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Abstract: Some recent advances in the area of multi-reference coupled-cluster the-

ory of the state-universal type are overviewed. An emphasis is placed on the follow-

ing new developments: (i) the idea of combining the state-universal multi-reference

coupled-cluster singles and doubles method (SUMRCCSD) with the multi-reference

many-body perturbation theory (MRMBPT), in which cluster amplitudes of the SUM-

RCCSD formalism that carry only core and virtual orbital indices are replaced by their

first-order MRMBPT estimates; and (ii) the idea of combining the recently proposed

method of moments of coupled-cluster equations with the SUMRCC formalism. It is

demonstrated that the new SUMRCCSD(1) method, obtained by approximating the

SUMRCCSD cluster amplitudes carrying only core and virtual orbital indices by their

first-order MRMBPT values, provides the results that are comparable to those obtained

with the complete SUMRCCSD approach.
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1 Introduction

One of the most important problems in coupled-cluster (CC) theory [1–7] is extension of the

standard single-reference CC approach to quasi-degenerate and excited electronic states. This

can be accomplished by developing the multi-reference generalizations of the CC theory. In this

paper, we focus on the genuine multi-reference CC (MRCC) theories, which are based on the con-

cept of effective Hamiltonian acting in a multi-dimensional reference or model space [4, 6, 8–12]

and which use the exponential CC ansatz to parametrize the solutions of the generalized Bloch

equation [8]. The state-specific (SS) MRCC methods [4, 6], including the active-space CC ap-

proaches of Adamowicz, Piecuch, Bartlett, and their collaborators [13–26] and their more recent

excited-state extensions [27–29], the SSMRCC approach of Mahapatra et al. [30, 31], and the

highly promising Brillouin-Wigner MRCC approach [32–37], will not be discussed in this work,

although the similarity of the wave function ansatz used in the genuine state-universal MRCC

theory [4, 6, 38–59], considered in this paper, and the form of the wave function exploited by the

SSMRCC and Brillouin-Wigner MRCC approaches of Refs. 30, 31 and 32–37, respectively, should

be noted.

The genuine MRCC theories classify as either the Fock-space or valence-universal (VU)

methods [4, 6, 60–99] or the Hilbert-space or state-universal (SU) approaches [4, 6, 38–59]. The

VUMRCC methods, which require a simultaneous consideration of ground and excited states of

a given many-electron system and its ions (different sectors of the Fock space), are excellent for

describing vertical excitation energies, vertical ionization potentials, and vertical electron affini-

ties. Unfortunately, the VUMRCC methods suffer from intruder states and unphysical multiple

solutions [98, 99], which, together with the requirement of considering different sectors of the Fock

space, make accurate VUMRCC calculations of larger portions of molecular potential energy sur-

faces (PESs) rather difficult. In spite of these formal and practical complications, the recent large

scale applications of the VUMRCC methods to realistic atomic and molecular problems (see, e.g.,

Refs. 88–92, 94–97) and the interesting new ideas, such as the idea of exploiting similarity transfor-

mations to separate eigenvalue problems for different valence sectors of the Fock space [93] and the

idea of using the VUMRCC concepts in the so-called similarity transformed equation-of-motion

CC theory [100, 101], show a lot of promise.

The SUMRCC approaches, which do not require a consideration of different sectors of the Fock

space, seem to be well suited for studies of molecular PESs. Indeed, as shown in Refs. 41, 43,

44, 46–50, 54, the PES and property function scans with the SUMRCC methods can be very

successful and highly accurate results can be obtained. The SUMRCC method is also capable of

providing an extremely accurate description of electronic energy separations in small molecular

systems, as has been illustrated by the calculations of the singlet–triplet (A 1A1 −X 3B1) [51, 52]
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and singlet–singlet (2 1A1 − 1 1A1; 1 1A1 ≡ A 1A1) [50] energy gaps in methylene. For example,

the orthogonally spin-adapted (OSA) [102–106] two-reference SUMRCCSD (SUMRCC singles

and doubles) approach [39, 41, 45–50, 54] including all relevant direct and coupling terms [50],

which contrary to the statements made in Ref. 107 represents the most complete formulation

of this method to date, combined with the open-shell CCSD approach [108], gives 3133 cm−1

for the singlet–triplet separation T0. This compares extremely well with the spectroscopically

derived value of T0 of 3147 ± 5 cm−1 [109]. There are open problems in the SUMRCC theory

(cf. the remarks below), but this and other examples show that the SUMRCC theory is a highly

promising formalism, which needs to be developed further. Unfortunately, apart from the earlier

advances in formulating, implementing, and testing the spin-adapted and spin-orbital SUMRCCSD

methods [4, 6, 38–56] and apart from the recent activity in our group (see, e.g., Refs. 57–59) and

the group of Pal [110], who formulated the response SUMRCC theory, the development of the

genuine SUMRCC method has practically stopped, which is a situation that this paper hopes to

change (at least, to some extent).

There are several open problems in the SUMRCC theory that must be addressed if we wish this

method to become a useful alternative for routine and accurate ab initio calculations of ground

and excited-state molecular PESs. There are, for example, problems related to the existence of

multiple [47, 57] and singular [41, 46–49, 57] solutions, intruder states [46, 47, 49, 57], and the exis-

tence of the so-called intruder solutions [57]. The latter solutions are related to a specific algebraic

nature of the generalized Bloch equation, on which the SUMRCC theory is based [111]. The exis-

tence of multiple intruder solutions of the SUMRCCSD equations may cause severe convergence

problems or, at the very least, a significant decrease in accuracy of the calculated electronic en-

ergies in regions of PESs where the electronic states of interest are no longer clearly separated

from the rest of the electronic spectrum [47–49, 57]. There is also a long-standing problem of

generalizing the existing two-reference OSA SUMRCCSD theory [39, 41, 45–50, 54] and its two

electron/two orbital spin-orbital analog [43, 44] to larger reference spaces, which has not been

solved yet in a satisfactory manner. Our recent studies of the solutions of the generalized Bloch

equation [111] clearly demonstrate that the SUMRCC calculations would benefit from using larger

reference spaces. Unfortunately, it is not easy to propose an efficient computational scheme that

would allow us to perform routine SUMRCC calculations for larger reference or model spaces.

Part of the problem is the fact that the wave function ansatz of Jeziorski and Monkhorst [38], on

which all SUMRCC approaches are based, requires that a separate cluster operator T (p) is assigned

to each reference configuration |Φp〉 (p = 1, . . . ,M). Aside from various mathematical difficulties

that this assumption creates, the requirement of having a separate cluster operator T (p) for each

reference configuration |Φp〉 leads to an excessively large number of cluster amplitudes when the

dimension of model space (M) is large and when we are only interested in a few low-lying states.
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The present paper reviews some of our recent work that addresses the above problems. It is

evident from the results described in Ref. 48 and from the comments made in our recent work [111]

that the inclusion of higher–than–doubly excited clusters in the SUMRCC formalism should help

to eliminate at least some of the difficulties encountered in the SUMRCCSD calculations. The

existence of multiple and pathological solutions of the SUMRCCSD equations is largely related

to an asymmetric treatment of the excitation manifolds corresponding to different reference con-

figurations and to a nonlinear nature of the generalized Bloch equation [57, 111], so that the

standard corrections due to triply [53] and other higher–than–doubly excited clusters, based on

the multi-reference many-body perturbation theory (MRMBPT) [112–114], do not eliminate these

problems. As a matter of fact, the use of the standard, MRMBPT-based estimates of higher-order

corrections within the SUMRCC formalism is a rather risky procedure, since the MRMBPT ap-

proach suffers from intruder states in regions where the SUMRCCSD approach fails. In our view,

it is more important to examine first the mathematical relationship between the approximate and

exact SUMRCC formalisms, so that one can suggest new ways of systematically correcting the

results of the SUMRCC calculations, particularly in all these difficult cases where the conventional

MRMBPT arguments fail. Clearly, it would be highly desirable to have a simple method of cor-

recting the energies of electronic states obtained in the SUMRCC calculations in a state-specific

and non-iterative manner that would resemble the well-known noniterative a posteriori correc-

tions due to triples or triples and quadruples characterizing, for example, the popular CCSD(T)

method [115] and its CCSD(TQf) analog [116].

