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1. Introduction. In his celebrated address to the 1900 International 
Congress of Mathematicians, about unsolved problems, Hubert (1902) 
stated the second part of his fifth problem as follows. 

"Moreover, we are thus led to the wide and interesting 
field of functional equations which have been heretofore 
investigated usually only under the assumption of the dif-
ferentiability of the functions involved. In particular the 
functional equations treated by Abel (Oeuvres, vol. 1, pp. 
1,61, 389) with so much ingenuity...and other equations 
occurring in the literature of mathematics, do not directly 
involve anything which necessitates the requirement of the 
differentiability of the accompanying functions... In all 
these cases, then, the problem arises: In how far are the 
assertions which we can make in the case of differentiatie 
functions true under proper modifications without this as
sumption?" (Hilbert's emphasis). 

As in some others in that series of Hubert problems, the question is not 
uniquely defined. If, however, we concentrate on Abel's results, as Hubert 
did, we can make a definite judgement on how far we got in the direction 
recommended by Hubert and that is what I plan to do here. 

Abel had four publications and three manuscripts containing functional 
equations. 

We try to look at most, if not all functional equations on which Abel 
worked and got results. In §2 we deal with two problems for which Abel 
did not suppose differentiability but where recent results still succeeded in 
reducing the regularity suppositions. 

§§3 and 4 are the main part of this survey: it reports on results where 
the Hubert program has been carried through: the differentiability condi-
tions used by Abel have been successfully replaced, some quite recently, 
by (much) weaker conditions. 

Finally, in the second part of §4, I speak about a system of two func-
tional equations with which Abel dealt by way of differentation, and which 
pair has since been reduced to just one of the two equations but where 
differentiability has not been eliminated yet, so that is still missing to the 
complete solution of Hilbert's problem. 
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154 J. ACZEL 

2. The complex exponential equation and Abel's equation. 
1. The important paper Abel (1826B) justifies 'Newton's binomial 

series' in its full generality (avoiding also an error in Cauchy (1821) who 
neglected to prove uniform convergence) solving the complex exponential 
functional equation 

(1) f(z + w) = f(z)f(w) (z,weC) 

for continuous complex-valued functions of a complex variable. No dif-
ferentiability has been assumed there. However, using an idea of Kac 
(1937), the continuity supposition can be weakened to measurability in 
the following way. 

It is well known (and obvious) that a solution of (1) is either everywhere 
or nowhere 0. Let us exclude the trivial solution 

(2) ƒ (z) = 0 for all z e C 

for the time being. Starting with a slightly simpler problem, we restrict (1) 
first to real variables: 

(3) f(x + t) = f(x)f(t) (xjeR) 

with ƒ still complex-valued. This can, of course, be written as the pair of 
equations (r(x) = \f(x)\ > 0, g(x) = ƒ(x)/\f (x)|), 

(4) r(x + t) = r{x)r{t) (x,teR;r: R-+R+), 

(5) g(x + t) = g(x)g(t) (x,teR\g:R^ eiR) 

with 

(6) |*(*)| = 1 (x€R). 

The function ƒ and thus also g is now supposed to be just measurable on 
a proper real interval. Let [a, b] be such an interval for (5). Since, by (6), 
g is also bounded, it is Lebesgue integrable. So let us integrate (5) with 
respect to t from a to c, where c is chosen so that C = /a

c g(t) dt ^ 0. 
(Such a c exists for otherwise $* g{t)dt = 0 so g(x) = 0 a.e. on [a,b], 
contrary to (6).) With a change of variables (s = x + t) we get 

1 fx+c 

g{x) = ~r I g(s)ds. 
^ Jx+a 

Since g is integrable, the right-hand side is a continuous function of x and 
so is the left, that is, g. But, if g is continuous, then the right-hand side 
is differentiable and so is the left. Since g is now differentiate, we may 
differentiate (5) with respect to t and then substituting / = 0we get the 
differential equation 

g'(x) = Bg{x) (x e R) 

with the general complex valued solution (A,B complex constants) 

g(x) = AeBx, 

which satisfies (5) (and is not identically zero) iff A = 1 while (6) is satisfied 
iff B = ifi where /? is a real constant. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HILBERT'S FIFTH PROBLEM 155 

So the general measurable solution of (5) and (6) is given by 

(7) g(x) = eifix (x e R; p a real constant). 

As to (4), its measurable nonzero solution is well known to be 

(8) r(x) = eax (x € R; a a real constant). 

