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The State of the World’s Beaches
Arjen Luijendijk  1,2, Gerben Hagenaars2, Roshanka Ranasinghe3,4,2, Fedor Baart2,  
Gennadii Donchyts1,2 & Stefan Aarninkhof1

Coastal zones constitute one of the most heavily populated and developed land zones in the world. 

Despite the utility and economic benefits that coasts provide, there is no reliable global-scale assessment 
of historical shoreline change trends. Here, via the use of freely available optical satellite images 
captured since 1984, in conjunction with sophisticated image interrogation and analysis methods, we 
present a global-scale assessment of the occurrence of sandy beaches and rates of shoreline change 
therein. Applying pixel-based supervised classification, we found that 31% of the world’s ice-free 
shoreline are sandy. The application of an automated shoreline detection method to the sandy shorelines 

thus identified resulted in a global dataset of shoreline change rates for the 33 year period 1984–2016. 
Analysis of the satellite derived shoreline data indicates that 24% of the world’s sandy beaches are 
eroding at rates exceeding 0.5 m/yr, while 28% are accreting and 48% are stable. The majority of the 
sandy shorelines in marine protected areas are eroding, raising cause for serious concern.

Coastal zones have historically attracted humans and human activities due to the abundant amenity, aesthetic 
value and diverse ecosystem services that they provide. As a result, the coastal zone all over the world has become 
heavily populated and developed1–3 with 15 of the 20 megacities (population >10 million) of the world being 
located in the coastal zone. �e global coastline is spatially highly variable and comprises several di�erent types 
of coastal landforms, some examples being barrier islands, sea cli�s, tidal �ats, and river deltas. Of these di�erent 
coastline types, here we focus on sandy coasts, which are highly dynamic in time and space, and constitute a sub-
stantial part of world’s coastline4. As sandy coasts are highly developed and densely populated due to the amenity 
and aesthetics that they provide, erosion of these coasts over the last few decades is already resulting in coastal 
squeeze5. Inevitably, climate change impacts on sandy coasts will only exacerbate this situation6,7. �us, reliable 
assessments of the occurrence of sandy coasts and their rates of shoreline change are basic necessities for e�ective 
spatial planning, sustainable coastal development, coastal engineering projects, and mitigation of climate change 
impacts along high value coastlines around the world.

Despite the utility, economic bene�ts, and the dynamic nature of sandy coasts, there is no reliable global-scale 
assessment of their occurrence or rates of shoreline change (i.e. erosion/accretion rates) therein. Presently 
available global scale estimates of these phenomena vary widely, and the way in which most of these estimates 
have been derived is unclear at best. For instance, the percentage of occurrence for sandy shorelines worldwide 
reported in literature varies by a factor 7 ranging from 10%8 to 75%9. With regard to rates of change in sandy 
shorelines, several reliable recent regional scale estimates exist for Europe (27% eroding10 and the US East coast 
barrier beaches (86% eroding11. �e only global scale assessment available is reported by Bird12 that estimated 
70% of sandy shorelines worldwide were eroding. However, because Bird’s study, ground breaking as it was at the 
time, was primarily based on a survey of 200 participants from 127 countries, this estimate is rather qualitative.

Robust estimation of shoreline change rates by necessity requires continuous and long-term information on 
shoreline position. Historically, the acquisition of shoreline data sets has been a laborious and expensive task as it 
involved traditional land-based surveys or the analysis of temporally sparse data collected from aerial platforms 
(photographs or lidar). �e increasing availability, resolution and spatial coverage of satellite imagery in recent years 
now provide a powerful alternative to derive reliable, global scale shoreline data as we demonstrate in this article.

�e method commonly used to extract shorelines from satellite images in the past involved painstaking image 
by image analysis of series of overlapping images. �e recent launching of the Google Earth Engine (GEE) plat-
form, containing a continuously updated global satellite image archive, now enables e�cient global scale shoreline 
detection. Having both a petabyte satellite image collection and parallel computation facilities combined on the 
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server side of the platform reduces image processing time to only several minutes per image13 and enables e�cient 
validation of the automatically detected shorelines at multiple sites where ground-truth �eld data are available.