We have recently suggested an approach, termed the method of moments of the state-universal

multi-reference coupled-cluster equations (MM-SUMRCC), which provides us with simple recipes

for systematically improving the SUMRCCSD results by adding the state-specific noniterative

corrections due to triples and other higher–than–doubly excited clusters to the energies obtained

by solving the SUMRCCSD equations [117]. The MM-SUMRCC approach differs from the stan-

dard multi-reference approaches in that, in computing the energy corrections due to higher-order

clusters, in the MM-SUMRCC theory we rely on the explicit and rigorous relationship between

the energies obtained in the SUMRCC (e.g., SUMRCCSD) calculations and the exact energy

values. In the standard multi-reference methods, we can only hope that by adding sufficiently

many higher-order terms to the equations representing low-order approaches, one obtains better

results; the control over the choice of higher-order terms is limited by the fact that we use the

MRMBPT or similar arguments, which may not be sufficiently transparent in situations where the

MRMBPT approach suffers from intruder states. The MM-SUMRCC theory, which is a multi-

reference analog of the recently developed method of moments of the single-reference [7, 118–121]

and equation-of-motion [121–123] CC equations, is overviewed in this paper.
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We also discuss the recently proposed SUMRCCSD(1) approach, which is based on the idea of

combining the SUMRCCSD method with the MRMBPT approach [59]. In the SUMRCCSD(1)

method, we approximate the doubly excited cluster amplitudes that carry only core and virtual

orbital indices by their first-order MRMBPT estimates. In addition, we assume that the singly

excited cluster amplitudes corresponding to core–virtual excitations vanish. As we discuss it in

this paper, both assumptions lead to a completely symmetric treatment of the core–virtual cluster

amplitudes of the SUMRCCSD theory, which in the SUMRCCSD(1) method no longer depend on

the reference label p. The more symmetric treatment of the excitation manifolds corresponding

to different reference configurations in the SUMRCCSD(1) method may have a positive effect

on the calculated energies, while offering us considerable savings in the computer effort. In the

SUMRCCSD theory, each individual core–virtual excitation is represented by as many independent

cluster amplitudes as the number of reference configurations, although in the intuitive description

we would only use as many independent cluster amplitudes for a given core–virtual excitation as the

number of electronic states of interest. In the SUMRCCSD(1) method, we simplify this situation

to the utmost by replacing many sets of cluster amplitudes carrying core and virtual orbital indices,

each labeled by the corresponding reference label p, by a single set. Moreover, instead of solving

for cluster amplitudes carrying only core and virtual indices, in the SUMRCCSD(1) approach

we approximate them by the simple first-order MRMBPT expressions. This leads to additional

savings in the computer effort. Since core–virtual excitations are known to be rather insensitive

to nuclear geometry [124], the molecular PESs resulting from the SUMRCCSD(1) calculations

should be virtually parallel to the SUMRCCSD PESs.

Whenever possible, we illustrate our new ideas with the examples of numerical calculations.

Some examples are taken from our recent work [59], while some other examples are new. We hope

that this overview of our recent efforts in the area of MRCC theory will stimulate further activity

aimed at the development of accurate and practical genuine MRCC methods of the state-universal

type that may one day be used in routine ab initio calculations.

2 The State-Universal Multi-Reference Coupled-Cluster Theory

As mentioned in the Introduction, the SUMRCC theory belongs to a wider category of methods

which are referred to as the genuine MRCC approaches. All genuine MRCC methods involve

three basic concepts, namely, that of the multi-dimensional model or reference space M0, that of

the wave operator U , and that of the effective Hamiltonian Heff [4, 6]. Alternative formulations of

genuine multi-reference methods, in which the effective Hamiltonians are obtained by similarity

transformations of the Hamiltonian (this frees us from the necessity of solving for the wave oper-

ator) can be developed [93, 125] (cf., also, Refs. 9, 10, 40), but we do not use them here, since the
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SUMRCC theory of Jeziorski and Monkhorst [38] is based on the exponential parameterization of

the wave operator and solving the generalized Bloch equation for the wave operator represented

by the Jeziorski-Monkhorst ansatz.

The model space M0,

M0 = ls{|Φp〉}M
p=1 , (1)

is spanned by a suitably chosen set of M configuration state functions |Φp〉, p = 1, . . . ,M , that

provide a reasonable zero-order description of the target space,

M = ls{|Ψµ〉}M
µ=1 , (2)

spanned by M quasi-degenerate eigenstates |Ψµ〉, µ = 1, . . . ,M , of the electronic Hamiltonian H.

The wave operator U : M0 → M is defined as a one–to–one mapping between M0 and M. It is

usually assumed that U satisfies the intermediate normalization condition,

PU = P, (3)

where P is the projection operator onto M0,

P =
M∑

p=1

P (p) , P (p) = |Φp〉〈Φp|. (4)

It is also assumed that U annihilates states belonging to the orthogonal complement M⊥
0 , so that

UQ = 0, (5)

where

Q = 1 − P. (6)

Equations (3) and (5) immediately imply that U2 = U , so that the wave operator U , just like

operators P and Q, is idempotent. However, unlike P and Q, the wave operator U is not Hermitian,

U �= U †.
The wave operator U is obtained by solving the equation,

HU = UHU, (7)

which is known in the literature as the generalized Bloch equation [4, 6, 8–10, 78]. Once the wave

operator is determined, the energies Eµ of the electronic states |Ψµ〉, µ = 1, . . . ,M , are obtained

by diagonalizing the effective Hamiltonian,

Heff ≡ Heff(U) = PHU = PHUP, (8)
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within M0. The corresponding wave functions |Ψµ〉 are calculated using the formula,

|Ψµ〉 = U |χµ〉 (µ = 1, . . . ,M), (9)

where the zero-order states,

|χµ〉 ≡ P |Ψµ〉 ∈ M0, (10)

are the right eigenstates of Heff ,

Heff |χµ〉 = Eµ|χµ〉 (µ = 1, . . . ,M). (11)

In the SUMRCC formalism, we use the Jeziorski-Monkhorst ansatz for the wave operator U ,

i.e. [38],

U =
M∑

p=1

eT (p)

P (p), (12)

where T (p) is the cluster operator corresponding to reference configuration |Φp〉. The intermediate

normalization condition, Eq. (3), requires that each T (p) generates states belonging to M⊥
0 , when

acting on the corresponding |Φp〉. The wave operator U , Eq. (12), reduces to the well-known

wave operator of the single-reference CC theory, USRCC = eT |Φ〉〈Φ|, when model space M0 is a

one-dimensional space spanned by a single reference configuration |Φ〉.
In order to define the remaining elements of the SUMRCC theory, we must specify the method

of constructing the model space M0 and cluster operators T (p). As in all multi-reference ab initio

methods, in order to define the reference configurations |Φp〉, we divide all molecular spin-orbitals

into the three disjoint subsets of core, active, and virtual spin-orbitals. The core spin-orbitals

(designated by i, j, . . .) are occupied and the virtual ones (designated by a,b, . . .) are unoccupied

in all reference configurations |Φp〉, p = 1, . . . ,M . The reference configurations differ in the

occupancies of active spin-orbitals (designated by I,J, . . . , for spin-orbitals occupied in a given

reference determinant |Φp〉, and by A,B, . . . , for spin-orbitals unoccupied in this |Φp〉). All

possible distributions of active electrons among active spin-orbitals result in a complete model (or

active) space (CAS). The use of CAS is essential to obtain size extensive results [38], although it is

possible to formulate the size extensive SUMRCC method employing incomplete model spaces by

relaxing the intermediate normalization condition [126, 127]. In this paper, we consider the CAS

formulation of the SUMRCC theory.

