagery have clearly demon- 

strated that no single detection algorithm will produce satisfactory results and a hierar- 

chical system of algorithms is needed. Thus ship detection systems generally consist of 
several stages: land masking; preprocessing; prescreening; and discrimination. In this 

report, we consider each of these stages in turn and discuss the various algorithms which 
have been used. This discussion forms the content of Sections 3 to 8. In order to put the 

discussion in context, we first review, in Section 2.1, the topic of SAR imagery and its 
nature and properties in ocean surveillance applications. Following the discussion of the 

various detection stages, we turn in Section 9 to a description of the ship detection systems 

as a whole. In this section we also discuss the various research groups and organisations 

behind the systems and indicate their future research directions where possible. In the 

final section of the report we make recommendations on ship detection algorithms for the 

ADSS. 
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2    SAR imagery for ship detection 

2.1    SAR imagery 

The aim of a synthetic aperture radar (SAR) is to form an image which represents the 

radar reflectivity of the scene being imaged. The radar reflectivity is expressed in terms 

of a quantity known as the radar cross section (RCS) and denoted by a. For various 

reasons, including the comparison of SAR systems with different resolutions, it is usual 

to remove the area dependence from RCS measurements. Thus the output of a SAR 

system is usually the normalised radar cross section NRCS which is the RCS per unit area 

illuminated. The NRCS is also known as the radar backscattering coefficient and is almost 

universally denoted by cr°. 

While other radar systems can also be used to form images, the distinguishing feature 

of SAR is that it can achieve a high resolution in the azimuth direction as well as the range 

direction. This is done mathematically through the construction of a synthetic aperture. 

The details are not relevant here. There are several diff'erent SAR image formation al- 

gorithms corresponding to the different modes of operation — stripmap, spotlight, scan, 

etc. However, we do not propose to go into the technical details of SAR image formation 

here. While it is possible that an understanding of the SAR image formation process can 

help with detector design, mostly that is not the case and all that is required is a general 

understanding of the nature and properties of SAR imagery. Good background references 

on SAR image formation are, for instance, [18] and [86]. 

An important factor to take into account when discussing SAR imagery is the platform. 

A SAR system can be spaceborne or airborne. Spaceborne SARs are usually simple due 

to the complexity and expense of deployment. Thus multi-frequency, multi-polarisation 

SARs are more common on airborne platforms and the image quality tends to be better. 

On the other hand, spaceborne SARs provide wider spatial coverage and regular revisits. 

Generally, spaceborne SAR is better for wide area surveillance and airborne SAR is better 

for flexible tasking. Consequently, most ship detection systems have been designed for 

satellite SAR imagery. However, as Fingas and Brown point out, [37] and [36], much of 

the work is applicable to either platform because the principles are the same. 

Clearly, detection algorithms need to take account of the nature and properties of the 

imagery they are applied to. In this respect, the most important SAR parameters are 

• resolution, 

• incidence angle, 

• polarisation, 

• radar frequency. 

Other relevant factors are: pixel spacing, number of looks, swath width, etc. For satellite 

SAR, the orbital parameters are also of interest: nominal altitude, inclination, sun syn- 

chronicity, length of repeat cycle. We will discuss some of these factors and their affect on 

ship detection below and in the following subsections. However, our intention is only to 
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cover the most important aspects and to indicate the type of considerations that need to 

be made. 

As just mentioned, a fundamental parameter of SAR imagery is the resolution. Mar- 

itime surveillance generally involves a trade oflF between resolution and coverage. See for 

instance the article on Radarsat SAR mode selection for marine applications by Vachon 

and Olsen, [131]. Higher resolution allows for higher probabilities of detection, especially 

for smaller ships, but it comes at the cost of narrower swath widths and longer revisit 

times. Thus the highest resolution SAR imagery is not necessarily the best. For example, 

Kourti et al. [61] and also Gower and Skey [44] and [43], recommend the use of Radarsat 

ScanSAR Narrow imagery for surveillance of fishing vessels. The resolution of such im- 

agery is in the order of 50-100 metres whereas the highest resolution Radarsat Fine mode 

has a resolution of 8 metres. The gain is that the swath width of ScanSAR Narrow im- 

agery is 305 km compared with 45 km for Fine mode imagery and hence whole fisheries 

can be covered with a single ScanSAR Narrow image. We also add here Lombardo and 

Sciotti's remarks that while higher resolution imagery allows for more reliable discrimina- 

tion and possibly classification of ships, it comes at the cost of greater inhomogeneity and 

very non-Gaussian statistics which need to be taken into account in detector design. The 

segmenting detector they use for high resolution imagery is more complex than the one 

they use for low resolution imagery. However, we emphasise that the choice of resolution 

depends on the size and nature of the ships to be detected and that small wooden ships 

may not show up in low resolution imagery. 

Due to the geometry and physics of the formation process, SAR imagery has some 

peculiar properties. They include: 

• speckle noise, 

• effects from lack of scene coherence, 

• azimuth shifting and smearing of moving objects, 

• radar shadow, 

• foreshortening and layover, 

• multiple bounce effects. 

While all of these can affect the design and operation of ship detection and classification 

algorithms, the first three are especially important and we discuss them further. 

Speckle is a fundamental property of SAR imagery. Oliver and Quegan, [86], emphasise 

that speckle is only noise-like rather than an actual noise process. Its cause Hes in the 

scattering of coherent radar waves from rough surfaces. Oliver and Quegan present a 

detailed explanation of speckle. As is well known, the effect of speckle is to give the 

observed SAR intensity I a negative exponential distribution 

p(/) = iexp(-^),        7>0, (1) 

where a is the "underlying RCS". As we discuss in the section on prescreening algorithms, 

the cell averaging CFAR (CA-CFAR) detector was specifically designed for imagery with a 
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negative exponential distribution. The CA-CFAR is used in many ship detection systems. 

Often SAR imagery is multi-look processed to reduce the eflfects of speckle. Multi-look 

processing involves incoherently averaging several independent measurements of RCS (re- 

ferred to as looks) and it effectively trades resolution off against RCS accuracy. Again the 

details are in Oliver and Quegan's book. If L looks are averaged then observed intensity 

/ is known to obey a gamma distribution with order parameter L: 

Multi-looking is just one example of how the processing stream affects the statistics of SAR 

imagery and we repeat that care needs to be taken to ensure algorithms are appropriate 

for the imagery being used. 

Another effect related to the nature of the SAR imaging process is image blurring 

caused by a lack of scene coherence. One of the assumptions underlying the SAR image 
formation process, is that the scene being imaged behaves coherently for the duration of 

the imaging process. Loosely, a scene is coherent if the nature of the scattering mechanisms 

in the scene do not change. This assumption is clearly violated for dynamic surfaces like 

wind blown foliage or the ocean surface. A fundamental quantity for gauging such effects 

is the coherent integration time (also sometimes referred to as the exposure time) 

which is the length of time a scatterer spends in the radar beam. It is given by 

where A is the radar frequency and D is the length of antenna in the azimuth direction. 

Vachon et al, [130], state that typically T is of the order of 1-10 seconds, although we 

note that T = 0.5s for Radarsat. The scene coherence time r is the time period over 

which the scene can be considered to retain the coherence necessary for proper SAR image 

formation. If the scene coherence time is less than the SAR coherent integration time then 

the azimuth resolution of the SAR image will be degraded. Vachon et al. cite from the 

literature that this loss of resolution is 

(4) 

where pi is the azimuth resolution for single look imagery without effects from the lack 

of scene coherence and L is the number of looks. Vachon et al. make no comment on the 

possible values of r for the ocean surface. However estimates do exist, and Carande, [17], 

for instance, in experiments with L-band along-track interferometric data from AirSAR, 

estimates the coherence time of the ocean surface to be in the range from 60 ms to 120 ms 

which is much less than usual coherent integration times for SAR systems. 

The theoretical basis of the SAR imaging principle also assumes that all objects in 

the scene being imaged are stationary. When this assumption does not hold and targets 

are in motion some significant effects result. The most important of these is azimuth 

image shift. Azimuth image shift is the effect whereby a target moving with a non-zero 

range velocity component will not appear in its correct position in the image but will be 

displaced in the azimuth direction.   The formulae for quantifying this displacement are 
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well known, see [106]. For an airborne SAR, if V is the aircraft ground speed, R the range 

to the target and UR the range velocity component of the target motion then the azimuth 

shift is given by 

5x = -URy- (5) 

The factor R/V in this formula is known as the range velocity ratio. It is clearly an 

important factor in the design of SAR sensors and is often quoted in the specifications. In 

general, the smaller R/V is the better. For satellite SAR, the ground speed V is different 

to the satellite speed Vp and the formulae becomes 

5x = -un^. (6) 

Note here that Vp/V = (r + h)/r where r is the radius of the earth and h is the height of 

the satellite above the earth. Azimuth image shift leads to the curious situation where, 

for example, a ship may be displaced from its wake in SAR imagery. In this situation, 

the range component of ship velocity can be inferred from the size of the displacement by 

inverting either formulae (5) or (6). Note that if the ship orientation is also known then 

the true velocity can be estimated in this way. The factor R/V in (5) is known as the 

range velocity ratio. It is clearly an important factor in the design of SAR sensors and 

is often quoted in the specifications. In general, the smaller R/V is the better. Radarsat 

has a nominal range velocity ratio of 115s. Other effects of target motion in the range 

direction are range walk and amplitude reduction, see [106] for details. 

Target motion in the azimuth direction also affects SAR imagery although not to the 
same extent as azimuth image shift. It causes blurring in the azimuth direction and hence 

is called azimuth defocusing or azimuth smearing. Azimuth smearing is actually the 

result of second order motion towards the radar due to the combination radar motion and 
target azimuth motion. For exactly the same reason, a steady acceleration of the target in 

the range direction also causes azimuth smearing. It follows that ship pitching, rolling and 

yawing motions and also heave, sway and surge motions will lead to azimuth defocusing. 

However, nothing has been said about this in the ship detection literature, except for 

a passing suggestion by lehara et al, [53] that standard ship detection algorithms may 

struggle in high seas due to the blurring caused by ship motion. We also mention here the 

paper by Ouchi et al, [92], which discusses non-uniform azimuth shifts of moving ships 

and attributes the cause to ship pitching motions. Of course, ocean waves will also be 

subject to these effects. 

SAR image quality issues also need to be considered. Again, it is beyond the scope of 

this report to delve too deeply here and our intention is only to give a few examples. A 

partial list includes: 

• system noise (measured by the noise equivalent sigma naught (TJ^^), 

• image blurring (defocusing), 

• geometric distortion, 

• system point spread function (PSF) characteristics, 

• sidelobes - both temporal and spatial (aspects of the PSF), 
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• radiometric accuracy, 

• polarimetric accuracy, 

• azimuth banding (caused by antenna yaw), 

• scalloping (horizontal banding due errors in calculating the azimuth beam pattern), 

• radio interference. 

We cite some examples of these for Radar sat SAR data next. 

Radarsat SAR has been extensively used for ship surveillance purposes and its image 

quality issues are well understood. Some examples from the ship detection literature are as 

follows. Wackerman et al, [135], note that system noise can be a problem. It causes bright 

"dots" which their detection algorithm mistakes for ships. They also comment on the 

presence of bright stripes oriented in the range direction which cause some false detections. 

They attribute these stripes to the SAR processor used but do not explain exactly what 

the problem is. Werle, [140], reports the occurrence of azimuth ambiguity patterns. In 

effect, azimuth ambiguity patterns are "ghosted" replicas of real image features but shifted 

in azimuth. They are due to higher than desired side lobes which in turn are caused by 

the low pulse repetition frequency necessary to achieve large incidence angles. Werle 

gives examples where this leads to ghosting of bright land features over the ocean. Such 

patterns represent a significant problem to ship detection algorithms since they can be 

mistaken for real ships. Similarly, temporal sidelobes can result in range displaced false 

targets, see for instance the work of Schwartz et al. in [114]. Vachon et al. [126] report 

image quality problems due to automatic gain control (AGC) errors causing saturation of 

the analog-to digital converter (ADC). Henschel et al. [47] report the need to mask out 

beam seam/nadir ambiguities. Gower and Skey, [43], report the presence of very visible 

narrow vertical lines as a result of nadir ambiguities. Rey et al., [102], note that false 

alarms can be caused by poor SAR processing and heavy saturation in the image. Kourti 

et al, [61], reports Radarsat ScanSAR errors resulting in bright spots at the edges of 

the beams. Hawkins et al, [46], report that due to the complexity of combining several 

elevation beams and the inherent processing issues, it appears that image quality cannot 

be sustained with the desired radiometric fidelity with ScanSAR. They also mention beam 

seam/nadir ambiguities and AGC problems. More recently, Aresu and Schwartz, [4], 

have compared the image quality and radiometric calibration of several different Radarsat 

ScanSAR processors with automatic ship detection and classification in mind. Amongst 

other things, they comment on underflow and overflow problems and also on output scaling 

and range (8 bits or 16 bits) problems. They note in particular that while logarithmic 

output scahng is useful for oil spill detection, it is not suitable for ship detection. Robertson 

et al, [105], also considered the effect of using diflFerent SAR processors and found a small 

improvement with an experimental 16 bit processor. 

Having noted the work of Werle [140], where the problem of azimuth ambiguity patterns 

caused by low pulse repetition frequencies (PRFs) is discussed, we add here a comment 

on the article by Luscombe by Lightstone [76], where it is suggested that using even lower 

PRFs on Radarsat may be advantageous for ship detection purposes. The idea here is 

that by tolerating the azimuth ambiguities (in fact they are predictable and hence do not 

prevent accurate detection) other gains can be made.  The proposed mode of operation 
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allows for wide coverage at relatively high incidence angles both of which are desirable for 

ship detection purposes. 

2.2    SAR imaging systems 

Both airborne and spaceborne SAR systems have been used for ship detection. The 

main space-based systems referred to in the literature are Seasat, ERS-1, SIR-C/X-SAR, 

ERS-2, Radarsat-1, Envisat and Radarsat-2. Note that Envisat has only recently been 

launched and Radarsat-2 is not due until late 2005. A brief review of these systems 

(except Radarsat-2) is given by Raney in [97]. We repeat part of Raney's table of system 

parameters in Table 1. We have updated the entries for Envisat and added a new entry 

for Radarsat-2. Sources for these entries are given below. The term QuadPol in the 

table means that all four polarisation channels are measured and hence the radar is fully 

polarimetric. We discuss polarisation further in Section 6. We stress that the table 

contains nominal values and is a guideline only. SAR systems often have several operating 

modes and system parameters such as incidence angle, polarisation, resolution and swath 

width will vary depending on the mode of operation. We expand on this below. It should 

also be borne in mind that incidence angle and range resolution are only specified for 

the mid-swath location and will vary across the swath. Other relevant satellite systems 

which we mention here in passing are JERS-1 (L-band, HH, 39°), ALMAZ-1 (S-band, HH, 

30-60°) and the upcoming ALOS PALSAR (L-band, QuadPol, 8-60°). 

The main airborne systems are NASA's AirSAR and CCRS's C/X SAR. The latter is 

flown on a Convair-580 aircraft and consequently is often referred to as the Convair-580 
SAR. We repeat Raney's table of parameters for these systems too in Table 1. However, 
care is needed here — airborne SAR systems are typically used for technology develop- 

ment as well as applications and so their hardware is frequently changed. The entries 

for NASA's AirSAR and CCRS's C/X SAR were current in 1995 but are Ukely to have 

changed now. Raney comments that AirSAR is the most widely deployed airborne SAR 

system and its QuadPol capability at three frequencies makes it a rich data source. Raney 

also observes that the R/V ratio of SIR-C/X-SAR and the airborne SAR systems are 

much more favourable for imaging the ocean than the other systems. Both AirSAR and 

the Convair-580 SAR are also capable of along-track (or time difference) interferometry, 

we discuss this mode of operation and how it can be used for ship detection in Section 7. 

Note that the parameters of the CCRS's C/X SAR are somewhat similar to those of 

Radarsat-2. Interestingly, Yeremy et al. comment in [143] that the C/X SAR has in fact 

been used to provide an indication of Radarsat-2's capabilities. 

Next we provide more details on the Seasat, ERS-1/2, Radarsat-1/2 and Envisat sys- 

tems. We begin with Seasat. Seasat was the first spaceborne SAR system. Moreover 

Seasat was designed specifically for viewing the ocean. Raney, [97], comments that Seasat 
set the standard for virtually all satellite SAR systems that followed. Precedents for cer- 
tain image parameters, and in particular resolution and number of looks were established 

by Seasat and there is little flexibility unless one is willing to sacrifice other parameters 

such as swath width. While Seasat has been historically important in the development of 

ship detection algorithms, it only flew for 3 months and is really no longer relevant. 

Like Seasat, the ERS-1/2 systems have a fixed viewing geometry and are single channel. 
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SAR sensor Seasat ERS-1/2 Radarsat-1 SIR-C/X-SAR 

Country U.SA. Europe Canada USA/Germany/Italy 

Launch date 1978 1991/1995 1995 1994 

Lifetime 3 months 2-3 years 5 years 10 days 

Wavelength band L C C L;C;X 

Polarisation HH W HH L&C - QuadPol; VV 

Incidence angle (°) 23 23 <20-50 15-55 

Range resolution (m) 25 26 10-100 10-30 

Azimuth resolution (m) 25 28 9-100 30 

Looks 4 6 1-8 r^ 4 

Swath width (km) 100 100 10-500 15-60 

Noise equiv. cr° (dB) -24 -24 -23 -40; -40; <-20 

Nominal R/V (s) 115 115 115 33 

Exposure time (s) 2.5 0.7 0.5 0.7; 0.16; 0.085 

SAR sensor Envisat Radarsat-2 AirSAR C/X SAR 

Country Europe Canada USA Canada 

Launch date 2002 2005 

Lifetime 7 years 

Wavelength band C C C;L;P C;X 

Polarisation Co k CrossPol QuadPol QuadPol C - QuadPol 

Incidence angle (") 15-45 10-60 20-60 0-85 

Range resolution (m) 30-1000 3-100 7.5 (slant) 6-20 

Azimuth resolution (m) 30-1000 3-100 2 <1-10 

Looks 4 1-7 

Swath width (km) 60-400 20-500 7-13 18-63 

Noise equiv. a^ (dB) -40;-30 

Nominal R/V (s) 25 45 

Exposure time (s) 1.1; 3.7; 9.5 2; 1.2 

Table 1: Satellite SAR system specifications, after Raney [97] 

However, two operating modes are possible: stripmap mode and wave mode. The entries 

in Table 1 refer to the stripmap mode and are a fairly complete summary of that mode. 

More details are available from the ERS web site ^. For instance the incidence angle varies 

from 20° in the near swath to 26° in the far swath. Also, while the azimuth resolution 

is stated to be 28 m, this is dependent on the number of looks the data is processed 

to. According to the web page, the azimuth resolution actually lies between 6 m and 

30 m. The special wave mode of operation provides the two-dimensional spectra of ocean 

surface waves. While such ancillary information can be useful for ship detection purposes, 

a description of the wave mode is beyond the scope of this report. 

A comprehensive description of the Radarsat-1 SAR is given by Raney et al. in [98]. 

They note that the driving design criterion was a standard imaging mode which could be 

■'http://earth.esa.int/ers 
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Mode Resolution Looks Width Incidence Angle 

Range x Azimuth (m) (km) (degrees) 

Standard 25x28 4 100 20-49 

Wide(l) 48-30 X 28 4 165 20-31 

Wide(2) 35-25 X 28 4 150 31-39 

Fine 11-9 X 9 1 45 37-48 

ScanSAR (N) 50x50 2-4 305 20-40 

ScanSAR (W) 100 X 100 4-8 510 20-49 

Extended (H) 22-19 X 28 4 75 50-60 

Extended (L) 63-28 X 28 4 170 10-23 

Table 2: Image characteristics of Radarsat-1 imaging modes, after Raney et al. [98] 

used at incidence angles ranging from 20° to 50°. However, this design criteria allowed for 

several other imaging modes at little extra cost. In addition to the Standard mode, the 

Radarsat-1 SAR has Fine Resolution, Wide Swath, Extended and ScanSAR. We reproduce 

their table of the image characteristics these modes in Table 2. 

The Envisat SAR system is called ASAR (Advanced SAR). An indication of its capa- 

bilities is given in Table 1. Those details and the following description were obtained from 

the Envisat web page ^. Envisat ASAR was designed to ensure continuity with the image 
and wave modes the ERS-1/2 AMI, however, unHke the AMI it has a variable viewing 

geometry and variable transmit/receive polarisations. Thus new modes of operation are 

possible and the ASAR has enhanced capability in terms of coverage, incidence angles, 

and polarisation. There are four fundamentally different modes: Image Mode (IM), Wide 
Swath Mode (WS), Global Monitoring Mode (GM) and Alternating Polarisation Mode 
(AP). The IM mode is a stripmap SAR mode with high spatial resolution (30 m) and is 

similar to the ERS AMI image mode. (We note here that the 30 m resolution data is 

3-look and a SLC product with 9 m range and 6 m azimuth resolution is also possible). 

Unlike the AMI however, seven different swaths located over incidence angles ranging from 

15 to 45° are possible. The widths of the swaths vary from 60 km to 110 km depending 

on the incidence angle. Both HH and W polarisations can be selected. In WS mode 

a ScanSAR technique is used to provide images of a wider strip (405 km) with medium 

resolution (150 m) in HH or W polarisation. The total swath is built from five subswaths. 

GM mode is the same as the WS mode except for a lower resolution (1 km) and attendant 

to that a low data rate. Finally, in AP mode a ScanSAR technique is used but with 

polarisation changing rather than incidence angle. The result is two images of the same 

scene in different polarisations combination (HH/W or HH/HV or W/VH). The same 
swaths as Image Mode can be used and the resolution is 30 m. However, the radiometric 

resolution is reduced compared to Image Mode. 

Radarsat-2 is due to be launched late in 2005. Nominal specifications are given in 

Table 1. Our source was Sanden et al., [108]. Sanden et al. note that Radarsat-2 will be 
capable of all imaging modes of Radarsat-1 as well as incorporating new modes and other 

significant improvements. In particular they mention improvements in spatial resolution 

(3 m will be possible), polarisation (QuadPol will be available), orbit control and look 

^http://envisat.esa.int 
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Swath Looks Resolution Incidence 

Mode type Mode Width Rng X Az Rng X Az Angle 

(km) (m) (degrees) 
SSP or SDP Standard 100 1x4 25x28 20-49 
SSP or SDP Wide 150 1x4 25x28 20-45 
SSP or SDP Fine 50 1x1 10x9 37-49 
SSP or SDP ScanSAR Wide 500 4x2 100 X 100 20-49 
SSP or SDP ScanSAR Narrow 300 2x2 50x50 20-46 

HH only Low Incidence 170 1x4 40x28 10-23 
HH only High Incidence 70 1x4 20x28 50-60 

QP Standard QP 25 1x4 25x28 20-41 

QP Fine QP 25 1x1 11x9 30-41 
SSP Multilook Fine 50 2x2 11x9 30-50 
SSP Ultra-fine Wide 20 1x1 3x3 30-40 

Table 3: Characteristics of Radarsat-2 imaging modes. 

direction. The improved orbit control will allow better georeferencing, while the proposed 

selective look direction is expected to reduce revisit times. In total 11 diff'erent modes are 

possible. These are classified into 3 types: Selective Single Polarisation (SSP), Selective 

Dual Polarisation (SDP) and Quad Polarisation (QP). SSP allows any of the polarisations 

HH, HV, VH and W, to be selected, SDP allows either HH and HV or VV and VH, while 

QP measures all 4 channels. The QP mode is limited to swath widths of 25 km which 

will impinge on its utility for ship monitoring. Also the Ultra Fine resolution of 3 m is 

restricted to the SSP mode. A summary of swath widths, swath coverage and resolution 

are given in Table 3. This information came from the Radarsat-2 web site ^ and the CCRS 

report, [110]. 

We also briefly mention the Japanese ALOS PALSAR system, given that it is highly 

likely that one of the applications of this system will be ship detection. The ALOS PAL- 

SAR launch is due late in 2004. It will be L-band and fully polarimetric with incidence 

angles in the range 8-60°, resolution in the range 7-100 m, a swath width in the range 

40-350 km and a noise equivalent a° of less than —25 dB. See the ALOS web page "^ for 

more details. 

Finally, we note that in describing SAR systems the SAR processor and related image 

preprocessing algorithms must also be borne in mind. Certain eispects of the imagery 

quality, e.g. system impulse response function, pixel spacing, peak sidelobe ratio and 

radiometric resolution, are processor dependent. The ERS web site ^ provides a table 

with such information for ERS imagery. The paper by Raney et al, [98] has a similar 

table for Radarsat-1. That such considerations are relevant to ship detection is evidenced 

in the paper by Aresu and Schwartz, [4], which compares the performance of four different 

Radarsat ScanSAR processors with particular reference to ship RCS and ship detection. 

Various image products are available. The differences between these products relate to 

*http://www.radarsat2.info/index.£isp 
*http://www.eorc.nasda.go.jp/ALOS/ 
http://earth.esa.int/ers 
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factors such as: the number of looks, removal of SAR-related distortion errors, calibration, 

georeferencing, map projection, etc. Radarsat-1 offers various data products in three 

main categories: RAW, Path-Oriented and Map-Oriented. RAW data consists of the 

unprocessed radar signals before image formation. Path-Oriented products are SAR data 

after image formation but before but before georeferencing and map projection. Single look 

complex imagery is one of the Path-Oriented products. Map-Oriented products provide 

imagery in map coordinates with "North Up". Likewise ERS-1/2 offers a range of products 

(and presumably other systems do too). Among the products offered by ERS, see the ERS 

web site ^ are: 

• Raw data (RAW); 

• Single Look Complex (SLC); 

• Precision Image (PRI); 

• Ellipsoid Geocoded Image (GEC). 

We quote from the web page on PRI: The Precision Image is a multi-look (speckle-reduced), 

ground range image. It is the product applicable for most users interested in remote sensing 

applications. The product is calibrated and corrected for the SAR antenna pattern and 

range-spreading loss: radar backscatter can be derived from the product for geophysical 

modelling, but no correction is applied for terrain-induced radiometric effects. The image 

is not geocoded, and terrain distortion (foreshortening and layover) has not been removed. 

The GEC product is similar but it is precisely located and rectified onto a map projection. 

Radarsat imagery (and presumably other SAR imagery) is also sometimes adjusted 

using look-up tables. The idea is to improve appearance by applying a range dependent 
gain correction to 1) optimise the radiometric scaling of the main feature of interest (while 
optimising the output dynamic range) and 2) compensate for changes in a° with changing 

incidence angles. A look-up table specifically designed for ocean imaging is available. 

2.3    SAR imaging of the ocean 

Interest in SAR imagery of the ocean really took off with the launch of the satellite 

SAR system known as Seasat in 1978. Seasat was specifically designed to image the ocean 

and provided a wealth of interesting data. Consequently, the topic of SAR imagery of the 

ocean has a long history and much is now known. Our account here will be necessarily 

brief and we refer the reader to the extensive literature for further information. A very 

readable overview is given by Robinson in [106] as is that of Elachi in [29] although the 

latter is more limited in scope. A more recent, but perhaps too brief summary, is given 

by Mouchot and Garello in [83]. The report of Ulaby et al. [125], is more comprehensive 

but very technical in places. Alpers, [1], provides a good review of the original work. 

Water has a high dielectric constant and hence is highly reflective of microwaves. It 

follows that active microwave sensors like SAR only record details of the surface layer of 

the ocean.   It is well accepted that for incidence angles above 20°, Bragg resonance is 

^http://earth.esa.int/ers 
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the predominant ocean surface scattering mechanism. For lower incidence angles, a facet 

model with specular reflection can be used (see for instance Elachi [29]). In operational 

SAR systems, incidence angles are generally above 20° (although in rough seas the local 

incidence angle may be less than 20° in places) and so the Bragg scattering model usually 

applies. In the Bragg scattering model, it is assumed that the backscatter is mainly 

due to the ocean surface spectral components which generate Bragg resonance. The Bragg 

wavelength Xg of the ocean waves responsible for Bragg resonance is given by 

A. = ^ m 
2 sm tfi 

where n is the order of the resonance (contributions ior n ^ 1 are negligible). A,- is radar 

wavelength, and 9i is the incidence angle. This formula assumes the ocean waves are 

travelling in the direction of the radar line of sight. For common SAR radar frequencies 

and incidence angles, the Bragg wavelength is in the range 1cm to 40cm. Thus Bragg 

scattering is from the surface ripples also known as capillary waves (length ~ 2 cm) and 

short gravity waves (length ~ 50 cm). 

It is clear from (7) that as the radar frequency and local incidence angle change so does 

the Bragg wavelength. Thus radar frequency and incidence angle will affect the backscatter 

coefficient a^. Insight into what these eflPects are can be deduced from knowledge of the 

ocean wave spectrum W{k). For instance, it is known that W(k) decreases rapidly with 

increasing wave number k (estimates range from k~Hok~^ in the Bragg region). Since 

smaller wavelengths correspond to large wave numbers it follows that radar backscatter 

should decrease rapidly with increasing incidence angle. This is borne out by empirical 

data. Similarly, radar backscatter decreases with increasing radar frequency. Although 

the Bragg scattering model can be used in this way to explain many of the properties of 

(7°, it has limitations. In particular, it does not explain the effects of radar polarisation. 

Ocean reflectivity is usually larger for VV polarisation than for HH polarisation with the 

size of the difference dependent on the radar incidence angle. A very informative figure 

describing this difference is given by Vachon et al. in [127]. For a more detailed account 

of such topics, see for instance the book by Long [72]. 

Another key factor in interpreting SAR imagery of the ocean is the near-surface wind 

field. The surface wind has a direct eflFect on the surface ripples (capillary waves) and 

hence its effects appear in SAR imagery. In fact, wind stress on the ocean surface is 

what generates the surface ripples. Moreover, ripples are short lived and so reflect quite 

closely the current wind conditions. Thus higher wind speeds cause a rougher ocean 

surface, increasing the ampUtude of the waves responsible for Bragg scattering and hence 

increasing the radar backscatter. Conversely, lower speeds result in a smoother surface 

and darker radar backscatter. Roughly, [97], for a given radar and incidence angle there 

is a first order power law dependence a^ ~ \usp where Ug is the wind speed and the 

exponent 7 is a function of radar wavelength and other such parameters. Interestingly, 

this dependence of a^ on the local wind speed is strong enough that it can be used as a 

means of estimating wind speed. All that is needed is an accurate model relating cr° to 

wind speed and direction and the other relevant factors. 

As an example of the type of knowledge available on the ocean backscattering co- 

efficient, we cite the empirical model used by Vachon et al. in [127] for ship detection 

performance assessment. It predicts that 
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• a^ increases with increasing wind speed 

• a° is largest when the wind is blowing towards the radar 

• (7° is smallest when the wind is blowing across the radar look direction 

• (7° for C-band W is larger than cr° for C-band HH for all wind speeds and directions 

• a^ decreases with increasing incidence angle 

• (7° for C-band HH decreases more rapidly with increasing incidence angle than a° 

for C-band VV 

See also the model used by Vachon et al. in [129] for extracting wind speed from a^ values. 

The ocean swell and other large scale wave structures such as ship wakes are also 

visible in radar imagery. This is because they modulate the Bragg wave structures. The 

modulation is usually described in terms of the two-scale model (also known as the 

composite surface model). In this model, the ocean surface is seen as being composed of 

facets (or large scale waves) with the fine scale Bragg wave structure superimposed. The 

Bragg wave structure determines the surface roughness and hence its radar reflectivity 

while the facet (or large scale wave) orientations determine the local angle of incidence 

and hence determine which Bragg frequencies are relevant. This model it is most applicable 

for low sea state conditions and mid-range angles of incidence, but it is widely used and 

suffices for our purposes. 

It is generally agreed that there are three ways in which ocean waves modulate the 

Bragg wave structure: 

• Tilt modulation - tilting of the ocean surface by the larger scale waves, 

• Hydrodynamic modulation - interactions between the larger and small scale waves, 

• Motion effects - ocean surface motion due to the passage of larger scale waves. 

Each of these mechanisms will affect the amplitude of the Bragg waves and hence will 

have a direct impact on the ocean RCS. The first two eflFects are fairly straightforward to 

understand. The third is more difficult and is comprised of two effects: velocity bunching 

and azimuth image smearing. 

Tilt modulation is the name given to the tilting of the ocean surface by the larger 

scale waves. It is the purely geometric effect in which the shape of large waves determines 

the local incidence angle at the patch of ocean surface being imaged. Changes in local 

incidence angle lead to changes to the relevant Bragg frequencies and hence to changes 
in the backscatter intensity. Clearly then, the effects of tilt modulation are in phase with 

the large scale waves. Hydrodynamic modulation is the name given to the hydrody- 
namic effects which result in the non-uniform distribution of ripples on the larger waves. 

Robinson, [106], describes a possible mechanism for hydrodynamic modulation. In his 

explanation, the large scale wave motion creates surface currents which interact with the 

ripples. The currents converge at wave crests, increasing the ripple amplitudes, and di- 

verge at wave troughs, decreasing the ripple amplitudes. Again, this effect is in phase with 
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the large scale waves. Motion effects are caused by the motion of the ocean surface. 

Here we are not referring to the evolving dynamic nature of the surface which results in a 

lack of scene coherence but rather to the predictable orbital motion of the surface due to 

the action of waves. As discussed in the last section, such motion can result in azimuth 

image shift and smearing. Fortunately, the ocean moves slowly enough that these effects 

are not too severe and SAR ocean imagery shows much of the structure present. In fact, 

as we explain next, motion effects can aid the imaging of ocean waves through a process 

known as velocity bunching. 

According to the two-scale model, the ocean surface moves at two scales — ripple 

waves and ocean swell waves. Motion of the surface ripples Robinson, [106], states that 

the first of these motions is too small to matter. However, the ocean swell wave motion is 

significant. The surface motion associated with ocean swell waves is orbital. Thus parts 

of the wave rise towards the SAR sensor, other parts fall away and yet other parts have no 

velocity component in the direction of the sensor at all. This results in varying azimuth 

shifts throughout the wave cycle and the combined effect is known as velocity bunching. 

For range travelling swell waves, the crests and troughs he parallel to the azimuth direction 

and so velocity bunching has no effect. Any other waves will have an azimuth travelling 
component and velocity bunching comes into play. Its effect is to bunch the scatterer 

facets over the wave crest making it brighter and spread them thinly over the wave trough 

making it darker or visa-versa depending on the direction of the wave travel. 

Other effects also need to be taken into account when analysing SAR imagery of the 

ocean surface and swell wave patterns in particular. We have already mentioned the 

evolving dynamic nature of the surface which results in a lack of scene coherence and a 
consequent degrading of azimuth resolution. Vachon and Krogstad, [130], note that this 

effect is responsible for the so called azimuth cutoff which is characteristic of SAR ocean 

wave image spectra. The term azimuth cutoff refers to the inability of SAR systems to 

properly image azimuthal waves with short wavelengths. Vachon and Krogstad note that 

the degree of velocity bunching nonlinearity and the azimuth cutoff are proportional to the 

SAR range to velocity ratio as well as depending on the actual wind and waves conditions. 