To enable global mapping of sandy shorelines it is �rst necessary to identify sandy beaches and then determine 
shoreline positions in every image in the GEE platform. �e spatio-temporal scales associate with this study (i.e. 
global scale, 33 year analysis) and the large amount of satellite images that therefore need to be analysed neces-
sitates the use of robust automated image analysis techniques. Machine learning14 and image processing15 tech-
niques that lend themselves to such automated analyses are readily available. However, to be able to use satellite 
derived shoreline positions for real-world applications such as reliably estimating trends and structural damage to 
infrastructure, a horizontal resolution of at least 10–20 m is required. For example, shoreline change rates above 
0.5 m/yr over a long period are typically employed to �ag a coastal area as one experiencing chronic (=long term 
i.e. decades to centuries7) erosion or accretion. Over a period of 30 years that would mean a total displacement of 
just 15 m. Previous studies have evaluated the positional accuracy of satellite derived shorelines (SDS) based on 
single images15–19 to range between 1.6 and 10 m. It should be noted that these studies su�ered from limitations 
such as the number of images used, the quality of the in-situ data used for validation or the magnitude of changes 
in observed shoreline position. Recently, Hagenaars et al.20 presented a long-term, but local-scale satellite image 
analysis on shoreline trends, that overcomes all of the aforementioned limitations. �ey found the accuracy of 
the SDS derived from moving average composite images to be of subpixel precision (~half a pixel size, i.e., 15 m 
for Landsat and 5 m for Sentinel-2). �e accuracy of <15 m, reported by Hagenaars et al.20 for composite Landsat 
images, matches the required displacement of 15 m for reliable shoreline change classi�cations over the last 30 
years. For that reason, we adopt the same approach in this study, yet at a global scale.

Here we present an up-to-date global-scale assessment of dynamics of sandy shorelines using a fully auto-
mated analysis of 33 years (1984–2016) of satellite images. First, we detect sandy beaches worldwide by applying 
a pixel-based supervised classi�cation to a cloud-free high-resolution global composite image for 2016. A digital 
beach training dataset is provided to the classi�cation so�ware and validated for 50 locations worldwide that 
include both sandy and non-sandy beaches. Next, we apply a shoreline detection algorithm to cloud free global 
annual composite images using more than 1.9 million historical Landsat images. A�er a successful quantitative 
validation of this technique at multiple sites located in various geographical settings and environmental condi-
tions, we derive shoreline change rates in m/yr at transects with an alongshore spacing of 500 m along the world’s 
shoreline. �e above mentioned methods are elaborated in the Methods section below while the complete valida-
tion is presented Supplementary Material (S2).

�e main outcomes of our analysis include: (a) the global occurrence of sandy beaches, (b) rate of erosion/accre-
tion at all sandy beaches in the world, (c) highlights of observed natural and human induced impacts on coastal 
erosion/accretion at selected locations, and (d) identi�cation of global hot spots of coastal erosion/accretion.

Results
Global Occurrence of Sandy Shorelines. Coastal classi�cations have been widely employed in the �eld 
of geomorphology to characterise the diversity of coastal landforms and the contexts within which they emerge, 
but hitherto no single system of classi�cation has been comprehensive in scope or coverage21,22. Criteria in these 
classi�cations typically include tectonic23 and hydrodynamic controls, as well as the sedimentological response. 
Hydrodynamics controls considered include classi�cations of wave parameters24, tidal range24,25 and a combina-
tion of both26. A ternary classi�cation presented by Boyd et al.27, which considers the relative importance of �uvial 
inputs, wave energy, and tidal forcing provided a useful analysis of siliciclastic sedimentary coasts. �e combi-
nation of tectonic and hydrodynamic controls led to the proposition of coastal morphogenetic classi�cations28, 
which are probably the most widely used classi�cation schemes.

Sediment texture and composition29 are additionally useful to classify and describe coastal sedimentary envi-
ronments. However, previously reported values of the global occurrence of sandy shorelines vary between 10% 
and 75% (see Table 1). �e methods used to arrive at these values remain, in most cases, unclear or qualitative (as 
also indicated in Table 1).

In our analysis, we applied supervised (human-guided) classi�cation to global cloud-free satellite images (see 
Section 3.2) to identify sandy shorelines. One of the main reasons for our focus here on sandy beaches is that 
detecting shoreline dynamics for non-sandy shores like muddy coasts can be complex. Mild foreshore slopes, 
resulting in large horizontal tidal excursions, and high water content hampers correct shoreline detection. In the 
case of mangroves, seasonal growth cycles can impede correct shoreline detection. Moreover, it should be noted 
that as the re�ectance signatures of sand and gravel beaches cannot be di�erentiated in the satellite imagery, 
as both materials originate from the same granular composites of �nely divided rock, our references to sandy 
beaches herein also includes gravel beaches.