In analogy to the standard single-reference CC theory, each cluster operator T (p) is a sum of

its many-body components T (p)
n . In the exact SUMRCC formalism,

T (p) =
N∑

m=1

T (p)
m , (13)
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where N is the number of electrons in a system under consideration. In the standard SUMRCC

approximations, the many-body expansion of each cluster operator T (p) is truncated at some (usu-

ally low) excitation level. Thus, if mA is the excitation level defining a given standard SUMRCC

approximation, referred here and elsewhere in this work to as method A, the corresponding cluster

operators T (p) have the following form:

T
(p)
A =

mA∑

m=1

T (p)
m . (14)

Note that the value of mA is the same for all values of p. The SUMRCCSD method is obtained

by setting mA = 2.

In a conventional SUMRCC theory of Jeziorski and Monkhorst [38], the system of coupled

nonlinear equations for the unknown cluster operators T (p)
m is obtained by replacing Eq. (7) by the

equation HU |Φp〉 = UHU |Φp〉, where U is defined by Eq. (12), premultiplying this equation on

the left by e−T (p)
, and projecting the resulting equation on the excited configurations relative to

|Φp〉 belonging to M⊥
0 . The final equations for cluster operators T (p)

m defining the exact SUMRCC

theory can be written as follows:

Λ
(p)
d (((p)EK)†) = Λ(p)

c (((p)EK)†) (p = 1, . . . ,M) , (15)

where the left-hand side direct term is defined as

Λ
(p)
d (((p)EK)†) ≡ 〈Φp|((p)EK)† (e−T (p)

HeT (p)

)|Φp〉 (p = 1, . . . ,M) , (16)

and the right-hand side coupling term, which reflects the multi-reference nature of the SUMRCC

theory, takes the form

Λ(p)
c (((p)EK)†) ≡

M∑

q=1(q �=p)

〈Φp|((p)EK)† (e−T (p)

eT (q)

)|Φq〉Heff
qp (p = 1, . . . ,M). (17)

The operators (p)EK are the excitation operators, generating the excited configurations relative to

|Φp〉 belonging to M⊥
0 , when acting on |Φp〉. These operators are also used to represent cluster

operators T (p),

T (p) =
∑

K

(p)tK
(p)EK , (18)

where coefficients (p)tK are the corresponding cluster amplitudes. Because of this representation,

the system of equations, Eq. (15), represents a system of coupled nonlinear algebraic equations for

cluster amplitudes (p)tK . For the complete model space M0, the excitation operators (p)EK and

cluster amplitudes (p)tK carry at least one inactive (i.e., core or virtual) spin-orbital index [38].
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The Heff
qp quantities entering the coupling term Λ(p)

c (((p)EK)†), Eq. (17), are the matrix elements

of the SUMRCC effective Hamiltonian,

Heff
pq = 〈Φp|Heff |Φq〉 = 〈Φp|HU |Φq〉 = 〈Φp|e−T (q)

HeT (q)|Φq〉. (19)

Once the system of equations, Eq. (15), is solved and matrix elements of the effective Hamiltonian

are constructed, we calculate the final SUMRCC energies Eµ and the corresponding zero-order

states |χµ〉, µ = 1, . . . ,M, by diagonalizing the effective Hamiltonian matrix in model space M0,

as described above [cf. Eq. (11)]. The SUMRCC wave functions |Ψµ〉 are obtained by applying

the wave operator U , Eq. (12), to zero-order states |χµ〉. We obtain [cf. Eqs. (9) and (12)],

|Ψµ〉 =
M∑

p=1

cpµ eT (p)|Φp〉 (µ = 1, . . . ,M), (20)

where coefficients

cpµ = 〈Φp|χµ〉 (21)

are determined by solving an eigenvalue problem involving Heff in M0, Eq. (11).

The above equations defining the exact SUMRCC theory, particularly Eqs. (15)–(17) and (19),

can be rewritten in a somewhat more symbolic form, namely,

P [(HeT (p)

)C − Heff ]|Φp〉 = 0 (p = 1, . . . ,M), (22)

Q(p)[(HeT (p)

)C −
M∑

q=1(q �=p)

e−T (p)

eT (q)

P (q)Heff ]|Φp〉 = 0 (p = 1, . . . ,M), (23)

where subscript C designates the connected part of the corresponding operator expression. In

deriving Eqs. (22) and (23), we used the well-known fact that [4, 6, 7]

e−T (p)

HeT (p)|Φp〉 = (HeT (p)

)C |Φp〉. (24)

Operator P appearing in Eq. (22) is the projection operator onto M0 defined by Eq. (4), whereas

operators Q(p) appearing in Eq. (23) are the projection operators onto the manifolds of excited

configurations relative to |Φp〉 belonging to M⊥
0 that are generated by excitation operators (p)EK .

If Q(p)
n designates a projection operator onto the subspace of M⊥(p)

0 ≡ Q(p)M⊥
0 spanned by the

n-tuply excited configurations relative to |Φp〉 that belong to M⊥
0 , we can write

Q(p) =
N∑

n=1

Q(p)
n . (25)
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In the exact theory, all manifolds of excitations M⊥(p)
0 , used to define cluster operators T (p),

are identical, i.e., M⊥(p)
0 = M⊥

0 for all p = 1, . . . ,M . This is a consequence of the fact that

N∑

n=1

Q(p)
n ≡ Q(p) = Q, (26)

independent of the value of p. Because of this symmetric treatment of the manifolds of excitations

corresponding to different references |Φp〉, the exact SUMRCC method is completely equivalent

to an eigenvalue problem for eigenstates |Ψµ〉, µ = 1, . . . ,M [111] (see, also, Ref. 117). This is

no longer the case, when cluster operators T (p) are truncated in a standard manner according to

Eq. (14). Indeed, in the standard SUMRCC approximations, the system of equations (22) and

(23) is replaced by a truncated system of equations for the many-body components T (p)
m of cluster

operators T
(p)
A , namely,

P [(HeT
(p)
A )C − Heff

A ]|Φp〉 = 0 (p = 1, . . . ,M), (27)

Q
(p)
A [(HeT

(p)
A )C −

M∑

q=1(q �=p)

e−T
(p)
A eT

(q)
A P (q)Heff

A ]|Φp〉 = 0 (p = 1, . . . ,M), (28)

where operators T
(p)
A are defined by Eq. (14), Heff

A is the effective Hamiltonian of the approximate

SUMRCC method A, and Q
(p)
A is a projection operator onto the excited configurations used to

define T
(p)
A , i.e.,

Q
(p)
A =

mA∑

n=1

Q(p)
n . (29)

The manifolds of excitations M⊥(p)
0,A ≡ Q

(p)
A M⊥

0 ⊂ M⊥
0 , used to define the truncated cluster

operators T
(p)
A , are usually different for different reference configurations |Φp〉 (cf., e.g., the lists of

excitations (p)EK , corresponding to different references |Φp〉 of the OSA SUMRCCSD formalism of

Refs. 39, 41, 45–50, 54, given in Ref. 47). As pointed out in Ref. 111, this asymmetric treatment

of the manifolds of excitations corresponding to different reference configurations causes that the

approximate SUMRCC schemes based on Eqs. (27) and (28) (including the existing SUMRCCSD

methods) are not equivalent to any Hermitian eigenvalue problem. This significant distortion of

the exact SUMRCC theory, resulting from the truncation of the many-body expansions of all

operators T (p) at the same excitation level mA, leads to a number of pathologies in approximate

SUMRCC calculations based on Eqs. (27) and (28). These pathologies include the existence

of an excessive number of real and complex solutions that lack physical interpretation and the

appearance of the intruder solution problem [57]. The multi-reference extension of the MMCC

theory, which we recently suggested in Ref. 117, and which we overview in the next section, offers

a possibility of reducing the severity of problems encountered in the standard SUMRCC (e.g.,
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SUMRCCSD) calculations by incorporating higher-order effects in the SUMRCC formalism and

by reinforcing the symmetric treatment of the M⊥(p)
0,A subspaces.