The ERS-1 SAR system with R/V pa 115s has trouble imaging azimuthal waves whose 

wavelength is less than about 200 metres. There are also noncoherent imaging effects 

which come into play, for instance: scanning distortion and look misregistration. These 

effects are a consequence of the translation of the ocean wave pattern at the wave phase 

velocity. A discussion of these effects may be found in, [130], for instance. 

Much research effort has been invested in the problem of deducing the directional ocean 

wave directional spectrum from SAR observations of the wave field. The theoretical de- 

velopments have a long and complicated history but the details are still not fully resolved, 

see for instance [130]. It is clearly beyond the scope of this report to try and unravel 

the research on this topic. However, as a representative recent example, we cite the work 

by Dowd et al, [27]. As far as ship detection is concerned, extracting wave (and wind) 

information from SAR imagery is potentially important because: it helps determine how 

well the detection algorithms will do; it helps in the selection of the algorithm parameters; 

it effects ship routing and hence provides higher level detection information - certain boats 

will not be out in certain sea states; etc. However, none of the ship detection systems in 

the literature have reached this level of sophistication yet. 
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Waves are not the only oceanographic phenomena visible in SAR imagery. Any process 

which affects the surface Bragg resonant wave structure can be imaged with SAR. There 

are three basic mechanisms by which this occurs: through direct contact with the surface 

(surface processes), through roughening of the surface and wave generation by near surface 

winds (atmospheric processes), and through hydrodynamic interaction with near surface 

currents (sub-surface processes). Such processes will interact and their combined effect on 

the Bragg wave structure will be determined by a mixture of their effects on near surface 

winds, near surface currents and surface slicks. It follows that the resulting SAR image 

will show a mixture of oceanographic processes and unravelling them may be difficult. 

The following is a comprehensive (although likely not complete) list of processes and 

objects which may be seen in SAR imagery of the ocean. 

• Atmospheric winds and storm fronts 

• Heavy rain 

• Gravity wave fields (arising from the local wind field) 

• Ocean swell (arising from distant wind fields) 

• Ocean currents and eddies 

• Overfalls (breaking waves caused by conflicting winds and currents) 

• Internal ocean waves 

• Ocean bottom topography 

• Man-made and natural slicks and films 

• Sea ice 

• Ships and Ship wakes 

• Man-made and natural objects such as shoals, islands, oil rigs, seaweed, etc. 

Many of these processes and objects will be of relevance to ship detection algorithms since 

they can cause false alarms. We cite some examples from the literature next. 

Many authors report that the variations in ocean backscatter caused by variations in 

surface wind speed and direction can cause ship detection problems. For instance, both 

Kourti et ai, [61], and Schwartz et al, [114], report that local wind effects can be mistaken 

for ships. Similarly, Lombardo and Sciotti, [70], mention the transitions regions between 

different wind conditions and low wind spiral marks as being problems. They also add that 
in low wind speed regions, the backscatter is high variability and the mean intensity is low 

which results in spots of bright ship-like backscatter. But there are many other processes 

and objects which cause problems too. Vachon et al., [134], report that oceanographic 

phenomena (such as breaking waves), outlying rocks, shoals and islands can cause false 

alarms in the OMW. Yeremy et al, [142], report that small islands, buoys and ocean based 

oil rigs also cause false alarms in the OMW but add that islands (with the exception of 

very small islands) and oil rigs can often be distinguished from ships visually. Likewise, 
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Gower and Skey, [43], report that rocks and small islands appear as bright ship-like point 

targets. Rey et al, [102], mention oceanic/atmospheric features such as fronts and storm 

cells. Ouchi et al, [93], mention current boundaries and breaking waves. Lombardo and 

Sciotti, [70], report that inhomogeneous ocean areas cause problems and add land area 

effects and bathymetry effects to the wind effects already discussed. Cusano et al, [25], 

report that surface wind speed and direction, sea currents and coastal effects can cause 

high variability of the backscattered intensity which causes problems for ship detectors. 

They add that this variability is enhanced by other factors such oil spills , pollution, and 

high densities of ships and wakes. Ringrose and Harris, [104], mention that low wind 

speed causes dark patches and when mixed with normal wind speed regions the resulting 

variation in backscatter causes problems for conventional CFAR detectors. Eldhuset, [31], 

reports that eddies, fronts and internal waves can be mistakenly identified as ships and 

ship wakes. Wahl et al, [138], report that some of the ocean features in ERS-1 imagery 

with similar signatures to ship wakes are: ocean current shears; upwelling and internal 

waves. They also report that ocean wave patterns can cause strong backscatter which may 

be mistaken for ship backscatter. 

2.4    SAR imaging of ships and ship detectability 

We begin this section with a general discussion of SAR imaging of ships and the various 

factors involved. Because of the diversity and complexity of such factors not much work 

has been undertaken on modelling ship backscatter for detection purposes. In fact only 

one such model has been used in the literature. We then turn to models which have 

been used for estimating probabilities of detection. This leads to a discussion of detection 

performance and ship detectability. We complete the section with a brief discussion of the 

various factors affecting ship detectability. The latter is a topic in its own right and beyond 

the scope of this report. We note that previous work on this topic has been undertaken 

at DSTO, see for instance the reports by Kruzins and van Antwerpen, [2] and [3], and the 

related conference papers, [28] and [62]. We also note that there is an extensive literature 

on fisheries monitoring which is more concerned with ship detectability than detection 

algorithm development. 

Ships are typically constructed from large flat metal sheets and hence are usually radar 

bright and therefore detectable in SAR imagery. While backscatter from the ship itself is 

the usual basis for ship detection algorithms other factors can also be taken into account. 

Ships often have a wake and further, the wake can be more noticeable than the ship 

itself. We discuss wakes in the next section. A radar shadow is possible too. However no 

mention of this is made in the ship detection literature and we assume that radar shadows 

are not usually present. (Obviously this is true for low resolution imagery where the image 

resolution cells are larger than the ships.) We also remind the reader here that any radar 

shadow will be at the head of the wake and offset from the ship. Higher level information 

may be relevant too. For instance: ocean going ships will tend to be larger and made of 

metal whereas coastal boats will be smaller and may be made from wood or fibreglass; oil 

slicks are often associated with ships; and the location of shipping channels and regular 

routes taken by ferries may be useful.However, none of the automatic detection systems 

have reached this level of sophistication yet. 
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Askari and Zerr, [7], provide a brief but useful summary of factors affecting the SAR 

imaging of ships. In their summary, they cite a report by Asknes which could not be 

obtained. They state that backscatter from ships is determined by several scattering 

mechanisms including: direct reflection from areas perpendicular to the radar beam, corner 

reflections and multiple reflections from the ship and sea surface. They go on to note that 

other factors which come into play are: construction material, superstructure, incidence 

and aspect angles, radar frequency and polarisation. As an example, they report that 

studies using multiple frequencies have shown ship backscatter is enhanced by higher 

frequency SARs. Another example is Asknes' finding that ships travelling in the azimuth 

direction have larger RCSs. Askari and Zerr also note that motion effects (speed, roll, 

heave) are important. These effects reduce the coherence of the backscatter resulting 

in smearing and reduction in peak pixel intensities. Yeremy et al, [142], make similar 

general comments about the SAR imaging of ships and cites several studies on ship RCS. 

They add spectral leakage and sidelobes to the list of complicating factors. Kourti et al, 

[61], provide empirical data on how RCS varies under different imaging conditions. The 

data verifies that a vessel's heading is important in this respect and RCS is lower for a 

range travelling vessel than for an azimuth travelling vessel. They warn however that it is 

difficult to draw such conclusions due to the large number of variables involved. Whether 

the vessel is laden or unladen may be relevant too. For instance, a fully laden vessel will 

sit lower in the water and hence will tend to have a smaller RCS. Note that our use of the 

term ship RCS in the above is slightly misleading. The relevant quantity for SAR imagery 

is the incoherent average value of cr° over the ship pixels whereas total ship RCS is the 

coherent average. 

Not a lot of modelling of ship backscatter has been undertaken in the ship detection 

literature — probably because too many factors are involved making it too difficult. Mostly 

people do not take the ship itself into account and simply search for anomalies in the 

background. In fact the only ship detection algorithm found in the literature which is truly 

based on a ship backscatter model is the generalised likelihood ratio (GLRT) detector used 

by Sciotti, Pastina and Lombardo, [117] and [116]. While their work is mainly focused 

on polarimetric SAR imagery, their work arose from earlier work by Brizi et al, [10], on 

single channel imagery. The model used by Brizi et al is very simple and consequently 
probably not very realistic. A review of this model is given in Section 5.6 and its extension 

to polarimetric data is discussed in Section 40. We merely comment here that the imagery 

is SLC and the ship pixels are assumed to be samples from a zero mean complex Gaussian 

random process which is independent from pixel to pixel but correlated (with restrictions) 

within the polarimetric channels. This type of model is a commonly used for clutter 

samples from SLC imagery but its application to target samples is questionable. Actually, 

Brizi et al initially propose that the ship pixels are not zero mean which makes more 

sense but drop this refinement in order to calculate the likelihood ratio. Also, while the 

independence of samples from pixel to pixel is reasonable for low resolution imagery it is 

probably questionable for high resolution imagery. This simple circular complex Gaussian 

target model has also been proposed by Lopes et al, [73], in the context of a likeUhood 

ratio detector. 

While it is rare for ship target models to be used for detector design as such, they are 

often used for theoretical detector performance assessment and for estimating probabilities 

of detection in particular. This feeds back into detector design in that knowledge of how 
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the probability of detection varies with the detector threshold allows the threshold to be 

set "correctly". Before we discuss the detectors in which this is done we mention a third 

use of ship target models. Gower and Skey, [43], use a simple Gaussian "blob" model for 

the collection of ship target pixels in order to extract discrimination/classification features. 

The model is parametric and is fitted to the SAR data at points of interest. We discuss it 

in the section on discrimination algorithms. 

Lombardo and Sciotti, [70], assume ship backscatter is contained entirely in one reso- 
lution cell and model it with a chi-squared distribution with order parameter VT for single 

look imagery. This becomes the Gamma distribution with order parameter L x VT for 

L-look imagery. They note that the special cases of Swerling I and III target models cor- 

respond to the order parameters L x IT = 1 and Lxvj- = 1. Lombardo and Sciotti point 

out that in high resolution imagery single pixel target models are no longer valid and it 

is better to use all the target pixels. They add however that such schemes require knowl- 

edge of target size, shape and orientation or the use of parametric matched filters and are 

computationally expensive. For this reason they retain the pixel by pixel approach even 

in high resolution imagery. The model is not used for detector design as such. Rather, 

it is used for the theoretical analysis of probabilities of detection. Lombardo and Sciotti 

note that in addition to threshold setting, their analysis also allows the comparison of 

SAR imagery of different spatial and radiometric resolutions. Likewise, Ferrara et ai, [33] 

and [34], use a Rician pdf to model the distribution of ship target pixel intensities in the 

case of l-look processing and a gamma distribution in the case of multi-look data. Again, 

the models are not used for detector design but rather for the theoretical estimation of 

probabilities of detection and consequently setting the detector threshold. 

A model which has been discussed extensively is that used by Vachon et al. in [127] 

(see also [14]). This model is used for theoretically estimating the performance of ship 

detection algorithms and thereby assessing ship detectability. The model is very simple. 

It is applied to low resolution imagery and assumes ship backscatter is contained within 

one image pixel. It relates ship RCS to its weight in tons and by further analysis to its 

length. Thus the ship RCS a is assumed to satisfy 

a = D = 0.08Z^/^ (8) 

where D is the ship displacement in tons and / is its length. The assumption that a = 

D was offered by Skolnik in the absence of any better information. The relation D = 

O.OSZ^/^ was obtained empirically by regression on real ship data. Clearly, the model (8) 

takes no account of fundamental variables like radar incidence angle, ship orientation, 

construction materials, superstructure, etc. and so has limited application. Such short- 

comings are acknowledged by Vachon et ai. They add that the model has the correct 

order of magnitude but tends to underestimate RCS, especially with increasing incidence 

angle. Yeremy et al, [142], also comment on the limitations of (8) and cite several relevant 

references. However, as Rey et al. point out in [103] the model is easy to apply and as 

explained next, Vachon et al. do not use it for detection algorithm design but rather, for 

theoretical performance assessment. 

The formula (8) is part of a statistical model which Vachon et al, [127], use to predict 

ship detectability. Their aim was to facilitate comparison of the various Radarsat beams 

and modes for ship detection. In addition to (8), the full model also relies on assumptions 
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about the SAR image probability density function (pdf) and the relationship between 

ocean backscattering coefficient a°, wind speed and SAR viewing geometry. The SAR 

image pdf used is the multi-look K-distribution. We discuss it below in the section on the 

OMW ship detector. The backscattering coefficient a^ is needed to scale the image pdf. 

Vachon et al. note the lack of good physics based models for a^ and use instead an empir- 

ical model. This model was developed for ERS-1 data but is adapted to Radarsat data. 

When all the ingredients are combined, the model allows for estimation of the minimum 

detectable ship length for various radar parameters and ocean conditions. Vachon et al. 

verify many of the model's assumptions and predictions on real data. The model predicts 

that for Radarsat SAR imagery: 

• 

• 

Beam mode Standard 1 has better ship detection performance than ERS-1 due to 

the decreased clutter level of HH polarisation, 

Ship detection performance improves with increasing incidence angle due to the 

reduction in clutter level while ship RCS remains constant, 

• Ship detection performance is best for fine beam modes due to their large incidence 

angle and fine resolution, 

• For ScanSAR modes, the detection performance is best for large incidence angles, 

but worse than the standard beam modes due to the coarser resolution, 

• For large incidence angles, the ship detection problem becomes the detection of 

bright point targets against a noise background. 

Vachon et al. conclude that Radarsat ScanSAR Narrow Far with its 300km swath, is a 

good compromise between ship detectability and swath coverage. They also note that 

smaller ships may be detected with decreasing wind speed, increasing incidence angle and 
finer resolution. In a later paper based on this work, Vachon et al, [134], recommend 
ScanSAR Narrow Far and perhaps ScanSAR Wide for surveillance purposes, and beams 

Wide2, Wide3, Standard4-7, Finel-5 and ExtendedHighl-6 for tracking purposes. 

A modified version of the model which takes account of the radar incidence angle has 

been used by Askari and Zerr, [7], for a similar analysis of Radarsat data. It has the form 

a = 0.08R{e)f/\        R{e) = 0.78 + 0.11^ (9) 

where 9 is the radar incidence angle. Their findings are similar to those of Vachon et al. 

The modified model has also been used by Olsen and Wahl, [90] and [89], for an analysis of 

the Envisat ASAR sensor. Their findings are also similar. However, based on preliminary 

results, they recommend the Envisat Alternating Polarisation mode with W and VH 

channels. They note that at steep incidence angles vessels should be easier to detect in 

the VH channel since the clutter levels are lower than in the co-polarised channels while 

the ship RCS remains the same. 

Much of the early work on ship detection and detectabihty was applied to Seasat and 

ERS-1 SAR data. We take the paper by Wahl et al, [138], as representative of the main 

findings of this work. Wahl et al analyse ERS-1 SAR Fast Delivery data with a resolution 

of about 30 m. Their main findings are that: ships longer than 120 m are generally seen in 
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the imagery under most weather conditions; and ships smaller than 100 m are sometimes 

lost because of strong ocean backscatter in high winds (greater than 10 m/s). They note 

that ERS-1 imagery is sensitive to wind speed. They present a table of wind speed versus 

the lower length of visible ships. It shows that: most ships are visible when there is no 

wind; ships longer than 50 m are visible in wind speeds of 4 m/s; and ships longer than 

100 m are visible in wind speeds of 10 m/s. They also observe that the far range is better 

for ship detection than the near range because ocean clutter is lower. Small ships may 

become invisible in the near swath and this eflFect has clearly been observed with fishing 

vessels. They also note that detection thresholds need to be increased when wave patterns 

are present. Wahl et al. also include many comments on wake types and sizes. They note 

that wakes are more susceptible to high wind speeds than ships. They also note that wakes 

without ships are rare but the opposite is not the case, so the ship itself is the more robust 

detection feature. They conclude the paper with the comment that the main limitation 

to ship detection is probably not the algorithms but the strong ocean backscatter which 

may hide the ship backscatter. 

Both the work of Vachon et al. and Wahl et al. discussed above have assessed ship 

detectability in terms of ship length. We have already noted that this is a simplification 

of the real situation and that many other factors are likely to come into play. The paper 

by Friedman et al, [38], provides concrete evidence of this with empirical data on ship 

RCS and ship detectability. The work was aimed at validating a GEAR vessel detection 

algorithm and consequently well ground-truthed data was used. The results clearly show 

that ship length alone is not enough to predict ship detectability. Friedman et al. suggest 

that other important factors are ship orientation and local wind and wave conditions. 

Many authors have reported the importance of incidence angle and wind speed. Ocean 

clutter levels are higher at small incidence angles and high wind speeds. Thus, Rey et al, 

[103], point out that the far swath of Radarsat is good for ship detection while the near 

swath is good for wake detection. Kourti et al, [61], add that when small incidence angles 

are combined with high wind speed, detectability problems are severe. On the other 

hand Robertson et al, [105], find that detectability improves (modestly) with increasing 

incidence angle but that there is little correlation with wind speed. Robertson et al add 
that for Radarsat ScanSAR Narrow Far data, ships down to a size of 30-40 m could be 

seen visually in moderate wind speeds of 5-10 m/s. Gower and Skey, [43], report that 

larger incidence angles give better ship discrimination in high wind conditions. They note 

that SAR image intensity depends on the direction of the wind relative to the SAR look 

direction and add that the presence of wind streaks can indicate wind direction. 

The importance of radar polarisation and frequency have been noted too. For instance, 

in [109], van der Sanden et al assess the applications potential of Radarsat-2. They 

comment that HV polarisation of Radarsat-2 should provide better ship detectability in 

the near range (i.e. small incidence angles) than the HH or VV polarisations. This is 

because the backscatter from the ocean should be smaller for HV than HH or VV and 

consequently ship/sea contrast should be higher. Similarly, Dinguirard et al, [26], note 

that the JERS-1 (L-band HH 35°) has a better ship detection capability than ERS-1, 

and Yu and Litovchenko note that ALMAZ-1 (S-band HH 20-60°) images ships better 

than ERS-1. They claim that ships of 10-15 m length are visible under wind speeds of 

10-15 m/s as well as in calm wind conditions of 0-3 m/s. Eldhuset, [32], notes that the 

short wavelength and small incidence angles of the ERS SAR system makes it strongly 
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sensitive to ocean backscatter in high wind conditions and this hmits its potential for ship 

detection. 

Ship construction material has also been mentioned too. In particular, it was observed 

by Kourti et al. in the paper [61] that small fibreglass and wooden fishing vessels were not 

discernible in Radarsat imagery even in calm sea conditions because of their low dielectric 

characteristics. They comment further that steel structures on such vessels may be visible 

but their reflectivity is aspect angle dependent and therefore unreHable. 

2.5    SAR imaging of ship wakes 

Ship wakes are also detectable in radar imagery. They have several components which 

modulate the ocean backscatter coefficient. These wake components may be either brighter 

or darker than the surrounding ocean, depending on the radar imaging parameters and 

the sea state. As mentioned in the introduction, we are concentrating on ship detection 

algorithms in this report. It is anticipated that the detection of ship wakes will be the 

topic of a companion report. However, the question still arises: Should one detect the ship 

first or the wake first? The advantages of detecting ships first include: 

• Stationary and slow moving ships have no wake. 

• Wakes without ships are rare in ERS-1 imagery, [138] and [32]. 

• Ship backscatter is robust and independent of sea state, [32]. 

• Wakes are very variable and depend on the sea state and ship speed and direction; 

• Wakes are often not visible and especially at large incidence angles and long wave- 

lengths. For example, JERS-1 does not show wakes [32]. 

• Wakes of maneuvering ships have variable shapes. 

• Ship detection with a CFAR algorithm is fast and simple whereas wake detection 

with the Radon transform is slow. 

• Good detection results have been reported for ship backscatter, [134]. 

For these reasons, most systems in the recent literature detect the ship first.  However, 

there are advantages to detecting ship wakes first 

• The wake (when present) can be more noticeable than ship itself since wakes are 

much larger and can be several kilometres long. 

• Azimuth motion shift of the ship may place it in an area of high clutter making 

detection harder. 

• Wakes indicate the ship's true locations (no motion shift). 
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Many of the properties of ships and wakes just Hsted are dependent on the radar parameters 

and ocean conditions and so the decision of which to detect first is Hkewise dependent on 

the radar parameters and ocean conditions. A good discussion of such issues is given by 

Eldhuset in the introduction of [32]. 

A good example of how radar parameters affect the imaging of ship and ship wakes 

is provided by the comparison of Radarsat data (C band and HH polarisation) with ERS 

data (C band and W polarisation). Wackerman et al. [135] note that most early work 

on spaceborne SAR for ship detection focused on ERS-1 data. The ERS-1 system was 

W and used small incidence angles and hence ship wakes showed up well. In fact, wakes 

were larger and more distinct than the ship return itself and so detection systems were 

designed to find wakes. However, the Radarsat system was HH and used large incidence 

angles. HH ocean clutter is smaller than VV ocean clutter and decreases more rapidly 

with incidence angle and for this reason ships show up well in Radarsat imagery and ship 

wakes are rarely seen. Consequently, Radarsat data is more suitable for detecting the ship 

target itself. 

It has recently been found that VH polarisation provides the best ship-sea contrast 

(at low incidence angles). Consequently, the recommendation of Sanden et al, see [110] 

and [109], for ship surveillance with Radarsat-2 is a dual polarised ScanSAR wide mode 

data set composed of VV and VH channels (fully polarimetric data will not be available in 

ScanSAR wide mode). The VH channel should provide bright point targets against a dark 

background while the W channel should provide sufficient ocean clutter for wake analysis. 

Olsen and Wahl, [90], likewise recommend the use of Envisat's Alternating Polarisation 

mode with W and VH channels although they do not specifically mention wake detection 

in the VV channel. 

3    Land masking 

Most ship detection systems include an initial stage in which the land areas are masked 

out of the image being processed. Detailed accounts are in [135], [32], [34] and [107], and 

passing mention is made in [61], [47], [48], [25], [68] and [105]. Land masking is important 

not only for the obvious reason that only ships in the ocean are of interest but also 

because ship detectors can produce high numbers of false alarms when applied to land 

areas. Dealing with these false alarms can overtax detection systems. For similar reasons, 

it may be necessary to mask out other image areas. For example, Henschel et al, [47], 

note the need to mask out beam seam and nadir ambiguities in Radarsat imagery and Rey 

et al, [102], note the need to remove "dark stripes" of constant valued pixels. Another 

example is the presence of ice sheets in the polar regions. For this reason, the OMW 

accepts general user defined masks as well as land masks, see [111]. 

A common approach to land masking is to register the SAR image with existing geo- 

graphic maps. While this is the easiest approach it is not perfect. In the case of satellite 

imagery, the orbital parameters are not known precisely and registration errors occur. 

Tidal variations are obviously also possible and rocks and small islands may not be marked 

on the geographic maps. Thus some land areas will be marked as ocean and vice-versa. 
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For Radarsat imagery, Wackerman et al, [135], note that registration errors are typi- 

cally of the order of hundreds of metres but in the worst case can be up to 2 kilometres. 

For this reason they use a ±2 kilometre buffer zone around the coastline. In order not 

to miss any ship detections they apply their detection algorithms inside the buffer zone. 

They deal with the higher false alarm rate in this zone by including additional constraints. 

A similar 2 kilometre buffer zone was used by Robertson et al. [105]. Kourti et al, [61], 

note consistent geolocation errors of about 1 nautical mile for Radarsat imagery. 

In [32], [30] and [138], Eldhuset and Wahl et al. also use geo-registration to locate 

coastlines in ERS-1 SAR imagery. The initial step is to calculate geodetic longitude and 

latitude for the imagery from satellite orbital parameters and other quantities, [30]. As 

with Radarsat data, this process has inaccuracies in the order of hundreds of metres. 

In order to correct these inaccuracies, Eldhuset and Wahl et al, [32] and [138], use a 

correlation technique. A SAR image is simulated from digital terrain models and then 

overlayed on the real SAR image. A correlation is then performed using the FFT. This 

improves the registration accuracy to better than 100 metres. A subtle but important 

point is that in mountainous areas the "lay-over" effect needs to be taken into account 

when simulating the SAR image. 

Some systems allow user intervention in the geo-registration process. Eldhuset, [32], 

notes that sometimes the correlation of the map with the SAR image does not work in 

which case the user can perform the correlation manually. Similarly, Rye et al, [107], have 

a manual mode of operation. They note that in this mode, the registration is better and 

a smaller buffer zone may be used around the coastline. 

Another approach to land masking is to use algorithms which automatically detect 

coastlines. Among the reasons for considering such an approach are: the geo-registration 

errors just mentioned; satellite orbital data may not be available; inaccuracies in existing 
maps; shifting coastlines; and not all small islands and rocks are mapped. Moreover, if 

the littoral zone is of particular interest then tidal variations in the coastline will need to 

be taken into account. We add here that many rocks and shoals may only be exposed at 

low tide. 

Only one ship detection system mentions the automatic detection of coastlines. That 

system is the Alenia Areospazio ship detection system described by Ferrara and Torre in 

[35] and [34]. Their algorithm is based on the work of Lee [64]. The basic steps involved 

are: filtering to remove speckle, application of an edge operator, edge map dilation with 
a mean filter, thresholding of the edge map histogram, and finally applying a contour 

following algorithm. They include a minimum land area constraint to prevent the ships 

themselves being masked out. Ferrara and Torre apply the technique to SLC SIR-C L- 

Band SAR imagery processed to a range of different number of looks and resolution [34]. 

They state that there were no problems with detecting coastlines correctly. 

While only one ship detection system uses automatic coastline detection, we note that 

there is an extensive literature on the topic. It is beyond the scope of this report to 

delve into that literature but we do mention the following. Van Der Sanden et al, [109], 

recommend the use of VH polarisation for coastline extraction. The paper [65] by Lesage 

and Gagnon proposes a level set based active contour approach. The report by Yeremy et 

al, [144], considers fully polarimetric data and fists the following 4 basic steps: 1) apply 

desired contrast enhancement and filter to remove speckle; 2) interpolate or subsample for 
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better resolution; 3) use clutter statistics to extract shore-line; 4) use morphologic filters 

to remove extraneous shore-lines. 

4    Preprocessing 

The aim of preprocessing is to make the subsequent detection stages easier and hence 

more accurate. Consequently, the type of preprocessing used will depend on the nature of 

the subsequent detection stages and preprocessing and detection should be considered in 

unison. For instance, while speckle filtering enhances the visual quaUty of SAR imagery, 

there are no guarantees it will improve the performance of later detection algorithms unless 

they are specifically designed for speckle filtered imagery. Further to this point, we note 

that the commonly used CFAR detectors are based on assumptions about the background 

statistics which do not include the changes speckle filtering brings about and therefore 

they are not suitable (in theory) for speckle filtered imagery. 

In their earlier work on ship detection, [34] and [35], Ferrara et al, recommend the 

use of speckle filters as a preprocessing step. In [35], they cite in particular the paper [74] 

where a speckle filter which is not only adaptive but also takes account of image structure 

is described. In [34], they merely state, without going into details, that a range of user 

selectable adaptive speckle filters is available. Following speckle filtering, ship pixels are 

detected using a threshold whose value depends on the background values. In later work, 

[33], Ferrara et al. have discarded speckle filtering as a preprocessing step. 

Eldhuset [30] also used speckle filtering as a preprocessing step. He reports that the 

most robust results were obtained with Frost's adaptive Wiener filter [40]. He provides 

full details of the filter. Eldhuset follows the speckle filter with a Butterworth highpass 

filter to enhance the targets and then applies a threshold to detect them. In later work 

Eldhuset [32] abandons this approach and instead uses a CFAR detector without any 

preprocessing. Interestingly, Eldhuset implies that the earlier algorithm was more accurate 

but was dropped because it was too computationally expensive for his application. 

Several other papers mention speckle filtering, [139], [8] and [5] but the subsequent 

detection methods are not particularly convincing. 

The system reported on by Rye et al. [107] uses a preprocessing step which normalises 

the imagery by dividing each pixel value by its local mean as calculated over a large window 

of 30x30 pixels. The eff'ect of this is to remove large image structures while retaining small 

(point or linear) features. Rye et al. then detect potential ship pixels by applying a 

simple threshold. In fact, as will become clear in the next section, this combination of 

normaUsation and threshold detection is effectively just a cell-averaging CFAR detector. 

However, Rye et al. point out that the normalisation can be followed by any detection 

algorithm which assumes the background is homogeneous. 

Calibration of the imagery to units of NRCS or some equivalent is often necessary in 

order that absolute thresholds may be used or physical quantities of interest estimated. 

For instance, this is the case in [135] where a minimum energy constraint on the ship 

return is used to eliminate false alarms due to noise spikes and in [127] where the ocean 

RCS is used in estimating the detectability of ships on the basis of a ship scale parameter. 
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Ferrara et al, [33] preprocess SLC SIR-C/X-SAR imagery by applying spatially variant 

apodization (SVA). SVA is a non-linear technique for suppressing SAR processor sidelobes 

with the benefit of not reducing the image resolution or altering the phase information. 

Ferrara et al. report that this step reduces the false alarm rate of their CFAR detec- 

tors significantly. 

Lopes et al. [73] recommend the use of a spatial whitening filter (SWF). They note that 

when clutter samples are correlated, the arithmetic mean of intensity is not a minimum- 

variance estimator of power levels and hence they suggest the use of SWF. The SWF 

was introduced by Larson et al. in [63]. Larson et al. show that in general the SWF 

is a superior method of speckle reduction compared to noncoherent spatial averaging. 

However, they also note that if the SAR data is spatially white then the SWF is identical 

to noncoherent averaging. 

5    Prescreening — single channel imagery 

Algorithms which search the whole image for potential ship pixels are referred to as 

prescreening algorithms. Experience has shown that no one algorithm or even a combina- 

tion of algorithms will do this perfectly — some ship pixels will be missed and some false 

alarms will be generated. Thus a follow up stage is often included in target detection sys- 

tems in which the false alarms are identified and removed. This follow-up stage is referred 

to as the discrimination stage. We discuss discrimination algorithms in a later section. 

There are two important factors which exacerbate the need for a discrimination stage. 

Firstly, prescreening algorithms often have adjustable design parameters which control a 

tradeoff between the missed detections and the false alarms. Such parameters are usually 

set to achieve a high probability of target detection but there is an attendant high false 

alarm rate. Secondly, near real time processing is usually a requirement of operational 
systems and so speed is often a consideration in designing prescreening algorithms. As a 

consequence of this prescreening algorithms are often not as accurate as they may other- 
wise be. Speed considerations are not such an important factor in designing discrimination 

algorithms since they only process the output of the prescreening algorithms and not the 

whole image. 

In this section, we review prescreening algorithms with application to single channel 

SAR imagery — multi-channel imagery is considered in later sections. In general, ships 

show up in single channel SAR imagery as individual pixels or groups of pixels which are 

unusually bright compared to their surroundings. Not surprisingly then, the prescreen- 

ing algorithms of most ship detection systems for single channel SAR imagery involve a 

method of searching for bright anomalies in the ocean clutter. While pixel brightness is 

a distinguishing feature of ships, other features such as texture may also be taken into 

account. As we shall see though, most ship detection algorithms are based on modelling 

the background statistically and then finding individual pixels or small groups of neigh- 

bouring pixels whose brightness values are statistically unusual. Modelling ship targets 

and taking their statistics into account is generally too difficult owing to the large number 

of factors which come into play. 

In designing and implementing prescreening algorithms, care needs to be taken with 

26 



DSTO-RR-0272 

the type of SAR imagery to which they are apphed. Algorithms designed for one type 

of imagery may not be appropriate or may need to be adjusted for a different type of 

imagery. Resolution is obviously a critical factor in this respect, but other factors, such 

as whether the imagery is complex, intensity or amplitude and the number of looks are 

important too. 

5.1    Global threshold algorithms 

The simplest way to search for radar bright objects is to fix a global threshold and 

then declare any pixel intensities which are above this threshold as targets of interest. 

This is the approach used by Lin et al, [68] and [67], for ship detection in ERS SAR PRI 

images. In order that other types of imagery may also be used, Lin et al. first calibrate 

the imagery so that the pixel values are normalised radar cross section (i.e. RCS per unit 

area). A simple fixed threshold is then applied. Lin et al. provide no details of how this 

threshold is set. As with other prescreening algorithms, not all pixels detected by this 

process will be true ship pixels and further processing is required to remove such pixels. 

The RCS of a ship is dependent on many factors including the construction materials, 

the viewing aspect angle and the radar resolution. Thus a large metal ship lying broadside 

to the radar will have a large RCS while a small wooden boat that is end on will have a 

much smaller RCS. In low resolution surveillance imagery, a ship may only occupy part of 

a resolution cell (pixel) and consequently the RCS of the resolution cell will be lower than 

expected. For this reason, global thresholds are rarely used and it is much more common 

to apply an adaptive threshold. Adaptive thresholds are designed to look for pixels which 

are bright, but only relative to their surroundings. 

5.2    Adaptive threshold algorithms 

Adaptive threshold algorithms are the most common prescreening algorithms for target 

detection in radar imagery. In this section, we provide a general introduction to the two 

most commonly used adaptive threshold algorithms for ATD in SAR, namely, the two 

parameter CFAR detector and the cell-averaging CFAR detector. In the next section, we 

continue with a discussion of how these and other adaptive threshold algorithms have been 

used for ship detection. 

Adaptive threshold algorithms are designed to search for pixel values which are unusu- 
ally bright compared to those in the surrounding area. This is done by setting a threshold 

which depends on the statistics of the surrounding area (hence the term adaptive). Pixel 

values which lie above the threshold are declared unusually bright and therefore likely 

to be samples from a target. The statistics of the surrounding area are usually analysed 

by taking a ring of image samples around the pixel under test. The most basic setup 

is shown in Figure 1. Here, the pixel under test is surrounded by a guard "ring" and 

then a background "ring". The purpose of the guard "ring" is to ensure no pixels of an 

extended target are included in the background "ring" and hence that the background 

"ring" is representative of the underlying background statistics. All windows are moved 

one pixel at a time across the whole image. Obviously, many variations of this basic setup 
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Target box 

Guard area 

Background area 

Figure 1: Typical window setup for an adaptive threshold detector 

are possible. The exact relationship between the threshold and the background statistics 

depends on which adaptive threshold algorithm is being considered. 

A natural aim in designing adaptive threshold detectors is to ensure that the probabiUty 

of a false alarm is constant. In this case, the threshold is chosen so that the percentage 

of background pixel values which lie above the threshold is constant. If this is done then 

the false alarm rate (number of false alarms per unit area of imagery) is likewise constant. 

Consequently, such detectors are called constant false alarm rate (CFAR) detectors. One 
method for CFAR detection is to work directly with the histogram of the background 

values and set the threshold at the appropriate point in its tail. However, the required 

false alarm rates are usually very low and large background samples with an attendant 

computational burden would be required to accurately estimate the threshold. Thus, it is 

more usual to model the background distribution parametrically and to use the background 

samples to estimate the model parameters. 