Our analysis showed that 31% of the ice-free world shoreline is sandy. �e continent with the highest presence 
of sandy beaches is Africa (66%), while in Europe only 22% of the shoreline is sandy (see inserted table in Fig. 1). 
�e percentage of sandy shorelines obtained from this analysis for USA and Australia compare well with the more 
recently reported regional scale values (see Table 1). �e larger deviation in percentage found for Europe is signif-
icantly in�uenced by the smaller total length of shoreline used in the Eurosion10 data base. It should be noted that 
the sandy beach classi�cation also includes the gravel beaches in the world. �e re�ectance signatures of sand and 
gravel beaches cannot be di�erentiated in the satellite imagery as both materials originate from the same granular 
composites of �nely divided rock.

�e global latitudinal distribution of sandy shorelines shows a distinct relation with latitude and hence with 
climate; no relation is found with longitude. �e relative occurrence of sandy shorelines increases in the subtrop-
ics and lower mid-latitudes (20°–40°) with maxima around the horse latitudes (near 30°S and 25°N; see Fig. 1). 
In contrast, they are relatively less common (<20%) in the humid tropics where mud and mangroves30 are most 
abundant as a result of high temperatures and rainfall. �e percentage of sandy shorelines decreases beyond the 
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50° parallel. �is latitudinal distribution of sandy shorelines is in line with the latitudinal variation of the common 
sediments in the inner continental shelf reported by Hayes31, based on ~2000 transects from 131 coastal areas (see 
right subplot in Fig. 1).

Global sandy beach erosion. Worldwide beach erosion became apparent during the 1980s following the 
studies of the International Geographical Union working group on the Dynamics of Coastal Erosion (1972–1976) 
and the Commission on the Coastal Environment (1976–1984). In these studies, two hundred participants rep-
resenting 127 countries contributed to a survey which indicated that 70% (10%) of the world’s sandy beaches 
experienced net erosion (accretion) while 20% were stable32. However, as these estimates were primarily a result 
of interviews, they are necessarily qualitative, at best. Furthermore, the estimates likely did not take into account 
changes occurring along undeveloped and uninhabited coasts due to the subjective methodology adopted.

�e quantitative global distribution of sandy shorelines presented herein, for the �rst time, allows the deriva-
tion of objective and up to date global scale assessment of chronic shoreline changes (i.e. beach erosion/accretion). 
Beach erosion can occur at a range of timescales33. Individual storms will generally result in rapid short-term ero-
sion, followed by short-term accretion, leading to negligible net change over time scales of a few weeks-months. 
If sediment de�ciencies persist for long periods of time (e.g. due to longshore gradients in sediment transport, 
reduction of �uvial sediment supply to the coast), chronic erosion can result. �e analysis presented here focusses 
on such chronic erosion and accretion. However, there are no common standards for the classi�cation of rates of 
chronic beach change34 which is generally quanti�ed through some statistical treatment of erosion rates and/or 
volumetric losses (e.g. ref.35.

�e accuracy of the SDS data of ~0.5 pixel (see Section 1) and the study period of ~30 years allows for a clas-
si�cation of beach change rates with class boundaries of 0.5 m/yr. Hence, we adopted the chronic beach erosion 
classi�cation scheme proposed by Esteves and Finkl36 and extended it with a classi�cation for extreme erosion 
resulting in the below scheme:

•	 Accretion  >0.5 m/yr
•	 Stable  −0.5 to 0.5 m/yr
•	 Erosion  −1 to −0.5 m/yr
•	 Intense erosion −3 to −1 m/yr
•	 Severe erosion −5 to −3 m/yr
•	 Extreme erosion <−5 m/yr

Region Parameter References Method used Reported values Derived values

Global

Percentage of sandy shoreline

Bird12 Interviews 20% 31%

Bird4 Not stated 30%

Inman & Nordstorm23 Not stated 11%

Hardisty54 Not stated 34%

Van Rijn8 Not stated 10–15%

Bascom9 Not stated 75%

Brown55 Not stated 67%

Durgappa56 Not stated 20%

Bird38 Not stated 40%

Hinkel et al.3 Not stated 11%

Percentage of eroding sandy shoreline Bird12

Interviews Accretion 10% 27%

Interviews Stable 20% 49%

Interviews
Erosion 
(<−0.5 m/yr)

70% 24%

n.a. Intense erosion 16%

n.a. Severe erosion 7%

n.a. Extreme erosion 4%

Europe

Percentage of sandy shoreline (sandy 
shoreline length)