3 A New Type of the Noniterative Corrections to Multi-Reference Coupled-Cluster

Energies: The Method of Moments of the State-Universal Multi-Reference

Coupled-Cluster Equations

As mentioned in the Introduction, inclusion of higher–than–doubly excited clusters in the SUM-

RCC formalism should help to eliminate some pathologies that are encountered in the SUMRCCSD

calculations. Although one can suggest ways of improving the SUMRCCSD results by adding the

corrections due to triply excited clusters based on the standard MRMBPT theory [53], the use of

the MRMBPT arguments in constructing such corrections may, in general, be a risky procedure,

since the MRMBPT approach is often plagued by intruder states. Undoubtedly, it would be useful

to have an alternative method of correcting the SUMRCCSD results, which does not necessarily

rely on the standard MRMBPT arguments.

We have recently introduced a new, nonstandard method of correcting the results of various CC

calculations, termed the method of moments of coupled-cluster equations (MMCC) [7, 117–123].

The main idea of the MMCC formalism is that of the noniterative energy corrections which, when

added to the energies obtained in approximate CC or equation-of-motion CC (EOMCC) [128–130]

calculations, such as CCSD or EOMCCSD, recover the exact (full configuration interaction or full

CI) energies of ground or excited states. It has been demonstrated that the MMCC formalism

allows us to renormalize the existing noniterative single-reference CC approximations, such as

CCSD(T) [115], CCSD(TQf) [116], and CCSDT(Qf) [116], so that they can correctly describe en-

tire ground-state PESs in situations where the standard arguments based on MBPT, on which the

CCSD(T), CCSD(TQf), and similar approximations are based, completely

fail [7, 26, 117–121, 131–133] (cf., also, Ref. 134 for a rederivation of the renormalized CCSD(T) ex-

pressions, published one year earlier in Refs. 7, 118, 119, and for some additional tests). It has also

been demonstrated that the EOMCC-based excited-state MMCC theory allows us to introduce

a new hierarchy of simple noniterative EOMCC approximations that remove the pervasive fail-

ing of the EOMCCSD and perturbative EOMCCSDT approximations in describing excited-state

PESs [122, 123]. Clearly, the MMCC methodology provides us with new ways of systematically

improving the CC or EOMCC results by adding simple noniterative corrections to the CC or

EOMCC energies. Thus, it might be useful to investigate the possibility of extending the MMCC

formalism to a multi-reference case.

Encouraged by the remarkable performance of the single-reference MMCC approximations, we

have recently generalized the MMCC formalism to a multi-reference case by proposing the method
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of moments of the state-universal multi-reference coupled-cluster equations (MM-SUMRCC) [117].

The main idea of the MM-SUMRCC theory is that of the noniterative, state-specific energy

corrections

δµ = Eµ − EA
µ (µ = 1, . . . ,M), (30)

which, when added to energies EA
µ , obtained by solving the approximate SUMRCC (e.g., SUMR-

CCSD) equations, recover the exact (full CI) energies Eµ of the electronic states of interest. The

main purpose of the approximate MM-SUMRCC calculations is to estimate corrections δµ, so that

the resulting energies EA
µ + δµ remain very close to the corresponding exact energies Eµ.

Each correction δµ is a nontrivial functional of the corresponding exact electronic wave function

|Ψµ〉 and the generalized moments of the SUMRCC equations, i.e., the SUMRCC equations pro-

jected on the excited configurations whose excitation level exceeds that defining a given SUMRCC

approximation. The precise mathematical definition of the generalized moments of the SUMRCC

equations, which is consistent with Eq. (28) and which is used in the MM-SUMRCC formalism

of Ref. 117, is as follows:

Γ(p)
m (mA)|Φp〉 = Q(p)

m [(HeT
(p)
A )C −

M∑

q=1(q �=p)

e−T
(p)
A eT

(q)
A P (q)Heff

A ]|Φp〉 ≡ [(HeT
(p)
A )C

−
M∑

q=1(q �=p)

e−T
(p)
A eT

(q)
A P (q)Heff

A ]m|Φp〉 (m = 1, . . . , N ; p = 1, . . . ,M), (31)

where [. . .]m designates the m-body component of the corresponding operator expression. The

generalized moments Γ(p)
m (mA)|Φp〉, Eq. (31), can be viewed as the most fundamental quantities

of the Jeziorski-Monkhorst theory, as defined by Eqs. (27) and (28), since the system of equations

for the many-body components of cluster operators T
(p)
A , p = 1, . . . ,M , Eq. (28), is immediately

obtained by imposing a requirement that the lowest moments Γ(p)
m (mA)|Φp〉, with m = 1, . . . ,mA,

vanish, i.e.,

Γ(p)
m (mA)|Φp〉 = 0 (m = 1, . . . ,mA; p = 1, . . . , M) . (32)

The generalized moments Γ(p)
m (mA)|Φp〉, which enter the formula for the noniterative corrections

δµ, Eq. (30), are those with m > mA. As shown in Ref. 117, the explicit formula for corrections

δµ, in terms of moments Γ(p)
m (mA)|Φp〉, is as follows:

δµ = Eµ − EA
µ = (dA

µ )−1
M∑

p=1

cA
pµ

N∑

n=mA+1

n∑

m=mA+1

〈Ψµ|(eT
(p)
A )n−m Γ(p)

m (mA)|Φp〉, (33)

where cA
pµ = 〈Φp|χA

µ 〉 are the coefficients defining the model-space states

|χA
µ 〉 =

M∑

p=1

cA
pµ|Φp〉, (34)
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obtained by diagonalizing the effective Hamiltonian of the approximate SUMRCC method A in

M0,

dA
µ = 〈Ψµ|ΨSUMRCC-A

µ 〉 (35)

is an overlap of the exact wave function |Ψµ〉 and the SUMRCC wave function

|ΨSUMRCC-A
µ 〉 =

M∑

p=1

cA
pµ eT

(p)
A |Φp〉, (36)

obtained with method A, and (eT
(p)
A )n−m is the (n − m)-body component of eT

(p)
A .