Choosing a parametric distribution model for the background is equivalent to specifying 

the associated parametric probability density function /(a;), where x ranges through the 

possible pixel values. Once f{x) has been chosen and its parameters estimated from the 

background samples, the probability of false alarm (PFA) for the threshold T is given by 

pT roc 

PFA = 1 - /     f{x)dx = /    f{x)dx. (10) 

Thus, designing a CFAR detector involves solving the equation (10) for the threshold T 

in terms of the specified PFA and the estimated parameters of the pdf f{x). An analytic 

solution to this problem is not always possible and numerical methods may be needed. 
One approach is to search for the correct value of T by trial and error. This is fairly 

straightforward since cumulative distribution functions are increasing. An example of 

how this is done is discussed at the end of the next section when we cover the work of 

Jiang et al. in [54]. Another approach which may be more efficient is as follows. Since the 
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CFAR detector takes the form 

xt>T <J=^ target 

where xt is the pixel value under test and since the cumulative distribution function is 

increasing, an equivalent detection test is 

/•oo 

Jxt 

f{x)dx < PFA <^=^ target. (11) 

In either approach, the integral /^ f{x)dx or equivalently /^^ f{x)dx only needs to be 

evaluated numerically. 

A commonly used statistical model is the Gaussian distribution. This is often applica- 

ble since the central limit theorem states that the average of a large number of identically 

distributed random variables tends to have a Gaussian distribution. Designing a CFAR de- 

tector based on the Gaussian model leads to the ubiquitous two parameter CFAR detector. 

In this case, the detector is 

Xt>fJ'b + CTbt "^=» target (12) 

where Xt is the pixel value under test, /xt is the background mean, ab is the background 

standard deviation, and i is a detector design parameter which controls the PFA (or 

equivalently the false alarm rate). In practice, t is fixed and /Xb and ab are estimated from 
the samples in the background "ring". The exact relationship between t and the PFA is 

given by 

l-Hii)- ('') PFA = 
2 

Given the desired value of PFA, this must be solved numerically for the corresponding 

design parameter t. 

Although the Gaussian pdf is commonly used, it is not an accurate model of radar 

imagery unless a large number of looks have been averaged. More appropriate models 

(although still not perfect) for radar intensity imagery are the negative exponential for 

single look imagery and the gamma distribution (with fixed order parameter) for multi- 

look imagery. Designing CFAR detectors for these distributions leads to the well known 

Cell Averaging CFAR detector. In this case, the detector is 

Xt > Hbt ^^=^ target (14) 

where xt is the pixel value under test, Hb is the background mean and t is a detector design 

parameter which controls the false alarm rate. As before, t is fixed and /i^ is estimated 

from the samples in the background "ring". 

It is of interest to consider here imagery with a constant normalised variance where 

by normalised variance we mean the variance divided by the mean squared. For such 

imagery, the standard deviation is proportional to the mean and so the two parameter 

CFAR detector (12) effectively becomes a Cell Averaging CFAR detector but with a dif- 

ferent design parameter t. Both the negative exponential and the gamma (with fixed order 

parameter) distributions have constant normalised variance. In fact, the normalised vari- 

ance is equal to the reciprocal of the order parameter. It follows that the two parameter 
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CFAR detector is CFAR when applied to exponential and gamma distributed data. In 

[135], Wackerman et al. provide an interesting figure which compares how the FAR varies 

with t for the two parameter CFAR detector when applied to Gaussian, exponential and 

gamma distributed data. As we discuss in Section 5.4, Wackerman et al. also consider the 

K-distribution in this figure. 

A useful variation of the adaptive threshold detector involves searching for groups of 

pixel values which are unusually bright. In this case, the central single pixel target window 

is expanded to incorporate more than one pixel. The mean value over the target window, 

iif, is then calculated and compared with the threshold. Thus the two parameter CFAR 

detector becomes 
Ht> IJ-b + <^bt ^^=^ target (15) 

However, care must be taken here since the statistics of the background are calculated 

from individual pixels and hence are no longer directly comparable to those of fit- Fortu- 

nately, a simple adjustment corrects this problem. Averaging n samples from a Gaussian 

distribution with mean /x and standard deviation a produces another Gaussain distribu- 

tion with mean /i and standard deviation a/^/n. Therefore, if the target window consists 

of n pixels, the detector (15) is still CFAR but the design parameter t needs to be replaced 

with t/-\/n to achieve the same false alarm rate. 

A similar argument works for the cell-averaging CFAR detector. Averaging a negative 

exponential or gamma distribution over n samples produces another gamma distribution 

with the same mean (but different order parameter) and so the cell-averaging CFAR 

detector remains a CFAR detector when multiple pixel target windows are used. In this 

case the detector becomes 

fit > fibt <=^ target (16) 

However, since the order parameter is changed by the averaging process, the adjustment 
of the design parameter t to achieve the same false alarm rate is no longer simple. Oliver 

and Quegan, [86], note that 

PFA = liM. (17) 
r(L) ^    ^ 

where L is the order parameter of the gamma distribution. Again, this must be solved 

numerically to find the correct value of t for a given PFA. The value of L is the effective 

number of looks produced by the averaging process. 

We emphasise that the detectors, (12), (14), (15) and (16) are more generally applicable 

than we have so far implied. There are several background distributions for which they 

are CFAR. For instance, Goldstein, [42], shows that (12) is CFAR for log-normal and 
Weibull clutter. But more to the point, even if the detectors are not CFAR for the true 
background distribution of the data, they will still only pick out bright pixel values. This 
has been noted in particular by Novak et al. in the paper [84] where the detector (12) 
was observed to be an effective prescreener for SAR imagery despite not being CFAR for 
the imagery concerned. Since CFAR algorithms are often applied in situations where they 

are not truly CFAR we believe it is probably more accurate to refer to them as adaptive 

threshold algorithms. 

An important consideration in using these detectors is choosing the design parameter 

t.   As noted, the aim is usually to achieve a desired false alarm rate.   However, the 
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relationship between t and the false alarm rate can be complex and setting t may require 

difficult calculations. Often the approach taken, and especially when the detectors are not 

CFAR for the imagery concerned, is to set t empirically. Thus a range of values of t is 

tried on real imagery and the best value selected on the basis of performance. This has 

the added benefit of allowing the probability of detection to be taken into account too. 

We will say more about setting t when specific ship detection algorithms are discussed. 

There are many possible variations of the size and shape of the target, guard and 

background windows and how they are moved across the image. The final choice will 

be determined by the detection problem at hand but will also need to take account of 

computational burdens. The standard practice in ship detection is to use square windows 

and move them as a unit in single pixel steps. Square windows are the common choice 

because they allow computational efficiency and there is a lack of a priori knowledge of 

preferred shapes and orientation for ships and ocean clutter. Wackerman et al. expand 

upon this point in [135]. The sizes of the windows should be related to the size of the ships 

to be detected and the resolution of the radar. The target window should be a similar 

size to the smallest ship to be detected, the guard window should be a similar size to the 

largest ship of interest and the background window should be large enough to allow good 

estimates of the background statistics without being so large as to include other targets 

or non-background objects. Again, we refer the reader to [135] for a discussion of these 

considerations. 

5.3    Adaptive threshold algorithms for ship detection 

The work by Wackerman et al., [135], and the related work by Preidman et al, [38] 

and [39], is some of the most convincing work on ship detection in the literature. This 

algorithm was developed by ERIM International Incorporated, [94]. (ERIM is an acronym 

for the Environmental Research Institute of Michigan) We will begin with a discussion of 

their algorithm. 

Wackerman et al. [135] use the two parameter CFAR detector with a multiple pixel 

target window, (15), for detecting ships in Radarsat-1 C-band SAR imagery. They mainly 

consider the ScanSAR Wide B mode with 200 m resolution and 100 m pixel spacing 

although finer resolution imagery is also used. They note that their detector is CFAR for 

both Gaussian and exponentially distributed clutter but that more appropriate models for 

ocean clutter are the gamma distribution and the K-distribution. They point out that the 

false alarm rate for these distributions depends only on the normalised variance (variance 

divided by the mean squared) and so the detector will be CFAR for them as long as the 

normaUsed variance is constant across the image. 

Wackerman et al. use standard target, guard and background windows and they 

include a comprehensive discussion of how and why they choose the final shapes and sizes. 

The target window is 3x3 pixels, the guard window is 5x5 pixels and the background 

window is 13x13 pixels. One of their considerations was severe processing time constraints 

which may explain why the guard and background windows are smaller than the 7x7 pixels 

and 19x19 pixels windows quoted in [94]. Also, for the finer resolution imagery (100 m 

resolution, 50 m pixel spacing) all the window sizes are approximately doubled: the target 

window is 5x5, the guard window is 7x7 and the background window is 25x25 pixels. Note 
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also that Wackerman et al. suggest that if more time were available, better results may 

be obtained by using a dynamic target window. By this they mean allowing the target 

window to change size and shape and thereby incorporate all the target energy. One way 

this could be done is to use a series of target windows of varying size and shape and choose 

the one with largest mean (it- 

Wackerman et al. stress the importance of setting the design parameter t correctly 

and it is clear from their work that considerable effort and analysis was spent in doing 

so. A very informative figure is presented showing how the probability of false alarm 

varies with the design parameter t for the various background distributions considered. 

This figure emphasises the importance of using the correct background distribution model 

when setting t theoretically. In practice however, Wackerman et al. set t empirically 

using imagery which was ground-truthed by eye. The theoretical and empirical results are 

compared and several interesting observations are made. Wackerman et al. found that the 

best trade-off between probability of detection and false alarm rate occurred when i = 5.5. 

Note that in a related report, [39], i = 5.0 - 5.5 is recommended for the low resolution 

imagery and t = 5.5 - 6.0 is recommended for the high resolution imagery. 

In an interesting aside, Wackerman et al. compare their empirical results with the 

theoretical results and conclude that their observed false alarms rates are consistent with 

either a gamma distribution with normaUsed variance between 1 and 4 or a K-distribution 

with a normalised variance of 2. A significant point arises in making this comparison. It 

relates to the adjustment of t in (15) to take account of the effect of fit being an average 

over the target window. Wackerman et al. point out that for Radarsat imagery the 

pixel spacing is diflFerent to the resolution and hence the number of pixels in the target 

window is different to the number of independent samples. It is the latter quantity which 

is important when adjusting t. 

Wackerman et al. designed their detector for application to Radarsat-1 ScanSAR 

Wide B Mode imagery (200 m resolution, 100 m pixel spacing). Detection performance 

was analysed using SAR imagery of a fishery. Only partial ground truth information 

was available and visual analysis was used to oversee performance assessment. It was 

known that 272 ships were present within the fishery. The ship lengths were also known. 

The imagery also included areas of open ocean which were known to contain no ships. 
Through clever use of this partial information, Wackerman et al. were able to assess 

detection performance. The probability of false alarm was estimated using the open ocean 

areas and it was assumed to be the same in the fishery. This allowed the number of false 

alarms in the fishery to be predicted. Consequently, the number of true detections (hits) 

could be estimated by subtracting the predicted number of false alarms from the total 

number of detections. It was assumed that the missed detections were the smaller ships. 

The resulting estimate of performance was that all ships over 35 m long could be detected 

with a false alarm rate of 0.01% (i.e. the probability of false alarm is 0.01). The same scene 

was also available at higher resolution (100 m resolution, 50 m pixel spacing) in which case 

the estimate of performance was that all ships over 32 m long could be detected with a 

false alarm rate of 0.002%. Note that doubling the resolution does not halve the minimum 

detectable ship length. 

Eldhuset, [32] and [31], also uses the detector (15) for ship detection in SAR imagery. 

His application is to both SEAS AT and ERS-1 SAR imagery.   Time constraints were 
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a consideration and for this reason Eldhuset has an unusual arrangement for moving the 

detector's windows across the imagery. The target window is 2x2 pixels, the guard window 

is 10x10 pixels and the background window is 20x20 pixels. The guard and background 

windows are moved as a unit in steps of 10 pixels across the image. At each location of 

these windows, the background statistics are estimated and the detection threshold set. 

The target window is then moved around within the guard window and at each pixel the 

detection test (15) is applied. 

Actually, rather than (15) Eldhuset uses the equivalent test 4/it — Afif, > qa^ where 

5 is a fixed design parameter. Further, Eldhuset does not actually estimate a^ from the 

background pixel values, but rather uses the well-known approximation for intensity SAR 

imagery that a^ = fib/y/N, where N is the effective number of looks, and an analogous 

approximation for amplitude imagery. We note here that using such estimates for cr;, means 

that Eldhuset is in effect using the detector (16). 

Eldhuset recommends setting q = 5.0. He provides no justification for this choice. 

Presumably it was set by trial and error. Setting q = 5.0 translates to setting t= 1.25 in 

(15) which is equivalent to i = 2.5 in (12). This is lower than the value of 5.5 recommended 

by Wackerman et al. [135]. The discrepancy can probably be explained by the fact that 

Eldhuset's system includes further stringent tests to reduce the false alarm rate. We will 

say more about Eldhuset's tests in later sections. 

Eldhuset states that the background and guard windows are moved in multi-pixel steps 

for reasons of computational efficiency. He adds that this means the detection results will 

vary depending on the exact starting point of the windows but notes that this is only a 

problem in areas of the imagery that are inhomogeneous and the results are robust even 

so. We note here that the computational methods described by Wackerman et al. [135], 

are very efficient and we believe there is little to gain by Eldhuset's approach. 

Another group to use the adaptive threshold algorithm (15) is Casasent et al. [19]. 

Their appUcation is to SIR-C SAR imagery with a resolution of 50 metres. Ground truth 

was obtained by eye from higher resolution (12.5 metres) imagery. They use a standard 

setup with square windows. By measuring performance on their substantial database, 

they determine acceptable window sizes and design parameter value. They recommend 

a 2x2 target window, an 8x8 guard window, a 31x31 background window and they set 

t = 5.0 in (15). However, they note a high false alarm rate in calm seas and so make 

an ad hoc modification to the basic detector. They force a lower bound on the value 
of ai, — if CTj, is less than the lower bound it is reset to the lower bound. Unusually, 

they define the probability of false alarm as the number of false alarms divided by the 

number of targets and so care is needed in interpreting their results. They also mistakenly 

claim that the idea of using a guard window is new (which is possibly explained by a 

background in IR imagery). Their results are also puzzling in that the best setting for t 

does not seem to scale with the size of the target window as theory would dictate — see in 

particluar section 3.2.2. However, they do verify that a guard window improves detection 

performance and they examine the question of whether the target pixel variance at aids 

detection performance by considering the detector IM* —/Xfcl -Fcj > crji but without success. 

In a final section of the paper [19], Casasent et al. propose some modifications to 

improve the performance of the detector. They pay special attention to three difficult 

detection cases: ships close to land; several ships in close proximity; ships with large side 
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lobes. Casasent et al. comment that in all these cases, fj,b and ab increase, and so the 
detection threshold in (15) is too high resulting in missed detections. For the first case, 

they simply use a land mask and remove land pixels from the background "ring". For the 

second case, they suggest first removing pixel values x from the background "ring" which 

satisfy x> fjLb + 2.0(76 and then recalculating //{, and ab- This obviously also helps avoid 
missed detections in the third case. There is an additional consideration in the third case 

— false alarms in the sidelobes. To remove these, a filter is used to detect and then mask 

out the sidelobes of detected targets. This last modification has the additional benefit of 

yielding a more accurate final shape for the detected ship itself. Casasent et al. then go 

on to propose a set of rules aimed at reducing the false alarm rate when the background 

is very noisy, very dim or very smooth. The rules are ad hoc and mostly involve adjusting 

the value of abt in (15) based on the size of fib and ab- 

Next we describe the adaptive threshold detection algorithm used in the Alenia Are- 

ospazio ship detection system developed by Ferrara et al, [33], [34] and [35]. The ap- 

plication is to SIR-C/X-SAR L band SAR imagery, initially single look complex (SLC) 

with a resolution of 4 metres but they also process the imagery to a range of multi-looks 

with correspondingly different resolutions. Unfortunately, the original description of the 

system [35] lacks full details. There, they merely state that the detector is a threshold 

algorithm and that the threshold is calculated from a user specified value of the FAR. 

The more recent descriptions, [33] and [34], are more comprehensive with full details of 

the algorithm given in [146]. They use a hybrid algorithm involving both a cell-averaging 

CFAR detector (CA-CFAR) and an order statistics CFAR detector (OS-CFAR). The CA- 

CFAR detector has been discussed above and uses the detection rule (14). The parameters 

recommended in [146] for 4 look data are a 1x1 target window, a 3x3 guard window, a 

7x7 background window and i = 5.65. The order statistics CFAR detector is identical 

except that Hb in (14) is replaced with an order statistic and t = 4.63. The particular 

order statistic which replaces /it is not specified in [146] but presumably it is the median 

value. It is noted in [146] that the CA-CFAR performs well in homogeneous environments 

while the OS-CFAR performs well in inhomogeneous environments (such as when inter- 

fering targets are present in the background window). Hence, the strengths of these two 

detectors are combined by calculating a measure of the homogeneity in the background 
window and then applying the appropriate detector. The homogeneity measure used is 

the ratio ab/lJ^b- When at/fJ-b < 1/%/^ where L is the number of looks, the local area 
is assumed to be homogeneous and the CA-CFAR is applied, otherwise the OS-CFAR is 

applied. 

In [33], Ferrara et al. provide a succinct schematic diagram of the hybrid detector just 

described. However, they imply in the introduction that the design parameter t in (14) is 

not fixed at the values specified in [146] but rather is calculated from user specified false 

alarm rates using the appropriate background pdf. Details of the pdf are not given but a 

good choice is obviously the gamma distribution as mentioned in [146]. Ferrara et al. note 

that the detector has improved performance over their previous detector and especially 

in the case of small targets in low resolution imagery. A more detailed analysis is given 

by Ferrara and Torre in [34]. There, they model the background with a chi-squared pdf 

and use that for selection of the design parameter t. They also model the target with a 

Rice distribution and hence can assess probabilities of detection. They consider a range 

of different resolutions corresponding to multi-look data of 1, 4, 9, 16 and 64 looks. They 
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report a theoretical probability of detection of greater than 80% except for the 64 look 

data where PD drops to less than 50%. Interestingly, they consider the case where isolated 

detected pixels are considered too small to be ship pixels and are discarded (of course the 

validity of this depends on image resolution and ship size). In this case they use a different 

FAR (presumably higher) and hence get better probabilities of detection. 

Cusano et al, [25], describe a ship traffic monitoring system which operates at ESA's 

European Space Research Institute on ERS 1/2 Quick Look SAR imagery. At its heart 

is an adaptive threshold algorithm for detecting ship-Hke pixels. They comment that this 

is an improved detector which has been designed to cope with the high variability of sea 

surface scattering. The core of the detector is a multi-target pixel cell averaging GEAR 

detector (16). However, it has been improved by allowing the design parameter t to be 

a function of the variability of the SAR image level. Cusano et al. do not elaborate 

on exactly how t is adjusted neither do they specify detector window sizes and shapes. 

Fortunately, Lombardo and Sciotti, [70], provide a brief description of the detector which 

allows some insight to the adjustment of t. They state that the technique scales directly 

the detection threshold as a function of variance. Cusano et al. add that areas of very 

high contrast are automatically detected and masked out. Their results show that detector 

works well and is not confounded by closely spaced ships or the presence of ship wakes. 

The paper, [73], on ship detection in Radarsat imagery by Lopes et al. is brief and 

poorly written. Consequently it is hard to assess. They mention using a likelihood ratio 

test, however, the core of their detection algorithm appears to be the cell-averaging CFAR 

detector (16). Their setup has no guard window and only consists of a multi-pixel target 

window which is contained in a larger background window. Their detection criterion is 

fJ't/fJ'b > t for some fixed threshold t. Interestingly they derive the pdf of the ratio iJ-t/fJ-b 

under the assumption that the target window only contains background pixels and the 

background distribution is a negative exponential (which is consistent with a single-look 

intensity image). From the pdf, they obtain an expression for the PFA in terms of t. 

They note that when clutter samples are correlated, the arithmetic mean of the intensity 

is not a minimum-variance estimator of power levels and hence they suggest the use of 

a spatial whitening filter (SWF). The SWF was introduced in [63] and shown to be a 

superior method of speckle reduction compared to noncoherent spatial averaging. 

The system proposed by Rye et al. [107] for ERS-1 data, uses a fixed global threshold 

t to detect ship pixels. Importantly, this is combined with a preprocessing step which 

normalises the imagery by dividing each pixel value by its local mean /i^ (calculated over a 

window of 30x30 pixels). Thus the detection test is Xt/fJ-b > t which is just a rearrangement 

of (14) and in effect Rye et al. are using a cell-averaging CFAR detector. However, since 

this detector uses no guard window, its performance would be expected to be worse than 

a traditional cell-averaging CFAR detector. Rye et al. suggest several ways to improve 

performance: detection only if N pixels are above the threshold in an area of M pixels; 

searching for adjacent pixels above the threshold; and using two thresholds with pixels 

above the lower threshold being used to link together pixels above the upper threshold. 

The ocean monitoring workstation (OMW) is a high profile ship detection system 

which we discuss in the next section. Here, we mention the detection algorithm used by 

its precursor - the ocean features workstation (OFW). Rey et al. report in [103] that the 

OFW used a two parameter CFAR detector with design parameter t = 5.0. They provide 
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few other details. However, they do note that while the detector was adequate for ERS-1 

SAR data, it did not perform so well on Radarsat-1 data - the false alarm rate was too 

high. The reason proffered being that Radarsat data is higher resolution. They found 

that a CFAR detector based on a K-distribution model for the ocean clutter gave better 

performance. 

The CFAR detector used by Jiang et al. in [54] is of interest in that it is a CFAR 

detector which is based on a non-parametric estimation of the ocean clutter pdf. Thus 

they use equation (10) where f{x) has been estimated non-parametrically. This work 

grew out of earlier work with a K-distribution based CFAR detector, [55], where it was 

found that the K-distribution was not always a good fit to the data. The non-parametric 

technique they use is called probabilistic neural networks but it is essentially a Parzen 

window method of approximating the pdf from histogram data. The approximation is 

M 

fix) = '£mG{i,cr){x) 
1=1 

where M is the number of image grey levels, P[i] is the normalised histogram and 

1 /   (x-^)^^ 

Computing pdfs this way can be computationally expensive. Jiang et al. solve this problem 

by using look-up tables for calculating the quantities G{i, a){x). The other important issue 

in Parzen window methods is choosing the correct kernel "width", a. Jiang et al. do this 

empirically with the use of training and validation data. Their method also involves the 

definition of an error function for comparing the difference between two histograms. 

Jiang et al. do not mention their CFAR window setup. However, it is implicit that, as 

in the work by Vachon et al. [127] to which they refer, each image is divided into frames 

and each frame is processed as a whole. Thus the pdf is estimated for the whole frame 

and the resulting threshold T is in turn applied to the whole frame. While this means 

the algorithm is more like a global threshold algorithm rather than an adaptive one, it 

should effectively be adaptive as long as the frame size chosen is small enough so that the 

background statistics are stationary across the whole frame. 

Having specified how to estimate the pdf /(x), Jiang et al. then discuss how to solve 

(10) for the threshold T given the PFA. This is an iterative process which relies on the 

fact that the distribution function F(x) = /f ^ f{t)dt is increasing. The first step is to 

find the integer To with F{To) < 1 - PFA < F(To + 1) in which case To < T < To + 1. 
Next the value Ti = To + 1/2 is tried and F{Ti) is compared with 1 - PFA to determine 
if To < T < Ti or Ti < T < To + 1. This process then continues with the interval 

containing T being halved each time until the desired accuracy is reached. (We note here 

that according to standard optimisation theory it is more efficient to conduct this search 

by partitioning the interval containing T into golden ratio proportions or better yet using 

a Fibonacci search rather than halving it every time.) Calculating F{x) for given values 

of X is still non-trivial and in the case being dealt with here, a rational approximation to 

the error function erf is used. 

Jiang et al. compare the performance of their algorithm with a K-distribution based 

CFAR detector. The actual detector is not specified but given their earlier work, [55], and 
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the reference to that of Vachon et al, [127], it is likely that the comparison was with the 

OMW detector discussed in the next section. The results show that the method of Jiang 

et al. is faster and models the data better. 

5.4    The OMW detector 

The ocean monitoring workstation (OMW) is one of the few commercially available 

software packages for the detection of ships in SAR imagery. The OMW has other impor- 

tant capabilities as well, such as oil spill monitoring and wind and wave field extraction, but 

we will only be interested in ship detection here. Its main application is to near real-time 

analysis of Radarsat and ERS imagery (but it accepts any CEOS Level 1 SAR imagery). 

It has a long history of development and represents state-of-the-art technology. It was 

developed by Satlantic Inc. under contract to Fisheries and Oceans Canada. Funding for 

the contract comes from several Canadian government agencies including the Department 

of National Defence (DND) and the Canada Centre for Remote Sensing (CCRS). DND's 

interest, through Defence Research Establishment Ottawa (DREO), is in ship detection 

for wide area surveillance. DREO has provided substantial technical input into the OMW. 

Information on the OMW and it's ship detection algorithms may be found on Sat- 

lantic's web page ^, on Canadian Centre for Remote Sensing's (CCRS) web page ^, and 

in the papers, [126], [47], [49], [134], [133], [102], [14], [48], [128], [127] and [103]. Not 

much has appeared in the literature recently concerning ship detection with the OMW 

so it is unclear what the current state of play is. In their summary in 2000 Vachon et 

al. [126] note that the research efforts at DREO then were directed towards reducing the 

FAR of the OMW and modifying the algorithms for application to fully polarimetric data 

(in anticipation of the launch of Radarsat-2). 

Being a commercial product, it would not be surprising if full details of the OMW 

procedures have not been disclosed and obviously we can make no guarantee that the 

description in this report is complete and up to date. However, as mentioned, the devel- 

opment of the OMW was a collaborative effort and many details have appeared in the 
hterature. The most detailed and comprehensive reports are in [49] and [102]. In partic- 

ular, in section 2.0 of the report [102], Rey et al. provide a summary of the OMW ship 

detection algorithm at the time and go on to suggest modifications in section 5.0. This is 

the most complete description available in the open literature. 

The OMW ship detection algorithm is essentially a CFAR algorithm based on mod- 

elling the ocean clutter with an L-look K-distribution. It is well known that the K- 

distribution is a good model for single point clutter statistics in homogeneous regions of 

high resolution radar imagery, see for instance [9]. Detailed research, as discussed below, 

has confirmed that it is appropriate for satelhte borne SAR such as Radarsat and ERS. 

However, we also warn that it is not appropriate for all SAR imagery. For instance, it 

was reported by Yeremy et al. in [143] that the OMW ship detection algorithm could not 

be applied to SAR data collected by the CCRS C/X SAR because the nadir region of the 

imagery did not conform to the K-distribution model. 

''http://www.satlantic.com 
*http://www.ccrs.nrcan.gc.ca 
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The pdf for the K-distribution of intensity imagery is 

L+v 
,, ,     2 (Lvx\   2 1 /Lux 

(18) 

where L is the number of statistically independent looks, u is an order parameter, fi is the 

mean value, r(-) is the gamma function, and KU-L{-) is the modified Bessel function of 
order v - L. k similar pdf can be derived for amplitude imagery but intensity imagery is 

usually used. Vachon et al. [134] note (without elaboration) that the order parameter v 

models the wind variability within the ocean scene. 

The number of statistically independent looks L is determined by the SAR processor 

and is presumed to be known. Hence constructing a CFAR detector based on the K- 

distribution involves fitting the distribution (18) to the ocean clutter by estimating the 

mean /i and the order u from samples and then determining the detection threshold T by 

solving (10) for the estimated parameters and the given PFA. Both these tasks are difficult 

and have been the subject of extensive research. We discuss the different methods later 

in this section. 

The OMW does not use the standard CFAR detector window setup in Figure 1, rather 

it divides the image into frames (small imagettes), [134], [49], [102] and [103]. The ocean is 

assumed to be homogeneous within each frame and the whole frame is used to estimate the 

parameters /i and v of the K-distribution (18). Once the threshold T has been determined 

it is applied to the whole frame. It is presumed that this approach has been chosen for 

computational efficiency — determining the threshold T is numerically intensive and it is 

not practical to do so for each pixel individually. Selecting the appropriate frame size is 

thus a trade off between accuracy and efficiency. 

Not many details are readily available on frame size specification for the OMW. It is 

noted in [134], that recommendations have been made in the CCRS/AD/ADS internal 

report, [16], but that report was not obtained. Henschel et al. [49] state that a configura- 

tion file is used to specify the frame size and that it is Radarsat beam specific. However, 

the only other comment they make on the topic is that frame size is significantly smaller 

than 3200 pixels square. The description by Rey et al. in [102] is Hkewise scant on detail. 

They merely note that the frame size is typically 256 pixels square. In older work, Rey 

et al. [103] state that a rule of thumb derived from experience with ERS-1 data is that 

stationarity of ocean statistics can be assumed over no more than a 10km x 10km region. 

They recommend using frames no larger than 1000 x 1000 pixels for Radarsat data. They 

go on to say that non-stationarity may occur in smaller regions and care is needed. 

We note that the absence of a guard window means that target pixels can corrupt 

the process of fitting the K-distribution. Rey et al, [102], state that the OMW partially 

alleviates this problem by flagging any saturated pixels as possible targets and hence 
excludes them from the background. They go on to suggest a possible solution in the case 

of non-saturated targets is to do a first pass with an empirically derived threshold T which 

detects high probability targets and then remove them from the background samples. 

We return now to the question of how to solve (10) for T assuming that /i and u have 

already been estimated. Due to the intractability of the K-distribution, this needs to be 

done numerically. Note also that, since the same threshold T is applied to the whole frame, 
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it is more efficient to solve (10) for T rather than use (11). The best reference as to how 

the former is actually done in the OMW is the report, [102], by Rey et al.. They state that 

T was originally calculated from the order parameter for a given number of statistically 

independent looks, L, and CFAR value using a look up table which defined the parameters 

of an approximation derived from numerical calculations. They go on to state that in 

order to refine the accuracy of the approximation, the look up table method is now used 

for an initial value, and the iterative method based on the analytic expression developed 

at DREO, [103], is used to calculate the final value of the K-distribution critical intensity 

threshold. It seems likely that the original look-up table method is the one described by 

Campbell et al. in [14]. Presumably, the iterative technique referred to here is the same 

as the search technique used by Jiang [54] which we discussed at the end of Section 5.3. 

The standard method of parameter estimation is the maximum likelihood solution. 

However, Blacknell, [9], notes that this is analytically intractable for the K-distribution 

and suggests three moment based alternatives. Based on Blacknell's results, two of these 

alternatives have been closely examined for the OMW. The first uses the mean and variance 

of the data and is referred to as the MV method. It provides the estimates fl and u of the 

mean and order parameter /x and v by solving the equations: 

A   =   (^) (19) 

where (■) is the expectation operator. The second estimator uses the mean of the data 

and mean of the log of the data, and is referred to as the MML method. It requires the 

equations: 

A   =    {^) (21) 

\n{p,)-i;{u)   =   ln{{x))-{\n{x))+i^{L)-ln{L) (22) 

to be solved where tp is the digamma function. 

Early work by the OCRS and DREO researchers, [14] and [127], verified the suitabiHty 

of the K-distribution together with the MV method of parameter estimation for modelling 

ocean clutter in both ERS and Radarsat SAR imagery. We mention in particular here 

the Pearson diagrams in [127] where ERS and Radarsat ocean clutter are seen to be K- 

distributed. It seems likely that at the time, the OMW algorithm was based on the work 

of Campbell et al. as documented in [14]. 

Concurrent with the early work by the CCRS and DREO researchers, Rey et al. [103] 

took a more in depth look. They considered both the MV and the MML methods of 

estimation and used both the x^ test and the Kolmogorov-Smirnov tests to test the good- 

ness of fit between the sample probability distribution and the estimated K-distribution. 

Blacknell's third estimation method, [9], was not considered since his analysis showed that 

it was generally less accurate than the MV and MML methods. The experiments were 

conducted on ERS-1 data. While the results were not entirely conclusive they were con- 

sistent with the theoretical analysis of Blacknell, [9], and OUver, [87]. On this basis, it 

was concluded that the MML approach is better for low values of u and the MV approach 

is better for high values of v. The empirically obtained cross-over point being 

u = 6.1L + 1.2b (23) 
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where L is the number of effective looks. 

Based on the results in [103], Rey et al. conclude that the K-distribution is a good 

model for ocean clutter. They recommend that both the MV and the MML methods be 

used for order parameter estimation and that (23) be used to determine which estima- 

tion method is actually applied. They go on to outline the steps of a complete CFAR 

detection algorithm. They report that this algorithm has better performance than the old 

two-parameter CFAR one. The new algorithm includes a clever idea for computational 

efficiency which we mention here. Rather than proceeding straight to solving (10) for T 

given the user specified probability of false alarm (which is computationally intensive), 

the idea is to use (10) to calculate the probability of false alarm when T is set to the 

maximum pixel value in the frame. If this probability is less than the user specified one 

then the frame has no pixels which will be declared targets by the detector and processing 

is stopped. 

It is noted by Rey et al, [102], and Henschel et al, [49], that sometimes when fitting 

the K-distribution to Radarsat data, the estimation order parameter u is negative. The 

implication is that the K-distribution is not a good model for such data. Consequently 

the OMW was modified to use a x^-distribution look-up table in these cases. Rey et al 

[102] write the x^-distribution with 2n degrees of freedom as 

/(^) = 2J2"nr(n) ^^P ("i)        ^""'"^ > Oand 0 elsewhere (24) 

where n is the order parameter and a is the standard deviation of the distribution. Rey et 

al provide a discussion of how the x^-distribution relates to the K-distribution and go on 

to justify the use of the x^-distribution when the estimated value of v is negative. They 
note that the x^-distribution, under a suitable change of variables, becomes the gamma 

distribution (2) which is, in turn, the limit as v approaches infinity of the intensity K- 

distribution. Thus, in theory, the order parameter n is equal to the effective number of 

looks L. Rey et al [102] state that at the time of their report, the OMW used a x^- 
distribution with n = L whenever the MV estimate of the K-distribution order parameter 

1/ was negative. However, they note that there is uncertainty in the value of L and that n 

can also be estimated by 

n = J4^ (25) 

where (■) is the expectation operator. In [102] they report good results using this estimate 

for n and consequently recommend the OMW be modified accordingly. We note here that 

setting the detection threshold T when using a x^-distribution involves iteratively solving 

(10) for the given PFA in much the same way as when using the K-distribution. 

The initial aim of the report [102], Rey et al, was a further investigation of which 

of the two K-distribution parameter estimation schemes gives better results. However, 

the scope was extended to include an investigation of the x^-distribution as an alternative 

ocean clutter model when it was found that K-distribution did not always fit the data. The 

appropriate choice of the probability of false alarm (CFAR value) was also considered with 

a range of CFAR values being tested in order to take account of probability of detection 

as well as probability of false alarm. Radarsat data from the Scotia Shelf exercise in 

1996 and the MARCOT 1997 naval trial was used.  The ground truth was provided by 
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expert human imagery analysts. It was found that K-distribution failed to fit most of the 

MARCOT scenes. While this could not be fully explained some suggestions were made 

as to why. The x^-distribution was shown to be a suitable alternative. It was found that 

for a given CFAR value, the MML algorithm generates more false alarms than the MV 

algorithm but less than the x^ algorithm. But it was also found that the MML algorithm 

detects more targets too and hence gives a better trade off between detecting targets and 

rejecting false alarms. The final recommendation is to use the MML based K-distribution 

with a CFAR of 10~^. It was also noted that the x^-distribution with a lower CFAR value 

performed well too but more work is needed to confirm this. 