Eurosion10 Aerial photos 
& surveys

40% (40,000 km) 23% (31,000 km)

Percentage of eroding sandy shoreline Eurosion10 Aerial photos 
& surveys

27% (excluding upli� of 
Finland and Sweden)

28%

USA

Percentage of sandy shoreline Short43 Not stated 33% 30%

Percentage of eroding sandy shoreline 
(Atlantic and Gulf coast only)

Heinz Center44 Aerial photos 80–90% 52%

Australia
Percentage of sandy shoreline

Woodro�e et al.57 
Short incl. Tasmania

Not stated 43–49% 52%

Percentage of eroding sandy shoreline No source found n.a. Not reported 25%

Table 1. Reported values of global and regional occurrences of sandy shorelines and percentages of chronic 
erosion and accretion.
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Our assessment shows that 24% of the world’s sandy beaches are persistently eroding at a rate exceeding 0.5 m/yr  
over the study period (1984–2016), while 27% are accreting (see Table 1). About 16% (18%) of sandy beaches are 
experiencing erosion (accretion) rates exceeding 1 m/yr.

Chronic erosion of beaches (<−0.5 m/yr) is shown across the globe with relatively low latitudinal variation 
(see Fig. 2). Generally, between 30% and 40% of sandy beaches per degree latitude are eroding with relatively high 
eroding values up to 50% just south of the equator associated with large-scale land losses adjacent to the Amazon 
River mouth.

More severe erosion rates are found at various locations across the globe. About 7% of the world’s sandy beaches 
experience erosion rates classi�ed as severe. Erosion rates exceed 5 m/yr along 4% of the sandy shoreline and are 
greater than 10 m/yr for 2% of the global sandy shoreline. On the other hand, about 8% of the world’s sandy beaches 
experience signi�cant accretion (>3 m/yr), while 6% (3%) are accreting more than 5 m/yr (10 m/yr).

Taking a continental perspective, Australia and Africa are the only continents for which net erosion (−0.20 m/yr  
and −0.07 m/yr respectively) is found, with all other continents showing net accretion. �e continent with the 
largest accretion rate (1.27 m/yr; see table in Fig. 2) is Asia, likely due to the arti�cial development of the Chinese 
coast and large land reclamations in, for example, Singapore, Hong Kong, Bahrain and UAE. On a global scale, 
the world’s beaches have accreted on average 0.33 m/yr over the past three decades, i.e. a total gain of 3,663 km2 
over this period.

Using the SDS data we then focussed on coastlines that are internationally recognised as nature protected 
areas by the World Database on Protected Areas (WDPA), which is the most comprehensive global database on 
terrestrial and marine protected areas, produced by UNEP-WCMC and IUCN37. Compared to the global aver-
age, a relatively high percentage of sandy shorelines in the WDPA-identi�ed areas are experiencing erosion. Our 
analysis indicates that 32% of all marine protected shorelines are sandy of which 37% are eroding at a rate larger 
than 0.5 m/yr, while 32% are accreting.

Quantifying local scale erosion/accretion due to human interventions. No single explanation can 
easily account for the observed erosion/accretion trends along the global sandy shoreline, or for the acceleration 
of erosion/accretion on any particular beach38. However, analysis of local trends derived from the global scale 
shoreline assessment presented herein can help identify natural and human drivers of shoreline change. To illus-
trate this, we present two highlights of erosive behaviour and two of accretive behaviour. Another four highlights 
are presented in the Supplementary Material (S3).

a) Sand mining and subsidence. �e Mekong Delta in Vietnam, the third largest delta in the world, is increas-
ingly a�ected by human activities and exposed to subsidence and coastal erosion. �e large-scale shoreline ero-
sion is attributed to excessive sand mining in the river and delta channels, and subsidence due to unregulated 
groundwater extraction39. Analysis of the SDS data (Fig. 3a) reveals slight erosion between 1984 and 1990, a�er 
which higher, but steady erosion rates are found. Erosion rates in the considered area typically range between 
25–30 m/yr over the last three decades. Based on the strong linear trend, the SDS data may be used for projections 