The derivation of Eq. (33) is based on considering the energy functional

Λ[Ψ, χ] = 〈Ψ|(HUA − UAHUA)|χ〉/〈Ψ|UA|χ〉 = 〈Ψ|(HUA − UAHeff
A )|χ〉/〈Ψ|UA|χ〉, (37)

where [cf. Eq. (12)]

UA =
M∑

p=1

eT
(p)
A P (p) (38)

is an approximate wave operator obtained by solving the SUMRCC equations of method A, |χ〉 is

a state belonging to M0, and |Ψ〉 is an N -electron wave function. For |Ψ〉 = |Ψµ〉 and for |χ〉 equal

to the corresponding eigenstate |χA
µ 〉 of the effective Hamiltonian Heff

A , we immediately obtain

Λ[Ψµ, χ
A
µ ] = Eµ − EA

µ ≡ δµ. (39)

The derivation of Eq. (33) proceeds as follows: First, we show the following general relationship

[117]:

Λ[Ψ, χ] =
M∑

p=1

N∑

n=1

〈Ψ|M (p)
n (mA)|Φp〉〈Φp|χ〉/〈Ψ|UA|χ〉, (40)

where

M (p)
n (mA)|Φp〉 = Q(p)

n (HUA − UAHeff
A )|Φp〉. (41)

Next, we prove that quantities M (p)
n (mA)|Φp〉 can be expressed in terms of the SUMRCC moments

Γ(p)
m (mA)|Φp〉,

M (p)
n (mA)|Φp〉 =

n∑

m=1

(eT
(p)
A )n−m Γ(p)

m (mA)|Φp〉. (42)

The substitution of Eq. (42) into Eq. (40) and the use of the fact that in method A the lowest

moments Γ(p)
m (mA)|Φp〉, with m = 1, . . . ,mA, vanish [cf. Eq. (32)] allow us to write

Λ[Ψ, χ] =
M∑

p=1

N∑

n=mA+1

n∑

m=mA+1

〈Ψ|(eT
(p)
A )n−m Γ(p)

m (mA)|Φp〉〈Φp|χ〉/〈Ψ|UA|χ〉. (43)
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By setting |Ψ〉 = |Ψµ〉 and |χ〉 = |χA
µ 〉 in Eq. (43) and using Eqs. (38) and (39), we obtain the

desired Eq. (33).

Equation (33) is the basic equation of the MM-SUMRCC theory. We can use it to improve the

results of approximate SUMRCC calculations in the following way: First, we solve the equations

of a given SUMRCC method, Eqs. (27) and (28), to determine the cluster operators, T
(p)
A , p =

1, . . . ,M , and the corresponding effective Hamiltonian, Heff
A . Next, we construct the generalized

moments Γ(p)
m (mA)|Φp〉 with m > mA using Eq. (31). Finally, we use cluster operators T

(p)
A ,

generalized moments Γ(p)
m (mA)|Φp〉, and the right eigenvectors of Heff

A , i.e., cA
µ = (cA

1µ, . . . , c
A
Mµ), to

calculate corrections δµ with the help of Eq. (33).

We should also note the formal similarity of Eq. (33) and the single-reference MMCC energy

formula discussed in Refs. 7, 118, 119 (for a review, see Ref. 121). Indeed, in the single-reference

(M = 1) case, the dA
µ denominator term in Eq. (33) reduces to 〈Ψµ|eT

(1)
A |Φ1〉, since the model-space

state |χA
µ 〉 becomes proportional to the reference configuration |Φ1〉. In addition, when M = 1,

the generalized moments of the SUMRCC equations, Eq. (31), reduce to the generalized moments

of the single-reference CC equations defined in Refs. 7, 118, 119. We obtain [cf. Eq. (31)],

Γ(1)
m (mA)|Φ1〉 = Q(1)

m (HeT
(1)
A )C |Φ1〉 ≡ Mm(mA)|Φ1〉, (44)

where Mm(mA)|Φ1〉 are the generalized moments of the single-reference CC equations. The sub-

stitution of Eq. (44) into the M = 1 variant of Eq. (33) leads to the following result:

δµ =
N∑

n=mA+1

n∑

m=mA+1

〈Ψµ|(eT
(1)
A )n−m Mm(mA)|Φ1〉/〈Ψµ|eT

(1)
A |Φ1〉, (45)

which clearly is the single-reference MMCC energy formula, provided that we identify T
(1)
A and

|Φ1〉 with, respectively, the cluster operator and the reference configuration of the standard single-

reference CC method.

The exact form of Eq. (33) cannot be used in practical calculations, since we usually do not know

the exact (full CI) wave functions |Ψµ〉, µ = 1, . . . ,M . However, we can calculate the approximate

values of corrections δµ which, when added to the SUMRCC energies EA
µ , may give very good

estimates of the exact energies Eµ, if we use simple estimates of wave functions |Ψµ〉, provided

by one of the relatively inexpensive ab initio methods. Independent of the approximate form

of |Ψµ〉 chosen for such calculations, corrections δµ can be calculated in a state-specific manner.

Our belief that simple estimates of wave functions |Ψµ〉 may be sufficient to obtain accurate δµ

values is based on the success of the single-reference MMCC methods and their renormalized CC

analogs [7, 26, 117–123, 131–134], in which simple perturbative or CI wave functions are used to

construct the relevant energy corrections.
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For example, we can use wave functions |Ψµ〉 obtained in truncated multi-reference CI (MRCI)

calculations (using, e.g., the popular MRCISD method or one of its approximate variants) and use

the resulting corrections δµ to improve the results of the SUMRCCSD calculations (the mA = 2

case). We can also think of using the CISDt or CISDtq [7, 120, 122, 123] approaches, in which

triply and quadruply excited configurations of the single-reference CI method are selected via

active orbitals, to construct wave functions |Ψµ〉 in Eq. (33). In either case, we should be able

to significantly improve the quality of the SUMRCCSD results and reinforce a fully symmetric

treatment of the manifolds of excitations corresponding to different reference configurations, which

is broken by the SUMRCCSD and other SUMRCC approximations. Indeed, when mA < N ,

the M⊥(p)
0,A = Q

(p)
A M⊥

0 ⊂ M⊥
0 subspaces spanned by the excited configurations relative to |Φp〉

are usually different for different p values. As mentioned earlier, this asymmetric treatment of

manifolds of excitations corresponding to different references |Φp〉 causes that the conventional

SUMRCC approaches based on Eqs. (27) and (28) are not equivalent to any Hermitian eigenvalue

problem which, in turn, leads to various problems in SUMRCC calculations. However, if we do not

truncate the summations over n and m in Eq. (33) in any arbitrary manner and if we simply let the

projection onto a suitably chosen approximate wave function |Ψµ〉 select terms in the summations

over p, n, and m in the numerator of Eq. (33), we will obtain a fully symmetric treatment

of the M⊥(p)
0,A subspaces corresponding to different references |Φp〉. In order for this scheme to

work, we only have to assume that the CI expansions of wave functions |Ψµ〉 contain some M⊥
0

configurations whose excitation level relative to at least one of the M references |Φp〉 exceeds mA.

This is certainly true for the MRCISD wave functions and their CISDt and CISDtq analogs if we are

interested in correcting the SUMRCCSD results. The projection onto |Ψµ〉 in the numerator of Eq.

(33) will select precisely those subsets of the generalized moments Γ(p)
m (mA)|Φp〉 (usually, different

subsets of Γ(p)’s for different values of p) that are needed to restore a symmetric treatment of the

manifolds of excitations in the approximate SUMRCC (e.g., SUMRCCSD) calculations. Although

this particular way of improving the SUMRCCSD results by using the MRCISD, CISDt, or CISDtq

wave functions |Ψµ〉 in Eq. (33) has not been tested yet in actual numerical calculations, we believe

that we should be able to obtain significant improvements in the calculated SUMRCC energies,

particularly in regions plagued by intruder states or intruder solutions, where there is an apparent

need to incorporate higher–than–doubly excited clusters and have a more symmetric treatment of

the M⊥(p)
0,A subspaces in the SUMRCC calculations.

We can also contemplate other ways of using Eq. (33). We can, for example, introduce the

multi-reference analogs of the MMCC(mA,mB) approximations suggested in Refs. 7, 118, 119 (see,

also, Refs. 120–123). The multi-reference MMCC(mA,mB) approximations [referred to as the MM-

SUMRCC(mA,mB) or MM-SUCC(mA,mB) schemes] are obtained by truncating the summation

over n in Eq. (33) at n = mB, where mA < mB < N . The multi-reference MMCC(mA,mB)
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energy formula can be given the following form [117]:

Eµ(mA,mB) = EA
µ + δµ(mA,mB), (46)

where

δµ(mA,mB) = (dA
µ )−1

M∑

p=1

cA
pµ

mB∑

n=mA+1

n∑

m=mA+1

〈Ψµ|(eT
(p)
A )n−m Γ(p)

m (mA)|Φp〉. (47)

As implied by Eq. (46), the MM-SUCC(mA,mB) method uses moments Γ(p)
m (mA)|Φp〉 with m =

mA + 1, . . . ,mB. For typical applications of Eq. (46) (e.g., mA = 2 and mB = 3 or 4), the

Γ(p)
m (mA)|Φp〉 moments with m = mA + 1, . . . ,mB form a small subset of all Γ(p)’s.