The MARCOT naval exercise off the East Coast of Canada in 1998 provided an ex- 

tensive data set for development and validation of ship detection algorithms. The idea of 

this trial was to conduct an operational evaluation of the OMW. However, Henschel et al, 

[49], also used the trial data to investigate the best procedure for driving the OMW ship 

detection algorithm. Their work appears to be direct extension of that of Rey et al, [102]. 

They address similar questions and they reach similar conclusions. The investigation by 

Henschel et al. was based on preliminary data since the full ground-truthed statistics were 

not available at the time. Unfortunately, an analysis of the complete MARCOT'98 data 

has not yet appeared in the open literature. 

This completes our review of the OMW ship detection algorithm except for the follow- 

ing miscellaneous notes. The OMW manual, [111], states that when used with Radarsat 

Fine beam mode the OMW can detect ship of 5-10 m length in low wind. Campbell 

et al, [14], note that taking into account the multi-pixel extent of targets can improve 

their detectability although they provide no details on how to do this for OMW-type algo- 

rithms. Also, in the OMW algorithm description of Rey et al, [102], it is mentioned that: 

Radarsat imagery has dark strips which are removed in a preprocessing step; if there is 

land within a frame then its statistics are replaced with those of the nearest neighbouring 

frame which does not contain land; detected pixels are clustered into groups of contiguous 

pixels; and any candidate targets which are too large, too small, too close to land or too 
close to another target are eliminated. 

We conclude this section with some comments on other work with K-distribution based 

CFAR detectors. The first we mention is by Jiang et al, [55]. This work is closely related 

to the OMW. Jiang et al recommend testing the goodness of fit of the K-distribution 

(by a mean squared error criterion) and only using it when the error of the fit is below 

a pre-set value. They also use two detection thresholds — the first generates a very low 

probability of false alarm while the second is less stringent. The idea is that the second 

threshold picks up less bright pixels missed by the first threshold. Since these pixels are 

less likely to be ship pixels, Jiang et al subject them to a wake test. Only those pixels 

for which the wake test is positive are retained. 

Robertson et al, [105], have also used a K-distribution based CFAR detector. How- 

ever, unlike the OMW, their detector uses a standard roving window to determine local 

clutter statistics which are then fitted to a K-distribution. No comment is made on the 

computational cost of this. The other point of interest in this work is the fact that an 

absolute floor value is used. The idea of this threshold is to avoid excessive false alarms 
in dark regions of the imagery. 
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5.5    Segmenting detectors 

In the papers, [70] and [115], Lombardo and Sciotti analyse the performance problems 

of standard CFAR techniques for ship detection in satellite SAR imagery and describe a 

new segmentation based technique which addresses these problems. The first paper is a 

journal paper and provides a more detailed account of the contents of the second paper. 

These papers represent a substantial and important piece of work and warrant a detailed 

description here. 

Lombardo and Sciotti note that SAR imagery of the ocean is typically inhomogeneous 

with differences in ocean backscattering behaviour caused by features such as: transitions 

between regions with different wind conditions; low wind spiral marks; effects due to 

land areas; altered backscattering due to ocean bottom effects; and the presence of ship 

wakes. Such inhomogeneities give rise to a large number of false alarms when standard 

CFAR detectors are used. Hence they propose preceding the CFAR detection stage with 

a segmentation stage which partitions the imagery into more uniform areas. Both low- 

resolution quick-look ERS SAR imagery and high resolution X-SAR/SIR-C SAR imagery 

are considered. Ground truth was obtained by expert humans with the help of accurate 

land masks. 

Lombardo and Sciotti provide a theoretical analysis of three standard CFAR detectors. 

The standard detectors they analyse are the cell-averaging CFAR detector (CA), the cell 

average-greatest of (CA-GO) and the cell average-smallest of (CA-SO). The CA detector 
is as described in (14). The CA-GO and CA-SO detectors are related to the CA detector 

but are specifically designed to cope with inhomogeneities in the form of step edges. They 
do this by dividing the background window into two halves and estimating the background 
mean //& in each half. The CA-GO detector uses the maximum of these two values while 
the CA-SO detector uses the minimum. The background window dividing line can have 

any specified orientation. Lombardo and Sciotti use a single pixel target window, a 3x3 

pixel guard window and a 7x7 background window. It is likely but not explicitly stated 

that these window sizes are used in the practical applications later in the paper. 

Lombardo and Sciotti's theoretical analysis of the performance (PFA and PD) of the 

CFAR detectors on L-look SAR imagery is based on modelling the background statistics 

with a Gamma pdf with order parameter L and the ship target statistics (after some 

derivation) with a Gamma pdf with order parameter L x UT- They analyse detection 

performance in inhomogeneous areas by considering what happens as the detection window 
moves across the boundary between two different homogeneous regions. In particular, 

they consider the case where the background window contains a step edge so that the 
background is divided into two areas with differing mean intensity values. The calculation 
of PFA and PD for the CFAR detectors is non-trivial and extensive calculations are needed. 

The results are summarised in plots of PFA and PD against proximity to the step edge 

and show that as the transition between regions occurs all three detectors have trouble 

maintaining both an acceptable false alarm rate and a good probability of detection. 

Lombardo and Sciotti note that the explicit dependence of PFA and PD on the (effective) 

number of looks L in their formulae allows detection thresholds to be set and performance 

studied when operating with SAR images of different quality and resolution. 

Lombardo and Sciotti confirm their theoretical findings with evidence from real im- 
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agery. The CA CFAR detector is seen to have good performance on homogeneous imagery 

but badly degraded performance on inhomogeneous imagery. While the CA-GO improves 

on the CA for inhomogeneous imagery, the gain in performance is not significant. When 

the detection threshold is set low enough to achieve a good PD, too many false alarms are 

generated in inhomogeneous areas. Lombardo and Sciotti have attempted to reduce the 

FAR by varying the size and shape of the background window and by taking into account 

the detected target's dimensions but without success. They note that while previous de- 

tection techniques have taken the variance of the background into account and increased 

the detection threshold in high-contrast areas this is done at the expense of decreased PD. 

The problems mentioned above motivate Lombardo and Sciotti to consider prior seg- 

mentation as was done in previous target detection work by McConnell and Oliver, [81]. 

If the step edges and other such inhomogeneities are correctly identified by segmentation 

and if the CFAR detectors are altered to only use background pixels from the same homo- 

geneous region as the test pixel then the problems of high false alarm rates are alleviated. 

Interestingly, Lombardo and Sciotti's experience has shown that different algorithms are 

appropriate for different types of imagery. We discuss the details next. 

For low-resolution SAR images with a high effective number of looks, Lombardo and 

Sciotti use the following segmentation and detection procedure. First, a global threshold 

is used to split the image into low wind regions (LWR) and normal wind regions (NWR). 

Next, single pixels and small regions are removed by median filtering. The segmentation 

is then further refined by identifying "transition regions" (TR) between the two classes 

and merging them with the low wind regions since their inhomogeneities need to be dealt 

with in the same way. This last step involves the use of the "normalised-log measure" to 

take account of texture in the image but is not clearly explained in the paper. The final 

segmentation result is two classes - NWR and LWR-I-TR. Different detectors are applied 

in each class. A CA-CFAR detector is applied in the NWR but modified so that only 

NWR pixels are used to estimate the background mean. In contrast, a fixed threshold 

is used in the LWR-I-TR regions. This is done to avoid problems arising from the high 

variability of the data and low mean intensity in these regions. The fixed threshold is set 

as a function of the mean intensity in the neighbouring NWR but the gain factor used 

(the design parameter t in (14)) is lower than that used in NWR. While the motivations 

for this algorithm are well explained in the paper, the technical details such as window 

sizes and gain factors are lacking. 

In the higher resolution X-SAR/SIR-C imagery, an improved segmentation technique 

is needed. Lombardo and Sciotti note that while ship targets occupy more pixels in higher 

resolution imagery and are therefore easier to detect, the imagery is more inhomogeneous 

and consequently the false alarm rate is also higher. Lombardo and Sciotti use a simulated 

annealing segmentation technique, see [24] and [88], which handles speckle well. Following 

segmentation, two thresholds are applied to the average intensities of the segments so 

that they are partitioned into 3 classes. These classes have similar texture (as measured 

by a "normalised log" technique) but differing means. Lombardo and Sciotti state that 

these classes are adequate for the subsequent detection stage but give no explanation as 

to why the segments were merged in this way. They also do not specify the values of the 

thresholds which were used. The resulting segmentation class regions contain no uniform 

dark "LWR" type regions so they do not use a fixed detection threshold. Instead they 

use the CA-CFAR in all class regions. Lombardo and Sciotti note it makes sense to use 
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detectors which take account of the multi-pixel extent of the targets but for various reasons 

adhere to a single pixel target window. Finally, since ship targets may occupy many pixels, 

all small "ship sized" class regions are tested against a CA-CFAR threshold derived from 

the adjacent larger class regions. Precise details of how the latter is done are not given. 

Setting the detector design parameter i in (14) to achieve a given FFA is more com- 

plicated in higher resolution imagery. Lombardo and Sciotti observe that applying the 

CA-CFAR as-is gives a FAR 2 orders of magnitude above the design FAR confirming the 

highly non-Gaussian nature of the region statistics. Hence, they model the region statis- 

tics as K-distributed. They derive a new approximate expression for PFA assuming a 

CA-CFAR is used and the background clutter is K-distributed. This expression allows the 

correct design parameter for a given false alarm rate to be to chosen. The relationship 

depends on the K-distribution order parameter v. In applications to high resolution X- 

SAR/SIR-C imagery Lombardo and Sciotti note that v does not vary much within each 

segmentation class. Consequently, v is estimated for each class and the design parameter 

t is set to achieve the desired FAR. A CA-CFAR is then applied in each class region. We 

note here that in effect, Lombardo and Sciotti are taking the background variance into 

account and altering the detection threshold appropriately. 

Lombardo and Sciotti assess the first algorithm (for low resolution imagery) by applying 

it to real ERS imagery which was ground-truthed by eye and compare its performance 

to the standard CA-CFAR and CA-GO CFAR detectors and also to Eldhuset's detector 

(no reference given but presumably [32]) and OISD, [25]. They report substantially better 
performance. Similarly they assess their second algorithm (for high resolution imagery) by 
applying it to X-SAR/SIR-C imagery. Here, they compare performance with the standard 
CA-CFAR and their first algorithm and show that their second algorithm is substantially 

better. Thus Lombardo and Sciotti results confirm the usefulness of a prior segmentation 

stage which allows one to properly estimate both the mean and the order parameter of 

the background clutter. 

Follow up work is presented in [117]. There, Sciotti et al. consider the best way of 

exploiting polarimetric data. They consider three different detection strategies: a) apply 

single channel detectors to each polarimetric channel and then combine the detections; 

b) combine the polarimetric channels and then apply a single channel detector; c) apply 

a multi-channel detection algorithm. Among the single channel detectors used are cell- 

averaging CFAR (14) and the two parameter CFAR (12). The main thrust of the paper 

is to demonstrate that non-homogeneous ocean features cause high false alarm rates and 

consequently an initial segmentation stage improves the performance of the detectors. 

They observe that the false alarms are most prevalent in non-homogeneous areas of the 

imagery which contain: (i) very dark segments (ii) edges between areas with different 

mean back-scattering. In conjunction with the three different detection strategies they 

consider three different segmentation strategies: 1) segment the single channels separately; 

2) segment the combined polarimetric channels; 3) segment the polarimetric channels 

jointly. The segmentation algorithm used is the algorithm for high resolution imagery 

in [70] as just discussed. They assess the performance of the various detection schemes 

by applying them to several different L-band SIR-C SAR images. Their results clearly 

demonstrate a large performance improvement when the segmentation stage is introduced. 
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5.6    Likelihood ratio detectors 

So far, the detectors we have discussed have been based on statistically modelling the 

background and looking for pixels with a low probability of belonging to the background. 

However, for an optimal detector, it is necessary to take the target into account too. 

Without going into the details, such considerations lead to the likelihood ratio test or 

Neyman-Pearson detector 

) \'s > A <i=^ target 
p{x\B) 

where x is the data under test, p{x\T) is the pdf of x given that a target is present, p{x\B) 

is the pdf of x given that only background is present and A is a fixed threshold. Generally, 

A is chosen to give a specified probability of false alarm. 

The likelihood ratio detector requires an explicit knowledge of the pdfs p{x\T) and 

p{x\B). However, in target detection work, as we have seen above, these pdfs vary from 

location to location and are not known explicitly. The usual approach is to model them 

parametrically and to estimate the parameters from the data. Thus we assume parametric 

models p(a;|r, 9T) and^(x|B, 6B) where 6T and 6B are the vectors of pdf parameters. When 

6T and 6B are estimated using maximum likelihood methods, we obtain the generalised 

likelihood ratio test detector 

maxe^pfxlT, 0r)      , .. 
 ^^  ,      '  ', >A ^:^ target 26 
max6igP(a;|B, 0J3) 

where again A is chosen to give a specified probability of false alarm. 

Generalised likelihood ratio detectors are not commonly used in target detection work 

because targets are hard to model well statistically. Ship targets, for instance, come in 

many sizes, shapes and orientations and for this and other reasons their appearance in 

SAR imagery is highly variable. However, Brizi et al, [10], have proposed a simple but 

useful model. The associated GLR detector has been considered for ship detection by 

Sciotti et al, [116] and [117]. We describe it next. 

Brizi et al, [10], consider single look complex (SLC) SAR imagery. They use a target 

window of N pixels and arrange the complex pixel values in a column vector x. Under 

the hypothesis (T) that the window is centred on a target, x is assumed to contain target 

echos plus thermal noise and under the alternative hypothesis (B), that the window is 

not centred on a target, x is assumed to contain clutter echos plus thermal noise. The 

model which Brizi et al propose is that the target, clutter and thermal noise samples 

are all extracted from zero mean Gaussian random processes with variances cr|, a^ and 

a^, respectively. This is a commonly used model for clutter samples from SLC SAR 

imagery, at least. Brizi et al also assume that the samples are independent from pixel 

to pixel which is certainly reasonable for low resolution imagery. To aid in modelling the 

background clutter, Brizi et al also make use of K secondary data yi,... ,yK, each of 
dimension N, which are assumed to be target free. The secondary data are arranged into 

a matrix Y = [yi,... JYK]- Thus the generalised likelihood ratio in (26) takes the form 

max^2,,2,^2p(x, Y|r,o-t^ffg,a^) _ max^2„2,^2 {p{:ic\T,alal) ■ p(Y\a^,al)} 

max<72,<T2 P(x, Y\B, al, al) max^2^^2 {p(x|B, al, al) ■ p{Y\al, al)} 
(27) 
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Substituting the pdfs in and performing the maximisations leads to the detector 

which Brizi et al. refer to as the Gaussian GeneraUsed Likehhood Ratio Test (G-GLRT). 

Brizi et al. use ii' = 3 but make no comment on how the secondary data Y = [yi,. • ■, ys] 

are obtained. It is of interest to note here that Brizi et al. also extend the target model to 

take account of the information available in the target radar shadow. Thus their extended 

detector looks for bright target pixels next to dark target shadow pixels. However, moving 

ships are shifted in azimuth from their shadows and therefore this extension is not relevant 

to ship detection. 

The G-GLRT detector of Brizi et al. was developed into a typical CFAR sliding window 

approach by Lombardo et al. in [71]. They use a 5x5 pixel target window, a 11x11 pixel 

guard window and a 15x15 pixel background window. Thus the secondary data are no 

longer of the form specified by Brizi et al. and instead are formed from the pixels in the 

annulus between the background and guard windows. This change requires the G-GLRT 

detector to be reformulated. Lombardo et al. do this for the case where the target shadow 

is modelled as well as the target itself. Lombardo et al. also work with intensity data 

rather than complex data. By extrapolating from the reformulation given by Lombardo 

et al. in [71] we believe that the G-GLRT detector (28) becomes 

iNm + N,,f^^-^^^ ^ ^^^^^^ (29) 

where fit and /i(, are the mean intensity (power) in the target and background windows, re- 

spectively, and Nt and N^ are the number of pixels in the target and background windows, 

respectively. 

The G-GLRT detector has been considered for ship detection by Sciotti et al. in [116] 

and [117]. While their main aim in these papers has been to explore the best method 

of exploiting polarimetric data, they still compare the performance of various detectors 

on single channel imagery and fused multi-channel imagery. The results in [116] with 

simulated data show that the G-GLRT detector performs better than the cell averaging 

CFAR detector (16) (which they refer to as the Power Ratio detector). However, the best 

detection performance is given by the PG-GLRT detector which is designed to exploit 

polarimetric information. We will discuss the PG-GLRT detector later in this report in 

the section on polarimetric data. In [117], performance is assessed on SLC quad-pol L- 

band SIR-C SAR data. Detection thresholds are set at the extreme values which still 

ensure the detection of all visible ship targets. Performance is then assessed by comparing 

the false alarm rates. While their results for polarimetric data which has been fused into a 

single image verify that a G-GLRT detector out-performs a cell averaging CFAR detector, 

they are both out performed by a two parameter CFAR detector (15). However, their 

results also show that if an initial segmentation stage is included so that the detectors are 

applied to homogeneous regions only then the G-GLRT detector can out-perform the two 

parameter CFAR detector. 
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5.7    The SUMO detector 

The fisheries control group at the Joint Research Centre (JRC) of the European Com- 

munity are developing a software system for the automatic detection of ships in satellite 

SAR imagery. The system is known as Search for Unidentified Maritime Objects (SUMO). 

Its development has been documented by Schwartz et al. in [114] and Kourti et al. in [61] 

and [60]. While the paper by Schwartz et al. describes two algorithms for discriminating 

false alarms from true detections and therefore more properly belongs in the section on 

discrimination algorithms, we review it here since one of the algorithms is very much tied 

to the detection algorithm used. It also contains further details of the detection algorithm. 

The work of Kourti et al, [61], was aimed at generally assessing the utility of Satel- 

lite SAR for fisheries control, it also includes the details of an algorithm for automatic 

processing of the imagery. The study revealed that of the available Radarsat modes, 

ScanSAR narrow imagery is the best for fisheries monitoring since it covers a wide area 

with a sufficient resolution. Consequently, a total of 60 ScanSAR narrow images from 

3 different fisheries were analysed. Groundtruth was provided by the Vessel Monitoring 

System (VMS). As an interesting aside, we note the comment in [61] that JRC's own 

software package, G-PROC, (G-PROC was developed specifically for SAR analysis in the 

early 1990s) was awkward and unreliable, therefore the ENVI/IDL package was chosen. 

The SUMO ship detector is a type of template matching. The template is designed 

to match the appearance of ships in SAR imagery. It consists of a 4x4 pixel window 

with three different thresholds as described in step e) below and displayed graphically in 

Figure 2. The detection algorithm consists of the following steps, a) Mask out the land, 

b) Partition the image into tiles of size 2500 lines by 400 pixels; c) Calculate the mean 

H and standard deviation a of the pixel values in the tile being processed, d) Calculate 

thresholds for the search template by 

Tl = Z.O*{fi + a)       r2 = 1.9*(/x + a)       T3 = lA*{n + a) (30) 

The threshold factors 3.0, 1.9 and 1.4 were found empirically. They were region dependent 

and the combination 2.5, 1.3 and 1.1 was better in areas with low ocean clutter levels. 
Work on automatically calculating the optimal values for a particular area is underway. 

e) A detection is recorded at pixel {i, j) if: 

• The pixel values at (i,j), {i + 1, j), (i,j + 1) and {i -|-1, j -|-1) are above Tl, 

• and the values at {i-l,j), {i-l,j + l), {i + 2,j), {i + 2,j + l), {i,j-l), {i,j + 2), 

{i + l,j -1) and{i + l,j + 2) are above T2, 

• and the values at {i — l,j — l), {i — l,j + 2), {i + 2,j — l), {i + 2,j + 2) are above T3. 

f) Apply the window at every pixel (although there is some ambiguity in the wording of 

this step), g) Group neighbouring detected pixels into one. h) Convert detected pixel 

coordinates into geographic location so validation against the groundtruth is enabled, i) 

Remove detections with more than five pixels in a row or column above Tl. Fishing vessels 

are not longer than 150m and therefore are unlikely to generate such detections. Improve- 

ments on this classification module are underway, j) Apply corrections to georeferencing 
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Figure 2: The SUMO detector template 

using better satellite orbit parameters or known ground points when and where possible. 

This revealed consistent geolocation errors of about 1 nautical mile in one fishery. 

This detector is hard to explain in rigorous theoretical terms. While its use of thresh- 

olds based on the mean and standard deviation of the surrounding ocean is similar to 

that of the two parameter CFAR detector (12) and hence understandable, and while the 

extension of this idea to a template over which different thresholds are applied is also fairly 

natural (given the desire to match the appearance of ship in SAR imagery), the calcula- 

tion of the thresholds themselves is unusual and hard to explain. We believe a reporting 

mistake has been made and that (30) should be replaced by 

Tl =//-F 3.0 * o-       r2 = /i-H 1.9*0-       TZ = jx + lA^a (31) 

so that the thresholds are calculated according to the two parameter CFAR detector 

formulae in (12). Corroborating evidence that this is the case was found in a presentation 

on the JRC web site, [57]. Note that the threshold factors 3.0, 1.9 and 1.4 used here are 

much lower than the usual value of 5.0 in a two parameter CFAR detector. While the low 

thresholds have the potential to produce a high false alarm rate, the use of a template 

which takes adjacent pixels into account will have the opposite effect. However, we warn 

here that using a template in this way assumes the ship will have multi-pixel extent and 

so is not appropriate when looking for small ships in low resolution imagery. 

In the results section of [61], Kourti et al. note that apart from the detection algorithm, 

their exercise is similar to that of Vachon et al, [134]. The results of Kourti et al. clearly 

indicated that wooden and fibreglass vessels do not show up well in SAR imagery. Several 

other detection problems are mentioned: weather effects (high wind speed generates noisy 

backgrounds creating detection problems); incidence angle effect (the near swath ocean 

clutter is brighter than the far swath clutter); and image errors (bright spots at the 

edges of different beam modes). We report their conclusions by quoting from the paper: 

Results from different studies confirm that fishing vessels longer than 26 m length have a 

92% probability of being detected on ScanSAR imagery. ScanSAR imagery offers a good 

compromise between resolution and covered area. The comparison of the detected vessels 

positions with VMS position reports match well. More than 73% of the vessels could be 

unambiguously identified in the Flemish Cap study and 92% in the North Sea. Only in 

the Azores, where fibreglass and wooden vessels predominate, was it difficult to detect the 

vessels subject to VMS. The mean distance between detected position and VMS position 
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Figure 3: A second SUMO detector template 

was about 0.3 nautical miles. Other observations of interest in the paper are: trawling 

vessels have larger wakes; azimuthal travelling vessels are brighter than range travelling 

ones. 

Further information on the SUMO detector is given in the follow up paper by Schwartz 

et al, [114]. Schwartz ei al. explain that near real-time processing is a critical requirement 

of SUMO and hence a very simple detector was chosen. In addition to the 4x4 pixel 

template described above, a second 3x5 template is presented, see Figure 3. For this 

template, step e) of the algorithm becomes: e) A detection is recorded at pixel {i,j) if: 

• The pixel values at {i,j - 1), {i,j), {i,j + 1) are above Tl, 

• and the values at {i,j-2), {i-l,j-l), {i-l,j + l), {ij-l), {i,j + l), {i + l,j-l), 

(i + lj + l) and {i + 2,j + 2) are above T2, 

• and the values at {i-l,j-2), {i + l,j-2), {i-l,j + 2), {i + l,j + 2) are above r3. 

Unfortunately, there is no discussion of how the two templates are used and what the 

difference between them is — presumably both are run over the imagery and their detec- 

tions are combined. We note here that the 3x5 template is the only reference in the ship 

detection literature to a non-square detector window. 

The main thrust of the paper by Schwartz et al. is the study of algorithms for identi- 

fying and removing the two main types of false alarms produced by the SUMO detector. 

Their analysis revealed that most false alarms arise from two circumstances: 

• Large objects, like oil rigs, which for certain aspect angles have bright ship-like 

sidelobe patterns 

• Very local wind turbulence effects which can produce bright ship-Uke noise patterns. 

Schwartz et al. note that false alarms in the first category could easily be ehminated 

if the locations of the large objects are mapped and the SAR image registered with the 

map. However, that is not possible owing to the lack of precise satellite orbit parameters. 

Schwartz et al. also comment that modelling and predicting the sidelobe patterns is not 

an option. Hence an ad hoc method is employed. It involves simply grouping together 

any detected pixels which are less than 8 pixels apart. In this way the false alarms due to 

sidelobes are incorporated into the main detection. The distance of 8 pixels was selected 

heuristically. It was considered suitable for the detection problem at hand since ships in 
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the open sea are usually more than 300 m apart which corresponds to a distance of 12 

pixels. 

For the second type of false alarm, Schwartz et al. note that local wind turbulence 

effects are normally contained within a 100x100 pixel area. Three characteristics of such 

effects are listed. The last of these was found to be best for discrimination purposes. It 

states that the number of local maxima close to the threshold value T2 is large. Therefore, 

a 100x100 pixel image chip is taken from around each detection and the number of local 

maxima above T2 is counted. If that number is larger than 750, the detection is rejected 

as a false alarm. Test data was used in setting the threshold at 750. Schwartz et al. 

report that this algorithm separates false alarms from true detection well and provides 

quantitative performance data. 

In interesting related work, Aresu and Schwartz, [4], have considered the effect of 

the SAR processor on ship detection and ship RCS. Amongst other things, they note 

that while logarithmic output scaling is useful for oil spill detection, it is not suitable 

for ship detection. JRC researchers have confirmed that SUMO does not work well on 

logarithmically scaled SAR imagery and that linear or square root scaling is preferable. 

This point was made in a presentation to the EU Fisheries Expert Group meeting in June 

2003 which is available from the JRC web site, [57]. We note that this result is not really 

surprising. It is commonly assumed that the gamma distribution with an order parameter 

equal to the effective number of looks is a reasonable model for intensity SAR imagery. 
Hence the two parameter CFAR detector, and consequently SUMO which is based on it, 
will be approximately CFAR on intensity SAR imagery. Taking logarithms of the imagery 

will change the statistics and it is unHkely that the detectors will remain CFAR. 

5.8    The Lockheed Martin Canada detector 

An interesting prescreening algorithm has been proposed by researchers at Lockheed 

Martin Canada. It is documented in the paper by Gagnon et al. [41]. While there is 

no account of using this prescreener for the detection of ships in SAR imagery, it is clear 

that that is one of the intentions. Coastal surveillance is cited as one of the motivations 

and the paper includes the description of a system for ship recognition in high resolution 

SAR imagery. One of main the attractions of the prescreener is that it is based on a 

multiresolution analysis and hence is especially applicable to high resolution imagery. It 

is also reported to be fast. The research was undertaken in collaboration with Universities 

(Montreal and Queens) and the Canadian Department of National Defence. 

Gagnon et al. [41] state that the prescreener is a practical multiresolution algorithm for 

target detection in uniform clutter and that it is based on the assumption that man-made 
objects are easily detectable at low resolution because their scattering is more persistent 

than that of natural objects. Other more sophisticated prescreeners were considered but 

the adopted one was chosen as a good tradeoff between algorithm complexity and low 

FAR. 

The algorithm is applied to stripmap SAR imagery and the steps involved are: ap- 

plication of a discrete wavelet transform (DWT); extraction of the relevant subbands; 

formation of low resolution amplitude images; application of a Rayleigh CFAR detector 
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to the amplitude imagery; extraction of corresponding regions of interest (ROI) in the 

original imagery; delimitation of the ROIs; clustering of the ROIs; and application of a 

Weibull or K distribution CFAR detector to the final ROIs. We elaborate on these next. 

The DWT uses symmetric real filters which behave like bi-orthogonal wavelets. Un- 

fortunately no details are given on the actual wavelets used. As usual, at each resolution 

level there are 4 wavelet subbands — LL, LH, HL and HH — where L denotes the low 

pass filter and H the high pass filter. The operator then chooses which resolution levels 

are to be subjected to further analysis. This choice depends on the size of the targets 

being sort. For each chosen resolution, an amplitude image / is formed by setting 

/ = VLIP + HI^ (32) 

If the resolution is chosen correctly then the targets of interest should generate bright 

single pixels in /. It is assumed that the wavelet cofficients in LH and HL are Gaussian 

distributed with the same variance. It follows that I must be Rayleigh distributed. Gagnon 

notes that this assumption is roughly true in practice provided the clutter is homogeneous. 

Consequently, a Rayleigh CFAR detector is applied to I. 

According to Ravid et al. [99] if the Rayleigh distribution is written as 

then the corresponding CFAR detector is 

Xt > Bt       where 
i 

-.     M 

M E^? (34) 
i=l 

where xi,X2,... ,XM are the samples from the background clutter used to estimate the 
parameter B. Further, the PFA for this detector is given by 

We note here that for Rayleigh distributed clutter, both the mean and standard deviation 

are proportional to B and hence this detector will tend to behave like a cell-averaging 

CFAR detector and also a two parameter CFAR detector. Gagnon et al. apply this 

detector to I with the standard moving window setup shown in Figure 1. It is implicit 

that the target window is a single pixel. No sizes are given for the guard and background 

windows but it is stated that they are square and small since target dimensions are small 

at low resolutions. 

While a simple application of the Rayleigh CFAR detector to / with an appropriate 

PFA will identify the locations of potential targets of interest, Gagnon et al. add a 

refinement in order to extract well-placed regions of interest (ROI). The exact details 

of how this is done are not clear from the paper but our interpretation is as follows. 

The Rayleigh CFAR detector is applied to / twice. The first pass has a high PFA and 

identifies only the very bright pixels. These pixels are assumed to be target pixels and they 

are assigned a square ROI in the original image. The size of the ROI is an (unspecified) 
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function of the size of the targets being sought. The second pass is aimed at detecting 

nearby pixels in / which are not as bright as those detected in the first pass but still likely 

to be associated with them. Thus the second pass uses a lower PFA and only searches 

around the pixels detected in the first pass. The position of the ROIs in the original image 

is then adjusted by weighting them according to the intensity of the pixels detected in the 

second pass. 

Next, any overlapping ROIs in the orginal image are clustered into one larger ROI 

under the assumption that they correspond to a large target which is not point-Hke at 

the selected wavelet subband resolution. Then, in the final step of the algorithm, another 

CFAR detector is applied to the ROIs in order to eliminate false alarms. It is noted 

that this CFAR detector should be appropriate to the statistics of the orginal image. It 

is suggested that for ocean clutter a K-distribution based CFAR detector is appropriate 

while for land clutter a Weibull CFAR detector is better. No mention is made as to how 

the problem of large targets in high resolution imagery is dealt with in this last step — 

single pixel detectors are obviously not appropriate. 

We refer to the complete prescreening algorithm as the LM detector. Gagnon et al. 

state that LM detector with its combination of detecting ROI centres in the wavelet 

subbands followed by CFAR detection in the original image, results in a much lower 

FAR than the usual method of only applying CFAR detection in the original image. A 

graphic illustration of this point is given with the detection results of the two methods 

being displayed on a SAR image of tanks and trucks on land. Unfortunately detailed 

performance results for the LM detector are only presented for land imagery. Further, 
apart from the illustration just mentioned, no comparisons with other detectors are made. 
However, it is presumed that more extensive comparisons with simple CFAR detection in 

the whole image have been made (for land imagery at least) and that the LM detector is 
superior. We conclude with the remark that the imagery used had a resolution of one-foot, 

highlighting the applicability of the technique to high reolution imagery. 

5.9    DSTO detectors 

A study of algorithms for the detection of small boats in Radarsat imagery has been 

previously conducted at DSTO by Hunt et al. [51]. That study was aimed at assessing 

the performance of three stochastic model-based detectors which were developed earlier at 

DSTO [20]. These detectors are known as: the "conditional probabihty test" detector; the 

"significance test" detector; and the "conditional probability significance test" detector. 

Their performance was compared with the two parameter CFAR detector. The theory 
underpinning the stochastic model-based detectors assumes the imagery has Gaussian 

statistics. Consequently, a preprocessing technique which transforms the histogram of the 

whole image so that it becomes Gaussian was also considered. We note that the DSTO 

detectors and the preprocessing transformation are much more computationally expensive 

than the two parameter CFAR detector. They also assume that the background statistics 

are stationary over the image. 

The test data consisted of part of a single Radarsat Fine mode image of Darwin 

harbour with a resolution of 9-11 m in range and 9 m in azimuth. The image area under 

analysis contained 15 well ground-truthed fishing boats. Eleven of the boats were wooden 
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and the rest were wood and steel. The boat lengths varied between 8 and 15 m. It was 

noted that the choice of detector threshold and detector window sizes had a considerable 

impact on performance. Consequently, a range of detector thresholds and window sizes 

were considered. We note here however that the two parameter CFAR target window was 

not varied and remained a single pixel throughout. 

The authors report that the stochastic model-based detectors produced substantially 

better results than the two parameter CFAR detector and that even better results were 

obtained by applying the preprocessing technique. The "significance test" and the "condi- 

tional probability significance test" were particulary recommended. They achieved a PD 

of 93% with zero FAR when used in conjunction with the preprocessing step. However, 

the authors note that the test data is limited in size and are reluctant to draw too many 

conclusions from their results. We quote from the executive summary: Since, however, 

only a single image with a relatively small number of targets was available for analysis, 

the results here are only generally indicative of the likely performance of detection routines 

in a real system. We add here that the boats were moored in a harbour and hence the 

scenario was not representative of an open ocean environment. The authors recommend 

further testing with more ground-truthed targets and a variety of weather conditons. They 

also comment on the need for coastline detection in order to discount false alarms arising 

from detections on land. 

5.10    Other detectors 

For the sake of completeness, we discuss in this section other detectors which have been 

used for ship detection. The most convincing of these is a brief reference by Yeremy et 

al. in [143] to the use of the fourth moment, the normalised kurtosis, 04 = m4/m2 where 

rrii is the i-th moment of the intensity. It was found to be suitable for ship detection in 

open ocean conditions and successfully detected 67 ships out of a possible 70. It is noted 

that the method is not computationally intensive or sophisticated. However, no technical 

details are given in [143] as to how the normalised kurtosis is used and the companion 

paper referred to there appears to have not been published. 