Figure 1. Global distribution of sandy shorelines; the coloured dots along the world’s shoreline represent the 
local percentage of sandy shorelines (yellow is sand, dark brown is non-sand). �e subplot to the right presents 
the relative occurrence of sandy shorelines per degree latitude, where the dashed line shows the latitudinal 
distribution of sandy shorelines reported by Hayes31. �e lower subplot presents the relative occurrence of sandy 
shorelines per degree longitude. �e curved, dashed grey lines in the main plot represent the boundaries of the 
ice-free shorelines considered in our analysis. �e underlined percentages indicate the percentages of sandy 
shorelines averaged per continent. Map is created with Python 2.7.12 (https://www.python.org) using Cartopy 
(v0.15.1. Met O�ce UK. https://pypi.python.org/pypi/Cartopy/0.15.1) and Matplotlib58.

https://www.python.org
https://pypi.python.org/pypi/Cartopy/0.15.1
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of land loss and displacement strategies, as it is not expected that erosion rates will decrease in the near future 
unless mitigating measures are implemented.

b) Coastal structures. �e harbour structures at Nouakchott, Mauritania, blocked the large unidirectional 
north-south longshore transport of sand since 1986, causing areas of beach erosion that has impacted the local 
social and urban developments. �e shoreline evolution rates observed a�er the harbour construction are 10 
times larger than the values that would have been observed in the natural state40. �e harbour breakwaters 
induced severe erosion over a distance of more than 10 km in the downdri� zone where accretion was likely to 
occur in the absence of the harbour. �e SDS data (Fig. 3b) shows erosion rates of 20 m/yr.

c) Sand Nourishments. A large-scale bypass system became operational in 2001 at the Tweed River, New South 
Wales, Australia, to mitigate erosion of the beaches to the north of jetties constructed at the river entrance41. �e 
bypass system pumps sand from south of the river mouth to three beach compartments located north of the river 
through buried pipelines. �e SDS data (Fig. 3c) depicts a beach widening of ~250 m at Coolangatta Bay in the 
four years a�er the bypass system was commissioned.

d) Interception of longshore dri� by coastal structures. �e construction of two training breakwaters at Praia da 
Barra near the Aveiro Lagoon, Portugal interrupted the high southward ambient alongshore transport estimated 
at about 1 million m3/yr42. �is resulted in erosion at the south of the trained inlet a�ecting the shoreline over 
about 30 km downdri�, but also strong accretion updri�. �e SDS data reveals the continuous and ongoing accre-
tion of the northern beach at a rate of about 10 m/yr (Fig. 3d).

Global hot spots of erosive and accretive beaches. Here we present the top eroding and accreting 
coastal stretches (i.e. hot spots) in the world (Table 2). �e largest erosive hot spot is just south of Freeport in 
Texas where a 17 km stretch the beach has eroded on average more than 15 m/yr over the last three decades. �e 
world’s longest coastal stretch su�ering severe erosion is located farther to the east in Texas where we observed 
a 29 km stretch of sandy beach with a mean erosion rate of 5.3 m/yr. Interestingly, four of the seven largest hot 
spots are located in the USA, consistent with the widespread concern and reports of erosion in the USA11,35,43,44.

�e largest accretive hot spot is in Namibia at a location where a mining company has built unprotected sandy 
bunds in the sea to facilitate the diamond prospecting. �e area landward of the bunds is dried out to enable more 
convenient diamond prospecting. Naturally accreting beaches of lengths exceeding 20 km and change rates larger 
than 7 m/yr are found at a migrating barrier island (Schiermonnikoog, �e Netherlands) and at locations where 
sand dunes migrate into the sea (Madagascar and Mauritania). It is noteworthy that four of the seven largest 
accretive hot spots are in fact human-induced.

Outlook. In the near future we foresee great potential for remote sensing techniques and big data analysis in 
operational monitoring of the World’s coast and beaches. �e global sandy shoreline change analysis presented 
herein is primarily based on Landsat imagery with 30 m resolution and a revisit time of 16 days. In recent years new 
satellites (Sentinel-2a,b) that will signi�cantly enrich the satellite imagery data both in temporal (revisit time of a few 
days) and spatial resolution (<10 m) have been launched. At present, private institutions already provide satellite 

Figure 2. Global hotspots of beach erosion and accretion; the red (green) circles indicate erosion (accretion) 
for the four relevant shoreline dynamic classi�cations (see legend). �e bar plots to the right and at the bottom 
present the relative occurrence of eroding (accreting) sandy shorelines per degree latitude and longitude, 
respectively. �e numbers presented in the main plot represent the average change rate for all sandy shorelines 
per continent. Map is created with Python 2.7.12 (https://www.python.org) using Cartopy (v0.15.1. Met O�ce 
UK. https://pypi.python.org/pypi/Cartopy/0.15.1) and Matplotlib58.

https://www.python.org
https://pypi.python.org/pypi/Cartopy/0.15.1
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images at approx. 1 m resolution with a daily revisit and global coverage. We expect that this trend will demand more 
emphasis on big data statistics in the near future to closely and better monitor how the planet is changing.