The simplest example of the MM-SUCC(mA,mB) approximation is the MM-SUCC(2,3) scheme,

in which we use Eq. (46) to correct the results of the SUMRCCSD calculations (the mA = 2 case).

In this case, the only generalized moments of the SUMRCC equations that need to be considered

are the Γ
(p)
3 (2)|Φp〉 moments. The MM-SUCC(2,3) energy expression is [117]

Eµ(2, 3) = EA
µ + δµ(2, 3), (48)

where

δµ(2, 3) = (dSUMRCCSD
µ )−1

M∑

p=1

cSUMRCCSD
pµ 〈Ψµ|Γ(p)

3 (2)|Φp〉, (49)

with

dSUMRCCSD
µ = 〈Ψµ|ΨSUMRCCSD

µ 〉 (50)

representing an overlap of the “trial” wave function |Ψµ〉 and the SUMRCCSD wave function [cf.

Eq. (36)]

|ΨSUMRCCSD
µ 〉 =

M∑

p=1

cSUMRCCSD
pµ eT

(p)
1 +T

(p)
2 |Φp〉. (51)

The coefficients cSUMRCCSD
pµ , p = 1, . . . ,M , are the components of the right eigenvector of the

SUMRCCSD effective Hamiltonian, whose matrix elements, designated here by Heff
qp (2), are defined

as follows [cf. Eqs. (19) and (24)]:

Heff
qp (2) = 〈Φq|(HeT

(p)
1 +T

(p)
2 )C |Φp〉, (52)

where T
(p)
1 and T

(p)
2 are the singly and doubly excited clusters of the SUMRCCSD approach. The

Γ
(p)
3 (2)|Φp〉 moments that appear in Eq. (49) can be expressed in terms of the projections of the

SUMRCCSD equations on the triply excited configurations relative to |Φp〉. If i, j, k, . . . (a, b, c, . . .)

represent the spin-orbitals that are occupied (unoccupied) in the reference configuration |Φp〉
and if (p)Eabc

ijk = XaXiX
bXjX

cXk are the excitation operators that generate the triply excited
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configurations relative to |Φp〉 (Xa and Xi are the usual creation and annihilation operators,

respectively), we can write

Γ
(p)
3 (2)|Φp〉 =

∑

i>j>k,a>b>c

(p)Γijk
abc(2) (p)Eabc

ijk |Φp〉, (53)

where

(p)Γijk
abc(2) = 〈Φp|(p)Eijk

abc(HeT
(p)
1 +T

(p)
2 )C |Φp〉 −

M∑

q=1(q �=p)

〈Φp|(p)Eijk
abc e−(T

(p)
1 +T

(p)
2 ) eT

(q)
1 +T

(q)
2 |Φq〉Heff

qp (2)

(54)

are the projections of the SUMRCCSD equations on triexcited configurations ((p)Eijk
abc represents

the hermitian adjoint to (p)Eabc
ijk ). In the case of the complete model space M0, considered here,

at least one index among i, j, k, a, b, c in Eqs. (53) and (54) must be inactive.

The MM-SUCC(2,3) scheme described above represents a multi-reference analog of the single-

reference MMCC(2,3) method introduced in Refs. 7, 118, 119 (cf., also, Refs. 120–123). In analogy

to the latter method, it might be useful to consider the second-order MRMBPT [MRMBPT(2)]

wave function or, perhaps even better, an analog of the MRMBPT(2) wave function, obtained

by replacing the lowest-order T
(p)
1 and T

(p)
2 estimates entering the MRMBPT(2) formula by their

SUMRCCSD values, as a source of wave function |Ψµ〉 in the MM-SUCC(2,3) energy expressions,

Eqs. (48) and (49). The MRMBPT(2) wave function is the lowest-order MRMBPT wave function

that contains information about the T
(p)
3 cluster components. The use of wave functions |Ψµ〉

of this type in Eqs. (48) and (49) would lead to a multi-reference extension of the recently

proposed completely renormalized CCSD(T) [CR-CCSD(T)] method [7, 26, 117–119, 121, 132, 133].

The spectacular successes of the single-reference CR-CCSD(T) approach in calculations of ground-

state PESs involving bond breaking, where the standard CCSD(T) approach completely fails,

suggest that the multi-reference analog of the CR-CCSD(T) approach, obtained by inserting the

MRMBPT(2)-like wave functions |Ψµ〉 in Eqs. (48) and (49), may provide excellent results,

particularly in difficult situations in which the use of the low-order MRMBPT theory alone to

estimate the higher-order (e.g., T
(p)
3 ) effects is not entirely appropriate due to the presence of

intruder states.

We realize, of course, that using the approximate CI or MBPT methods to calculate wave

functions |Ψµ〉 in Eq. (33) and considering the truncated MM-SUCC(mA,mB) schemes will cause

the resulting energies to be no longer strictly size extensive (in a sense of introducing the un-

linked terms into the MM-SUMRCC energies). However, our experience with the CI-based single-

reference MMCC methods [7, 120, 122, 123] and the MBPT-based renormalized CC approaches,

such as CR-CCSD(T) [7, 26, 117–119, 121, 132, 133], demonstrates that the presence of unlinked

terms in the MMCC approximations does not have an effect on the excellent performance of the
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approximate MMCC schemes. In fact, we have recently performed a number of calculations show-

ing that the CR-CCSD(T) approach provides approximately size extensive results, as long as we

remain within the range of general applicability of this approach, which is a single bond breaking

(cf., e.g., Refs. 133, 135). Moreover, a number of studies by the Paldus Waterloo group involving

the so-called reduced MRCCSD (RMRCCSD) approach indicate that using the relatively inexpen-

sive MRCI wave functions to estimate the higher-order contributions of the CC theory [6, 136–141],

at the risk of introducing unlinked terms into the calculations, tremendously benefits the CC re-

sults. The direct use of the final energy expressions in CC calculations, as is done in our MMCC

theory [7, 118–123] and its multi-reference extension discussed here and in Ref. 117, which may

result in the introduction of unlinked terms, is also exploited in the Brillouin-Wigner MRCC

method [32–37]. As in the approximate MMCC case, the Brillouin-Wigner MRCC approach is

not size extensive. However, the Brillouin-Wigner MRCC results are excellent (even for molecular

systems containing heavier atoms), which is again suggesting to us that the presence of unlinked

terms in the approximate MM-SUMRCC energy expressions may not have a detrimental effect on

the final results. We should also keep in mind that all approximate MMCC methods (just like

the RMRCCSD approach of Paldus and Li) introduce unlinked terms in very high orders, so that

it is quite likely that the results of approximate MM-SUMRCC calculations will be very good, in

spite of the presence of unlinked terms in the approximate MM-SUMRCC energy expressions.

Clearly, the new ideas described in this section need to be implemented and tested numerically.

Work is under way in our laboratory towards implementing various MM-SUMRCC approxima-

tions. The results of this effort will be reported as soon as they become available.

