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Abstract

The objective of this work is to recognize object categories (such as animals and

vehicles) in paintings, whilst learning these categories from natural images. This is a

challenging problem given the substantial differences between paintings and natural im-

ages, and variations in depiction of objects in paintings.

We first demonstrate that classifiers trained on natural images of an object category

have quite some success in retrieving paintings containing that category. We then draw

upon recent work in mid-level discriminative patches to develop a novel method for re-

ranking paintings based on their spatial consistency with natural images of an object

category. This method combines both class based and instance based retrieval in a single

framework.

We quantitatively evaluate the method over a number of classes from the PASCAL

VOC dataset, and demonstrate significant improvements in rankings of the retrieved

paintings over a variety of object categories.

1 Introduction

The question we investigate in this paper is: can paintings containing an object category (e.g.

a train or a bird) be retrieved starting from a model learnt from natural images? At first sight,

we might not be optimistic since natural images (i.e. everyday photos taken with a camera)

and paintings can have very different low level statistics, and paintings vary considerably in

depiction style from photo-realistic renderings through particular movements (e.g. impres-

sionism, pointillism – which are almost designed to disrupt the fine scale measurement of

local gradients in a HOG or SIFT feature) to more abstract depictions (Fauvism, Cubism).

Apart from the challenge in its own right, this goal of automatically obtaining paintings

with a particular object is of much interest to Art Historians who currently find paintings

manually or from memory [8, 22, 34]. They can then study the change in the depiction style

over time [25], or determine when an object first appeared in paintings.

The problem is essentially one of domain adaptation (also referred to as domain trans-

fer) [12, 24, 31] from natural images to paintings. The problem of generalizing across depic-

tion styles has been studied recently by Wu and Hall [35]. They took the interesting approach

of building a multi-layer depiction invariant graph model that was shown to be capable of

generalizing to drawings and cartoons in particular. However, a limitation of the method was
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that it was restricted in both training and testing to uncluttered Caltech101 [15] style images

– where the object of interest fills the image against a uniform background. In our work,

both training and testing images are PASCAL VOC style [13] where the object may only

occupy a small part of the image, and can be partially occluded, see figure 1. Others [6, 32]

have recently considered the problem of using a (single) natural image to retrieve paintings,

in particular for the case of a specific building, rather than a class of objects: Shrivastava

et al. [32] use an Exemplar SVM [26] for retrieval, and Aubry et al. [6] improve on this

method by employing mid-level discriminative patches (MLDPs) [7, 23, 27, 33] to allow for

more variation. We build on and extend the method of [6] from specific buildings to classes

of objects, and overcome its two principal limitations: that the training images must have a

very similar pose to the target object, and that the training images have the object (a building

in their case rendered from a 3D model) segmented. Others have investigated classification

and retrieval in paintings, e.g. the interesting analysis of [9], but have not considered this

domain adaptation aspect.

We make the following contributions: (i) we show, somewhat surprizingly, that image

classifiers and object detectors learnt from PASCAL VOC images can retrieve paintings

containing an object class (section 2); (ii) we introduce a method of re-ranking that is based

on spatial consistency of MLDP correspondences (section 3), and show that the precision of

low ranked paintings (i.e. the ones that would appear on the first webpage in an image search)

can be significantly improved based on how spatially consistent the paintings are with the

natural images used to train the classifiers (section 4); and (iii) we compare other methods of

training and re-ranking including training from Google images (where the images are more

Caltech101 style) and using a DPM [16] detector, and also investigate hybrid re-ranking

strategies.

Note, although using spatial consistency to re-rank is standard practice in large scale

object instance retrieval [21, 30], using it in this manner for object categories is novel, and

contrasts to the spatial consistency implicit in Spatial Pyramids and DPMs.

Figure 1: Example class images from the Paintings Dataset. >From top to bottom row: dog,

horse, train. Notice that the dataset is challenging: objects have a variety of sizes, poses and depictive

styles, and can be partially occluded or truncated.
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2 Datasets, evaluation measures, and baseline classifiers

In this section we present the Paintings Dataset, and establish the difficulty of the

task by training classifiers on paintings or images to determine the severity of the domain

adaptation problem.