[Kac (1937) proved this by reduction to the above argument for g(x) = 
^nogr(x) Actually, this yields only en°*rW = eiax, that is, 

logr(x) = ax + 2k(x)n, 

where k(x) e Z. But x ^ ax and also x *-+ logr(x) are linear for rational 
coefficients, so fc has to be linear too and is thus 0, so that r(x) = xa.] 
From (7) and (8) 

f(x) = e{a+ifi)x = eDx, 
(D an arbitrary complex constant) is the general not identically 0 measur-
able solution of (3). 

As to (1), it implies 

f(z) = f(x + yi) = f(x)f(yi), 

where both factors, this time as functions of the real variables x or y, 
satisfy (3), so all measurable solutions of (I) are given by 

ƒ(z) = f(x + yi) = eDx+£y = eóz+e2 (z e C), 

(D, E, S, e arbitary complex constants) and by (2). 
Note that here we derived from measurability continuity and, eventu-

ally, differentiability (on R). We will come back to this method (cf. Aczél 
(1961), Jârai (1986)) in 3.2. 

2. Abel's (1824) manuscript deals with the 'Abel equation' 

(9) ƒ[#*)] = ƒ(*) + !. 

This has by now an immense literature. We refer the reader to Kuczma 
(1968) and Kuczma, Choczewski and Ger (1989). We quote here just a 
result of Zdun (1977). 

Let <j) be continuous, convex and strictly increasing on [0, a], 0 < <l>(x) < 
x for x €]0, a] and let <pn be the n-th iterate ofcf). Then equation (9) has 
an integrable solution f if and only if Y^L\ 0"(*o) converges for some 
Xo e]0, a]. This solution depends on an arbitrary integrable function f o on 
]<j>(a), a] (meaning that for every such fo there is exactly one solution ƒ of 
(9), integrable on ]0, a[, whose restriction to ]<t>{a), a] is fo). 

3. Elimination of the differentiability conditions in some important works 
of Abel. 

1. Another important 1826 paper of Abel (1826A) solves the system of 
functional equations 

F[x, F{y, z)) = F[z, F(x, y)] = F[y, F(z, x)] = F[x, F(z, y)] 
= F[z,F(y,x)] = F[y,F(x,z)] 

by reducing it to partial differential equations. So here differentiability 
was indeed supposed and used in an essential way. Nowadays this system 
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is considered as a combination of associativity and commutativity. The 
associativity equation 

(10) F[x,F(y,z)] = F[F(x,y),z] 

has been completely solved for x,y,z e I (a, real interval; there are gener-
alizations for continuous and/or ordered structures, cf. e.g. Fuchs (1963)) 
under continuity and cancellativity conditions but without supposing dif-
ferentiability or even commutativity (Aczél (1949), (1966), (1987)): com-
mutativity is a consequence. The proof used to be rather lengthy but re-
cently Pâles and Craigen (1989) found a shorter proof. (We mention here 
that a book on associativity—mostly with other additional conditions—by 
C. Alsina, M. J. Frank and B. Schweizer is in preparation.) 

We give here the theorem and a sketch of the Pâles-Craigen (1989) 
proof. 

Let I c R be a proper interval The function F: I2 —• / is continuous, 
associative (10) and cancellative ((3y e / : F(x\,y) = F(x2,y)) => x\ = 
xi\ (3x € / : F(x, y\) = F(x, yi)) => y\ = yi) if and only if there exists a 
continuous strictly monotonie f: I -+R such that 

(11) F(x.y) = f-l(f(x) + f(y)) (x.yel). 

For the sake of brevity we write x o y := F(x, y) and define xn by 
xl =x,x

n+l = xnox {n = 1,2,...). 
The proof proceeds through the following steps. 
(i) F is (strictly) increasing in each variable. Since 7 is a proper interval 

there exists a c e I for which c o c ^ c\ Let us take, say, c <coc 
(ii) {x o cn} is increasing and lim„_oo(.x; o cn) = sup ƒ £ L (As a con-

sequence, / is open from above; if we had assumed the existence of a 
d > d o d then I would have turned out to be open from below.) This 
follows from (i). 

(iii) The inequalities cm > x o cn and cm > cn o x are equivalent for 
each x e / , m, n e N. This too follows from (i). 

(iv) If, for some x,y € I,m,n,k,l € N, cm > x o cn and ck > y o cl 

then cm+k > x o y o cn+l. Furthermore the inequalities cm > x o cn and 
cmk > xk 0 cnk a r e equivalent. (These follow from (iii).) 