4 The State-Universal Multi-Reference Coupled-Cluster Method with Perturbative

Description of Core-Virtual Excitations: The SUMRCCSD(1) Approach

One of the main problems that slows down further development of the SUMRCC method in

the direction of extending it to larger reference spaces is the fact that the Jeziorski-Monkhorst

ansatz requires that a separate cluster operator T (p) is assigned to each reference configuration

|Φp〉 (p = 1, . . . ,M). This requirement leads to an excessively large number of cluster amplitudes

when the number of reference configurations is large. In the Jeziorski-Monkhorst formalism, we

are forced to solve for all M T (p) cluster operators, even if we are interested in calculating a few

low-lying states. In particular, each individual core–virtual excitation is in the SUMRCC the-

ory represented by as many independent cluster amplitudes as the number of references. This is

somewhat counterintuitive, since ideally we should only be required to determine as many cluster

amplitudes for a given core–virtual excitation as is the number of electronic states under consider-

ation. For example, in the popular MRCISD approach, we are required to determine as many CI
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coefficient vectors as is the number of calculated states. The latter number is usually much smaller

than the number of reference configurations used in such calculations. As a matter of fact, at least

in the first-order MRMBPT, the values of the core–virtual amplitudes representing the doubly

excited clusters T
(p)
2 do not depend on the reference label p [38]. It is, therefore, quite reasonable

to introduce an approximation, in which all core–virtual amplitudes of the SUMRCC theory are

approximated by their first-order MRMBPT estimates. This new approximation, referred to as

the SUMRCCSD(1) method [59], is discussed in this section.

As shown below, the SUMRCCSD(1) approach provides the results of the SUMRCCSD quality

at the fraction of the computer cost associated with the SUMRCCSD calculations. Alternative

ways of simplifying the SUMRCCSD scheme are possible by considering the state-selective meth-

ods employing the Jeziorski-Monkhorst ansatz (cf., e.g., Refs. 30–37). Although these new methods

are highly promising, in this paper we focus on simplifying the original SUMRCC method within

its conventional effective Hamiltonian formulation, which is exactly what the SUMRCCSD(1) ap-

proximation offers by reducing the number of cluster amplitudes that need to be determined by

the iterative procedure and by reducing the number of nonlinear equations that need to be solved.

Let (p)Ea
i = XaXi and (p)Eab

ij = XaXiX
bXj (i > j, a > b) be the excitation operators generating

the singly and doubly excited configurations relative to reference |Φp〉. In terms of these operators,

the singly and doubly excited clusters of the SUMRCCSD approach take the usual form,

T
(p)
1 =

∑

i,a

(p)tia
(p)Ea

i , (55)

T
(p)
2 =

∑

i>j,a>b

(p)tijab
(p)Eab

ij , (56)

where (p)tia and (p)tijab are the singly and doubly excited cluster amplitudes obtained by solving the

SUMRCCSD equations. Since we are assuming here that M0 is complete, the operators (p)Ea
i and

(p)Eab
ij and the corresponding cluster amplitudes (p)tia and (p)tijab must carry at least one inactive

(i.e., core or virtual) spin-orbital label.

In general, the (p)tia and (p)tijab values depend on label p. Indeed, suppose the spin-orbitals

i, j, . . . and a, b, . . . (commonly designated as the ρ, σ, . . . spin-orbitals) are obtained in the

canonical Hartree-Fock calculations and suppose the reference |Φ1〉 is the ground-state Hartree-

Fock determinant. Let us construct the remaining reference configurations |Φp〉, p = 2, . . . ,M ,

in a usual way by choosing some occupied and some unoccupied spin-orbitals in |Φ1〉 as active

spin-orbitals and by promoting active electrons (electrons occupying active spin-orbitals in |Φ1〉)
to active spin-orbitals that are unoccupied in |Φ1〉. Let us also introduce the Fock matrix elements

(p)fσ
ρ = zσ

ρ +
∑

i∈occupied in |Φp〉
vσi

ρi , (57)
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where zσ
ρ = 〈ρ|z|σ〉 and vτω

ρσ = 〈ρσ|v|τω〉 − 〈ρσ|v|ωτ〉 are the one-electron and antisymmetrized

two-electron molecular integrals defining the electronic Hamiltonian,

H =
∑

ρ,σ

zσ
ρ XρXσ +

1

4

∑

ρ,σ,τ,ω

vτω
ρσ XρXσXωXτ , (58)

and let us partition the Hamiltonian into the unperturbed operator

H0 =
∑

ρ,σ

(1)fσ
ρ XρXσ =

∑

ρ

ερ XρXρ (59)

and the perturbation

W = H − H0, (60)

where

ερ = (1)fρ
ρ (61)

in Eq. (59) are the molecular orbital energies obtained in canonical Hartree-Fock calculations.

With this partitioning of the Hamiltonian, one can perform the usual MRMBPT analysis of the

wave function cluster expansions and show, for example, that the first-order MRMBPT estimates

for the singly and doubly excited cluster amplitudes, (p)tia(1) and (p)tijab(1), respectively, are

(p)tia(1) = ((p)f i
a − (1)f i

a)/(εi − εa) = (p)f i
a/(εi − εa), (62)

(p)tijab(1) = vij
ab/(εi + εj − εa − εb), (63)

where in Eq. (62) we used the fact that (1)f i
a = 0 (in general, for the canonical Hartree-Fock spin-

orbitals, the p = 1 matrix elements (1)fσ
ρ vanish unless ρ = σ). Clearly, the values of (p)tia(1) and

(p)tijab(1) depend on p, since different spin-orbitals are occupied in different reference configurations

|Φp〉. In addition, the (p)tia(1) amplitudes vanish for p = 1 and are, in general, nonzero for p > 1.

The order-by-order analysis of the SUMRCCSD method demonstrates that differences between

cluster amplitudes associated with different references |Φp〉 are even larger in higher orders of

MRMBPT [38].

Although the (p)tia and (p)tijab amplitudes are, in general, p-dependent and should be treated

as independent parameters in the process of solving the SUMRCCSD equations, the first-order

core–virtual biexcited amplitudes, (p)tijab(1), do not depend on label p. We have,

(p)tijab(1) ≡ tijab(1) = vij
ab/(εi + εj − εa − εb). (64)

This observation suggests an approximation in which, instead of solving for the large number of

core–virtual amplitudes (p)tijab, we simply estimate their values using the first-order MRMBPT

expression, Eq. (64) [59]. The first-order core–virtual monoexcited amplitudes (p)tia(1) depend
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on p, but they are usually much smaller than the (p)tijab(1) amplitudes, so that we may simply

neglect the core–virtual (p)tia(1) amplitudes altogether and invoke an additional approximation in

which [59]
(p)tia(1) ≡ tia(1) = 0. (65)

In this way, we can reinforce the fully symmetric treatment of both singly and doubly excited

core–virtual cluster amplitudes. The significance of the symmetric treatment of the manifolds of

excitations corresponding to different reference configurations |Φp〉, which are not treated sym-

metrically in the standard SUMRCCSD scheme, has been discussed in the previous sections.

Equations (64) and (65) define the SUMRCCSD(1) method [59]. Since the core–virtual ampli-

tudes are determined a priori by Eqs. (64) and (65), in the SUMRCCSD(1) approach we no longer

consider the amplitude equations corresponding to core–virtual excitations. In other words, Eqs.

(15)–(17) of the standard SUMRCCSD theory in which (p)EK = (p)Ea
i , (p)Eab

ij are simply ignored,

so that the number of equations and the number of unknown cluster amplitudes that need to be

determined in the iterative procedure are identical. As shown in Table 1, this considerably reduces

the computer effort involved, since in the SUMRCCSD(1) method we only consider a relatively

small subset of all SUMRCCSD amplitude equations corresponding to single and double excita-

tions that carry at least one active index, i.e., (p)EK = (p)Ea
I , (p)EA

i , (p)Eab
Ij (a > b), (p)EaB

ij (i > j),
(p)Eab

IJ (I > J, a > b), (p)EAB
ij (i > j,A > B), (p)EaB

Ij , (p)EaB
IJ (I > J), (p)EAB

Ij (A > B). We use

these equations to determine the relatively small subset of all (p)tia and (p)tijab amplitudes that carry

at least one active index. Even for small systems, such as the methylene molecule, and even for

the simple two-reference (M = 2) singlet case, the savings in the computer effort are substantial.