Datasets. We construct a Paintings Dataset which is used to assess performance

throughout this paper. It is a subset of the publicly available ‘Your Paintings’ [1] dataset

consisting of over 210,000 oil paintings of medium resolution (around 500 pixels in width).

10,000 of these have been annotated as part of the ‘Tagger’ project [4] whereby members

of the public tag the paintings with the objects that they contain. The subset is obtained by

searching ‘Your Paintings’ for annotations and painting titles corresponding to the classes

of the PASCAL VOC dataset [13]. With tags and titles complete annotation is assumed in

the VOC sense – that each painting has been annotated for all VOC categories – as long as

‘people’ are ignored, as this particular class has a tendency of appearing frequently without

being acknowledged. Thus, the ‘person’ class is not considered, and also we do not include

classes that lack a sufficient number of tags (cat, bicycle, bus, car, motorbike, bottle, potted

plant, sofa, tv/monitor). Paintings are included for the remaining classes – aeroplane, bird,

boat, chair, cow, dining-table, dog, horse, sheep, train. These are split at random into train-

ing, validation and test sets. The statistics are given in table 1, and example class images are

shown in figure 1. The URLs for the paintings in this dataset are provided at [3].

For training we use two datasets of natural images. First, PASCAL VOC 2011 [14], and

second, a set mined from Google Image Search for the VOC categories used and manually

filtered to remove erroneous examples. The reason for using the Google Images dataset is

that the images are typically more Caltech101 like than the VOC images, and so provide a

possibly easier training scenario. The statistics of these datasets are also given in table 1.

Evaluation measures. To measure performance on the test set for each class we use the

precision at rank k (Prec@k), and also the class average of this measure – the mean Prec@k

(mPrec@k).

Dataset Split Aero Bird Boat Chair Cow Dtable Dog Horse Sheep Train Total

Paintings Train 74 319 862 493 255 485 483 656 270 130 3463

Dataset Val 13 72 222 140 52 130 113 127 76 35 865

Test 113 414 1059 569 318 586 549 710 405 164 4301

Total 200 805 2143 1202 625 1201 1145 1493 751 329 8629

PASCAL Train 331 394 260 555 156 272 634 238 171 274 3285

VOC 2011 Val 340 370 251 555 152 270 654 245 154 271 3262

Total 671 764 511 1110 308 542 1288 483 325 545 6547

Google Train 90 90 90 90 90 90 90 90 90 90 900

Images Val 10 10 10 10 10 10 10 10 10 10 100

Total 100 100 100 100 100 100 100 100 100 100 1000

Table 1: The statistics for the datasets used in this paper: the number of images containing an instance

of a particular class, as well as the total number of images for each subset. For datasets other than the

paintings no test set is used.

2.1 Baseline classifiers

We begin by comparing two training regimes using a state of the art Fisher Vector classifier

pipeline (details below). The first is by training the classifier using the trainval set of the

Paintings Dataset, and the second is by training the classifier on the trainval set of

the VOC dataset. In the first case there is no problem of domain adaptation, and to some

extent this establishes a ‘best case’. The second, addresses the task of this paper by training
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on natural images. In each case one-vs-the-rest classifiers are learnt for each object class,

and then applied to the Paintings Dataset test set. For each class this gives a list of

paintings ranked by classifier score.

The per class Prec@k results are given in table 2. It can be seen that for all classes there

is a drop in performance when training on VOC images compared to paintings. The drop

depends on the class, for example it is small for boat and large for cow. It is surprizing that

the performance drop is not higher for vehicle classes considering that these have evolved

significantly from their earlier forms in paintings to those in modern natural images. The

explanation is probably that there are still key discriminative elements present in both cases,

for example most images and paintings of boats will still contain masts and water irrespective

of the time period.