Methods
�e work�ow applied in this study comprises three methods as discussed below and illustrated in Fig. 4.

Global transect system. For global analysis and visualization purposes, we de�ned 500 m spaced transects 
orthogonal to the global shoreline from the OpenStreetMap45 (OSM) dataset of 2016. �e length of the global 
shoreline, as well as per country, are calculated by summing straight intercepts between the transects. �e total 
length of the world’s ice-free shoreline determined from this analysis is 1.11 million km, which is comparable with 

Figure 3. Examples of the satellite derived shorelines for four selected cases of beach erosion and accretion due 
to human interventions. �e le� column presents two erosive cases while the right column shows two accretive 
cases. In each �gure, the blue line indicates the oldest SDS shoreline while the red line is the most recent SDS 
shoreline. �e graphs below indicate the shoreline positions over time at the white dashed transect for each case; 
the upper graphs correspond to the images on the upper row. �e indicated change rates (m/yr) are obtained 
from �tting a line-of-best �t to the shoreline position data for each transect. Figure is created with Python 
2.7.12 (https://www.python.org) using Matplotlib58. Maps are created with QGIS version 2.18.3 (Open Source 
Geospatial Foundation Project, http://qgis.osgeo.org) using satellite images provided by Google Maps. Map 
data: Google, Terrametrics, CNES/Airbus, IGP/DGRF, and DigitalGlobe.

https://www.python.org
http://qgis.osgeo.org
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previously reported values of 1 million km3, 1.16 million km46, and 1.47 million km47. In the future, we intend to 
merge the 500 m transect system with locally available grids and re�ne it where appropriate.

Detection of sandy beaches. Sandy beaches are detected by applying a pixel-based supervised classi�-
cation to a global Top of Atmosphere (TOA) re�ectance percentile composite image for the year 2016 using all 
available Sentinel-2 images. To facilitate this, the world has been divided into boxes of 20 km × 20 km. Using the 
2016 OSM shoreline, we only select the boxes that intersect with the 2016 shoreline, which results in about 24,000 
boxes to be analysed. To train the supervised classi�er, a beach area consisting entirely of sand is selected (at the 
Dutch Texel island) as well as training areas on land representing di�erent types of land use. To select the most 
promising classi�cation algorithm, the validation results were quantitatively compared to the sandy beach fea-
ture in OSM. From the four considered classi�cation algorithms, the Classi�cation and Regression Tree (CART) 
classi�er resulted in the lowest omission error and the highest percentage of true positives (97%) using the beach 
features in a 100 km long section of sandy beaches along the Dutch coast.

Next, we apply the trained supervised classi�cation method to all boxes to detect sandy beaches at global scale 
as the OSM beach feature is not available for the entire globe. A search area of 500 m land- and seaward of the 
2016 OSM shoreline is de�ned, a�er which the supervised classi�cation is conducted using GEE to automatically 
detect sandy beaches. �e result is a series of polygons encapsulating all sandy beaches worldwide, including 
both quartz and carbonate sands, and gravel. More than 50 sand validation locations, randomly spread across the 
world, were selected independently from the training dataset. Validation through visual inspection resulted in 
96% accuracy (see Supplementary Material S1).

Transects that intersect with a sandy polygon are classi�ed as ‘sand’ and others as ‘non-sand’. Transects for 
which no sand classi�cation could be made due to the absence of a cloud-free Sentinel-2 image are labelled 
as ‘undetermined sediment composition’. As this is applicable for 5.2% of all transects the percentage of sandy 
beaches is 31% ± 1.5%, assuming that the unknown areas behave similar to the global mean.

Dynamic shoreline detection. To remove the e�ects of clouds, shadows, snow, and ice, we generate yearly 
top-of-the-atmosphere re�ectance composites, which we then use to estimate an accurate surface water mask 
using dynamic thresholding method described in ref.48. Yearly composite images generated by the 15% re�ectance 
percentiles per pixel were analysed to determine global shoreline positions, resulting in the removal of clouds 
and shadows. �is approach is comparable to how Hansen49 generates composite images. However, the use of an 
exact percentile value turns out to be more suitable than the interval mean averages used in that study. Analysis 
of the composite images signi�cantly decreases the in�uence of the tidal stage on the detected shoreline positions 
and averages out seasonal variability in wave and beach characteristics. Nevertheless, at sites with persistent swell 
conditions the wave-induced foam due to wave breaking will introduce a seaward o�set in detected shorelines. 
Fortuitously, however, this persistency ensures that the wave-induced o�set is most likely also present in annual 
composites and shorelines of other years. �us, the wave e�ects on detected shorelines are likely to be limited, 
especially where long-term shoreline change rates at such sites are concerned.