In a pair of related papers, Benelli et al, [8], and Argenti et al, [5] have developed a ship 

detection system with several stages. The proposed processing chain involves a parallel 

search for both ships (bright spots) and ships wakes (Hnear structures) followed by a cross- 

validation of the wakes against the ships. The system is based on fuzzy decisions and these 

are used to assign confidence values to the detections. An initial speckle filtering stage 

is included. Many different speckle filters were tested. Ships are detected and delineated 

at the same time by a region growing technique which is seeded with the very brightest 

pixels. The number of ship-seeds to start with is taken as the maximum number of 

ships expected times the expected average size. The ship-seeds are processed in order of 

brightness. Neighbouring bright pixels are added to the ship-seeds one at a time. The 

bright pixels which are eligible to be added are identified by taking a p-tile of the right tail 

of the image histogram. While the method is at heart simple, the exact details are not 

clearly spelled out in the paper. In particular, it is stated that the value of p is adaptable 

and is computed on the basis of the image histogram but no details are given. The output 

of this process is a Hst of potential "ship-blobs".  The next step is aimed at identifying 
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false alarms among the ship-blobs. It uses a classifier based on fuzzy set theory. The 

classification features are area, mean grey level and elongation. The classifier is designed 

so that true ships have a high fuzzy index and false ships have a low fuzzy index. Further 

false alarm reduction occurs in the final stage of the system where ships and wakes are 

paired. The pairing is based on minimising the distance between the ship centroid and 

an extreme of its associated wake. The number of ships can differ from the number 

of wakes. Following pairing a coupling coefficient is calculated for each ship-wake pair. 

This coefficient when multiplied by the fuzzy index of the ship provides a final confidence 

measure for each detected ship-wake pair. 

In the SACLANT report [7], Askari and Zerr investigate two new ship detectors. The 

first is referred to as the Neural-Network-Dempster-Shafer technique. It involves sub- 

dividing the image into sub-blocks and extracting four separate 1-D profiles with different 

orientations from each sub-block. The profiles are processed by a neural-network which 

measures (in terms of belief) the extent to which each profile matches a pre-defined Gaus- 

sian shape. The individual beliefs are fused using Dempster-Shafer rules to derive a final 

probability of the sub-block being a target. The second detector, referred to as the MM 

algorithm, operates on a binary image produced by setting all pixel values below 255 to 

zero. It employs an erosion algorithm and then groups the detected pixels into clusters. 

Radarsat imagery was used to test the algorithms. Curiously, one of Askari and Zerr's 

findings was that Radarsat standard beam S6 was better for ship detection than Radarsat 

ScanSAR and they attribute this to the better radiometric resolution of the 16-bit product 

over the 8-bit product. 

Osman and Blostein, [91], use an image segmentation approach to ship detection in 

airborne SAR imagery. Their segmentation algorithm is based on a neural clustering 

scheme referred to as "probabilistic winner-take-all" (PWTA). Once the image has been 
partitioned into segments, ship segments are identified by assessing the similarity between 
segments. It is assumed that there is only one ship segment and it is hypothesised that the 

similarity between ocean segments is much higher than the similarity between ocean seg- 

ments and the ship segment. Similarities are measured with the Bhattacharyya distance. 

The ship segment is identified as the one with the largest average Bhattacharyya distance 

Bg from the other segments. A special problem in this approach is determining the num- 

ber of segments K to use. The solution offered is to try a range of values for K and to 

choose the one which maximises Bg. The PWTA algorithm was shown to perform better 

than other segmentation techniques and an average ship detection accuracy of 87.5% was 

reported. 

Leung et al, [66], use a radial basis function (RBF) neural network for ship detection. 

They justify the use of a neural network on the basis that other studies have shown 

ocean clutter to be chaotic rather than purely random. The essential idea is to model the 

surrounding background ocean clutter with the RBF and then predict the current pixel 

value with it — poorly predicted pixels are anomalies and therefore likely ships. They 
use a genetic algorithm to fine tune some of the RBF parameters. A CFAR threshold is 

set for the prediction error by using histograms to estimate the prediction error pdf. The 

technique is applied to Radarsat SAR imagery. The results are reported to be reliable 

although no comparison with standard detectors is made. 

A novel approach to target detection in SAR data is suggested in the paper [75] where 
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a ship example is used.' Unfortunately the paper is poorly written and is therefore hard 

to assess. The essential idea is to detect targets in the so called "range-Doppler" do- 

main before azimuth compression of the data. The technique involves target detection in 

the 1-D range profiles followed by target confirmation based on accumulation of azimuth 

information. 

Another brief and poorly written paper is the one by Wang et al, [139]. This paper 

deals with very high resolution SAR imagery. Further, the technique described appears to 

be more suitable for target delineation and classification rather than detection. A related 

follow up paper is [21]. Similar comments apply to it. 

6    Prescreening — polarimetric SAR 

Most of the development of ship detection algorithms and systems to date has con- 

centrated on single channel SAR imagery. This is probably due to the fact that most 

researchers work with data from commercial satellites such as Radarsat-1 and ERS-1/2 

and those systems only collect single channel imagery. However, the recently launched En- 

visat and the soon to be launched Radarsat-2 will provide dual and quad-polarised SAR 

data, respectively. It is anticipated, see for instance [142], that the additional information 
contained in such polarimetric data will improve ship detection (as well as classification 

and even identification) capabilities. In fact, in [142], Yeremy et al. state that current 

single channel ship detection algorithms have high false alarm rates and require human 

supervision to achieve acceptable results but go on to suggest that with polarimetric data, 

ship detection algorithms will be developed which can reduce false alarm rates to an ac- 

ceptable level by correctly classifying the false alarms. (As an aside we note here that in 

the report, [145], Yeremy et al. consider the military applications of polarimetric interfer- 

ometric SAR (PolInSAR) methods where even more independent information is available, 

however, despite a reference to ships in the abstract no details were found.) Consequently, 

there has been much recent research on ship detection with polarimetric SAR and detec- 

tion algorithms are still being developed. We report on such research in this section. We 

begin with a very brief overview of polarimetric SAR. 

The polarisation of a radar wave is described in terms of its electric field vector and 

more specifically, it refers to the locus of that vector in the plane perpendicular to the 

direction of propagation. Thus in order to discuss polarisation properties it is better to 

consider electric fields rather than radar power. The polarisation state of an arbitrary 

wave is usually described by expressing its electric field vector E in terms of the stan- 

dard polarisation basis consisting of horizontal (H) and vertical (V) linear polarisations. 

Thus E = Enh + Eyv where h and v are unit vectors in the "horizontal" and "verti- 

cal" directions. If we let E'^ — E'jjh + EyV denote the incident wave on a scatterer and 

E^ = E^jjh + EyV the scattered wave observed at a distance R from the scatterer then 

using the superposition leads to: 

El\ ^ exp{i2iTR/\) I SHH   SHV 

E'y) R I SvH   SHH 
(36) 

where A is the radar wavelength.   The terms SHH^ SHVI SVH, and SHH are referred 
to complex scattering amplitudes or complex reflectivities.   We emphasise that complex 
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reflectivities are complex numbers and hence incorporate phase- as well as amplitude in- 

formation. It follows from (36) that the scattering matrix 

S = 
SHH   SHV 

SvH   Svv 
(37) 

contains all the information needed to calculate the complex reflectivity for any pair of 

transmit/receive polarisation combinations. By taking account of the relationship between 

the power of a radar wave and its electric fleld strength it is not hard to deduce that the 

radar cross-section of a target is given by 

apQ = AT^ISPQI 

where SPQ is the complex reflectivity for the combination of transmit and receive polari- 

sations specified by P and Q. 

The design of the radar transmit (and receive) antenna determines the transmitted 

(and received) polarisation. Single channel SAR systems are designed with a single antenna 

which is used for both transmitting and receiving. In this case, the radar will only produce 

a single co-polarised channel. Commonly that channel is either SHH or Syv- However, by 

using a pair on antennas, one oriented horizontally and the other vertically it is possible to 

design radars which measure all four channels in the scattering matrix (37). Such radars are 

referred to as fully polarimetric or quadrature polarised (quad-pol). As already noted, fully 

polarimetric SAR systems allow the calculation of RCS for any pair of transmit/receive 
polarisation combinations. We should add here that the polarimetric reciprocity principle 

states that SHV = SVH- It is generally believed that the reciprocity principle holds for 
most SAR imaging situations. Consequently it is common to average SHV and Syn in 

quad-pol SAR data and have only one cross channel. 

An important aspect of polarimetric radar theory is the degree of polarisation. A 

electromagnetic wave can be decomposed into two components: a polarised component 

in which the polarisation is deterministic and an unpolarised component in which the 

polarisation state changes randomly with time. The ratio of the power between these two 

components is called the degree of polarisation. While radars are designed to transmit 

fully polarised radiation, the backscattered signal will not necessarily be so. According 

to (Microwave Remote Sensing (MRS) pg 141), depolarisation is primarily caused by: 
quasi-specular reflection for corner reflectors; multiple scattering from rough surfaces; and 

multiple volume scattering due to inhomogeneities. 

6.1    Optimal polarisations for ship detection 

In this section, we review research efforts comparing different transmit and receive 
polarisation combinations for ship detection. The most comprehensive results in this 

respect come from the comparison of ERS SAR data with Radarsat-1 data. ERS data 
is W polarised while Radarsat-1 is HH. It is widely accepted that the Radarsat-1 data 

is better for ship detection (as opposed to ship wake detection), see for instance [110] 

and [127]. Note however that other factors such as resolution, incidence angle and radar 

frequency also come into play and care needs to be taken in making such comparisons. The 
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explanation for Radarsat's superior performance is that HH polarisation has a lower ocean 

clutter signature than does W and further, it decreases more rapidly with increasing 

incidence angle. Hence, ship-sea contrast is higher for HH polarisation than W and 

detectability in HH data improves with increasing incidence angle. This also explains why 

ship wakes and other ocean surface features are rarely seen in HH imagery and why VV 

imagery is much better for imaging such features. 

The most rigorous research effort into the best polarisation combination for ship detec- 

tion is that reported on by Yeremy et al. in [142]. One of the two main aims of the study 

was to contrast and compare the differences in ship detection potential of the four hnear 

polarisation channels (HH, HV, VH, W). This was done by measuring and comparing 

target to clutter ratios (TCR). Yeremy et al. define TCR by 

CTT 
TCR = 

Na'c 

where or is the total target RCS, N is the number of pixels occupied by the target and 

a^ is the ocean clutter's mean RCS. Targets were delineated from the clutter by either 

supervised delineation or supervised thresholding of the HH (or HV for small incidence 

angles) channel. A 10 pixel guard band was used when extracting a^. 

The data for the study of Yeremy et al, [142], was collected with the Convair-580 

C-band SAR system developed by OCRS. The imagery was SLC with azimuth and slant 

range sample spacings of 0.42 m and 4 m. Two separate data sets were analysed. The 

first was collected during the MARCOT'98 and the second during the CRUSADE'OO 

trials. The MARCOT'98 trail had many ships of opportunity which were visually ground- 

truthed while the CRUSADE'OO had fewer ships which were rigorously ground-truthed. 

The data was edited to remove saturation and underflow problems. Further discussion of 

the CRUSADE'OO trail data is given by Yeremy et al. in [143]. It is noted in this later 

paper that the Convair-580 C-band SAR data have similar characteristics to those planned 

for Radarsat-2. 

The results of the study of Yeremy et al.   indicate that of the four channels (HH, 

HV, VH, W) and for a range of incidence angles from 15 70°, HH data are best for 

ship detection when the incidence angle is larger than 45° while the cross-polarised (HV 

and VH) data are best when the incidence angle is less than 45°. Yeremy et al. note 

that this result corrects earlier suggestions (based on a limited range of incidence angles) 

that HH is always best. Their results also verify that as expected from the reciprocity 

theorem, the HV and VH data are very similar. As an interesting aside, we repeat their 

comment that many unknown variables such as ship size, wind speed and direction, effect 

the TCR results and the degree of variability emphasises how complicated and difficult 

single channel ship detection is. 

The CRUSADE'OO trail data used by Yeremy et al, [142], was also used by Hawkins et 

al, [45]. Hawkins et al give a more detailed account of the radar setup and data acquisi- 

tion strategy and a more detailed breakdown of the results but only conduct a preliminary 

analysis. The conclusions of Yeremy et al regarding the comparison of the four linear 

polarisation channels (HH, HV, VH, VV) are supported by the Hawkins analysis. While 

Yeremy et al only discuss RCS, Hawkins et al also consider phase information. The re- 

sults of Hawkins et al indicate that the relative phase between the different polarimetric 

channels may be useful for ship detection purposes. 
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In work related to that of Yeremy et al. [142], and Hawkins et al, [45], Touzi et al. have 

also compared different transmit and receive polarisation combinations for ship detection, 

see [124], [123], [119] and [118]. In the most recent of these papers, [124] and [123], Touzi 

et al. confirm the finding of Yeremy et al. that of the three linear polarisations (HH, HV 

and VV), HV gives highest ship-sea contrast at low incidence angles while HH is better at 

high incidence angles. However, Touzi et al. estimate the crossover incidence angle to be 

55° rather than 45°. Touzi et al. also comment that the effectiveness of HV data seems 

to be robust to rough sea conditions (at 35 and 45 incidence angle at least.) These results 

are based on two different data collections. Touzi et al. refer to the first as Halifax'98 

while the second was CRUSADE'OO. It is not clear how reliable these results are due to 

the limited amount of data presented. We also add that Touzi et al. do not define what 

is meant by ship-sea contrast nor specify how it was measured. 

In [123] Touzi et al. also look at polarisation channel phase information. They find 

that the HH-W channel phase difference looks to be promising for ship enhancement and 

is certainly better than the HH-HV and W-VH phase differences. However, they also 

find that the HV channel is still better than phase information. In the earliest papers, 

[119] and [118], Touzi discusses the co- and cross-polarisation signatures of ships and open 

ocean. These discussions, while brief, do provide some insight into the use of polarimetric 

SAR for ship detection. Finally, we note that Touzi [118] argues that circular polarisations 

minimise single bounce and maximise double bounce backscattering and hence should be 

good for ship detection. He states that the ship-sea contrast for circular polarisation looks 

better than for HH polarisation when the incidence angle is 45 55° and should be better 

at lower incidence angles, however these results are not followed up in later work. 

6.2    Detection strategies 

Given that polarimetric SAR is multi-channel data, there are three main detection 

strategies which can be considered: 

A) Apply single channel detectors to each polarimetric channel separately and then fuse 

the detection results; 

B) Fuse the polarimetric channels into a single channel and then apply single channel 

detectors; 

C) Apply multi-channel detection algorithms. 

Not much work has been undertaken in the research community to compare these various 

strategies for ship detection purposes. The only papers where extensive comparisons are 

made are those by Sciotti et al, [116] and [117]. We discuss the general aspects of that 

work here, with more specific details in later sections. 

For strategy A) Sciotti et al, [116] and [117], fuse the detections by simply combining 

them together. As single channel detectors they use the cell-averaging CFAR (CA-CFAR) 

detector (16) which is equivalent to the Power Ratio (PR) detector, the two parameter 

CFAR (2P-CFAR) detector (15) and the Gaussian Generalised Likelihood Ratio Test (G- 

GLRT) detector (28).   For strategy B), they consider three different methods of fusing 
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the polarimetric channels into one. The first fusion method is the Minimum Mean Square 

Error (MMSE) technique, [50], the second is the SPAN technique, [85], 

SPAN = \HH\'^ + \HVf + \VH\^ + \VVf, (38) 

and the third is the Polarimetric Whitening Filter (PWF), [85]. The above single channel 

detectors are then applied. For strategy C), they only consider the PG-GLRT detector (40) 

which we discuss in detail below. The performance of these various strategies are compared 

on simulated SAR data and several L-band SIR-C images. The performance tests are 

limited and should only be taken as indicative rather than conclusive. In particular, the 

imagery in [117] is selected to be inhomogeneous in order to emphasise the benefits of 

segmenting detectors. Good performance is reported for the 2P-CFAR detector when 

applied to both SPAN and PWF fused imagery. The PG-GLRT detector also performs 

well. 

6.3    Segmenting detectors 

Lombardo et al. [70] clearly demonstrated the performance gain which segmenting 

detectors allow on single channel SAR imagery. Consequently, Sciotti et al. [117] explored 

the performance gain which segmenting detectors can achieve on polarimetric SAR im- 

agery. They note that detectors for polarimetric data such as those discussed in the last 

section suffer from high false alarm rates in inhomogeneous areas. In particular, very dark 

segments and edges between areas with different mean backscattering cause problems. 

Segmenting detectors provide a means of overcoming such problems. 

Corresponding to the three different detection strategies in section 6.2, Sciotti et al. 

propose three different segmenting detector strategies: 

A) Segment each polarimetric channel separately, then apply single channel detectors 

to each segmented polarimetric channel and then fuse the detection results; 

B) Fuse the polarimetric channels, segment the resulting single channel and then apply 

single channel detectors; 

C) Use a multi-channel segmentation algorithm and then apply multi-channel detection 

algorithms. 

The data which Sciotti et al. deal with in [117] is single look complex (SLC) quad- 

pol L-band SIR-C SAR imagery. Therefore they propose using single and multi-channel 

segmentation algorithms which are based on the "simulated annealing" maximisation of 

the global likelihood over the image. A reference to the book by Oliver and Quegan, [86] 

is given. They note that such techniques were especially designed for application to high 

resolution SAR imagery and therefore are suitable for the SIR-C data. In previous work, 

[70], such a segmentation algorithm was applied to single channel imagery. 

Sciotti et al, [117], report that segmentation of the SPAN-filtered, PWF-filtered and 

MMSE-filtered data yields equivalent results for ship detection purposes. They also report 

that in most cases, multi-channel segmentation slightly outperforms (in terms of the seg- 

mentation itself) the other methods and rejects small unnatural segments well. However, 
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over all, they find that the differences between the segmentations produced by the various 

polarimetric segmentation routines are hardly disceranible by eye. It is of interest to note 

here that Sciotti et al. also considered segmentation based on polarimetric features (sam- 

ple covariance determinant and entropy factor) but found the resulting segmentations to 

be less accurate. 

As in [70], Sciotti et al. adjust the segmentation by performing a raw classification 

of it into 3 or 4 scattering classes, corresponding to homogeneous areas with diff'erent 

characteristics. The target detectors are then applied within each homogeneous segment 

with care being taken not to use data from neighbouring segments in the detection feature 

computation. As single channel detectors, they use the cell-averaging CFAR (CA-CFAR) 

detector (16), the two parameter CFAR (2P-CFAR) detector (15) and the Gaussian Gen- 

eralised Likelihood Ratio Test (G-GLRT) detector (28). The only multi-channel detector 

they use is the PG-GLRT detector (40) which we discuss in detail below. Performance of 

the various segmenting detection strategies are compared on two different inhomogeneous 

SIR-C SAR images. They are also compared with the various non-segmenting detec- 

tion strategies discussed in the previous section. The results show that the segmenting 

detection strategies allow a substantial improvement over the non-segmenting detection 

strategies. The best performance is given by applying a 2P-CFAR detector to segmented 

SPAN-filtered imagery, although for one of the images, the PG-GLRT detector applied to 

segmented multi-channel imagery also does well. Note however that these performance 

tests are limited and hence not conclusive. 

6.4    The PG-GLRT detector 

Motivated by the G-GLRT detector described above in section 5.6, Sciotti et al, [116], 

developed a similar detector for single look complex polarimetric SAR data. A target 

window of N pixels is used and the image samples are assumed to be independently and 

identically distributed from pixel to pixel but correlated within the polarimetric chan- 

nels. For the n-th pixel, n = 1,..., A'", the image values over the L polarimetric channels 

are arranged in to a column vector Xn. Then the vectors x„ are arranged into a matrix 

X = [xi... x„]. The image samples are assumed to be composed of clutter echoes plus 

thermal noise under hypothesis (B), and target echoes plus thermal noise under hypothesis 

(T). The proposed model is that target, clutter and noise echoes are all extracted from 

zero mean Gaussian random processes with polarimetric correlation properties given by 

the Lx L matrices Ct, Cc and Cn- It is further assumed that C4 = diag{afi, (7I2,..., cr^^} 

and C„ = cr^/i where II is the LxL identity matrix. To aid in modelling the background 

clutter, Sciotti et al. also make use of K secondary data yi,... ,yi<: following hypothe- 

sis (B) which are arranged into a matrix Y = [yu .. .yAri. ..yiK ■ --yNK]- With these 
assumptions, the generalised likelihood ratio in (26) takes the form 

max^2,cg,g2KX, Y|^,C,^C,^C^.)      max^^^gg^g. {p{X\T,C?,C^) •p(Y|Cg,C^)} 

maxcg,c2 P(X, Y\B, C^ C^) ra^c^n^ {p(X|B, C^ CD ■ p(Y|C2, C^)}     ^    ^ 
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where the unknown parameters are afi,...,<T|^, a^ and Cc- Substituting the pdfs in and 

performing the maximisations leads to the detector 

|Soi[n^^i(i+x^s-v„)] 

nf=i(E^=iix„(op) 

K+l 

 > A 4=^ target (40) 

where 

Sn=:YY^ + 5]xixf 
1=1 

This detector is called the Polarimetric Gaussian Likelihood Ratio Test (PG-GLRT) de- 

tector. We expect that, just as Lombardo et al. in [71] reformulated the GLRT detector 

into a typical sliding window format, the PG-GLRT detector can also be reformulated into 

a sliding window format so that the secondary data are taken from a "ring" around the 

target window. 

In [116], Sciotti et al. describe the application of the PG-GLRT to both real and 

synthetic SAR data. They use three polarimetric channels - HH, W and HV - so L = 3. 

They set A?' = 9 but do not specify the target window arrangement. Presumably a 3x3 

pixel sliding target window is used. They also set K = 3 but make no comment as to 

how the secondary data Y axe chosen. However, since the detector theory assumes the 

samples are independent from pixel to pixel, it is reasonable to take the secondary data 

from an annulus around the target window as is done in a standard CFAR detector window 

setup. In fact, it is likely that the PG-GLRT can be developed into a typical CFAR sliding 

window setup in the same way as Lombardo et al, [71], developed the G-GLRT into a 

sliding window setup. 

The suitability of the PG-GLRT detector for ship detection is assessed by Sciotti et 

al. in both [116] and [117]. In both papers several alternative detection methods are 

also considered, including applying the cell averaging CFAR detector and the G-GLRT 

detector to individual polarimetric channels and also to polarimetric data which has been 

fused into a single channel by methods such as the Polarimetric Whitening Filter. In the 

first paper, [116], results from experiments with simulated polarimetric SAR data show 

that PG-GLRT seems to exploit the polarimetric information in an "optimal way" and 

that it clearly outperforms the other detection techniques. This is backed up with evidence 

from a simple example with real SAR imagery. The results from the second paper, [117], 

are not so conclusive. There, performance is tested on two SIR-C SAR images but ones 

which have been selected for their non-homogeneity. PG-GLRT performs competitively 

on only one of these images. 

6.5    Polarisation entropy 

In the article on ocean surveillance by Yeremy et al. [142], reference is made to Cloude 

and Pottier's target decomposition technique for polarimetric SAR data, see [23] and [22]. 

The technique assumes there is a dominant "average" scattering mechanism in each cell 

and finds the parameters of this average component. These parameters can then be related 

to the electromagnetic scattering and physical models of the objects being imaged. For this 

reason, the method can be used as an unsupervised classification scheme. The technique 
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operates on the coherency matrix [T] which is derived from the coherent scattering matrix 

[S] with the use of the PauH spin matrices. Based on an eigenvalue analysis of [T] two 

main parameters are extracted — the entropy H and the a-angle, see [23] for details. The 

entropy H is related to how dominant the dominant scattering component is (a value of 

zero indicates that all scattering comes from one mechanism and a value of one indicates 

a completely random scattering mechanism) while the a-angle is related to the type of 

scattering. Cloude and Pottier, [23], detail a classification scheme in the two-dimensional 

H - a space. Yeremy et a/.,[142], claim that preliminary studies have shown the Cloude 

and Pottier decomposition to be a good method for ship detection. The studies Yeremy 

et al. refer to are in the Satlantic document, [95], by Plache and Henschel. Unfortunately, 

this report has not been obtained and no further details on the work have been found. 

Touzi et al. have also considered polarisation entropy for ship detection, see [124], 

[123], [119] and [118]. Touzi comments that Cloude and Pottier's definition of polarisation 

entropy is restricted to targets whose degree of polarisation does not change as the trans- 

mitted polarisation changes. Hence he introduced a new definition of polarisation entropy, 

PE, still based on the Von Neumann concept of entropy but which integrates entropy 

variations with polarization. Unfortunately, Touzi does not clearly state what this means 

or how it is calculated. A thorough search of the literature has shed no light and the 

author remains uncertain as to exactly how Touzi's polarisation entropy differs from that 

of Cloude's and how it is calculated. Private communication with Touzi has confirmed 

that he has not published the details yet but his intention is to do so in the upcoming 

EUSAR 2004 conference. The only small insight into PE available is a comment in [124] 

that PE is generally applied with a large window (9x9 pixels). We shall refer to PE as 

the Touzi polarisation entropy. 

As a natural extension of PE, Touzi also introduced Touzi polarisation anisotropy 

PE'^ which is defined by PE^ = 1 - PE. Touzi states that polarisation anisotropy char- 
acterises target nonstationarity — the higher PE'^ is the larger are signal variations with 

transmitting-receiving polarizations. Since the scattering mechanisms of ships are in gen- 

eral more heterogeneous than those of the ocean, ships will have a higher polarisation 

anisotropy. Thus calculation of polarisation anisotropy is a preprocessing algorithm which 

enhances ship-sea contrast and it should be followed by some type of bright anomaly de- 

tection algorithm. Touzi makes no comment on what sort of detectors are appropriate 

except for a brief note in [118] that a matched filter was being developed. 

In [124], [123], [119] and [118], Touzi et al. assess among other things the effectiveness 

of Touzi's polarisation anisotropy for ship detection. The performance measure used is 

ship-sea contrast. Unfortunately, this term is not defined in the papers and no indication of 

how it was measured is given. It is assumed that a quantity akin to the target-clutter-ratio 

in [142] is meant. The data was collected with the Canadian airborne Convair-580 SAR. 

However, the motivation behind much of the work was the upcoming launch of polarimetric 

satellite SARs and hence operational satellite SAR incidence angles (20 60°) were used. 
The results show that polarisation anisotropy P£"^ gives a significant improvement in ship- 

sea contrast in comparison to single channel polarisations (HH, HV, or VV). Although, it 

was also found that the effectiveness of PE'^ is reduced under rough wind-sea conditions 
(presumably because the ocean scattering mechanisms become increasingly heterogeneous) 

and in that case, it is only slightly better than the HV channel alone. It was also found 
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that at grazing incidence angles (higher than 60°) PE'^ is not effective at ah as a means 

of enhancing ship signatures. 

6.6    The Cameron decomposition 

The idea behind target decomposition algorithms for polarimetric SAR data is to 

express the average scattering matrix as a sum of independent elements and to associate 

different physical scattering mechanisms with the different elements. Further, discussion 

of target decomposition algorithms may be found in the article [22] by Cloude and Pottier. 

Also, Yeremy et al. give a good review in [142] of target decomposition for ship detection 

purposes. Yeremy notes that since target decomposition methods provide information 

about the scatterer's physical structure, they are suitable for classification as well as 

detection applications. Here we consider the Cameron decomposition, [13]. 

Cameron et al. [13] note that two basic physical properties of radar scatterers are 

reciprocity and symmetry. The scattering matrices of reciprocal scatterers are identified 

by the property SHV = SVH- A symmetric scatterer is defined as a scatterer with an axis 
of symmetry in the plane orthogonal to the radar line of sight. The scattering matrix S of 

a symmetrical scatterer is identified by the fact that it is diagonalisable by a rigid rotation 

transformation, see [52]. The idea behind the Cameron decomposition is to decompose the 

given scattering matrix into reciprocal and non-reciprocal components and then to further 

decompose the reciprocal component into a symmetric component which is maximal in 

some sense and a remaining component. The maximal symmetric component is then 

assigned to one of six symmetric elemental scattering classes on the basis of the similarity 

of its normalised form to those of the elemental scatterers. The Cameron decomposition 

is described by Cameron et al. in [13] and [12] as well as other places. A brief summary 

is given by Touzi et al. in [120]. We discuss the details presently. 

Cloude and Pottier, [22], refer to the Cameron decomposition as a "coherent tar- 

get decomposition" since it is applied directly to the scattering matrix S. They suggest 

such decompositions are very susceptible to speckle noise and that this can distort the 

interpretation of coherent data. They recommend decompositions which are based on 

the "coherency matrix" instead. However, Yeremy et al, [142], argue that the Cameron 

method is appropriate for maritime environments. They describe an elemental scatterer 

as one whose length is small compared to the radar resolution but large compared to the 

radar frequency. This means the scattering effect from an elemental scatterer is predom- 

inantly contained within one resolution cell. They then argue that the backscatter from 

ship elemental scatterers will be large compared to the surrounding clutter and hence will 

be the dominant scattering information in ship pixels. They specifically dispute Cloude 

and Pottier's criticism by arguing that speckle is not a significant factor for ship tar- 

gets with large backscatter in an open ocean background with low backscatter and little 

topological variation. They emphasise that highly reflective smooth structures have low 

surface roughness and hence there is less opportunity for speckle and greater opportunity 

for coherent backscatter. 

The suitability of the Cameron decomposition was also queried by Hawkins et al. in 

[45] where it is commented that for moderate resolution SAR, each pixel will contain an 

aggregate of elemental scatterers. However, Ringrose and Harris, [104], and Yeremy et al, 
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[142], have had success with the method. Ringrose and Harris actually comment that the 

technique is not sensitive to the spatial resolution of the input data and is therefore suitable 

for wide area surveillance imagery. Also, despite their negative comments Hawkins et al, 

present examples which show that the method has potential and note that with adequate 

resolution and sufficient study it may be effective. We add here that the work of Hawkins 

et al. appears to be closely related to that of Yeremy et al. 

We now describe the Cameron decomposition, [13] and [12], in detail. Our description 

comes mainly from [13]. The Cameron decomposition was developed with the help of the 

Pauli matrices: 

Sa = 
V2 

1   0 

0   1 ^' = 7^ 
1     0 

0   -1 
Sc  = 

V2 

0 1 

1 0 
Sd = 

V2 

0 -1 

1 0 

A scattering matrix S is expanded in terms of the PauU basis by 

S = aSa + pSb + 7^ + 5Sd (41) 

where and the coefficients a, /3, 7 and 5 may be complex. Clearly the scattering matrices 

of reciprocal scatterers are exactly those with 6 = 0 in this expansion. Thus the first 

step of the Cameron decomposition is to extract the reciprocal scatterer component of S 

by setting (5 = 0 in (41). Cameron et al. denote this component by Srec- Cameron et 

al. define an "angle" 0rec which measures the degree to which S satisfies reciprocity. We 

omit the details here but we note that in the original paper, [12], scattering matrices for 

which Orec > 7!"/4 are considered to be from non-reciprocal scatterers and are excluded 

from further analysis. 

Next, Cameron et al. seek to extract the maximal symmetrical scatterer component 

of Srec- In order to best define what this means, the problem is vectorised. This is done 

with the operator 

S 
S21    S22 

S = [sii    S12    S21    S22] (42) 

Cameron et al. denote the norm of a vector n by ||u||, the inner product of two vectors u 

and V by {u, v) and uses the notation u to indicate that u is a unit vector. Thus the Pauli 

basis becomes Sa — V5a, Sb = V^h, Sc = VSc and Sa = VSd- 

Unfortunately, while the set of all scattering matrices of symmetrical scatterers is 

subset of the subspace of reciprocal scatterer scattering matrices, it is not a subspace itself 

which complicates the analysis. However, Cameron et al. show that the vector form of 

any such matrix Ssym has an expansion of the form 

Ssym = aSa + e[cos(^)56 + sin(0)5d (43) 

where 9 = -2tp and ijj is the rotation angle which diagonalises Ssym (recall here that the 

scattering matrix of a symmetrical scatterer is identified by the fact that it is diagonalisable 

by a rigid rotation transformation, [52]). Thus, in seeking the symmetric component of 

Srec, Cameron et al, [12], consider decompositions of the form 

^rec — ^svm T <-'2 (44) 
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for some 52 where 

Ssym — [Srecf ^aj^a + ("-'reo 5 )'-' (,'*^i 

and 

S' = cos{9)Sb + sm{e)Sc (46) 

and (•, ■) denotes the inner product. To guarantee that Sgym is the largest symmetric 

component which can be extracted from Srec, they choose the value of 6 in (46) so that 

it maximises \{Srec,S')\. We denote the maximal symmetric component derived in this 

way by S^^. While our interest lies entirely in 5^^, it is of interest to note here that 

according to Cameron et al, the remaining component is also a symmetrical scatterer 

scattering matrix which is orthogonal to 5™^. 

It is shown in the appendix of [12] that the value of 9 in (46) which generates 5^^ 

satisfies ^ ^ 
^1* +13*1 

unless /?7* + /3*7 = 0 = |^p + |7p in which case ^ = 0. By computing the terms in (45) 

we also find that 5^^ is of the form given in (43) with 

e = /3cos^ + 7sin6'. (48) 

Here a, P and 7 are the coefficients of the original Pauli expansion (41). As noted above, 

(45) is diagonalised by a rotation through an angle tp = —0/2 hence (as noted by Touzi et 

al. in [120]) after diagonalisation 

S^y^^ = aSa + eSb (49) 

The classification scheme of the Cameron decomposition, [12], makes use of the angle r 

defined by 

tan(20) = S^:^ (47) 

:;Tnax\ 

COS T = —=r 
\yOrect i^symJ\ 

m.ax\ 
sym I = illl^ 

(50) 

which measures the degree to which S™^ deviates from Srec- Scattering matrices for which 

r > 7r/8 are considered to be from asymmetrical scatterers and are classified separately. 

The final step of the Cameron decomposition involves specifying a normalised diagonal 

form for the scattering matrix of a symmetrical scatterer and thereby associating a physical 

scattering mechanism with the matrix S^m- The normalised form is obtained by scaling 

and rotating the scattering matrix and is given by 

A{z) 
vT+RF 

zeC,        \z\<l. (51) 

Thus the parameter which determines the scatterer type is z. Of course the rotation angle 

which diagonalises S^^ is rp = -6/2 where 6 satisfies (47). However, care needs to be 

taken here. Cameron et al. note that rotations through ^ it TT/2 will also diagonalise 5^^ 

although with the diagonal elements interchanged. Depending on the scattering matrix. 
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Scatter type Normalised form 

Trihedral A(l) 

Dihedral A(-l) 

Dipole A(0) 

Cylinder A(l/2) 

Narrow Biplane A(-l/2) 

Quarter Wave Device m 

Table ^; Cameron's elemental scatterer types 

there may be further ambiguities in the rotation angle. Cameron et al. resolve these 

ambiguities to ensure \z\ < 1 in (51). It follows that the scatterer type associated with a 

particular scattering matrix can be represented by a point z in the unit disc of the complex 

plane. 

As reference models of scatterer types, Cameron et al. consider the symmetric scat- 

tering mechanisms shown in Table 4. In order to compare general scattering matrices of 

symmetric scatterers with these reference models, Cameron et al, [13], define the metric 

d{zi,Z2) = cos -1 'max(|l + -gi-^ll) ki + -^11) (52) 

where A{zi) and A{z2) are the normalised diagonal forms of the scattering matrices. The 

scatterer type of a general symmetric scattering matrix is then assigned to the scattering 

mechanism in Table 4 which is closest according to this metric. We note here that in 

earlier work, [12], Cameron et al. developed a complete classification scheme for scattering 

matrices based on the above decomposition but the method for comparing symmetric 

scatterer scattering matrices was diff'erent and did not involve the metric (52). We also 

note that Touzi et al, [120], suggest an improvement to the metric (52). Touzi et al point 

out that Cameron et al derived the metric (52) prior to diagonalising both scattering 

matrices and that it makes more sense to to take the magnitude of the complex scalar 

product of the normalised scattering matrices k{zi) and A{z2) as the metric. Thus they 

propose the metric 

d{zi,Z2) = 
\l + ziz^\ 

(53) 
vTrTRp)x/(TTW) 

which is simpler than (52). 