Overall, there is a drop in mPrec@k from 0.98 (paintings) to 0.66 (VOC images) at k = 5,

and from 0.91 to 0.63 at k = 20, i.e. a significant difference. A similar drop in mPrec@k also

occurs for classifiers trained on Google images. This performance drop is also reflected in

the mean Average Precision (mAP, as used in VOC, not included in the table) where the

mAP drops from 0.59 for classifiers trained on paintings to 0.36 for classifiers trained on

VOC images.

Implementation details: The top performing classification pipeline of [10] is used, with

the implementation available from the website [2]: RootSIFT [5] features are extracted at

multiple scales from each image. These are reduced using PCA to 80-D and augmented with

(x,y) co-ordinates. The features are encoded with a 512 component GMM to form a 83,968D

Fisher Vector [29] for each image. For each class a Linear-SVM is trained in a one-vs rest

manner to rank the test images.

TrainSet k Aero Bird Boat Chair Cow Dtab Dog Horse Sheep Train Mean

Paint 5 1.00 1.00 1.00 1.00 1.00 1.00 0.80 1.00 1.00 1.00 0.98

VOC 5 0.80 0.40 1.00 0.60 0.00 1.00 0.40 1.00 0.60 0.80 0.66

Google 5 1.00 0.20 0.40 0.20 0.20 0.60 0.80 1.00 0.60 1.00 0.60

Paint 10 1.00 1.00 1.00 1.00 0.80 0.90 0.80 1.00 1.00 1.00 0.95

VOC 10 0.80 0.40 1.00 0.50 0.10 0.90 0.40 0.90 0.50 0.90 0.64

Google 10 0.90 0.10 0.70 0.10 0.30 0.50 0.50 0.90 0.70 0.80 0.55

Paint 20 0.95 0.90 1.00 0.95 0.75 0.90 0.70 0.95 1.00 1.00 0.91

VOC 20 0.65 0.35 0.95 0.55 0.20 0.70 0.60 0.85 0.50 0.95 0.63

Google 20 0.65 0.20 0.80 0.10 0.30 0.40 0.35 0.85 0.60 0.85 0.51

Table 2: Prec@k on the test set of the Paintings Dataset using classifiers learnt from different

training sets. Notice the large gap in performance between the classifiers trained on paintings and those

trained on natural images.

3 Spatial consistency using discriminative patches

This section describes our method for establishing and measuring spatial consistency be-

tween objects in the training images and objects in the paintings. The consistency scores

obtained by this method will be used in section 4.1 for re-ranking the low rank (i.e. high

classification score) paintings for each class.

The method proceeds in three stages: (i) a set of MLDPs are generated for each image

in the VOC training dataset for a class (e.g. for trains); (ii) classifiers are learnt from these

patches and applied as sliding window detectors to find the highest scoring regions in the

paintings, leading to a set of putative correspondences; Lastly, (iii), a RANSAC [18]-style
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algorithm is used to select a subset of these correspondences that are spatially consistent,

and each painting is scored based on this subset. We use MLDPs here for two reasons:

first, because they can be obtained with minimal supervision; and second, since an MLDP

covers only part of an object (rather than all of it), they are more tolerant to viewpoint and

within-class variation.

3.1 Obtaining discriminative patches

Aubry et al. [6] provide a fast method for choosing a set of MLDPs and ranking the discrim-

inability of these regions in an image: if q is a descriptor of an image region, µ the mean of

those descriptors in a dataset, and Σ the covariance then the discriminability |φ(q)| can be

measured as |φ(q)|2 = (q−µ)T
Σ
−1(q−µ). This describes how the patch differs from the

mean of the dataset in a whitened space.

Here we use the HOG descriptor [11], and obtain the D most discriminative patches for

each training image. This forms the set of MLDPs for each image. Some examples of high

scoring regions for PASCAL VOC 2011 are shown in figure 2.

Figure 2: A subset of discriminative regions (blue) overlapping with VOC ROIs (red). Notice that

informative areas of the objects are picked out such as a horse’s head, and even within the ROI no

indiscriminate background patches are selected.