For validation purposes with long-term in-situ shoreline changes, an optimal averaging period of 192 days is 
applied; i.e. the �rst integer that is found when dividing the global revisiting time of the satellite sensor (16 days) 
by a semidiurnal tidal period (approx. 12 hrs). In case all satellite images in this averaging interval are cloud-free 
the average water level corresponds to mean sea level. �e potential year-to-year random deviation from ‘mean 

Areal change 
Rate (m2/yr)

Mean change 
rate (m/yr)

Length of 
section (km)

Erosive Hot Spot Beaches

Freeport, Texas, USA −258,678 −15.2 17

San Rafael National Park, Chile −243,459 −8.4 29

Rockefeller reserve, Louisiana, USA −192,758 −16.0 12

Nebel island, Germany −175,716 −12.1 15

Esbjerg, Denmark −162,695 −8.1 20

High Island, Texas, USA −155,287 −5.3 29

Hog Island, Virginia, USA −154,848 −13.5 12

Accretive Hot Spot Beaches

Diamond mines, Oranjemund, Namibia* 219,748 8.8 25

Around Karachi Port, Pakistan* 203,752 13.1 16

Schiermonnikoog Island, Netherlands 194,752 9.7 20

Rijnland Coast, Netherlands* 190,105 12.3 16

South Coast of Madagascar 153,573 7.0 22

Port Said, Egypt* 149,133 13.0 12

Mauritania 140,239 6.9 22

Table 2. World’s largest erosive and accretive sandy beach hot spots. Areal change rate is calculated by 
multiplying the length of the section with the mean of the shoreline change trends of all transects in the relevant 
coastal stretch. �e human-induced accretive hot spots are indicated by an asterisk.
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sea level’ due to omitted satellite images is assumed to have a limited e�ect on the 33-year trend of shoreline 
change; this assumption will be veri�ed as part of further research.

Next, the resulting composite images are used to estimate the Normalized Di�erence Water Index (NDWI). 
�e Canny edge detection �lter is used to roughly estimate the position of the water-land transition, followed 
by the use of the Otsu thresholding method50 on a bu�er polygon around the water-land transition to identify 
the most probable threshold to classify water and land on the image. �e detected water lines at the edge of the 
water mask are smoothed using a 1D Gaussian smoothing operation to obtain a gradual shoreline avoiding the 
pixel-induced staircase e�ect. A value of three gives the best results based on the four validation cases; meaning 
that it takes three cells on both sides during the 1D smoothing. �e method may result in several shoreline vectors 
since lakes and small channels are detected. In this case, only the most seaward shoreline position is analysed.

Figure 4. �e procedure followed for deriving shoreline change trends for sandy shorelines using a global 
transect system. �e �gure is compiled using www.draw.io, while the maps in the �gure are made using © 
Mapbox and © OpenStreetMap, available under the Open Database License (https://www.openstreetmap.org/
copyright).

http://www.draw.io
https://www.openstreetmap.org/copyright
https://www.openstreetmap.org/copyright
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Other studies have applied global surface water change and occurrence detection48,51 but they lack valida-
tion with in-situ measured shoreline changes. A number of studies have validated their methods with either 
cross-shore positions at one location19 or over limited spatial scales15. Here we evaluate the validity of the shore-
line detection method for four cases representing di�erent types of beaches, sand, tidal and wave characteris-
tics. Given the geographical spreading, we selected the following beaches with long-term shoreline monitoring 
programs: the Sand Engine (�e Netherlands), Long Beach, WA (West Coast, USA), Narrabeen (Australia) 
and Hatteras Island (East Coast, USA). �e latter case is presented below while the others are presented in the 
Supplementary Material (S2).