(v) For all x, y G / , n e N, 

min(xn o yn, yn o xn) < (x o y)n < max(xw o yn, yn o xn). 

We prove this in the case x o y < y ox (the proof is similar for x o y > y ox\ 
there is nothing to prove for x o y = y o x): 

(x o y)n = xoyoxoyo---oxoy<yoxoyoxo--

<yoyoxoxoyo'.-<-"<ynoxn 

(x o y)n =xoyoxoyoxo-->>xoxoyoxoyo--
> • • • > Xn o y». 

We start now to construct ƒ for (11). For x € / we define 

O* = <r - —T—\m,n,k e N,cm > xk ocn > 
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(by (iv) this definition does not change if the same r is represented by 
different m, n, k). By (ii), limcm > x o c, so 3m' e N in G^, which thus 
is not empty. If r e O* then every rational r' > r is also in O*. So O* 
consists of the rational numbers of an interval unbounded from above. By 
(ii) 3n : c < x o cn, so ( 1 - ri)j 1 is a lower bound of Ox. Define 

ƒ (x) = inf «D*. 

(vi) ƒ (x o y ) = ƒ (x) + ƒ (j>)(x, y e J)- (T h i s follows from (iv) and (v).) 
(vii) ƒ is continuous and strictly monotonie. 
Now (11) follows from (vi) and (vii) and the proof is complete. 
As relevant to Abel's (1826A) original system of equations we mention 

also the functional equation of commuting systems of transformations 
FiSxZ^Z: 

F[x, F(y, z)] = F[y, F(x, z)] (x,yeS,ze Z) 

which has been solved in quite general situations, for instance where S 
and Z are compact, F is continuous and a 'weak transitivity* holds, that is, 
there exists ac eZ such that for all z eZ there is a y with F(y, c) = z (see 
Aczél-Wallace (1967)). The result is that it is necessary and sufficient that 
S be a commutative monoid, with c as unit, under an operation o and that 
there exist a continuous surjection f:S—>Z (actually, f(x) = F(x,c))9 
such that 

F(x, z) = f(x) o z. 

2. Abel (1823) presented a general method of solving functional equa-
tions of quite general forms by reduction to differential equations. Of 
course he tacitly assumed that the unknown functions are several times 
differentiable. (Some of the steps in Abel (1823) look outlandish but can 
be justifed, see Kiesewetter (1957).) 

However, in the spirit of Hubert's (1902) program, one may reduce 
Abel's regularity conditions by showing that weak regularity conditions 
(say measurability) and the fact that the unknown function(s) satisfy cer-
tain functional equations imply their differentiability of the required order. 
Kac's (1937)s above mentioned method does this for Cauchy's equation. 
A similar method (but supposing continuity) has been applied already by 
Andrade (1900) to d'Alembert's (Poisson's) equation 

f{x + y) + f(x-y) = 2f(x)f(y). 

(An equation equivalent to this was solved by Abel (1823), using his 
method of derivations.) This method can be generalized to fairly broad 
classes of equations (see e.g. Aczél (1961), (1966), Aczél and Chung (1982), 
Aczél and Dhombres (1989)). 

Recently Jârai (1986) has obtained nice results encompassing wide classes 
of equations. Here are some typical classes ( ƒ is the unknown functions), 

(12) f(x) = i2hj(x,y,f[gj(x,y)]) 

ƒ(x) = h(x, y, f(y),f[gi(x, y)],..., f[gn(x, y)]). 
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He goes through the following steps: (I) measurability (or Baire property) 
implies continuity; (II) continuity implies the local Lipschitz condition; 
(III) from that, C l (continuous differentiability) follows and (IV) C1 => 
C°° (differentiability of any order). All these are done under rather weak 
conditions, except step (II) which works for Jârai (1986) only for (12), the 
more special of the above equations. 

Abel (1823) shows on several examples how his method works. In addi-
tion to d'Alembert's equation, mentioned above, he deals in this way with 
the 'equation of the logarithm', equivalent to (4) and 'solves' also the 'arc 
tan equation' 

ƒ(*) + ƒ(*) = / ( T T 3 £ ) (*'>>eR). 

However, this equation has no continuous solutions except ƒ (x) = 0, as 
Kiesewetter (1965) showed (there exist local solutions and global but mul-
tivalued solutions). Losonczi (1985) gave the general solutions (they are 
not all 0 but Kiesewetter's result is an immediate consequence of Loson-
czi's). The two remaining examples in Abel (1823), which do not contain 
derivatives in the first place, are 

<Kx + y) = <Kx)f{y) + f(x)<Ky) 

and 

(13) yt(x + y) = g(xy) + h(x - y). 