Implementation details. Each VOC training image is annotated with a Region of Interest

(ROI) for each object instance in that image. Candidate square shaped regions that overlap

with the ROI are extracted from each image (and its left-right flipped version) at 3 scales

per octave. For each of these a contrast-sensitive 5× 5 HOG descriptor with 8× 8 pixel

cells is formed using the implementation of [16] resulting in a 775-D vector. µ and Σ are

obtained from the training set using the method of [19] with a window size of 20 pixels.

Squares are ranked and selected according to |φ(q)|. Low gradient regions are ignored. Non-

maximal suppression is performed using an intersection over union of 0.5 between squares

as a threshold and the top D squares are retained.

3.2 Putative correspondences using MLDPs

The correspondences between the set of MLDPs in an image and a painting are estab-

lished by using the patch as a detector. A Linear Discriminate Analysis (LDA) classi-

fier [19], w, is learnt for each MLDP (i.e. the discriminative squares) in the natural image as

w = Σ
−1(q−µ). LDA allows for efficient training of detectors without the need to mine for

hard negatives, greatly cutting down the time required for training.

Each MLDP is used as a sliding-window detector in the manner of [16], and the highest

scoring detection window on the painting is recorded. This gives a provisional correspon-

dence (x1, y1, x2, y2, s) where (x1, y1) is the centre of the discriminative region used to train
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the classifier, (x2, y2) is the centre of the highest scoring detection window and s is the scale

change between the two windows. The set of MLDPs creates a set of provisional correspon-

dences between the regions used to train the classifiers in the natural image and the regions

corresponding to the highest scoring detections in the painting.

3.3 Enforcing spatial consistency between correspondences

Given the set of provisional correspondences between a training set image and a painting,

we now obtain a subset of these that are spatially consistent. This is achieved by fitting a

linear spatial mapping. Correspondences that do not agree with this mapping are considered

erroneous and removed, this enforces spatial consistency between correspondences. The

mapping is a restricted similarity homography [20] that allows the object in the natural image

to be uniformly scaled and translated to the painting but not rotated as:

[

x2

y2

]

=

[

s 0

0 s

][

x1

y1

]

+

[

tx
ty

]

(1)

The best mapping is obtained using a RANSAC-style approach: for an image-painting pair

each provisional correspondence (x1, y1, x2, y2, s) can be used to form an estimation of the

mapping (1). The number of other correspondences within a scale and distance threshold

of this mapping are considered to be inliers and tallied. Each correspondence is evaluated

exhaustively and the mapping that produces the highest number of inliers is assumed to be

the best mapping. These inliers are then used to compute an affine homography, which

allows for rotation and shearing, and the number of inliers is re-estimated to provide a score.

In the following section this score will be used to re-rank images.

Results. Figure 3 shows example image-painting pairs before and after enforcing spatial

consistency. It can be seen that the combination of discriminative patches (that are able to

ignore ‘background’ regions) together with the spatial consistency is able to overcome the

problem of background clutter – i.e. other objects and ‘stuff’ in the paintings. The method

is able to match class instances despite significant scale changes, and also to match parts of

objects when there is partial occlusion.

4 Experiments

In this section we demonstrate that rankings obtained with the baseline classifiers of sec-

tion 2.1 can be improved by re-ranking the high scoring paintings using spatially consistent

sets of MLDPs. We also compare using a DPM for re-ranking, and training on the Google

Image set instead of on PASCAL VOC images.

4.1 Discriminative patch re-ranking using PASCAL VOC images

We start from the Paintings Dataset rankings obtained by the classifiers trained on

the VOC trainval images, and investigate how the re-ranking performance is affected by the

number of MLDPs, D, used for each training image; and by the number, N, of paintings that

are re-ranked (i.e. only the top N classifier ranked paintings are considered). We observe the

effect of varying the parameters N, D on mPrec@k for low k’s to determine what provides

the best performance at low ranks.
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Before Spatial Consistency After Spatial Consistency

Image Painting Image Painting

Figure 3: Image-painting pair correspondences before (left) and after (right) computing a spatially

consistent subset. Note, that the MLDP correspondences are able to generalize slightly over viewpoint,

intra-class differences, and between natural images and paintings.