Hatteras Island validation. Validation of the shoreline detection method with observed shoreline changes 
was conducted along 63 km of sandy shoreline of Hatteras Island, North Carolina, spanning 13 years52. �e meas-
ured shorelines used in the analysis were generated from georeferenced historical aerial photographs and are used 
to develop shoreline change rate indicators for Hatteras Island, from Oregon Inlet in the North to Cape Hatteras 
in the South. A total of nine aerial photographs, covering the period ranging from 1989 through 2002, were 
obtained by the U.S. Army Corps of Engineers Field Research Facility in Duck, North Carolina. �e high water 
line shorelines were digitized to produce a time series of shorelines for the study area. Rates of shoreline change 
were calculated for 1989–2002 using linear regression.

For the same time period we collated 325 cloud-free satellite images and determined the shoreline position for 
this coastal stretch; the analysis took only 8 hours in total due to the computational power of the GEE platform. 
For each transect a linear regression was performed. �e linear trends calculated from the SDS show good agree-
ment with the observed shoreline change rates (see Fig. 5). �e mean o�set for all transects between observations 
and SDS is 2.0 m with a RMSE of 17 m.

�e Supplementary Material (S2) summarizes the error statistics for all four cases. Based on these validations, 
the shoreline detection method can be concluded to be capable in deriving long-term shoreline change rates for 
a variety of coastal settings. �e average of the o�sets over three validation sites is 2.3 m with a RMSE of 21 m.

Although the quantitative evaluation of the applied shoreline detection method with in-situ observations 
shows good capabilities, more veri�cation is essential. Unfortunately, however, quanti�cation of the in�uence 
of macro-tidal ranges, wave breaking and run up, beach slopes, etc. requires tidal, wave and beach characteristic 
information, which are generally not freely available.

Global change rates for sandy shorelines. For the global application presented here, we generated 
cloud-free annual-composites using the historical Landsat image archive. �e automated shoreline detection 
method produces 33 annual global shorelines (1984–2016) with an alongshore resolution of 30 m. We then speci-
�ed transects at a 500 m alongshore spacing, and determine the intersection point of each transect with the afore-
mentioned annual shorelines, which provides a sequence of shoreline positions per transect. �e shoreline change 
rate (m/yr) at each transect is then computed by applying linear regression to all shoreline positions at that loca-
tion. Ideally, a SDS position is available for each transect annually. However, the availability of satellite images and 
cloud cover can limit the number of SDS positions. Encouragingly, however, 82% of all sandy transects consist 
of more than ten annual shoreline positions between 1984 and 2016. Nevertheless, to avoid unrealistic shoreline 
change rates we applied the following �lters to all sandy transects:

•	  Transects containing less than 5 (out of 33) SDS data points as well as transects with a temporal cover-
age shorter than 7 years are omitted from the analysis (9% of all transects).

•	  Transects located beyond latitudes 60°N and 50°S (including Greenland and Antarctica) are omitted 
from the analysis due to possible ice coverage (9% of all transects).

•	  In the linear regression, outliers are identi�ed as SDS points deviating more than three times the stand-
ard deviation and hence not considered in the regression. If the remaining number of data points is 
smaller than 5 points, then the transect is omitted from the analysis.

Figure 5. Observed trend rates (red dots) and satellite-derived trend rates of shoreline change (blue line) along 
Hatteras Island for the period 1989–2002. Figure is created with Python 2.7.12 (https://www.python.org).

https://www.python.org
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Applying these �lters reduce the global data set to 81% of the original number of sandy transects. �e linear 
regression method used to quantify long-term shoreline change rates performs well in capturing trends of chronic 
sandy shoreline change which is in line with �ndings of Crowell et al.53. However, multiple transects were char-
acterised by unsteady changes in SDS positions for which other methods may be more appropriate. Ultimately, 
more than 60% of the 2.2 million transects show an uncertainty bandwidth of less than 50% of the linear trend 
rate, which can be considered as a proxy for the representativeness of the linear regression method.

�e shoreline change rates, presented at an alongshore resolution of 500 m along the world’s shoreline, will 
become publicly available and be accessible through the interactive website at: http://shorelinemonitor.deltares.nl.

Defining Hot Spots. In order to avoid localized hot spots, it was ensured that each eroding/accreting hot 
spot comprised at least 5 km of sandy shoreline where all considered transects showed either erosive or accretive 
change rates larger than 0.5 m/yr over the 33 year data set.

Two large-scale land reclamations appear in the top seven accretive beaches in the world. One reason is that 
those land reclamations consisted of bare sand in 2016, and hence are recognised as a wide sandy beach area by 
our methodology. �e other reason is that the adjacent shorelines have advanced either due to the beach nourish-
ment schemes or natural accumulation of sand in the shadow zones of these interventions.
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