By now the general solutions of each of these can be determined with-
out any regularity condition. The first has been solved on arbitrary semi-
groups (not even commutativity is supposed) by Chung, Kannappan and 
Ng (1985). The second can be written, with the notations t = (x - y)2, 
s = 4xy, 4>(s) = g(s/4),f(t) = h(y/t) (for t > 0), k(z) = yr{y/z) (for 
z > 0) as 

(14) *(* + ' )« *W + / ( 0 
(the so called Pexider equation) on the domain {{s, t)\s +1 > 0, t > 0}. But 
the Pexider equation (14) can be extended uniquely from any {open) region 
to all ofR2 (see e.g. Radó and Baker (1987)) and its general solution is 
given by 

</)(s) = a(s) + a, ƒ (0 = a(t) + 0, k{z) = a(z) + a + p, 

so that the general solution of (13) is given by 

g(u) = 4>(4u) = 4a{u) + a, h(v) = ƒ (v2) = a(v2) + jff, 
\f/{w) = k(w2) = a(w2) + a + j8, 

where a, p are arbitrary constants and a is an arbitrary additive function. 
If one ofg, h, y/ is even mildly regular (say measurable), then 

a{t) = yt, 

which gives exactly Abel's (1823) solutions. (Cf. also Lajkó 1987.) 
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3. A manuscript of Abel (1826C) contains the system of functional 
equations 

- y/{x) - y/(y) - log(l - x)log(l - y), 

i//(x) + y/{\ - x) = C-logxlog(l -JC). 

(If 1 is in the domain then the second equation follows from the first with 
y = l - * , C = ^ ( l ) . ) 

Kiesewetter (1961) reduces them to the equation 

(15) F M + F(ti) + F(^)+F(l-W) + F ( 1 i f ^ ) = 0 

(«€]0,l[,t;€]0,l[). 

Ifu = 0,v = 0are also permitted, Daróczy and Kiesewetter (1973) find 
the general (Lebesgue) integrable solution of (15). They first apply the 
Andrade(1900)-Kac(1937) method (cf. §§2.1, 3.2 above). They integrate 
with respect to v from 0 to 1. We will do so from S to 1 - S (S small): 

(l-2S)F(u) = - / F(t)dt - / t~2F(t)dt 
Jô u J(\-u)/{l-ôu) 

1 r\-ÔU f{\-ô)J{\-ôu) 
- - I F{t)dt - (1 - u) I (1 - ut)~2F(t)dt. 

u y1_(1_^)W JÔ/(\-(I-Ô)U) 
Since the right-hand side is continuous in u on ]0,1[, so is the left, that 
is, F(u). But then the right-hand side is differentiable and so is F. They 
stop here but, with differentiable F, the right-hand side, and with it F(u), 
is twice, then three, four... times differentiable on (0,1) (we will need the 
existence of F"'). They now differentiate (15) with respect to u and get, 
for 

(16) f(t) = t(l-t)F'(t), 

the equation 

ƒ ( " ) -ƒ (T^-)~7—-f{l~uv)+uf (-1—^-} = 0 (u,v €]0,1[). J v J J \l-uvj l-uvJK } J \\-uv) v J u 

With the substitution x=l-u,y = l — (l- u)/(l - uv) this becomes 

(I?) /(i-^ + o - ^ / ^ ^ ^ / o - ^ + a-y)/^^) 
(x,y,x + ye]0,l[). 

They need (15) for v = 0 in order to prove / ( l - t) = f(t) with which 
(17) goes over into the so called fundamental equation of information and 
use a deeper result of Lee (1964) on the general measurable solution. But 
we know that F and so, by (16), ƒ is as often differentiable as needed. 
Differentiating (17) with respect to x9 then y, we get 

/(l - t)f"(t) = c (c constant) 
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and thus 

f(t) = c(tlogt + (1 - f)log(l - 0) + ot + b (t €]0,1[), 

which satisfies (17) iff * = -2a. By (16), 

linking F to the dilogarithm. [Cf. Kiesewetter (1961). - Daróczy and 
Kiesewetter (1973) found the first term as general solution of (15) for 
u,v G [0,1] (on larger domains a functional equation may have fewer 
solutions), but noted that for u, v €]0,1[ the second term satisfies it too. 
Cf. also Kannappan (1977,1978). Jârai's (1986) methods make it possible 
to reduce the integrability assumption to measurability. 