The effect of varying N on mPrec@k for low k is shown in figure 4(a) for fixed D = 100.

Initially, precision increases with N, but as N gets too large (for example exceeds the number

of positives ranked well by the classifier), then the performance decreases, as the scoring

provided by the classifier rankings are then of no benefit (if N is equal to the number of

paintings, then this disregards the initial ranking). In general, mPrec@k increases with D as

there needs to be sufficient patches to cover all the salient areas of the object in the image

– though eventually there is insufficient increase to warrant the extra computation. In the

following we set N = 60 & D = 100 to achieve high Prec@k at low ranks.

Results. Prec@k curves for selected classes before and after re-ranking are given in the first

row of figure 5, and Prec@k for all classes is shown in table 3. Notice that the performance

at low ranks is improved by MLDP re-ranking for almost every class; this is because for

most classes an object in a painting will strongly resemble the same object in one of the

natural images for that class, differing only by scale and translation with minimal rotation,

allowing consistent regions to be located using MLDPs. Consider a cow; it is usually an

unrotated rectangular entity, rarely seen from above – there is little variety in its pose so it
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is very likely that for a painting of a cow there will be a similar natural image. This also

applies to isolated parts of more deformable objects; although the body of a dog is highly

deformable, its face is not and will be consistent between some natural image-painting pairs.

The top ranked paintings after re-ranking for selected classes are displayed in figure 6.

The one class that does not improve is dining-table. This class is highly prone to variety,

a dining-table can be seen from many angles, is often covered with other objects, and fre-

quently is heavily occluded. There is very little consistency between natural image-painting

pairs.

(a) (b)
Figure 4: mPrec@k as (a) N varies, and (b) as α varies, where α controls the MLDP vs DPM score

weighting of the hybrid re-ranking scheme.

Figure 5: Prec@k on the test set of the Paintings Dataset for training on VOC images (top

row), Google images (middle row); and VOC images (bottom row) with hybrid re-ranking. The green

curves show the perfect re-ranking of the top N classified paintings for each class.

4.2 DPM re-ranking using PASCAL VOC 2011

Here, we return to the rankings obtained with the baseline classifiers of section 2.1, and re-

rank using a Deformable Part Model (DPM) [16] object category detector, instead of a set

of MLDPs. DPMs excel at finding spatially consistent object regions, and thus provide a

natural comparison to the MLDP method.
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Ranking k Aero Bird Boat Chair Cow Dtab Dog Horse Sheep Train Mean

MLDP 5 1.00 0.60 1.00 0.60 0.60 0.40 1.00 1.00 1.00 1.00 0.82

Classifier 5 0.80 0.40 1.00 0.60 0.00 1.00 0.40 1.00 0.60 0.80 0.66

MLDP 10 0.80 0.40 1.00 0.70 0.40 0.50 0.80 1.00 0.80 1.00 0.74

Classifier 10 0.80 0.40 1.00 0.50 0.10 0.90 0.40 0.90 0.50 0.90 0.64

MLDP 15 0.67 0.47 1.00 0.60 0.33 0.53 0.73 1.00 0.67 1.00 0.70

Classifier 15 0.73 0.47 0.93 0.60 0.20 0.80 0.53 0.87 0.47 0.93 0.65

MLDP 20 0.75 0.50 1.00 0.55 0.35 0.65 0.65 1.00 0.65 0.95 0.71

Classifier 20 0.65 0.35 0.95 0.55 0.20 0.70 0.60 0.85 0.50 0.95 0.63

Table 3: Prec@k on the test set of the Paintings Dataset before and after MLDP re-ranking

using VOC training images. MLDP improves Prec@k in almost all instances. The plot shows that

hybrid scoring schemes (section 4.4) improve the precision even further.

Rank 1 2 3 4 5

Aeroplane

Dog

Sheep

Chair

Figure 6: Top 5 ranked paintings after re-ranking using MLDP for various classes. A green border

indicates a correct classification and a red border an incorrect one. Note that in the case of chair a

hybrid score has been used (section 4.4).