The first use of Cameron's decomposition for ship detection purposes was by Ringrose 

and Harris, [104]. This work is really only a feasibility study but it obviously has the 

potential to be developed into a valid ship detection algorithm. Ringrose and Harris 

applied the method to SIR-C SAR imagery of the ocean and simulated SAR imagery of 

ships. The SIR-C data was L-band single look complex fully polarimetric imagery. The 

simulated ship data used the same radar parameters as the SIR-C SAR imagery, the ship 

was 50 m in length and resolutions of 25 m and 100 m were used. They found that for 

the most part, the scatterer types in ship pixels differ from those in ocean pixels and 

hence ship pixels can be easily detected. However, they also used a threshold in order to 

eliminate dull pixels from consideration (ship pixels are usually bright). They note that 
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the threshold is not really linked to a false alarm rate and so there is no trade off between 

false alarm rate and detection probability in their method. 

As an example of the results produced by Ringrose and Harris in [104], with a threshold 

of-10 dBm the only ocean scatter types present are cylinders, trihedrals and dipoles. Three 

different ocean areas are analysed and other thresholds are considered. The main ocean 

scatterer type is a cylinder. Interestingly, Ringrose and Harris find that wind speed does 

not seem to affect the ocean scatterer types. The variation of ship scatterer type with 

aspect angle is also investigated. Prom this, Ringrose and Harris conclude that the most 

important scatterer type for ship detection is the dihedral (or narrow dihedral). However, 

they find that at certain aspect angles the ship scatterers do not differ from the ocean 

scatterers and so their approach will not lead to a perfect ship detection method. On the 

other hand, they comment that the method is advantageous since resolution is not critical 

and hence should work with low resolution wide area surveillance imagery. 

The Cameron decomposition was also investigated for ship detection purposes by 

Yeremy et al. in [142]. Like the work of Ringrose and Harris, the Yeremy study is explo- 

rative rather than developmental. However, the Yeremy study involves a much larger data 

set and is much more comprehensive. It warrants a careful reading by anyone wishing to 

develop a ship detection algorithm based on the Cameron decomposition. We provide a 

brief overview of the relevant parts of the Yeremy paper in the following paragraphs. 

The data Yeremy et al. use has been described above in the section on optimal po- 

larisations for ship detection. It was collected by CCRS Convair-580 C-band SAR system 

during the MARCOT'98 and CRUSADE'OO trials. More than 75 ships were selected from 

the data by manual visual means. The ships were extracted using visual delineation of the 

target area or supervised thresholding. Each ship was centred in a 800x100 image chip 

with land, other targets and saturated pixels masked out. The resulting "imagettes" were 

then used to assess detection performance of the Cameron method. A valid detection was 

recorded for the whole imagette if at least one ship pixel was detected and no ocean pixels 

were detected. 

Like Ringrose and Harris, Yeremy et al. extend the basic Cameron method by including 

a threshold to take account of the backscattered magnitudes. There are at least two 

arguments in the Yeremy paper justifying this: first, the ocean may have similar scattering 

mechanisms to ships and the backscattered intensity will help differentiate the two; and 

second, since the Cameron method is susceptible to speckle, only large backscatter pixels 

are desired anjrway. Consequently, in the method Yeremy et al. implement, pixels are 

only considered detected if they are above the chosen threshold. Yeremy et al. note that 

ideally the choice of threshold should be based on a model (empirical or theoretical), but 

they know of no validated polarimetric threshold models and suggest that further research 

using ground-truthed data is needed on this topic. Instead for demonstration purposes 

only, the chosen threshold was determined from the data empirically by undertaking a 

target-to-clutter ratio study. On this basis it was decided to set the threshold to be 10 

dB less than the maximum SPAN (see (38)) of the imagette being processed. Yeremy 

et al. state that the combination of threshold and Cameron decomposition gives better 

detection rates than either method individually. 

The original Cameron classification scheme, [12], could identify eleven different ele- 

mental scatterers. Of these, five were chosen as likely to be indicative of man-made vessels 
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and the study was limited to them. The selected scatterer types were: dihedral, narrow 

diplane, cylinder, diople and quarter wave device. The results for each of these scatterer 

types were presented separately in order to emphasise which scatterers are significant for 

ship detection purposes. Trihedral scatterers were not chosen since it was believed that 

trihedral shapes are not common on ships. Yeremy et al. note here that the Ringrose 

and Harris study found that ships are dominated by dihedral, narrow diplane and quarter 

wave device scatterers. 

Yeremy et al. note that when using the metric (52) to compare the parameter zi of 

an image pixel scattering matrix, with the parameter Z2 of an elemental scatter scattering 

matrix, if d{zi,Z2) = 0 then the data and the model are the same whereas if d{zi,Z2) = 

n/2 then the data and the model are orthogonal and hence very dissimilar. For this 

reason, Yeremy et al. add the constraint that d{zi,Z2) < 7r/12 since this ensures that only 

dominant elemental scatterers are used in the analysis. 

Detection results for the various Cameron elemental scatterers were good, and in par- 

ticular, the narrow diplane and quater wave device elemental scatterers gave detection 

rates of 98% and 91% respectively. Further, by combining the results for several scatterer 

types even greater confidence levels could be obtained with 100% detection rate being 

recorded for several combinations. Yeremy et al. conclude that although the Cameron 

method has been criticised because it relies on single pixel operations, their results indicate 

that it is a very robust ship detection method (as long as only dominant scatterers are 

used). Further discussion of these results may be found in [143]. 

Two other points in the paper are worth highlighting here. First, Yeremy et al. observe 

that the spatial density of scatterer types may be an important factor in ship detection 

— for instance the spatial density of detected narrow diplane scatterers increases at the 

ship location relative to the surrounding clutter whereas the reverse is true of detected 

cylindrical scatterers. Second, six of the imagettes used in the study produced anomalous 

results for the Cameron method. Yeremy et al. believe that these imagettes contained false 

targets and that the targets were in fact ocean buoys. On this basis, their results indicate 

the classification information in polarimetric methods such as the Cameron decomposition 

may be able to discriminate false targets from true targets. 

In the final part of the paper, Yeremy et al. explore the classification potential of 

the Cameron method. The idea here is to use the spatial composite of the detected 

elemental scatterers as classification features. Yeremy et al. found that each ship in 
the study had individual characteristics in terms of detection types, spatial densities and 

distributions. However, they add that further research and more ground-truthed data are 

required. Several example ship signatures are presented. For one of these, a photograph 

of the original ship was also available and interesting and convincing comparison is made 

between the detected elemental scatterers and the various physical structures on the ship. 

6.7    Symmetric scattering characterisation method (SSCM) 

In follow-up work, Touzi and Charbonneau have suggested several improvements to the 

Cameron decomposition, [120] and [121]. They also extract several new parameters from 

the decomposition. While their application is to ship characterisation and identification. 
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[124] and [122], the method remains essentially the same and hence should be relevant to 

ship detection. For this reason it is appropriate to review their work here. We emphasise 

however that these papers are investigative and suggest avenues for further exploration 

rather than document polished algorithms. We also add that this makes the papers difficult 

to follow and the author's meaning is not always clear. 

In [124] and [120], Touzi et al. distinguish two types of target decomposition methods: 

coherent target decomposition (CTD) methods and partially coherent target decomposi- 

tion (PCTD) methods. They note that PCTD methods (such as the Cloude and Pottier 

method, [22] use the multi-look Mueller, covariance or coherency matrix and therefore 

are low resolution methods. On the other hand CTD methods (such as the Cameron de- 

composition) extract polarisation information directly from the 1-look scattering matrix 

and are therefore high-resolution methods. High-resolution methods are desirable for ship 

classification and hence the Cameron decomposition is of interest. 

Touzi et al, [124] and [120], have two main criticisms of the Cameron method. First, 

they state that Cameron's method uses a very coarse classification scheme. They are 

referring here to the use of the metric (52) to classify a normalised scattering matrix, 

A.{z), as one of the elemental scatterer types A^z^.^^). They note that the ratio |^;|/|-2j.gf| 
(expressed in decibels) can be unacceptably large and that Cameron's classification can 

therefore be misleading. By analogy with SAR channel imbalance and known polarimetric 

SAR radiometric calibration requirements, they suggests that a threshold of 1 dB be 
applied to the ratio in order to limit "radiometric dispersion". However, with the threshold 

at this level they find that too many pixels remain unclassified and therefore Cameron's 

classification is of limited use. Their resolution to this dilemma is to avoid the classification 

scheme entirely and in effect they work directly with the parameters of the normalised 

scattering matrix. As an example, they note that the Cameron method leads one to 

believe that ocean clutter is dominated by cylindrical scattering and ship clutter by dipole 

and narrow dihedral scatterers, [104] and [142]. However, they show that when the coarse 

classification scheme of the Cameron method is dropped it becomes apparent that less 

than 1% of ocean pixels are pure cylindrical scatterers. 

Their other criticism of the Cameron method is that it is a CTD method yet it does 

not include an assessment of scattering coherence and can therefore be applied in areas 

of non-coherent scattering, leading to meaningless results. They state that CTD can only 

be applied under coherency conditions in which the polarimetric information is fully rep- 

resented by the scattering matrix and further, if the target has a coherence time that is 

significant in comparison to the measurement time, the scattered wave is then partially 

polarised and cannot be represented with the scattering matrix. Consequently, they recom- 

mend that the SAR image being processed be segmented into coherent and non-coherent 

scattering classes and that CTD methods be applied within areas of coherent scattering 

and PCTD methods be applied within areas of non-coherent scattering. We note here that 

the ocean surface is continually changing shape and so is likely to genereate non-coherent 

scattering whereas ships are more likely to generate coherent scattering. 

They propose two ways of assessing the scattering coherence: one for point targets 

and one for distributed targets. The point target coherent scattering test is designed to 

locate scattering which is coherent within a single resolution cell. Scattering is considered 

to be coherent if the resolution cell is dominated by an elemental coherent scatterer. Thus 
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a Rician scattering model (fully developed speckle dominated by a constant phasor) is 

used. The Rician model is parameterised by its signal-to-clutter ratio. Resolution cells for 

which this ratio is above a 15 dB threshold are considered to contain coherent scattering. 

Details are given as to how the signal-to-clutter ratio can be deduced either from either a 

Huynen decomposition or a Graves matrix decomposition. The distributed target coherent 

scattering test is designed to locate scattering which is coherent over many resolution cells 

but possibly only locally time-wise coherent in each. This is done through the use of 

a quantity psym. (see equation (56)) which measures symmetric scattering coherence. A 

coherence map is generated with a moving window and pixels with psym close to 1 are 

taken to represent areas of (locally) coherent scattering. Touzi et al. do not explicitly 

specify a window size or a threshold value for Psym- 

A full description of the SSCM is given by Touzi and Charbonneau in [120]. We go 

through the details next. The main steps are: 

• Calculate the parameters a and e of the maximum symmetric component according 

to (41), (47) and (48); 

• Calculate dsym according to (54) or (50) and use it to assess the significance of the 

symmetric scattering component; 

• (Distributed target coherence test) Segment the image into coherent and non-coherent 

classes using the map oipsym as calculated by (56); 

• (Point target coherence test) Apply the radiometric Rician threshold within the 

noncoherent class — pixels with a signal-to-clutter ratio above the 15 dB threshold 

are assigned to the coherent class 

• Generation and analysis of the S™^ parameters within the coherent class 

We explain dgym, Psym and the 5™^ parameters next. 

Touzi and Charbonneau use COST in (50) _as a measure of the size of symmetrical 

scattering component of the scattering matrix S. Hence they define dsym = COST refers to 

it as the degree of symmetry. They note that dgym is in fact the ratio of the intensity of 

S^^ to that of Srec and hence 

In the application of SSCM in [120], Touzi and Charbonneau calculate a map of dsym using 

a 5x5 pixel sliding window. Thus the parameters in (54) are replaced by the appropriate 

expected values over the window. They exclude asymmetrical scatterers from the analysis 

by applying a lower threshold of 0.92 to dgym- In other words, pixels with dgym < 0.92 

(corresponding to r > 7r/8) are excluded. 

In [13], Cameron et al. commented that the unit disc representation of 5^^ given 

by the normalised form in (51) may not be the best representation.  As an alternative. 
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Touzi and Charbonneau suggest that the Poincare sphere be used. Hence they propose 

the normalised form 
1 

cos(2'0c) cos(2xc) 

sm{2il)c) cos(2xc) 

sin(2xc) 

HA, Xc) = (55) 

where ijjc and Xc are coordinates of the Poincare sphere. Touzi et al. outHne how xpc and Xc 

can be calculated from the parameters a and e of 5^^ in (49) but the details are beyond 

the scope of this report. There is a rotation phase ambiguity here which they resolve by 

restricting tpc to the interval [0,7r/2] implying that only half the sphere is used. While 

they determine where the elemental scatterer types in table 4 lie on the sphere, they do 

not define a metric like that in (52) and nor do they propose an associated classification 

method. Instead, they work with the parameters ipc and Xc as they stand. 

Touzi and Charbonneau note that only coherent symmetric scatterers can be rep- 

resented by points on the surface of the sphere and that partially coherent symmetric 

scatterers are represented by points inside the sphere. They state that a partially coher- 

ent symmetric scatterer is represented as a point inside the sphere at a distance from the 

sphere centre determined by the degree of coherence of the scatterer components a and e 

on the basis {Sa, Sb given by 

Psym = WTW) ■ ^   ^ 

When symmetric scattering is dominated by the trihedral, e = 0, or the dihedral, a = 0, 

the degree of coherence Psym of the symmetric scattering is close to 1 as expected. This 

expectation motivates the choice ofpgym to measure the degree of coherence... Note the use 

of expected values in (56). In the application of SSCM, Touzi and Charbonneau calculate 

a map of Psym using a 5x5 pixel sliding window. In several places they use a threshold of 

0.8 on Psym but this value is not explicitly recommended anywhere. 

We turn now to the parameters which Touzi and Charbonneau extract from S^^- 

We have already discussed the Poincare sphere coordinates ipc and Xc- Touzi et al. also 

extract an angle 77 and a phase diflFerence (pa — ipb- This is done by re-expressing S^^ from 

the form (49) to the form 

5™m = exp J0a • ^H2 + |e|2 • [cos(77) ■ Sa + sm{r]) expj{(t>a - h) ■ Sb] (57) 

where r] lies in the interval [0,7r/2]. Touzi and Charbonneau note that ry is analogous to 

Cloude and Pottier's parameter a, [22] and [23]. They comment later in the paper that 

partitioning r] into the three classes T? = 0, 77 = 7r/2 and 0 < r? < 7r/2 is equivalent to Van 

Zyl's odd-even bounce coherent scattering classification. They suggest that both 77 and 

<l>a — <l>b will contain useful information. They also mention that the channel coherence 

7^ g should be of interest. 

In the final section of the paper, [120], Touzi and Charbonneau discuss the application 

of the above methods to an 18 m ship imaged by the Canadian Convair-580 C-band SAR. 

Their results clearly demonstrate the effectiveness of the SSCM. The parameters, ipc, Xc 

Tj and (j)a — (pb are all shown to carry useful information. In the conclusion of the paper. 
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they make the following comment. The preliminary results obtained with the Convair-580 

dataset show that the symmetric component of target scattering has a big potential for ocean 

characterisation and ship identification. In a follow up paper, [124], Touzi et al. apply 

the SSCM to SAR imagery of two ships produced by the Convair-580 system. The results 

validate the potential of SSCM for ship characterisation and demonstrate in particular 

that ship orientation (pitch and roll) can be estimated using SSCM. This was done by 

applying the SSCM to the ship mast and other structures which exhibited symmetric 

scattering. It was noted that on the one hand, the SSCM was reasonably robust to rough 

sea-wind conditions but on the other, SAR focus errors led to errors in estimating the 

symmetrical scatterer properties. The conclusion was that SSCM can be used to provide 

a ship specific distribution of "permanent" scattering targets and hence it may be useful 

for classification and identification purposes 

7    Prescreening — interferometric SAR 

Along-track interferometric SAR (InSAR) allows the enhanced detection of moving 

targets on the ocean surface including ships and ship wakes. In along-track InSAR systems, 

two separate radar antennae are mounted on the same aircraft but displaced along the body 

of the aircraft in the direction of flight. The signal received by each antenna is processed to 

form a single look complex SAR image and then an interferogram is formed from them by 

multiplying one image by the complex conjugate of the other. The magnitude of each pixel 

in the interferogram is related to the RCS of the corresponding resolution cell while the 

phase is related to its average velocity component in the radial direction. With a properly 

calibrated system, the relationship between interferogram phase and radial velocities can 

be quantified and accurate velocity measurements made. 

Campbell et al. describe the Canadian Centre for Remote Sensing (CCRS) along-track 

InSAR system in [15]. They quantify the relationship between interferogram phase and 

radial velocities as follows. Suppose the antennae are separated by a distance d and the 

aircraft has a velocity V. Then the time delay between the formation of the two SAR 

images is i = d/V. In that time, a target with radial velocity v will have moved a distance 

vt in the radial direction and hence its phase will have changed by A-Kvt/X where A is the 

radar wavelength. If $ is the interferogram phase it follows that 

V = V\^/2d'K (58) 

where the reduction by a factor of two is due to the fact that the same transmit antenna 

is used for both InSAR antennae. Campbell et al. note that for the CCRS system t is 
typically around 5 ms whereas the ocean decorrelation time is thought to be between 50 

and 100 ms. 

Campbell et al, [15], note that the velocity measurements provided by along-track In- 

SAR are independent of the RCS. Consequently, InSAR allows the detection of small ships 

which may not be much brighter than the background ocean clutter. If such ships have 

a velocity component in the radial direction which is different to that of the surrounding 

ocean, they will show up as anomalies in the velocity image. An added advantage is that 

one can estimate true velocities from radial velocities if the ship's heading (which can be 
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determined from either its shape or its wake) is known. Campbell et al., [15], demon- 

strated the ability of along-track InSAR to detect moving ships and ship wakes during the 

1995 MARCOT trial off the coast of Novia Scotia. However, no automatic processing of 

the imagery was undertaken. 

A similar approach is used by Schulz et al. in [113] and [112] although their interest 

is in the special problem of detecting slow moving cargo ships in locks. Schultz et al. 

include in the formula (58) a term to account for the radar incidence angle and hence 

produce ground velocities rather than radar line of sight velocities. The main thrust of 

their papers is to deal with problems caused by areas of low signal-to-noise ratio in the 

phase information. Their solution is to use intensity information to identify and remove 

such areas. They also use a region growing method to cluster pixels with similar velocity 

estimates. 

A somewhat different technique of using SAR interferometry for ship detection has 

been described by Arnaud in [6]. Again, the idea is to use phase rather than intensity to 

aid in the detection of small ships with low RCS. However, Arnaud proposes formation of 

the interferogram from two different looks processed from a single aperture SAR system. 

This is done by selecting two different non-overlapping bands from the synthetic aperture 

Doppler spectrum. Of course, the resulting images have reduced resolution but they also 

correspond to imaging the scene from two slightly different angles at different times. It 

is the time difference that is critical to Arnaud's application. His application is to the 

ERS satellite SAR in which case the time difference will be hundreds of milli-seconds. 

Arnuad's presumption is that during this time delay the sea which is continuously moving 

will have strongly incoherent behaviour while ships, like point scatterers will have coherent 

behaviour. 

Arnaud's scheme is therefore to: extract two non-overlapping Doppler bands from the 

raw SAR data; form the SLC images for each look; and then form an interferogram and 

its "phase coherence image". Pixels with high "phase correlation" are expected to be ship 

pixels. Arnaud detects them by applying a simple threshold to the phase coherence image. 

Arnaud has applied this method to ERS-1 SAR data with promising results. However, the 

tests were not extensive and the imagery was not ground-truthed so although feasible, the 

practical utility of the method has not been demonstrated. Arnaud notes that the method 
can be fine tuned and some improvements may result from considering the following: the 

width of the Doppler subbands used; the spectral separation of the Doppler subbands 

used; the method of computation of the coherence image (and especially the window size 

used). On the first two points, Arnaud comments that both the separation and subband 

widths need to be increased in calm seas to enhance the decorrelation of the sea whereas 

in agitated seas they need to be reduced to avoid the decorrelation of the ship. 

Ideas very similar to Arnaud's have been developed in the work of lehara et al, [53], 

and Ouchi et al, [93], — the second paper being an extension of the work in the first. 

They likewise suggest taking advantage of the fact that two different looks processed from 

different sub-apertures of a SAR system will be separated by a small time delay. They 

argue that owing to this time delay and the different scattering mechanisms, there will 

be little correlation of the ocean backscatter in the two images but there will be a large 

correlation in the backscatter from ships. Thus they propose using a measure of the 

correlation between the looks to detect ships. 
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The basic processing flow, as outlined in the first paper by lehara et al. [53], is: 

generate the spUt-look images from the raw SAR data; extract corresponding windows 

from each split-look image; compute the two-dimensional cross correlation function (2D- 

CCF) for the windows; if the 2D-CCF has a peak, the windows are judged to contain a 

ship; process the entire image by moving the windows around. The authors note that the 

method is not affected by ship motion because the only effect of ship movement is to shift 

the location of the peak in the 2D-CCF. The method was tested on Radarsat imagery but 

not extensively. 

In the follow up paper [93] by Ouchi et al, the method is further tested. One of the 

advantages of the method is that it can detect ships even when the intensity of the ship 

backscatter is similar to that of the surrounding ocean. Consequently, Ouchi et al. are 

particularly interested in that case. While the first few steps of the algorithm are the same 

as in [53], it appears that a diff'erent technique is used to calculate the correlation between 

the two windows, with a coherence value being produced rather than a cross-correlation 

function. Unfortunately, the paper is poorly written and the details are not clear. Be 

that as it may, the final result of the correlation process described by Ouchi et al. is a 

"coherence image" which is then thresholded to detect ships. Ouchi et al. use a simulation 

study to identify the optimum size of the window used to measure the correlation between 

the looks and then they evaluate the method on Radarsat data. They find that an 8 

X 8 pixel window is best but that ships smaller than 8x8 may not be detected. Their 
experiments with modified Radarsat data verify that the method is feasible and can detect 

otherwise invisible ships. It is noted that other ocean features such as current boundaries 
and breaking waves can generate false alarms and that further processing may be needed 

to eliminate them. 

8    Discrimination algorithms 

We begin this section with a general introduction to the philosophy behind ship target 

discrimination. We follow that with a general discussion as to how ship wake detection can 

be used to aid ship target discrimination. We then observe that not much research has been 

undertaken on discrimination algorithms for ship detection and offer reasons as to why. 

Following that we discuss the common but elementary discrimination algorithms based 

on simple target measurements. We then review the Ocean Monitoring Workstation's 

approach of using human supervision for target discrimination. The remainder of the 

section consists of a detailed review of the various discrimination algorithms documented 

in the literature. 

Most ship detection systems have a discrimination phase following the prescreening 

stage. The idea of this stage is to reduce the false alarm rate. The algorithms in the 
discrimination stage process the candidate targets detected by the prescreening phase and 

are aimed at discriminating true targets from false alarms. To do this, discrimination al- 

gorithms usually operate on an image chip which contains the candidate target pixels and 

their local surroundings. They may or may not take account of which pixels were detected 

by the prescreeners. The algorithms which do not take account of prescreening detections 

have the potential to be prescreening algorithms themselves.   Conversely, prescreening 
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algorithms also have the potential to be discrimination algorithms. The distinction be- 

comes one of speed and accuracy. It is generally the case that prescreening algorithms 

are fast and therefore less accurate while discrimination algorithms are more accurate and 

therefore slow. We add here that the distinction between prescreening and discrimination 

algorithms can often be blurred with discrimination algorithms incorporated into the pre- 

screeners for efficiency and other reasons. Also, just as preprocessing and prescreening 

algorithms are linked, it is to be expected that there will be some dependency between 

prescreening and discrimination algorithms. A good discriminator for one prescreener may 

not work well with another. 

As an example of the linking between prescreening algorithms and discrimination al- 

gorithms we cite the work of Ferrara and Torre, [34]. They consider two different false 

alarm rates (FAR) in the design of their prescreening algorithm. The lower FAR is for 

the case where no restriction is placed on the detected pixels while the higher FAR is for 

the case where isolated detected pixels are considered too small to be ship pixels and are 

discarded. This latter case is a very simple type of discrimination algorithm. (Of course 

its validity depends on the surveillance scenario at hand and on image resolution and ship 

size in particular.) The point is that by improving false alarm control, the prescreener 

FAR can be increased and hence better probabilities of detection can be obtained. 

Many ship detection systems include a wake detection and analysis module following 

ship detection. However, while wakes are an obvious additional source of information 

about ships, their use in target discrimination algorithms is limited. The problem is that 

stationary and slow moving ship have no wakes. Further, wakes are unreliable or not 

visible in many types of SAR imagery. Thus although the presence of a wake confirms the 

presence of a ship, the converse is not true and the absence of a wake does not imply the 

absence of a ship. Consequently wakes can really only be used to increase the confidence 

in detections rather than reject false alarms. However, having said that, we note that 

a reasonable compromise is to retain all large detections but reject small (or otherwise 

questionable) detections unless a wake is present. This is the approach taken by Eldhuset 

in [32]. A variation of this is proposed by Jiang et al. in [55]. The authors suggest two 

prescreener thresholds be used — detections above the higher threshold are retained as 
usual (subject to the chosen discrimination algorithms) while detections above the lower 

threshold but below the higher threshold are only retained as long as a corroborating wake 

can be found. 

In addition to confirming detections, wakes can also provide ship course and speed 

information. Such information is ancillary to the detection and is not usually for discrim- 

ination/classification purposes. The ship course is determined by the orientation of wake 

and the ship speed can be deduced from the azimuth offset between the wake and the ship 

using formulae (5) and (6). Of course, the later formulae only provide the azimuth com- 

ponent of the speed and the ship's orientation needs to be taken into account in order to 

estimate the true velocity. Also, Eldhuset, [32], warns that speed estimation is unreliable 

if the angle between the azimuth direction and the ship orientation is larger than 15° (else 

the range component of the ship's velocity is too small). We also note that wakes can be 

both bright and dark and can have several components at varying angles making analysis 

and orientation estimation difficult. As mentioned in the introduction, wake detection is 

beyond the scope of this report and we will only provide a cursory discussion here. We 

will indicate which systems include wake detection and how it is used without going into 
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the details. 

With the exception of wake detection and analysis there has been little research effort 

on target discrimination algorithms for ship detection. The most likely explanation for 

this state of affairs is the lack of well ground-truthed data. We have already noted the 

difficulty in producing good theoretical models of target backscatter given the large number 

of variables which come into play. Consequently, discrimination algorithms often use 

empirically derived target and background models. Deriving such models requires a large 

amount of training data. By training data we mean many well ground-truthed examples of 

true ships and false alarms to learn from. Moreover the examples need to be representative 

of the context in which the discrimination algorithm will be applied. Even in the case of 

discrimination algorithms which do not need training data, well ground-truthed test data 

is still needed for parameter setting and performance assessment. Such databases are 

distinctly lacking. See for instance: the comment by Rey et al. on this in the conclusion 

of their report, [103]: the comment by Yeremy et al. in [142] that rarely have there been 

ship detection studies with more than three ground-truthed ships; and the comment by 

Yeremy et al. in [143] that the CRUSADE'OO trial is an invaluable set of data since few 

other experiments have been as extensive. 

Another likely explanation for the lack of research into discrimination algorithms is that 

most of the appHcations are to wide area surveillance. Consequently, low resolution, wide 

swath data is used. The prime example is Radarsat ScanSAR imagery with a resolution 

of 200 metres and a pixel spacing of 100 metres. Given that few ships are more than a 
few hundred metres long and most are shorter, only a handfull of image pixels will contain 
the ship backscatter and many of them will also contain ocean backscatter. For smaller 

ships, it is possible that the backscatter is contained in a single pixel. It is hard to extract 

worthwhile discrimination features from such scant data. 

For single channel data, commonly all that is done for target discrimination is to cluster 

contiguous detected pixels into a single detection and then extract some simple physical 

measurements from the target. The target measurements include: area, length, width, 

total intensity (i.e. RCS), peak intensity, orientation, centroid coordinates, aspect ratio, 

etc. Length, width and orientation can be estimated by total least squared error regression, 

principal component analysis or fitting a circumscribing rectangle. Note that estimated 

ship dimensions are not always accurate owing to sidelobe effects, smearing caused by ship 

motion, spectral leakage, etc. Bounds are placed on the target measurements to eliminate 

detections which are likely to be false alarms or otherwise not of interest. For instance 

it is common to remove detections which are too small and therefore likely to be due to 

the effects of speckle noise or local wind effects. It is also common to remove detections 

which are too large. For instance, this is done by Kourti et al, [61], when searching for 

fishing vessels — detections with more than 5 pixels in a row or column are separated out 

since the SAR resolution is 50 to 70 metres and fishing vessels are shorter than 150 m and 
therefore are unlikely to generate such detections. Target measurements can also be used 

for classification purposes. An example of this is given by Askari and Zerr in [7] where it is 

noted that the length-to-width ratio is a standard indicator of ship structure. For merchant 

ships this ratio is of the order of 6 to 7, whereas it is larger than 10 for military vessels. 

Some of the extracted target features, such as orientation and centroid coordinates, are 

not used for automatic discrimination purposes but are instead are included as ancillary 

information in the final detection report. Extracting target measurements is a very simple 
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approach to target discrimination — it assumes the target has been delineated correctly 

and ignores the background context completely. 

Interestingly, one of the most advanced ship detection systems, the Ocean Monitoring 

Workstation (OMW), only includes only a few such simple target measurements for target 

discrimination. Instead, the OMW relies on human supervision to identify and remove 

false alarms. Rey et al. give a good description of how this works in [102]. Following pre- 

screening, neighbouring detected pixels are clustered into a single detection. Detections 

which are too large, too small, too close to land, or too close to another detection are elim- 

inated. All of these parameters are specified by the user. (Note that eliminated detections 

are not necessarily false alarms, they may simply be of no interest.) A maximum number 

of detections to display/retain is then specified. The detections are ordered according to 

size and presented to the human analyst in order. The human classifies each detection as 

a ship, a man-made object, or unknown; the presence of wakes is also noted. Rey et al. 

comment that the unknown targets are generally assumed to be sea spikes or other ocean 

structure but without ground truth the possibility that some are small boats remains. A 

similar philosophy of human supervision to remove false alarms seems to under-pin the 

system described by Cusano et al. in [25]. That system has no false alarm discrimination 

at all and relies on the accuracy of the prescreener. However, it does present a detailed 

display of each detection to the operator and includes wake detection and analysis at the 

operator's discretion. 

In [49], Henschel et al. report on the utiHty of the OMW approach in dealing with false 

alarms. They note that while OMW appears to have an unacceptably high false alarm rate, 

the person-machine mix was found to work well in practice. To quote from the paper: The 

false alarm rate is still an open question, however, our operational experience has shown 

that the person-machine mix, with very fast algorithms means that ships with specific type 

and classification characteristics can be supplied in a very short period of time. This means 

that in an operational scenario, the automated algorithm's false alarm rate can be ignored. 

However, it is clear that there is still interest in developing a more automated approach to 

false alarm discrimination in the OMW. It was noted by Vachon et al. in [126] that this 

was one of the research directions at DREO. Yeremy et al. also discuss this issue in [142]. 

They note that small islands, buoys and ocean based oil rigs can be mistaken for ships by 

automatic algorithms such as the OMW but add that islands (with the exception of very 

small islands) and oil rigs can often be distinguished from ships visually. They imply that 

not much more can be done with single channel data but anticipate better progress with 

polarimetric data. As a pertinent example they note (see also [143]) that false detections 

caused by ocean buoys could be discriminated using the Cameron decomposition. As 

discussed in the section above on the Cameron decomposition, this is recent work and has 

not been developed into an algorithm yet. 

We return now to a more detailed report of the target discriminators based on simple 

target measurements in the literature. We have already noted that the OMW rejects 

detections which are too large, too small, too close to land, too close to another target, 

[102]. The setting of these parameters is not discussed, presumably because they are 

scenario dependent. Wackerman et al, [135], place a lower bound on the total target 

intensity. This is done mostly to avoid false alarms caused by noise spikes in areas with a 

high percentage of noise floor samples. But Wackerman et al. note that if a ship return 

needs to have energy larger than some threshold then this should be true anywhere in the 
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image. Robertson et al, [105], likewise specify an absolute floor threshold . Ferrara and 

Torre, [35], place bounds on the ship area (number of target pixels) and the ship length 

and the width. A minimum distance between ships is also enforced. They do not specify 

the size of these bounds but note that they depend on image resolution and the size of 

the ships of interest. Casasent et al., [19], work with SIR-C L-band SAR with a resolution 
of about 50 m. They consider detections with less than 5 pixels to be false alarms and 

remove them. They comment that this constraint removed all false alarms due to speckle 

noise. 

Bounds on target area (size) can also be implemented using morphological filtering. Lin 

et al, [68], work with ERS imagery with a resolution of about 12.5 m. False ship detections 

are eliminated using a morphological erosion filter. The filter operation is simple. It uses 

a 3x3 pixel moving window. If less than 3 of the 8 neighbouring pixels are possible ship 

pixels then the centre pixel is flagged as a false ship pixel and the detection deleted. In 

this way isolated false ship pixel due to speckle etc. are deleted. A different approach but 

with the same aim was used in an earlier paper, [67]. It is less convincing and we omit 

the details. Jiang et al., [54] and [55], also remove false ship pixels with a morphological 

filter. They use the same erosion filter as Lin et al. but with a 7x7 pixel window and true 

detections require more than 7 of the 48 pixels to be detected. Liu et al, [69], propose the 

use of two morphological filters: dilation and erosion. Dilation connects the neighbouring 

ship pixels and thereby clusters them. Erosion eliminates isolated detected pixels which 

are likely false alarms. No details of the fllters are given. 

Rye et al, [107], discriminate false alarms on the basis that bright backscatter from a 

ship will occupy several pixels. Thus they suggest using a M of iV discriminator whereby 

a ship is only detected if N pixels are above the detection threshold in an area of M pixels. 

They note that this can be further improved by taking pixel adjacency into account. As an 
example they proffer the use of two thresholds with a ship being detected if sufficient pixels 

are above the highest threshold and they are linked by pixels above the lower threshold. 

The system described by Rye et al also includes wake detection. They note that if the 

location and extent of ship wakes in the imagery is known then false ship detections due 

to bright points on wakes can easily be discriminated. However, this requires more than 

just a limited search for wakes in the vicinity of the ship detections as is often done and 

may be computationally prohibitive in a near real-time system. They do not document 

the performance of his system — the aim was to apply it to ERS-1 data once the satellite 

was launched. 