4. Recently solved and partially solved problems. 
1. In the paper Abel (1827), the functional equation 

(18) <Kx) + <Ky) = y[xf(y) + yf(x)] 
is solved by repeated differentiation. This is one of the places where Abel 
notes the remarkable fact that one functional equation determines several 
unknown functions. The conclusion he draws from this fact is equally 
remarkable: 

"Thus, it is generally possible to find all the functions by 
means of a single equation. It follows that such an equa-
tion can exist only very seldom. Indeed, since the form of 
an arbitrary function appearing in the given conditional 
equation, by virtue of the equation itself, has to be de-
pendent on the forms of the others, it is obvious that, in 
general, one cannot assume any of these functions to be 
given. Thus, for example, the above equation could not be 
satisfied if f(x) had any other form than that which was 
found." (Translated from French; a misprint corrected.) 

After initial results by Dhombres (unpublished), M. Sablik (1989) first 
determined all continuous solutions of ( 18) on R2 that is, if ( 18) is supposed 
to hold for all real x,y. It is not quite clear why Abel singled out this 
equation. He starts, however, from the solutions 

f(x) = 2", i//(x) = (j){x) = log*, 

f{x) = \ / l - x2, i//(x) = (j>(x) = arc sin x 

These are solutions only on subsets of the real plane (the first on R̂_ = 
{(x, y) | x > 0, y > 0}, the second on {(x, y) \ x, y e [-1,1]} (there are also 
problems with the functions being multivalued in the second solution). So 
it is preferable to find the general (at least continuous) solutions of (18) on 
such subsets (say, on regions). Actually, Sablik (1989) has also determined 
all continuous solutions of (18) restricted to cartesian squares of certain 
intervals. 
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Instead of the longish list of continuous solutions, we give here some 
basic ideas of the argument in the case where 0 is in the fundamental in-
terval. The case ƒ (0) = 0 is uninteresting (it leads to continuous solutions 
ƒ which are arbitrary for x ^ 0 and to (f>, y/ which are constant where it 
counts). If ƒ (0) # 0, then (18) can be reduced, with g(x) = f(x)/f(0), 
¥(*) = V(f(0)x) - y/(0), to 

V{x) + V(y) = V[xg{y) + yg(x)] 
and this to 

(19) g[xg(y) + yg(x)] = g(x)g(y) + cxy. 

The proof concludes with the determination of all continuous solutions 
of this equation on the considered intervals. Sablik noticed also the in-
teresting facts that (19) is essentially the associativity equation (10) for 
F{x, y) - xg(y) + yg(x) and that, if supposed for all (x, y) e R2 and if 
c> 0, (19) is also equivalent to the "Baxter equation" 

(20) h[xh(y) + yh(x) - xy] = h(x)h(y). 

All continuous solutions of (20) were determined on R2 by Volkmann 
and Weigel (1984) (for solutions without continuity assumptions see e.g. 
Benz (1987)). For linear operators on Banach algebras, (20) defines the 
Baxter (or 'summation') operators, connected to queuing theory and exten-
sively researched in the last three decades (see e.g. Kingman (1966) Miller 
(1969)). 

It would be desirable to find the continuous solutions of (18) on more 
general sets and also the solutions under regularity conditions weaker than 
continuity (say, integrability or measurability). 

2. An unfinished manuscript (apparently notes to his planned book on 
elliptic functions) of Abel (1828) reduces the system of functional equa-
tions 

(21) <j>(x + y)4>{x -y) = cj>{x)2f{y)2 - c/>(y)2f(x)2
f 

(22) f(x + y)f(x -y) = f(x)2f(y)2 - c2<t>{x)2cj>{y)2 

to differential equations of up to fourth order, of course under supposi-
tion of differentiability (of fourth order), that is, since the functions are 
complex, of analyticity. Haruki (1965) has found, also by reduction to dif-
ferential equations of at most fourth order, the general (in fourth order) 
differentiable solutions of (21) alone. 

The general continuous solution either of (21) alone or of the system 
(21), (22) for all x, y e C is not known (to me); even less are those under 
regularity conditions weaker than continuity or on subsets of C2. 

5. Conclusion. Summarizing, in particular in view of Sablik's (1989) 
recent result (see 4.1), the second part of Hubert's Fifth Problem is largely 
solved. (We can say this with so much more justification, since Hilbert 
had put particular emphasis on eliminating the differentiability conditions 
from the results in Abel (1823), (1826A) and (1827).) Moreover, it gave 
rise to several interesting and worthwhile problems, some also solved, oth-
ers (yet) unsolved. 
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