For each class, a DPM is learnt using class ROIs as positive examples and other regions

as negative examples as in [16]. Each DPM has 6 components and 8 parts. These are then

applied to the top N ranked test set paintings of the Paintings Dataset in a sliding

window cascade [17] and the score corresponding to the highest detection is recorded. The

paintings are then re-ranked by this score. N = 60 is used to allow for direct comparison

with the MLDP re-ranking of section 4.1.

Results. The Prec@k curves for DPM re-ranking for selected classes are also given in the

first row of figure 5. DPM re-ranking performs better than MLDP re-ranking for objects that

appear in the most generic poses; for example, a cow is usually either at front or side profile.

For such classes object instances will strongly resemble one of the DPMs components –

generalized from many training examples. However, for objects that assume many different

poses like dog, MLDP re-ranking proves more successful as each dog only has to have a part

(e.g. face) in common with a natural image rather than an entire pose in common with many.

4.3 Re-ranking using Google Images
Here, learning classifiers and re-ranking are performed using the Google images. The clas-

sifiers are again learnt in a one-vs-the-rest manner. There are three key differences between
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this and VOC; (i) the images are less cluttered with more centred objects like those in Cal-

tech101, (ii) there are much fewer images, (iii) no ROI is provided, so the entire image is

used as the ROI. MLDP re-ranking and DPM re-ranking are performed in the same manner

as in sections 4.1 and 4.2 where both MLDP extraction and DPM training are performed on

Google images. DPMs have been trained previously using the entire image as the ROI, but

for scene classification [28].

The Prec@k curves for selected classes for both MLDP and DPM re-ranking are given

in the second row of figure 5. MLDP re-ranking generally outperforms DPM re-ranking.

This is because with a small training set it is difficult for a DPM to generalize the poses of

an object, whereas for MLDP it is simply required that there exists an image resembling the

pose of a painting. Note that MLDPs are able to localize an object even without the correct

ROI being provided.

4.4 Hybrid re-ranking strategies

MLDPs and DPMs succeed in different scenarios; a DPM will often find the entirety of

an object, whereas MLDP will find salient parts, (face, legs). A combination of these two

measures can provide a good understanding of what an object is. A simple linear weighting

is used to combine their scores as αA+(1−α)B, where A is the number of MLDP inliers

and B is the DPM score (both normalized to lie between 0 & 1). Figure 4(b) illustrates the

change in mPrec@k as α varies. The Prec@k curves when α = 0.7 for certain classes are

given in figure 5. Notice that performance is particularly high for aeroplane, this is because

the DPM and MLDP re-ranking are both able to compensate for each other when one makes

a mistake – for example, MLDP mapping a small part of a plane to a boat will be nullified

by a low DPM score on that boat. The Prec@k when B in the above weighting is changed

to the original classifier score is also given in figure 5, and the top ranked paintings for chair

for this weighting are shown in figure 6. The mPrec@k for both hybrid schemes can be seen

in the plot beside table 3.

5 Conclusion

In this paper we have opened up the possibility of easily learning to recognize objects in

paintings starting from natural images of the objects. We have also shown that spatial consis-

tency of discriminative patches between the paintings and natural images from the classifier

training set can be used to improve the precision of low rank results.

There are at least two extensions that require further investigation: Firstly, in the case of

classes like a horse, where the object is portrayed in a consistent manner, a discriminative

region will likely appear at the same orientation on many other horses. On the other hand

an aeroplane frequently undergoes a rotation, so a discriminative region on one aeroplane

would exist in a rotated form on another, and thus the correspondence would be missed

(as the MLDP detector is not rotation invariant). Future work will involve exploring the

benefits of extracting discriminative patches from rotated images. Secondly, each painting

is currently matched only to a single training image. However, a painting could instead be

matched to multiple training images, e.g. where one part of an object has a strong match to

one image, and another part to another image – a Frankenstein approach.
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