While the main thrust of the work by Gower and Skey, [43], is the general assessment 
of Radarsat ScanSAR imagery (50 m pixel spacing 100 m resolution) for fisheries mon- 

itoring rather than developing automatic ship detection algorithms, they do include an 
interesting feature extraction technique and associated target discrimination algorithm. 

They detect potential ships with a threshold and then fit a Gaussian "blob" model to 

extract discrimination features. The model is circularly symmetric with a profile of the 

form Aexp{-r'^/a). The amplitude. A, width, a, and location are aU derived by fitting 

the "blob" to the data. Thus in effect Gower and Skey are using a model-based approach 

to taking target measurements. Criteria are applied to the amplitude. A, width, a, and 

signal-to-background ratio, A/x, (where x is the rms scatter of nearby clutter). The fit- 

ting algorithm and detection criteria are not described. It was found by comparison with 

"ground-truthed" data that the detection criteria do allow some false alarms. No estimate 
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of missed detections is given. 

Wackerman et al, [135], identify two special types of false alarms: those in regions 

with a large number of system noise floor samples and those in land regions. Regions with 

a high proportion of noise floor samples can also contain bright spots which look like ship 

targets. They deal with these false alarms in two ways. First, a count is kept of the number 

of noise floor samples in the background window and when a high number are present, 

the prescreener detection threshold is raised. (This is done during the prescreening stage 

but it can also be done in the discrimination stage by reprocessing the data.) Second, as 

mentioned above, a lower bound is applied to the energy of the detect pixel (or pixels). This 

lower bound was set empirically by Wackerman using manually ground-truthed data. The 

other type of false alarm is the result of georegistration errors which lead to inaccurate land 

masking. In this case, Wackerman et al. identify a buffer zone where false alarms due to 

land are likely. In this zone they apply two constraints: the background mean and standard 

deviation must both be below thresholds. The reasoning here is that land is usually 

brighter and more variable than the ocean. The threshold on the background standard 

deviation is set empirically using manually ground-truthed imagery. The threshold on the 

background mean is more complicated — it is set dynamically for each image. Given the 

special nature of this latter threshold, we omit the details here and refer the reader to the 

original paper. 

Eldhuset documents a complete system with extensive target discrimination in [32] 

and [31]. We review the target discrimination algorithms in the next few paragraphs. 

Following presceener detection, neighbouring detected pixels are clustered. Then a "ship- 

to-sea-condition" test is applied to discriminate false alarms. This test calculates the 

ratio of the integrated (or total) intensity of the ship to the contrast of the surrounding 

background and applies a lower bound. Eldhuset comments that the prescreener performs 

well in homogeneous seas but that the "ship-to-sea-condition" test is very necessary when 

swells, strong waves, eddies and steep fronts are present and that it reduces the number of 

false alarms substantially. Unfortunately he provides no details as to what the "contrast" 

of the background is or how it is calculated nor does he discuss how the value of the lower 

bound is set (he only states that it is high). Based on Eldhuset's earlier work, [30], it is 

likely that by contrast, Eldhuset means the normalised variance, ab/nb- Eldhuset states 

that the "ship-to-sea-condition" test is very rough and just a first step in reducing false 

alarms. The ensuing tests are more sophisticated but they rely on a wake being detected. 

Following the "ship-to-sea-condition" test Eldhuset's system searches for a wake in 

the vicinity of the detection. A full description of Eldhuset's wake detection algorithm is 

beyond the scope of this report. Suffice it to say that the wake search done by averaging 

pixel intensities along scan Unes to produce a set of scan curves which are then thresholded. 

If no wake is detected, the current detection is retained and processing passes to the next. 

If a wake is detected then the "homogeneity" and "scan curve" tests are applied. Eldhuset 

notes here that fronts, eddies and internal waves can confuse the ship and wake detectors. 

The scan curve test checks the behaviour of the scan curve around the potential wake 

feature. Eldhuset provides scant detail on how this is done and we quote from the paper 

// an ordinary wake is present, the intensities on both sides of the wake are roughly equal, 

hence, the scan curve test rejects the wake if it (the scan curve) is too steep around the 

potential wake (feature).... The idea of the homogeneity test is that the ocean area in 

front of a ship must be relatively homogeneous. Hence it is performed in a small sector C 
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in front of the ship. Homogeneity is tested by looking at the n-th central moments a" as 

estimated in the region C forn = 2 and n = 3. The region C is considered homogeneous 

if .  .  
E[a"] - r^var[CT"] < a" < E[a"] - r^varfa"]. (59) 

where EW and var[-] are the expectation and variance operators. Eldhuset details how 

E[a'^] and var[a"] can be estimated using only knowledge of the mean image intensity /x 

(estimated in C) and the number of looks. Eldhuset states that for r = 3 the region is 

homogeneous with confidence 99.7% but in practice a larger value of the design parameter 

r is used. In [31], Eldhuset notes that this test is fast. 

A caveat is placed on the use of the scan curve and homogeneity tests. While a ship 

and its wake can be rejected by a failure of either test, the homogeneity test is not applied 

to detections which are above a certain (unspecified) size. Such detections are retained 

with or without the wake depending on the outcome of the scan curve test. Several other 

items in the Eldhuset paper are of interest. First, the orientation of a ship is estimated 

by computing the moment of inertia about lines through its centre of mass. The line 

with least moment of inertia is taken as the ship orientation (with a 180° ambiguity). 

For significant ships (more than 5 pixels) this orientation can be compared with the wake 

orientation (if a wake is present). 

Eldhuset tested the system on Seasat imagery and ERS-1 3-look fast delivery imagery. 

The ERS-1 imagery was 3-look with a pixel spacing of about of 63 m azimuth x 50 m 

range. The imagery was visually ground-truthed and in total there were several hundred 

ships and wakes. Eldhuset reports that no false alarms were generated. A small percentage 

of ships were missed (6.8% in the Seasat data and 8.0% in the ERS data). A somewhat 
higher percentage of wakes were missed. Eldhuset adds that the missed detections can be 

reduced by fine tuning the various parameters but then the number of false alarms rapidly 

increases in rough seas. Lost and false wakes are more of a problem in the ERS imagery 

than the Seasat imagery. 

We have already noted that the system presented by Ferrara and Torre in [35] uses 

elementary target measurements to discriminate false alarms. It also includes a wake 

detection module. Their aim is the detection of moving ships and so the presence of a 

wake is essential to the detection. The search for wakes is limited to the areas surrounding 

the ship candidates. It is based on an optimised version of the Hough transform. Rules 

ensuring minimum wake length etc are applied. Consideration is given to the different 

possible wake components. Wake direction and distance from the ship are estimated. 

Ferrara and Torre note here that ship speed can be estimated from this data as long as the 

satellite velocity is known too. In the final section of the paper, Ferrara and Torre discuss 
how an ISAR technique can be used to construct 2D or 3D images of the moving targets. 
Obviously such images would be useful for classification purposes. In [34], Ferrara and 

Torre report on the test phase of the system where the optimal parameters for the various 

rules have been determined and system performance has been measured. Unfortunately, 

no details of the settings are given. Also, while good results on real data are reported, 

their reliability is questionable since there is no discussion of the false alarm rate and the 

false alarms appear have been included in the estimation of the probability of detection. 

In subsequent work, [33], Ferrara et al. propose to improve the detection of moving 

ships by using a moving target detector based on local residual coherent phase error in 
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parallel with the wake detector. The target motion with a component in the azimuth 

direction manifests itself locally as a coherent phase error. This phase error has a strong 

quadratic component in the azimuth direction which directly depends on the azimuth ve- 

locity component. The motion detection technique is derived from the Phase Gradient 

Autofocusing algorithm and allows a robust estimation of the gradient of the coherent 

component of the phase error. The algorithm is iterative with rapid convergence. An out- 

line is given in the paper and references with more detail are cited. While computationally 

expensive, it need only be appHed locally in the vicinity of the detected ship pixels. Any 

motion detected in this way corroborates the presence of a ship. An advantage of this 

approach over wake detection is that wakes are not always imaged whereas the motion 

effect is. The method was tested on SIR-C/X-SAR SLC data. The results are presented 

as plots of phase against frequency samples. Prom this it was concluded that ship forward 

motion could be easily detected and that roll, pitch and yaw motion effects could also be 

seen to a lesser extent. This work was investigative and no suggestion was made as to how 

an algorithm (with thresholds etc.) could be developed from it. 

Techniques for false alarm identification and removal for the SUMO detector are given 

by Schwartz et al. in [114]. While we have already reviewed that paper in the section 

on the SUMO detector, it is appropriate to provide a brief summary here too. Schwartz 

et al. find there are two main types of false alarms produced by the SUMO detector: 

bright ship-like sidelobe patterns on large objects and bright ship-like noise from local 

wind turbulence effects. Dealing with the first type is easy. Any detected pixels which 

are less than 8 pixels apart are grouped together. Thus false alarms due to sidelobes 

are incorporated into the detection of the main object. Dealing with the second type of 

false alarm is a little more complicated and depends on the SUMO detector thresholds. 

Essentially, the discriminating feature is a large number of bright local maxima in the 

vicinity of the detection. Por more details see the description in the section on the SUMO 

detector or the original paper. Other techniques for false alarm reduction in the SUMO 

detector have also been considered. This work is outlined in a presentation by M. Alvarez 

to the inaugural IMPAST meeting in January 2002. the presentation is available from the 

the IMPAST web site, [57]. The idea is to extract contour and shape information from the 

detections. A decision tree for differentiating fishing boats from oil rigs is proposed. No 

further mention of this work has been found and we are uncertain as to its effectiveness 

or current status. 

It has already been noted that the system Lin et al. work with, [68], uses a threshold 

to identify potential ship pixels and then an erosion operation to remove false alarms. 

PoUowing this neighbouring ship pixels are clustered into a single detection and ship ori- 

entation is estimated using a total least squared error regression. A wake detection phase 

is then employed in the vicinity of each potential ship detection. The wake detector uses 

a Radon transform technique based on that of Copeland but with major modifications. 

Palse wake components are eliminated using three different wake tests. One of these tests 

compares the wake orientation with that estimated from the ship. Wakes were found to 

be much harder to detect than ships. In hght of this, we assume that the presence of a 

wake is not considered necessary for ship detection but no comment is made on this point 

in the paper. 

Casasent et al, [19], note that false alarms can occur in the sidelobe patterns of ships 

with large sidelobes. They handle this case by using a filter to detect the sidelobes and 
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then mask out any detections within them. The filter was constructed from real data by- 

forming an "average" sidelobe pattern. Details are in the paper. In the final section of 

the paper, they also propose a set of rules aimed at reducing the false alarm rate when 

the background is very noisy, very dim or very smooth. The rules are ad hoc and mostly 

involve adjusting the value of a^t in (15) based on the size of m, and o-(,. We omit the 

details. 

Robertson et al, [105], found that the CFAR detector they used produced an unaccept- 

ably high FAR. Consequently, a neural network algorithm was applied as a post-processor 

to filter out false alarms. The neural network is a Kohonen neural network and requires 

training on a representative ground-truthed image. A reference to work at DERA Malvern 

on the neural network is given. A final detection performance of 88% probability of detec- 

tion against a FAR of 12% is given for Radarsat ScanSAR imagery. Curiously, the FAR 

seems to be calculated as a percentage of all ships visible in the image which is highly 

unusual. 

In a pair of related papers, Benelli et al, [8], and Argenti et al, [5], describe a method 

of discriminating targets which is based on a fuzzy classifier. The input is a list of po- 

tential "ship-blobs", i.e. patches of bright pixels which the prescreener has identified as 

potential ships. Three features are extracted from these blobs for use in the classifier: 

area, mean grey level and elongation (we presume length is meant here). The classifier 

uses a "Weighted Distance Method" to calculate the membership function nc{x) where x 

is the blob being processed and C is the set of all true ships. A high value of iic{x) (i.e. 

close to 1) indicates the classifier believes the blob to be very ship-like while a low value 

(i.e. close to 0) indicates the opposite. The calculation oi pic{x) is based on the weighted 

Euclidean distance in feature space of x from the various prototype ship blobs. We omit 

the details here. We do however note that the weights depend on the importance assigned 

to each feature. Benelli et al. have set the importance of the features, area, mean grey 

level and elongation, to be 10, 6 and 5, respectively. They also state that the prototypes 

were manually selected by human experts during a training phase. The technique was 

tested on Seasat SAR imagery but no detailed performance figures are given. 

Finally, we mention the work being undertaken at the Universitat Politecnica de 

Catalunya (UPC) by Mallorqui et al, [80], [79], [78] and [77]. This work involves the 

simulation of SAR imagery of ships and is part of the IMPAST program. IMPAST is 

aimed at improving fisheries monitoring using SAR imagery. We discuss IMPAST in the 

next section. Margarit et al, [80], state that one of their aims is to provide a tool for 
vessel classification studies. They note that large databases containing ground-truthed 

SAR imagery of ships for wide range of different ships with different orientations, radar 

parameters and ocean conditions are needed to train classification algorithms and that 

such data are not available. They propose that the simulator be used to produce training 

data for classification algorithms. They add that it can also be used to optimise SAR 

system parameters for ship detection — it should allow the effects of incidence angle, ship 

orientation, etc. to be studied. The simulator uses realistic ship models and takes account 

of vessel velocity and vessel motion due to ocean swell. It is also fully polarimetric. At 

present the simulator is still under development and the associated classification studies 

have not begun. 
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9    Ship detection systems and research groups 

In this section, we review the various ship detection systems which have been doc- 

umented in the literature and outline how they work as a whole. We also discuss the 

research groups and people involved in the development of these systems. We do not 

discuss the component algorithms in any detail here since that has already been done in 

earlier sections. We include indications of possible future developments. 

Several near real-time operational ship monitoring systems using SAR imagery are 

now in place or are currently being developed. The prime examples are the Ocean Moni- 

toring Workstation (OMW), [126] and [47], the Alaska SAR Demonstration (AKDEMO) 

system, [135] and [94], the European Community Joint Research Centre (JRC) system, 

[114] and [61], and the Qinetiq's MaST system, [96]. The Norwegian Defence Research 

Establishment (NDRE) is an important player too and was behind the system described 

by Eldhuset in [32]. Other examples include the work of Robertson et al, [105], Cusano 

et al., [25], Lombardo et al, [70], Ferrara et al, [33] and Lin et al, [68]. We discuss each 

of these systems in turn. 

The OMW was developed by Satlantic Inc, with financial and technical input from the 

following organisations: Canadian Centre for Remote Sensing (CCRS), Canadian Depart- 

ment of Fisheries and Oceans, Canadian Coast Guard, Canadian Department of National 

Defence and Canadian Space Agency, [134] and [133]. The OMW was designed to provide 

near real-time analysis of Radarsat imagery (although it can use ERS and other SAR 

imagery). It grew out of the Ocean Features Workstation, see [103] and [48], and its 

development has been ongoing ever since. In addition to ship detection, the OMW can 

extract wind vectors, calculate 2-D wave spectra, perform oil slick detection, and classify 

other ocean features. Vachon et al, [126], note that the Canadian Department of Fish- 

eries and Oceans has been evaluating the operational utility of the OMW for fisheries 

monitoring and that the Canadian Department of National Defence, through the Defence 

Research Establishment Ottawa (DREO) was also evaluating the OMW for offshore ship 
surveillance. 

General descriptions of ship detection with the OMW are given in [47] and [134] and a 

more detailed description is given in [102]. It begins with an image ingestion phase. In this 

phase, data preprocessing, georeferencing, land masking and beam seam/nadir ambiguity 

masking are undertaken. The World Vector Shoreline database is used for land masking. 

The next phase is the prescreening phase. The prescreener is a standard CFAR detector 

based on fitting the surrounding ocean with an L-look K-distribution probability density 

function. Rather than using a moving window, the CFAR threshold is calculated for and 

applied to whole images tiles at a time. Details on this detector are given in [49], [128] and 
[14]. Following that, is a discrimination phase with two parts. The first part is automatic 

and is based on simple target measurements such as size and proximity to other targets 

and land. The second part is manual and involves presenting the detections to a human 

operator for confirmation. The final OMW output is a report on candidate ship positions 

and estimated sizes. According to Vachon et al, [134], if a wake is present, the report also 

includes ship heading and speed based on analysis of the wake. Many technical details 

on the implementation of the OMW are in the OMW manual, [111], which was available 
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from Satlantic's web page ^. Many of the algorithms are user configurable. While dealing 

with the false alarm rate using the final person-machine mix is not entirely satisfactory, it 

has been shown to work well in an operational context, see [134], [49] and [47]. 

It appears that much of the current/future research effort on the OMW is/will be 

aimed at reducing the false alarm rate (FAR) through the use of polarimetric data. In 

[126], Vachon et al. note that DREO's research efforts at the time were to reduce the FAR 

of the OMW and modify the OMW to make use of fully polarimetric SAR data. In their 

report on the AMRS ship detection workshop in June 2000, Vachon and Olsen, [132], 

note that J. Campbell (DREO, Canada) discussed a ship detection validation exercise 

using airborne C-band polarimetric data and he indicated several ways polarimetry may 

improve detection performance. Vachon and Olsen also note that M. Henschel (Satlantic 

Inc, Canada) discussed the OMW, including plans to upgrade the OMW so that it can 

use polarimetric data and also fuse targets detected in SAR with other data from other 

sources. Yeremy et al. also discuss the false alarm rate issue in [142]. They imply that 

not much more can be done with single channel data but anticipates better progress with 

polarimetric data. As a pertinent example they note (see also [143]) that false detections 

caused by ocean buoys could be discriminated using the Cameron decomposition. 

The ship detection system described by Wackerman et al, [135], was part of the Amer- 

ican NOAA/NESDIS (National Oceanic and Atmospheric Administration/National En- 

vironmental Satellite, Data and Information Service) program called the Alaska SAR 

Demonstration (AKDEMO). The goal of the Alaska SAR Demonstration was the demon- 

stration of near real-time Radarsat-1 SAR applications in Alaska. Of course, given the 

long coastline and large continental shelf in Alaska, ship detection and fisheries monitoring 

in particular, is one of the more valuable applications. More information on the Alaska 

SAR Demonstration and the ship detection system may be found in the paper by Pichel 

and Clemente-Colon, [94]. Related work validating the system is documented by Friedman 

et al. in [38] and [39]. It is noted by Friedman et al. that the CFAR detector the system 

is based on was developed by Veridian ERIM International. However, we will refer to the 

system as the AKDEMO system. 

Like the OMW, the AKDEMO ship detection system is fairly simple at heart. It has 

an initial land masking step which includes a ±2 kilometre buffer zone of possible land 

masking errors. The buffer zone requires special processing in order to avoid a high false 

alarm rate. The ship detection is performed with a moving window implementation of 

the two parameter CFAR detector as discussed in Section 5.3. No general false alarm 

discrimination is undertaken. However, two special cases of false alarms are dealt with. 

The first occurs in regions with a high proportion of SAR system noise floor samples and 
second occurs in the land masking buffer zone. Details of how these are dealt with may 
be found in Section 8 or in the original paper, [135]. Validation of the system is discussed 

in, [38] and [39] as well as in [135] and good performance is shown. One scant reference to 

possible future developments was found. Pichel and Clemente-Colon, [94], indicate that 

Envisat data will be input into the AKDEMO. Presumably some research will be directed 

towards making use of polarimetric data for ship detection. 

The fisheries control group at the Joint Research Centre (JRC) of the European Com- 

munity, are developing a ship detection system for monitoring fishing vessel activity. This 

®htt,p://www.satlantic.com 
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system, called SUMO, has been described in several papers, [114], [61] and [60]. More 

information can be found on the JRC web site, [57]. See also the paper by Wagner, [136] 

and the article by Kourti and Shepard on the RSI web site, [58]. The development of 

SUMO is currently very active and the following description comes mostly from [61] and 

so may not be completely up to date. Unfortunately, more recent documentation could 

not be found. As usual, the first step is land masking. Originally this was done manually 

but it now uses the publicly available Global Self-consistent Hierarchical High-resolution 

Shoreline (GSHHS) database. The land mask is not always accurate and a buffer zone is 

recommended. Following land masking the image is partitioned into tiles and the tem- 

plate based two parameter CFAR detector described in Section 5.7 is applied to each tile. 

Detected pixels are then clustered and detections which are too large to be fishing vessels 

are removed. The final step is to apply the SUMO discrimination algorithms described 

in Section 5.7. The system is written in Java. Validation of the system was reported on 

to some extent in [114] and [61]. The system has been used in many fishery monitoring 

campaigns and further performance information is available from the JRC web site, [57]. 

One of the least convincing aspects of the SUMO ship detection system is the setting 

of the threshold factors in 30 (and 31). This was done by trial and error. While the 

factors in 30 are a good overall compromise, Kourti et ai, [61], found that the best choice 

of factors varied from region to region. Thus one of the future goals for SUMO is a 

method of automatically selecting the best combination of threshold factors. Another 
future research direction is improved discrimination/classification of the detections. It is 

noted on the JRC web site, [57], that a database of all identified targets is being built 

for this purpose. The database is reported to have about 20 vessels with more than 50 

radar cross sections and about 20 oil rigs with more than 60 radar cross sections. The aim 

is to discriminate fishing vessels from oil rigs and other ships and further to discriminate 

different classes of fishing vessels. A third planned improvement of the system is the ability 

to process Envisat data. While this is unlikely to make much difference in terms of the 

detection algorithms for single channel data, Envisat includes two channel data in the 

Alternating Polarisation mode and it is likely that changes will be needed to make best 

use of it. 

Wagner, [136], reports in an interview with Kourti, that one of the outcomes of JRC's 

research into automatic detection of ships in SAR imagery was the setting up of a program 

called IMPAST. IMPAST is an "acronym" for Improving Fisheries Monitoring Through 

Integrating Passive and Active Satellite Based Technologies. More information on IM- 

PAST can be found on the JRC web site, [57]. See also the article, [58], on the RSI web 

site. The aim of IMPAST is to improve fisheries monitoring by combining the detection of 

ships in satellite SAR imagery with ship position reports from the Vessel Monitoring Sys- 

tem (VMS). The VMS is not explained in detail on the IMPAST web site but briefly the 

idea is that participating ships report their geographic location (and other information) 

when requested. Participation in the VMS is a requirement of fishing vessels in certain 

fisheries. By correlating the VMS reports from a fishery, with ship detections in SAR 

imagery of the fishery, it is possible to identify vessels in the imagery without associated 

VMS reports and therefore possibly in breech of fishing regulations. One of the specific 

aims of IMPAST is to develop a near real-time pre-operational automatic system for doing 

this. While the development of good ship detection algorithms is an essential part of this 

system, much effort has also gone into other parts of the system, such as data management 
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and correlating the ship detection with VMS reports. Note that one of the challenges in 

IMPAST is sorting out non-fishing ships from fishing boats. Note also that the VMS in 

effect provides partial groundtruth for the SAR imagery and hence can help develop better 

vessel detection tools. We add, however, that VMS is only required for fishing boats longer 

than 24 m although there are plans to have this reduced to 18 m and then 15 m over the 

next two years. Further, VMS non-reporting and mis-reporting are obvious problems as 

is synchronising the VMS reports with the SAR data collection. 

IMPAST is a three year project which began in January 2002. It involves 14 research 

and commercial partners. Six of these partners are European fisheries monitoring centres 

and hence represent the end users. The development of SAR image analysis tools is being 

handled by the 3 scientific partners: JRC, Qinetiq and UPC. The JRC is developing a 

ship detection system called SUMO while Qinetiq is developing one called MaST. We have 

described SUMO above and we will describe MaST below. The UPC is working on the 

simulation of SAR imagery of ships. Amongst other things, the UPC work will lead to 

the generation of training data for vessel classification algorithms and the development 

of the algorithms themselves. Radarsat is the main source of imagery for IMPAST but 

Envisat is also being considered. Several IMPAST progress meetings have already been 

held. Some of the material presented at these meetings and related documents are freely 

available from the JRC web site, [57], but some is also not publicly available. The most 

recent meeting was held in February 2004 with one of the significant items being reports 

on the monitoring of three fisheries in mid-2003. This was obviously a good opportunity 
for validating the various systems. A presentation to the EU Fisheries Expert Group 

meeting in June 2003 is also available from the JRC web site. It lists the 2003 aims of 

IMPAST as: set up and test the whole system; add Envisat imagery; improve the fusion 
of VMS reports with detected ships; improve the discrimination/classification algorithm; 

and involve more member states. Full operational testing and a cost-benefit analysis is 

planned for 2004. 

A closely related project is DECLIMS. This project is relatively new, with the inaugu- 

ral meeting in May 2003, and is yet to mature. Currently, the main source of information 

on DECLIMS is the web site, [57]. We quote from the web site: The project DECLIMS, 

Detection and Classification of Marine Traffic from Space, was defined in order to provide 

a focus for research into the use of satellite imagery for maritime vessel detection, clas- 

sification and identification so as to allow researchers to develop a better understanding 

of the capabilities of such systems, to identify the advantages and drawbacks of different 

approaches, to strengthen the infrastructure capable of meeting the demands of users, and 

to help drive developments of new sensors and platforms towards the operational need of 

vessel monitoring. The project involves 16 partners, led by the EC-JRC and including 

Qinetiq, OCRS, Radarsat International, TNO and FFI. It is evident from the web site 

that among other things, DECLIMS aims to: provide a benchmark for SAR ship detec- 

tion; provide a benchmark for SAR ship classification; and provide a benchmark for wake 

detection. As yet however, there is no publicly available output from DECLIMS. 

Qinetiq has developed a ship detection system called MaST. While it is clear from the 

JRC web page, [57], that MaST is a well developed product, there is very little documen- 

tation available publicly on its component algorithms. Presumably this is because it is a 

commercial product. The following incomplete description of MaST was gleaned from the 

demonstration web page, [96]. The basic steps are: land masking; detection of individual 
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ship pixels; clustering to remove false alarms; and calculation of ship measurements. No 

details on the detection algorithm are available although mention is made of a CFAR 

detector. The calculated ship measurements are location, area, perimeter, length, width 

and direction. A graphical user interface is included which allows the user to select tar- 

gets and review and categorise them. Given Qinetiq's involvement with IMPAST and the 

commercial nature of the product, it is presumed that the system detection performance is 

satisfactory if not better. The JRC web page, [57], contains several Qinetiq presentations 

to the IMPAST progress meetings and these include reports on system performance. In 

the second progress meeting in January 2003, an overall probability of detection of 73% 

was reported but no mention was made of the false alarm rate. As well as detecting 

ships in SAR imagery, MaST can extract ice, wave and oil slick information. Future plans 

include the detection and analysis of other ocean features. 

The Norwegian Defence Research Establishment (NDRE) has long been interested in 

ship detection systems for SAR imagery. The system described by Eldhuset in [32] was 

developed at NDRE. That system was based on earlier research for NDRE by Aksnes, 

Wahl, and other. See for instance the paper by Wahl et al, [138], which reports on an 

European Space Agency sponsored project titled "Ship Traffic Monitoring using the ERS-1 

SAR" and an earlier one, [137], which reports on an ESA contract titled "SAR-Detection 

of Ships and Ship Wakes". Eldhuset notes that the system has been commercialised and 

was sold to Mitsubishi in Japan. While Eldhuset's work was published in 1996, it is 

clear that NDRE has an ongoing interest in ship detection. In the paper, [89], Olsen and 

Wahl report that Norway has established an operational service for fisheries monitoring 

which makes significant use of SAR imagery. In their summary of an AMRS Workshop 

in June 2000, Vachon and Olsen, [132], note that R. Olsen (FFI, Norway) discussed ship 

surveillance activities in Norway and stated that this has now reached operational status 

and development is ongoing. More recently, Olsen and Wahl, [90] have assessed the ship 

detection capability of Envisat SAR data. Note too that Olsen is a co-author of several 

papers on the OMW. Finally, as will be mentioned at the end of this section, Olsen has a 

current ENVISAT-AO titled "Ship detection with Envisat using alternating polarizations". 

However, Eldhuset's paper, [32], remains the most recent description of a Norwegian ship 

detection system. 

The Eldhuset system, [32], is composed of five modules. In the first two modules, 

the SAR image is georeferenced and land areas are masked out. In the third module, 

ships are detected with what is effectively a cell-averaging CFAR detector and then false 

alarms are removed with a "ship-to-sea condition" test. The "ship-to-sea condition" test 

is very necessary since the CFAR detector threshold is set at a low value. Details of these 

algorithms are discussed in Sections 5.3 and 8. Wake detection and analysis are undertaken 

in the fourth module. The final module relies on both the ship and wake detection results 

and is aimed at further false alarm reduction. Again, we have discussed the details in 

Section 8. Eldhuset has tested the system extensively and reports that it works well on 

both Seasat and ERS data. This system was one of the first comprehensive and well 

documented systems and is often cited in the literature. While no recent reports on the 

system have been found in the literature, it is clear that Norway through the NDRE has 

an ongoing interest in ship detection systems. In their paper, [89], Olsen and Wahl report 

that Norway has estabHshed an operational service for fisheries monitoring which makes 

significant use of SAR imagery.   Also, as mentioned below, both Olsen and Wahl have 
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current ENVISAT-AO proposals. Finally, NDRE is one of the participants in DECLIMS. 

Robertson, from the then DERA Space, U.K., presented a ship detection system at 

the Ship Detection in Coastal Waters Workshop organised by Alliance for Marine Remote 

Sensing (AMRS) in June 2000, see [132] and [105]. The latter reference provides the 

only details we have on this system. The first step is geo-referencing and land masking. 

The system then applies a standard CFAR detector based on modelling the ocean clutter 

with a K-distribution. However, unlike the OMW detector, this detector also uses a 

standard moving window setup like that in Figure 1. An absolute floor threshold is used 

to avoid false alarms in dark areas of the image. The false alarm rate is then further 

reduced by applying a Kohonen neural network classifier. The system has a graphical user 

interface which allows imagery and detection parameters to be specified and then displays 

the detection results. The system was validated using Radarsat ScanSAR Narrow Far 

imagery of the English channel. 

Several papers on ship detection have been published by researchers in the Department 

of INFOCOM - University of Rome "La Sapienza", Cusano et al, [25], Lombardo and 

Sciotti, [70] and [115], and Sciotti, Pastina and Lombardo, [117] and [116]. The paper by 

Cusano et al, [25], describes a real-time operational ship detection system with application 

to ERS-1/2 imagery. The system is installed in the ESA-ESRIN site and processes "quick 

look" imagery. The system is composed of four modules: land masking, ship detection, 

ship wake detection, ship classification and display of the results. The first two modules 

are applied to the whole image while the last two modules are only applied to operator 

selected targets. The ship detector, is based on a multi-target pixel, cell averaging CFAR 

detector (16) but it has been modified in order to cope with the high variability of sea 

surface scattering. In addition, areas of very high contrast are automatically detected and 

masked out. Wake detection is based on Eldhuset's scan method, [32], but with some 

improvements. Ship velocity is estimated in the usual way from the displacement between 

the ship and its wake. The ship classification is coarse, using only size and speed. The 

results show that the detector works well and is not confounded by closely spaced ships 

or the presence of ship wakes. The paper fists the following future research directions: 

i) improving the ship detector by using context-based analysis to cooperate with CFAR 

schemes 2) improving the wake detection and analysis module 3) comparing the present 

technique with a segmentation based approach. 

It appears that one of the future research directions identified by Cusano et al. was 

followed up in the work of Lombardo and Sciotti, [70] and [115]. Lombardo and Sciotti 
propose making ship detection more context based by including a preliminary segmen- 

tation stage. The idea is to partition the image into regions with similar backscattering 

behaviour and apply different detectors in each region. In this way the high false alarm 

rate produced by CFAR detectors in inhomogeneous imagery can be overcome. We have 

reviewed Lombardo and Sciotti's work in detail in Section 5.5. We only comment here 

that Lombardo and Sciotti's results are convincing and we believe this is an important 

approach to the ship detection problem. Lombardo and Sciotti note that prior segmen- 

tation should be a good basis for other information extraction algorithms, such as ship 

wake detection, pollution detection and wind retrieval. Hence, this is one of their future 

research directions. They also indicated their intention to investigate the segmentation 

of polarimetric SAR data and whether it could help improve detection performance. The 

latter was done by Sciotti, Pastina and Lombardo in [117] and again it was demonstrated 
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that segmentation does improve detection performance. 

Ferrara et al, [33], [34] and [35], describe a ship detection system developed by the 

Itahan company Alenia Aerospazio. This system grew out of a more general program on 

SAR data analysis and automatic target recognition at Alenia Aerospazio which began in 

1994. Ferrara and Torre outline the basic system in [35]. It is aimed at detecting moving 

ships and so ship wake detection is considered to be an essential step. The initial steps 

consist of speckle filtering, coastline detection and land masking. Following that potential 

ship pixels are detected using a CFAR threshold method. The ship-like pixels are then 

clustered and length and width are calculated. Detections are subject to constraints on 

size, length, width and proximity to other detections. The remaining detections are then 

passed to the wake detection module. Wake detection is based on the Hough Transform. 

Wakes must satisfy a minimum length. As noted, detections without a wake are rejected. 

In the final step, ship heading and speed are estimated. Ferrara and Torre discuss the 

performance of the system in [34]. However, this is not a particularly convincing paper — 

apart from an interesting theoretical analysis of the probability of detection, the results are 

poorly presented and explained. In 1998 Ferrara et al, [33], discuss some improvements 

to the system. In particular, they: introduce an additional preprocessing step to suppress 

SAR sidelobes via spatially variant apodisation; improve the CFAR detector by allowing 

the automatic selection of a cell-averaging CFAR detector or an order statistics CFAR 

detector; and use a moving target detector based on local residual coherent phase error in 

parallel with the wake detector. Again, validation of the system performance is lacking. 

The current status of the Alenia Aerospazio ship detection system is uncertain since no 

further references to it have been found. 

A ship and ship wake detection system has also been developed by Lin and other 

researchers, [68] and [67], at the Centre for Remote Imaging, Sensing and Processing 

(CRISP) in the National University of Singapore. Their aim was to use ERS SAR imagery 

for monitoring and routing of ship traffic around Singapore. They note that Singapore is 

one of the busiest ports in the world. Not much has been published recently about the 

CRISP system and according to the CRISP research web page the ship detection system 

is no longer an active area of research. The system consists of four distinct stages: a pre- 

detection stage where land masking and calibration to normalised RCS are undertaken; 

a ship detection stage where global thresholding followed by morphological filtering and 

clustering of detections are undertaken; a wake detection stage using the Radon transform; 

and final stage where ship heading and speed are estimated. There is no published record 

of system validation. Lin et al, [68], indicate that further development is needed to make 

the system more robust to rough sea and wind conditions. 

The future plans of some researchers can be anticipated by searching the Announce- 

ment of Opportunity proposals for the Category 1 scientific exploitation of ESA ERS and 

Envisat data. The idea of these proposals is to maximise the beneficial use of ESA data 

from both ERS and ENVISAT satellites and to stimulate a balanced development of sci- 

ence, public utility and commercial applications, consistent with the mission objectives. 

The accepted proposals are Hsted on the ESA web site ^°. The following entries can be 

found: ID 255, ENVISAT-AC, P.W. Vachon, Canadian Centre for Remote Sensing, "Eval- 

uation of ship detection and classification by the Envisat advanced synthetic aperture radar 

"httpr/Zeopi.esa.int 
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alternating polarisation mode"; ID 411, ENVISAT-AO, R.B. Olsen, Norwegian Defence 
Research Establishment, "Ship detection with Envisat using alternating polarisations"; 

ID 494, ENVISAT-AO, T. Wahl, Norwegian Defence Research Establishment, "Feasibility 

of Envisat ship detection for fisheries enforcement in the South Atlantic"; and ID 2261, 

Category-1, O.M. Olsen, Kongsberg Spacetec AS, Norway, "Ship detection and oil spill 

detection in MASS using ASAR Wide Swath Mode data." The equivalent scheme for 

Radarsat-2 data is the Science and Operational Applications Research (SOAR) program 

administered by Radarsat International and the Canadian Space Agency. Information on 

SOAR may be found on the Radarsat-2 web site ^^ However, proposals are still being 

solicited and the winning proposals will not be announced until November 2004. 

10    Recommendations 

The generic problem addressed in this report is the detection of ships in ocean areas 

of interest. However, it is not possible to do this perfectly and various tradeoffs are 

required. These tradeoffs are made within the context of surveillance scenarios with specific 

objectives. Examples of the considerations that need to be taken into account are: 

• Size of the surveillance area; 

• Type, class, size and velocity of ships to be detected; 

• Ocean environment in the surveillance area — sea state, wind conditions, etc.; 

• Time constraints and revisit rate; 

• Available computing resources. 

The radar parameters also need to be taken into account. The primary ones being: 

• Frequency; 

• Resolution; 

• Incidence angle; 

• Polarisation 

Ideally, one would have a particular surveillance scenario in mind and the radar parameters 

would be chosen accordingly. Ship detection algorithms would then be designed to suit the 

resulting imagery. However, this report is not aimed at addressing any specific surveillance 

scenario. Rather it aims to be a general review of techniques for ship detection in SAR 
imagery and hence is seen as a starting point for tackling any particular surveillance 

problem. 

Having indicated the broad scope of our outlook, we remind the reader that the im- 
portant topic of ship wake detection is not addressed here.   It is anticipated that wake 

''http://www.radarsat2.info 

90 



DSTO-RR-0272 

detection will be the topic of a follow up report. The pros and cons of ship wake detection 

were discussed in Section 2.5. We also note that as a reflection of the bias in the ship de- 

tection literature towards space-based SAR imagery, airborne SAR imagery has not really 

been considered. Fingas, [37] and [36], points out that this should make little difference 

because the imaging principles for both platforms are the same. However, we note that 

space-based SAR imagery is generally single channel and lower resolution. Thus most 

ship detection algorithms in the literature are aimed at locating bright point-like targets 

in single channel imagery. Space-based SARs also tend to have lower incidence angles 

which makes the detection problem harder. We add however, that the next generation of 

space-based SARs offer multi-channel polarimetric data and consequently there is a shift 

towards research on algorithms which make use of multi-channel data. 

One of the most basic decisions to be made is the resolution/coverage tradeoff. Radar 

design limitations mean that increased resolution generally comes at the expense of de- 

creased swath width. Thus while higher resolution allows for higher probabilities of de- 

tection and especially for smaller ships, it comes at the cost of narrower swath widths and 

hence decreased coverage. Generally, the coarsest resolution which still allows good prob- 

abilities of detection is chosen, so that coverage is maximised. Thus Radarsat ScanSAR 

Narrow imagery (50 m resolution and 300 km swath width) is acceptable for the surveil- 

lance of ocean-going fishing vessels but higher resolution imagery such as Radarsat Stan- 

dard (25 m resolution and 100 km swath width) or Fine (9 m resolution and 45 km swath 

width) may be needed for the surveillance of smaller vessels in coastal areas. 

Any further choice in radar parameters should clearly be made to maximise ship de- 

tectability. We discussed ship detectability in Section 2.4. The main points are that: finer 

resolution is better; large incidence angles are better; HH polarisation is better than VV; 

and HV polarisation is better than HH at incidence angles less than about 45". We also 

remind the reader that SAR imagery is sensitive to surface winds and in severe conditions 

even large ships may not be visible. Likewise ship construction material is relevant and 

small wooden or fibreglass boats are often not visible. 

10.1    Benchmark testing 

A difficulty in making recommendations on ship detection algorithms is the lack of 

rigorous performance evaluation which makes comparison of the various approaches dif- 

ficult. Some algorithms are very poorly tested with results only being presented for a 

few images. In such cases really all that has been demonstrated is the feasibility of the 

approach. For those algorithms which are more extensively tested, it is still often the case 

that the test data lacks rigorous groundtruth. It is very common for the groundtruth to 

be provided by visual inspection of the imagery. This makes it hard to accurately esti- 

mate probabilities of detection and false alarm rates. Further, different researchers use 

imagery from different SAR systems and ocean environments making comparisons even 

more difficult. While many researchers may have made their own comparisons, only a few 

researchers have clearly documented such comparisons. In other words, benchmark tests 

are severely lacking. As discussed in Section 9, provision of benchmarks is one of the aims 

of DECLIMS. Given this discussion our first recommendation is to: 

1. Specify a surveillance scenario. 
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2. Decide on appropriate radar parameters and geometry. 

3. Set up a well ground-truthed benchmark test. 

4. Compare the different detection algorithms. 

We note that procuring well ground-truthed imagery for ship detection purposes is likely 

to be time consuming and expensive and this is probably explains why it has been lacking 

to date. 

One way of overcoming the lack of ground truth is to simulate data. As mentioned 

at the end of Section 8, this is the approach being taken by the researchers at the Uni- 

versitat Politecnica de Catalunya (UPC). The UPC researchers have focused mainly on 

ship backscatter with the aim of providing a tool for ship classification studies. How- 

ever, it is reasonable to expect that this type of approach could be extended to include 

the simulation of ocean backscatter for ship detection studies as well. The advantage 

of simulation is that it would allow the generation of benchmark tests which 

include a wide variety of ocean conditions, radar parameters, ship types and 

ship orientations. Of course there are limitations to simulations and the results would 

still need to be checked against real ground-truthed data. 

10.2    A basic system 

Our intention in the remainder of this section is to provide guidance to the selection 

and testing of algorithms. The question then is: which of the existing algorithms should 

be tested (and in what order)? We answer on the basis of: 

• good performance results from well conducted experiments; 

• ease of implementation and testing; 

• experience; 

• use of non-standard approaches and or features. 

The rational behind the last item is that non-standard approaches are likely to use comple- 

mentary information to the standard approaches and therefore when used in conjunction 

with standard approaches are likely to improve performance. 

The first item is clearly the most important. In relation to this we note that the 

only complete systems to have extensive and convincing publicly available reports of their 

performance are the OMW, AKDEMO, SUMO and Eldhuset systems. On this basis 

we recommend the following basic system for low to medium resolution single 

channel imagery: 

1. Land masking using a shore-line database with a buffer zone included; 

2. Detection with a simple moving window adaptive threshold algorithm; 

3. Clustering of detected pixels; 
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4. Discrimination of false alarms using simple target measurements; 

5. Human supervision and discrimination of the final detections. 

We note that this system can be applied to higher resolution imagery if an initial down 

sampling step is included. Once this basic system is in place, improvements and alterna- 

tives can be considered. We discuss the details of the basic system and make suggestions 

for improvements and alternatives in the remainder of this section. We believe that while 

many of the refinements and alternatives may result in improved performance, the most 

significant gains are likely to come from the use of polarimetric data and from 

better false alarm discrimination. 

10.3 Land masking 

Although false alarms from land are likely to be easily discriminated, some form of 

land masking is needed to prevent the sheer number of false alarms from overloading 

the system. The recommended method of land masking is to use a shore-line 

database. This is done in the OMW, AKDEMO, SUMO and Eldhuset systems as well 
as many others. It may be useful/necessary to improve masking accuracy by allowing the 

user to intervene in the masking process. In order to cope with masking errors it is also 

usual to include a buffer zone around the mask edge. Detections in the buffer 

zone can be either rejected or subject to special false alarm discrimination as is done in 

the AKDEMO system. We also note here the possibility that the azimuth shift of a fast 

moving boat near the shore-line may place its backscatter on land. 

A desirable extension to land masking algorithms is the facility to implement user 

defined masks. Such masks may be needed for: correction of "errors" in the land mask; 

masking out tidal or sea ice areas; and testing system performance over specified areas in 

the imagery (where the ground truth is known). 

Land masking with a shore-line database may not always be sufficiently accurate, 

and especially if the littoral zone is of interest. Tidal variations in the water-line, eroding 

coastlines and unmapped rocks and shoals may need to be taken into account. In this case, 

automatic land detection algorithms need to be considered. Only the Alenia Areospazio 

ship detection system, see [33], actually uses automatic land detection. That algorithm is 

based on the work of Lee et al., [64]. However, there is an extensive literature on this topic 

which has not been reviewed in this report. If automatic land masking is deemed to 

be necessary, we recommend that the literature be reviewed and the different 

approaches compared. 

10.4 Preprocessing 

Most ship detection systems do not make use of special preprocessing algorithms. Of 

the few that do, the technique used is some form of speckle filtering. As we have noted 

before, speckle filtering will alter the image statistics and the ensuing detection algorithm 

must be compatible with this change. Since we will recommend the use of standard GEAR 

detectors which are likely to be incompatible with speckle filtering we do not recommend 

the use of speckle filtering as a general preprocessing technique. 
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10.5    Single channel detectors 

In recommending detectors for single channel imagery we first note that the nature of 

the imagery needs to be taken into account to some extent. Different types of imagery 

require different detectors or at least different detector parameters for best results. For 

instance, Wackerman et al, [135], use several different threshold factors depending on 

the resolution of the imagery. Lombardo and Sciotti, [70], use different segmentations for 

different resolution imagery. The JRC researchers, [4], have found that SUMO does not 

work well on logarithmically scaled data. On this latter point we note that the same will 

be true of the two parameter GEAR detector on which SUMO is based. 

We have already noted that the OMW, AKDEMO, SUMO and Eldhuset systems are 

the most convincing ship detection systems described in the literature. All these systems 

use an adaptive threshold algorithm for prescreening. Further, the prescreeners used in 

the AKDEMO and SUMO systems are both based on the standard two parameter CFAR 

detector. This detector is CFAR for Gaussian distributed data but as Wackerman et al. 

have pointed out, [135], it is also GFAR for gamma and K distributions as long as the 

normalised variance is constant. Hence the two parameter CFAR detector is an 

obvious starting point and it is our recommended first option. 

The AKDEMO system as described by Wackerman et al, [135], uses the standard 

multi-target pixel two parameter GFAR detector given in (15) with the standard moving 

window setup shown in Figure 1. On the other hand, the SUMO detector uses the tem- 

plates shown in Figures 2 and 3 with the detector thresholds given in (31). The SUMO 

detector also uses a tiling approach to calculating the background statistics rather than 

moving windows. The latter is probably done for computational efficiency but we believe 

this is not necessary. The moving window approach is more accurate and can be efficiently 

implemented as described by Wackerman. We recommend that both the AKDEMO 

detector and the SUMO detector (with moving windows) be tried. Although, 

we note that these detectors are very similar and it is expected that performance will 

likewise be similar. We also add that it should be easy to convert one to the other. 

SAR system resolution and ship size need to be taken into account when 

choosing the detector window sizes. For the AKDEMO system, Wackerman et al. 

recommend that the target window be a similar size to smallest ship, the guard window a 

similar size to the largest ship, and the background window should be big enough to get 

accurate background statistics but small enough to be local. Similarly, SUMO's template 

should be adjusted to take account of resolution. Assuming equal range and azimuth 

resolution and random ship orientation the windows should be square. Of course, if this 
not the case then other window shapes should be considered. The actual window sizes 

used in the AKDEMO system were discussed in Section 5.3. Wackerman et al. note that 

ideally a dynamic target window, which adapts to the size and shape of the target to be 

detected, should be used but does not propose a technique for doing so. One possible 

alternative is to use several different target windows and pool the resulting detections. 

This probably explains the two different templates used by the SUMO system. 

Setting design parameter t in (15) is the most important aspect of imple- 

menting a two parameter CFAR detector. This can be done theoretically to achieve 
a desired FAR, but as Wackerman et al.   note, several different background models are 

94 



DSTO-RR-0272 

applicable, and it is probably better done empirically using trial and error. Commonly 

t = 5.0 is chosen (for single pixel target windows) but larger values such as t = 6.0 are 

also used. Wackerman et al. use larger values of t in higher resolution imagery. Note that 

when multi-pixel target windows are used, it is important to adjust t to t/^/n where n 

is the number of independent samples (which is not necessarily the same as the number 

of pixels) in the target window. In the case, of the SUMO detector there are 3 design 

parameters to adjust — the factors 3.0, 1.9 and 1.4 in (31). It is of interest to note here 

that t = 5.0 for a single pixel target window converts roughly to i = 2.5 for a 4 pixel target 

window and that this is close to the value 3.0 used in SUMO. In other words, the SUMO 

template is akin to using a 4 pixel target window. The JRC researchers have commented 

that the factors 3.0, 1.9 and 1.4 were found empirically and that the best setting for them 

varies from image to image. They have indicated their intention to make the adjustment 

process automatic but no details have appeared yet. Finally, we note that the setting of 

threshold design parameters will depend to some extent on the effectiveness of later false 

alarm discrimination stages. Better false alarm discrimination means a higher FAR can 

be tolerated at the prescreener stage which means that a lower threshold can be used and 

better probability of detection achieved. 

Given the high profile of the OMW and the extensive testing it has under 

gone, a K-distribution based CFAR detector also warrants serious consider- 

ation. Further, the OMW grew out of the Ocean Features Workstation (OFW) which 

used a two parameter CFAR detector with t = 5.0. Rey et al, [103], report that the 

FAR was too high in the OFW and better results were obtained with the K-distribution 

based CFAR detector. On the other hand, while modelling ocean backscatter with a K- 

distribution is well justified theoretically, it does not always seem to be appropriate in 

practice. It has been observed that the K-distribution is not always a good fit to SAR 

ocean data by Rey et al, [102], Henschel et al, [49], and Yeremy et al, [143]. In cir- 

cumstances where the K-distribution fails (as revealed by a negative order parameter) the 

OMW uses a chi-squared distribution (more commonly referred to as a gamma distribu- 

tion) instead. Consequently, a gamma distribution based CFAR detector where 

both the mean and the order parameter are estimated from the data should 

also be considered. Details of the OMW detector were discussed in Section 5.4. We 

propose only one alteration. The OMW uses a tiling approach to calculating the back- 

ground statistics for computational efficiency but again, a moving window approach 

is likely to be more accurate. A moving window K-distribution based CFAR detector 

was used by Robertson et al, [105]. 

As we noted in Section 5.3, the detector used in the Eldhuset system, [32], is effectively 

the cell-averaging CFAR detector, (16). This detector is also used in the Alenia Areospazio 

ship detection system described by Ferrara et al. in [33] and with modifications in the 

system described by Cusano in [25]. The theoretical basis for the cell-averaging CFAR is 

gamma (or exponential) distributed background clutter. In this case nt = a^VL where 

Hi, is the background mean, at is the background variance and L is the gamma order 

parameter (number of looks) and so the cell-averaging CFAR is the same as the two 

parameter CFAR but with a different value of the design parameter t to achieve the 

same FAR. We believe the two parameter CFAR is likely to be a better detector since 

it specifically takes account of the background variance and hence is applicable to other 

background distributions as well.   As confirmation of this we note that Cusano et al. 
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modify the basic cell-averaging CFAR detector (to cope with high background variability) 

by allowing the design parameter in (16) to depend directly on the background variance. 

Similarly, Ferrara et al. comments that the CA-CFAR is unreliable in non-homogeneous 

areas. Consequently, we do not recommend the cell-averaging CFAR detector. Having 

said that we add that a two parameter CFAR can be converted to a cell-averaging CFAR 

easily and so both can be tried without extra effort if desired. 

The Alenia Areospazio system described by Ferrara et al. in [33] also makes use of 

an order statistics CFAR detector. Recommending this detector is questionable since it is 

computationally expensive and Ferrara et al. have not provided convincing documentation 

of its benefits. On the other hand, we note that many researchers have reported detection 

problems in image areas with high variability and order statistics are generally recognised 

as being robust when applied to highly non-Gaussian data. Further, the Alenia Areospazio 

system only applies this detector to non-homogeneous areas of the image and so the 

computational expense is less than otherwise may be expected. As an aside, we note that 

an area is considered to be inhomogeneous if at > /i/\/I. Our recommendation then is 

that the order statistics CFAR detector should only be considered if it is found 

that false alarms in inhomogeneous areas is a significant problem. 

The G-GLRT detector is the only detector to use a target model (albeit a simplistic 

one). The tests in [117] indicate that this detector outperforms a cell averaging CFAR 

detector but they are both outperformed by a two parameter CFAR detector. However, 

the results also show that if an initial segmentation stage is included so that the detectors 

are applied to homogeneous regions only then the G-GLRT detector can outperform the 

two parameter CFAR detector. Given that the G-GLRT detector just uses target and 

background means and that it should therefore be relatively easy to adapt a two parameter 
CFAR detector into a G-GLRT detector, we recommend that this detector be tested, 

especially if an initial segmentation stage is included. 

Next we mention, the Lockheed Martin Canada detector described by Gagnon et al. 

in [41]. While the performance of this detector has only been reported for land imagery, 

we believe it may be useful for ship detection purposes. Indeed, it is apparent from the 

report, [41], that that is one of the intended applications. This detector is especially 

attractive since it is the only one discussed in this report which is specifically aimed at 
high resolution imagery. Further, its use of the discrete wavelet transform incorporates not 

only multiresolution analysis but also "edge enhancment". We note too that, according 

to Gagnon et al, this detector has a much lower FAR than the usual CFAR method 

of detection. Consequently, we recommend that this detector be tried if high 

resolution imagery is of interest. We add however that other detectors can sensibly 

be applied to high resolution imagery by down sampling the imagery first or otherwise 

reducing the resolution. 

The detector proposed by Jiang et al, [54], is of interest since it is CFAR based on 

a non-parametric estimation of the ocean background distribution. This work grew out 
of earlier work with a K-distribution based CFAR detector, [55], where it was found that 

the K-distribution was not always a good fit to the data. The non-parametric technique 
used is essentially a Parzen window method of approximating the pdf from histogram 
data. Jiang et al note that the problem of estimating the correct "kernel width" has not 

been completely resolved and we anticipate difficulties here. Further, the method will be 
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difficult to implement and its performance has been poorly validated. Consequently, we 

only give a qualified recommendation of this detector. 

The DSTO detectors reported on by Hunt et al, [51], show promise. Their performance 

was shown to be substantially better than the two parameter CFAR detector. However, 

Hunt et al. note that the test data was limited and that it is difficult to draw conclusions 

from the results. Consequently, we recommend further testing of these detectors on more 

representative data, although we note that they are likely to be computationally expensive. 

In earlier work on ship detection algorithms, Eldhuset, [30], used an adaptive Weiner 

filter to reduce speckle and then a Butterworth highpass filter to enhance the ship backscat- 

ter. The final detection was done with a simple threshold. In the later paper, [32], reports 

that this original detection scheme was too slow and hence was abandoned. It is pre- 

sumed that the loss of accuracy (if any) in the new faster detector was not significant. 

Further, no-one has followed up on Eldhuset's original detector. For these reasons, we do 

not recommend Eldhuset's original scheme. 

10.6    Improving detector performance 

Often the basic detectors are modified to improve detection performance. We mention 

the more useful modifications here. Once a ship detection system has been implemented 

and its performance analysed, the relevant modifications can be considered. 

Wackerman et al, [135], note that excessive false alarms can be a problem in areas 

with a large number of noise floor samples. One of his solutions is to increase the threshold 

design parameter t in such areas. Wackerman et al. also use special processing in the buffer 

zone around the land mask in order to avoid excessive false alarms from land backscatter. 

This is done by placing constraints on the background mean /Xb and standard deviation 

at- Rey et al, [102], note that background statistics can be corrupted by the presence 

of bright targets and recommends that a method of excluding unusually bright pixels be 

considered. We note that this problem is exacerbated in the OMW by its tiling approach 

to calculating background statistics. One of the solutions Rey et al. offer for the OMW 

detector, is the use of a first pass with an empirical threshold to identify the bright pixels. 

This idea is also proposed by Casasent et al, [19], for the standard two parameter CFAR 

detector. Casasent et al. also note that false alarms can occur in the sidelobes of very 

bright objects and proposes the use of a sidelobe filter to mask out the sidelobes. Several 

other modifications dealing with various detection problems are also offered by Casasent 

et al. These are all aimed at reducing the false alarm rate but are somewhat ad hoc. 

Finally, we note that Cusano et al, [25], identify regions of very high contrast and masks 

them out. Unfortunately, Cusano et al. provide no details of how contrast is measured. 

10.7    Polarimetric detectors 

The topic of ship detection using polarimetric data is relatively new and research is 

ongoing. Not many well validated results are available in the literature. Consequently, 

making recominendations in this area is particularly difficult. However, it is 

anticipated that the use of polarimetric data will improve ship detection performance (see 
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for instance the comments by Yeremy et al. in [142]) and algorithms are currently being 

developed. Therefore we see this as an area where future research effort would be well 

spent. 

In several papers, see for instance [124] and [123], Touzi et al, have investigated the use 

of polarisation entropy for ship detection. The polarisation entropy they refer to is similar 

to and was motivated by Cloude and Pottier's target decomposition method, [22], which 

extracts entropy and an a-angle from the polarimetric data. While Touzi et al. claim to 

have a new definition of polarisation entropy, they have not yet provided the details. (In a 

private communication, Touzi has indicated that he intends to publish the details later this 

year.) Their results show that using polarisation entropy is an effective way of enhancing 

the contrast between ships and the ocean. Hence Touzi's polarisation entropy is of 

interest for ship detection and should be followed up when the details become 

available. We also add here the comment by Yeremy et al. in [142], that preliminary 

studies at Satlantic have shown the Cloude and Pottier decomposition to be a good method 

for ship detection. The effectiveness of this decomposition for target detection on land has 

recently been demonstrated at DSTO by Williams and Blucher [141]. Thus the Cloude 

and Pottier decomposition may be worth further investigation too. Note that 

the calculation of polarisation entropy is really a preprocessing technique and it needs to 

be followed by a bright anomaly detector. 

Sciotti et al, [116] and [117], list three fundamentally different ways of handUng multi- 

channel polarimetric data. 

A) Apply single channel detectors to each polarimetric channel separately and then fuse 

the detection results; 

B) Fuse the polarimetric channels into a single channel and then apply single channel 

detectors; 

C) Apply multi-channel detection algorithms. 

However, apart from the reports of Sciotti et al, not much work has been undertaken in 

the research community to compare these various strategies for ship detection purposes. 

Further, the results in [116] are mostly from simulated data and the results in [117] do 
not include an assessment of approach A). We therefore believe that this area needs to 

be revisited and more extensive testing undertaken. It is evident from [117] that 

a good baseline to start with is strategy B) with the use of the 2P-CFAR on SPAN or 
PWF filtered imagery The 2P-CFAR clearly outperformed both the CA-CFAR and the 
G-GLRT on such imagery. Consequently, in the absence of more complete information 

we recommend approach B) with the use of a 2P-CFAR on SPAN or PWF 

filtered imagery with PWF filtering likely to be slightly better. 

The only multi-channel detection algorithm considered by Sciotti et al in approach C) 

was the PG-GLRT. While the earlier paper, [116], was optimistic about its performance, 

the later paper, [117], shows its performance to be variable. In one of the two images used, 

PG-GLRT outperformed the 2P-CFAR on SPAN filtered imagery well, but in the other its 

performance was considerably worse. So the PG-GLRT is of some interest and we 

recommend that it be investigated further. However, we warn that it is likely to be 
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difficult to implement and computationally expensive (matrix determinants and inverses 

are needed). 

The Cameron decomposition is aimed at determining the dominant elemental scatterer 

type in each image pixel based on physical scattering mechanisms. Research by Ringrose 

et al, [104], and Yeremy et al, [142], has shown that in general the elemental scatterers 

on ships differ to those in the ocean and so the Cameron decomposition should be useful 

for ship detection purposes. The results from both papers indicate that the method has 

good potential for ship detection purposes. The study by Yeremy et al, being much more 

extensive is particularly convincing, and their conclusion is that the Cameron method is 

a very robust ship detection method. They add that when a threshold method is incor- 

porated with the Cameron method, detection rates are higher than with either method 

alone. Unfortunately, both the studies are more investigative than developmental and fully 

automatic algorithms have not yet been designed. This is clearly an area for future 

research. 

The SSCM (symmetric scattering characterisation method) of Touzi and Charbonneau, 

[124] and [120] , is an extension of the ideas behind the Cameron method. Like the work of 

Ringrose and Yeremy, Touzi and Charbonneau's work is investigative and suggests avenues 

for further exploration rather than polished algorithms. It should also be noted that their 

main interest is in ship identification and characterisation. Still, their approach involves 

several improvements to the basic Cameron method and hence should be applicable to 

ship detection too. If research effort is to be invested into the Cameron method then the 

SSCM should be considered at the same time. 

10.8    Segmentation 

In [70], Lombardo and Sciotti note that the CA-CFAR and related detectors struggle 

in ocean areas which are inhomogeneous. They note in particular that while taking the 

background variance into account and raising the detection threshold in high contrast ar- 

eas reduces the FAR, it also reduces the probability of detection. They propose an initial 

segmentation step as a way of overcoming such problems. The idea is that segmentation 

can identify step edges and other such inhomogeneities and hence allows the CFAR de- 

tectors to calculate background statistics from the same homogeneous region as the pixel 

under test. Evidently this applies to any of the adaptive threshold algorithms already dis- 

cussed. We add here Lombardo's use of segmentation is also effectively a way of adapting 

the CA-CFAR threshold to varying image contrast. Lombardo and Sciotti's experiments, 

[70], with single channel SAR imagery and the CA-CFAR detector show that segmentation 

improves detection performance substantially. In later work, [117], Sciotti et al. consid- 

ered multi-channel polarimetric imagery. Again, it was found that prior segmentation led 

to significant improvements in performance. 

Thus prior segmentation is an attractive proposal for ship detection. On the 

down side, some aspects of the two algorithms described for single channel imagery in [70] 

are ad hoc and several of the details are not reported. Further, different segmentation and 

detection algorithms are used in low and high resolution imagery. It seems likely then that 

details of the algorithms are dependent on the SAR imaging parameters and that adjust- 

ments would be needed in order to apply the algorithm to new imagery. Similarly, while 
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various approaches to segmentation of multi-channel polarimetric imagery are discussed 

in [117] the details are not really mentioned at all. 

Thus, while Lombardo and Sciotti's work is conceptually appealing and is backed up 

with convincing performance results, we believe it may not be robust and that effort 

would be needed to fine tune it to new surveillance scenarios. We add that accurate 

segmentation is hard and computationally expensive. In other words, we see Lombardo 

and Sciotti's contribution as more of an indication of potential rather than a 

completed algorithm and we view it as an area for future research which shows 

good promise. 

10.9    Interferometric SAR detectors 

Along-track interferometric SAR (InSAR) can be used to detect moving targets on the 

ocean surface including ships and ship wakes. This is done by estimating velocities from 

the phase information in the InSAR interferogram. Since these velocity measurements 

do not depend on RCS, small ships which are not much brighter than the background 

ocean clutter can be detected. We note however, that along-track interferometric SAR 

(InSAR) involves fundamental changes to the radar setup — a second antenna must be 

added. Also, while the effectiveness of the technique was demonstrated by Campbell et 

al. [15], no automatic processing of the imagery was undertaken. Thus, along-track 

interferometric SAR is an attractive proposition but it requires a specialised 

radar system and detection algorithms still need to be developed. 

A somewhat different technique of using SAR interferometry for ship detection has 

been described by Arnaud in [6]. Again, the idea is to use phase rather than intensity 

to aid in the detection of small ships with low RCS. However, Arnaud proposes to form 

the interferogram from two different looks processed from a single aperture SAR system. 

The idea here is that there is a time delay between the two looks and the ocean which 

is continuously changing shape will have strongly incoherent behaviour while ships will 

tend to have more coherent behaviour. Thus Arnaud detects potential ships by applying 

a simple threshold to the phase coherence image. Given that this interferometric 

SAR method does not involve a specalised SAR system and should allow the 

detection of vessels with a low RCS it is of interest. Ideas very similar to Arnaud's 

have been developed in work of lehara et al, [53], and Ouchi et al, [93], — the second 
paper being an extension of the work in the first. However, while Arnaud, lehara and 

Ouchi all demonstrate the feasibility of this approach, their tests are limited and the 

practical utility of the method has not yet been demonstrated. 

10.10    Clustering and elementary discrimination 

There is not a lot to say on this topic. Most detection systems include a stage in 

which the individual detected pixels are clustered into extended detections and 

this is usually followed by some form of elementary discrimination. Clustering 

is commonly done on the basis of pixel adjacency whereby contiguous detected pixels are 

assumed to arise from the same underlying object. Elementary discrimination is done on 
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the basis of simple measurements of the clustered detections. Clustering and elementary- 

discrimination are recommended. 

Both Wackerman et al, [135], and Robertson et aZ., [105], recommend a lower threshold 

be placed on the total intensity of the target backscatter to avoid false alarms in dark areas 

of the imagery. The OMW, see [102], rejects detections which are: too large (in terms 

of number of pixels); too small; too close to land; and too close to other targets. The 

JRC system also rejects detections which are too large. In order to avoid false alarms 

due to large objects with strong sidelobe patterns, the JRC system also clusters any 

detections which are too close to one another. Ship orientation can be calculated using 

standard techniques and a length and width extracted. Ship orientation is useful ancillary 

information for estimating the heading while length may used as a discriminating feature 

and an aspect ratio can be calculated from the length and width. It is noted by Askari 

and Zerr in [7] that the length-to-width ratio is a standard indicator of ship structure 

and for merchant ships this ratio is of the order of 6 to 7, whereas it is larger than 10 

for military vessels. We also mention Gower and Skey's method, [43], of extracting target 

measurements by fitting a Gaussian profile. The particular target measurements 

used for discrimination and their associated limits will be scenario dependent 

and should be left open for user specification but care is needed since there will 

usually be a tradeoff of missed detections against false alarm reduction. 

Some systems use morphological filters prior to clustering. Thus Lin et al, [68], and 

Jiang et al, [54], use an erosion filter to remove false alarms due to speckle. Similarly, 

Liu et al, [69] propose both dilation and erosion. Dilation will connect nearby pixels and 

hence can be used for clustering. We also mention here the proposal in [107] to use two 

thresholds for clustering. The higher threshold is used as usual to detect likely ship pixels 

while the lower threshold is used to connect related detected pixels and hence cluster them. 

Such filters should be easy to implement and test. The only caveat on their use is 

that assessing their effect on performance will require extensive well ground-truthed data. 

10.11    Discrimination 

As we have noted before, not much progress has been made on discrimination al- 

gorithms for ship detection purposes. Both the OMW and the AKDEMO systems do 

not include any discrimination algorithms other than the elementary ones already dis- 

cussed. However, the SUMO and Eldhuset systems have discrimination Eilgo- 

rithms which are worth trying. 

The JRC researchers, [114], report that many false alarms in the SUMO system are 

due to very local wind turbulence which produces very noisy backscatter conditions. We 

comment here that this problem may be exacerbated by the tiling approach used for calcu- 

lating the detector thresholds. The JRC researchers note that one of the characteristics of 

these false alarms is a large number of local maxima above the primary detector threshold 

in the local area. Thus they propose counting the number of pixels with values above 

primary detector threshold and then rejecting the detection if this number is too high. 

The Eldhuset system uses "ship-to-sea" condition test to discriminate false alarms. 

Eldhuset, [32], reports that this test is very necessary when swells, strong waves, eddies 
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and steep fronts are present and that it substantially reduces the number of false alarms. 

The test calculates the ratio of the integrated intensity of all ship pixels to the contrast of 

the local area. If this ratio is below a given threshold the detection is rejected. We also 

mention Eldhuset's homogeneity test. The idea of the homogeneity test is that the ocean 

area in front of a ship must be relatively homogeneous. While Eldhuset only applies this 

test when a potential wake has been detected, we note that it also makes sense in the 

absence of a wake as long as the ship heading can be determined. The details of this test 

are given in Section 8. 

In [142] and [143], Yeremy et al. indicate that polarimetric data has good poten- 

tial for false alarm discrimination. They refer in particular to the Cameron decompo- 

sition. The Cameron decomposition, see Section 6.6, classifies polarimetric pixels in terms 

of elemental scatterer types and hence provides information about scattering mechanisms 

and the underlying physical structures. This makes the Cameron decomposition suitable 

for discrimination and classification purposes. A good example is given by the finding 

of Yeremy et al. that the scatterer types (as revealed by the Cameron decomposition) 

associated with ocean buoys were very different to those of small ships. However, these 

findings have not yet been developed in to algorithms. Yeremy et al. note that further 

studies are required. We also mention here related work by Touzi and Charbonneau on 

the SSCM, see Section 6.7. But again, practical algorithms have not yet been developed. 

Other discrimination techniques which have been used are the Kohonen neural network 

mentioned by Robertson et al. in [105] and the fuzzy classifier used by Benelli and Argenti 

in [8] and [5]. But these are not within DSTO's current technology base and they require 

extensive training data. Consequently, they are not recommended at this stage. 

In connection with the need for training data we mention the work being undertaken 

at the Universitat Politecnica de Catalunya (UPC) by Mallorqui and others to generate 

simulated training data, see for example [80]. But this work is still in the developmental 

stage. 

Wake detection is an obvious enhancement to a ship detection system. The 

presence of a wake confirms the presence of a ship and further, it can be used to estimate 

the ship heading and speed. However, as explained before, wake detection cannot 

be used to confidently reject false alarms since wrakes are often poorly imaged 

(especially when the imaging parameters are set to maximise sea-ship contrast) 

and stationary and slow moving ships have no wake anyway. Thus, the best that 

can be done is to use the presence of a wake to confirm an otherwise weak detection. This 

is the outlook of Jiang et al, [55], where the use of two detection thresholds is proposed. 

Detections above the higher threshold are accepted as is while detections above the lower 

threshold require a corroborating wake to be accepted. 

10.12    Human supervision 

Including a human in the loop to provide a final false alarm discrimination 

stage is important to several systems. In fact, Henschel et al, [49], indicate that this 

is part of the OMW design philosophy. To quote them: The false alarm rate is still an open 

question, however, our operational experience has shown that the person-machine mix, with 
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very fast algorithms means that ships with specific type and classification characteristics 

can he supplied in a very short period of time. This means that in an operational scenario, 

the automated algorithm's false alarm rate can he ignored. The way this operates in 

practice is that the detections are ordered according to size (or some other appropriate 

criteria). The top 20 or so detections are then displayed to the human supervisor and 

a final assessment is made. Thus a GUI should be provided and relevant information 

displayed. As an example, the OMW displays the original SAR image with detections 

overlayed together with an enlargement of the particular detection being reviewed. Target 

location, width, length, speed and status are all hsted. The status field is used by the user 

to classify the detections. Qinetiq's MaST system also displays a mask of the clustered 

pixels in the detection. Extra analysis such as wake detection can be made optional. 
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