For example, the total number of spin- and symmetry-adapted cluster amplitudes used in the

two-reference OSA SUMRCCSD calculations for the the lowest two 1A1 states of methylene, as

described by the double-zeta plus polarization (DZP) basis set of Refs. 142, 143, is 1341 (720 for

|Φ1〉 and 621 for |Φ2〉; see Table 1). The number of core–virtual amplitudes for each reference is in

this case 318, so that the total number of core–virtual amplitudes considered in the two-reference

OSA SUMRCCSD calculations for the DZP methylene molecule is 636. These 636 amplitudes are

estimated in the SUMRCCSD(1) method by the first-order MRMBPT expression, Eq. (64), and

by Eq. (65), and only the remaining 705 cluster amplitudes that carry at least one active orbital

index are determined iteratively by solving the relevant subset of all SUMRCCSD equations. A

similar ∼ 50 % reduction in the number of amplitudes that have to be determined in the SUM-

RCCSD(1) iterative procedure characterizes the calculations for methylene employing a larger

[5s4p3d2f1g/3s2p1d] basis set of Ref. 144 (cf., also, Ref. 52). In this case, the total number of

core–virtual amplitudes considered in the two-reference OSA SUMRCCSD calculations is 10432,

while the number of all singly and doubly excited cluster amplitudes is 22611 (see Table 1). The

10432 core–virtual amplitudes are estimated in the SUMRCCSD(1) calculations via Eqs. (64)
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and (65), whereas the remaining 12179 amplitudes are determined iteratively. This significant

reduction in the number of cluster amplitudes that have to be determined in the SUMRCCSD(1)

iterative procedure would be even larger for larger many-electron systems, since the number of

core–virtual amplitudes increases with the number of core electrons.

In order to test the SUMRCCSD(1) method, we performed a few benchmark calculations us-

ing the two-reference OSA SUMRCCSD(1) approach, which we implemented by modifying the

two-reference OSA SUMRCCSD code described in Ref. 50 (see Refs. 58, 145 for a parallel ver-

sion). Let us recall that in the two-reference OSA SUMRCCSD method of Ref. 50 (see Refs.

39, 41, 45–49 for earlier developments), the model space M0 is spanned by two closed-shell con-

figurations |Φ1〉 and |Φ2〉 involving two active electrons and two active orbitals that belong to

different symmetry species of the spatial symmetry group of the system. The M = 2 model space,

M0 = span{|Φ1〉, |Φ2〉}, is complete if we are only interested in the totally symmetric singlet

eigenstates of the Hamiltonian [39, 41, 45–50, 54]. The explicit equations of the two-reference

OSA SUMRCCSD(1) theory, in terms of the OSA mono- and biexcited cluster amplitudes,

are a straightforward modification of the two-reference OSA SUMRCCSD equations presented

elsewhere [39, 41, 45, 50].

The results of the SUMRCCSD(1) calculations discussed in this section include the lowest two
1A1 states of the DZP H4 model [146, 147] (see Table 2 and Fig. 1), the lowest two 1Σ+

g states of

the Li2 molecule, as described by the double zeta (DZ) basis set of Refs. 148, 149 (see Table 3),

and the lowest two 1A1 states of methylene, as described by the DZP basis set [142, 143] and the

[5s4p3d/3s2p] [52] and [5s4p3d2f1g/3s2p1d] atomic natural orbital [144] basis sets (see Table 4).

The results of the SUMRCCSD(1) calculations for H4 and CH2 were reported earlier [59]. The

results for Li2 are new.

We compare the SUMRCCSD(1) results with those obtained with the two-reference SUMR-

CCSD and MRMBPT(2) methods. The MRMBPT(2) results were obtained with the method

described in Ref. 150 and implemented in gamess [151]. It is useful to compare the MRMBPT(2)

and SUMRCCSD(1) results, since both approaches rely on the first-order MRMBPT corrections

to the wave function. Whenever possible, we also compare the SUMRCCSD(1) results with the

results of full CI calculations. The results of the two-reference SUMRCCSD and full CI calcula-

tions for the DZP H4 model can be found in Ref. 50. The SUMRCCSD results for the lowest two
1A1 states of the DZP model of methylene can be found in Refs. 50, 58 (recall that the lowest
1A1 state represents in this case the first-excited state; the ground state of CH2 is 3B1; cf. the

Introduction). The results of the two-reference SUMRCCSD calculations for methylene for the

[5s4p3d/3s2p] and [5s4p3d2f1g/3s2p1d] basis sets were reported in Refs. 52, 58.

We begin our discussion with the H4 model, which consists of two slightly stretched H2 molecules

arranged in an isosceles trapezoidal configuration, with all nearest-neighbor H–H separations fixed
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at 2.0 bohr. The geometry of the H4 model is determined by a single parameter α ∈ [0, 1
2
]. The

α = 0 and α = 1
2

limits correspond to square and linear conformations, respectively [146].

Table 1. Numbers of the spin- and symmetry-adapted singly and doubly excited cluster ampli-

tudes used in the two-reference OSA SUMRCCSD calculations for molecular systems discussed in

this work.a

p = 1 p = 2 p = 1 or 2

Molecule Basis set NS ND NS ND NS(CV ) ND(CV )

H4b DZPc 14 229 12 233 6 55

Li2 DZd 13 279 13 279 8 167

CH2
e [4s2p1d/2s1p]f 26 694 20 601 16 302

[5s4p3d/3s2p]g 57 3294 44 2867 35 1442

[5s4p3d2f1g/3s2p1d]h 102 11715 84 10710 64 5152

a NS and ND designate, respectively, the numbers of all singly and doubly excited

cluster amplitudes used in the two-reference OSA SUMRCCSD calculations. NS(CV )

and ND(CV ) designate, respectively, the numbers of singly and doubly excited cluster

amplitudes corresponding to core–virtual excitations.
b The H4 model of Ref. 146.
c The [2s1p] basis set taken from Ref. 147.
d The [4s2p] contraction of the Dunning-Hay basis set of Ref. 148 (see Ref. 149).
e The lowest-energy molecular orbital (1a1) is kept frozen and the Cartesian compo-

nents of the d and (if present in a basis set) f and g orbitals are employed.
f The DZP basis set taken from Refs. 142, 143.
g Basis set taken from Ref. 52.
h Basis set taken from Refs. 52, 144.

By changing parameter α, we can continuously vary the degree of configurational quasi-degenera-

cy involving the ground-state RHF (restricted Hartree-Fock) reference configuration

|Φ1〉 = |(1a1)
2(1b2)

2| (66)

and the doubly excited configuration

|Φ2〉 = |(1a1)
2(2a1)

2|, (67)

obtained by promoting two electrons from the highest-energy occupied orbital (1b2) to the lowest-

energy unoccupied orbital (2a1). Indeed, in the α = 0 limit, the absolute values of the coefficients
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at configurations |Φ1〉 and |Φ2〉, which dominate the full CI expansions of the lowest two 1A1 states

in this region, are identical. For α = 0.5, the ground-state wave function becomes essentially non-

degenerate, with |Φ1〉 representing the leading configuration in the corresponding full CI expansion.

The results of our SUMRCCSD(1) calculations for the lowest two 1A1 states of the DZP H4

model (the 1 1A1 and 2 1A1 states) are shown in Table 2 and Fig. 1. In the SUMRCCSD(1),

SUMRCCSD, and MRMBPT(2) calculations, we chose orbitals 1b2 and 2a1 as active. This choice

of active orbitals is justified by the dominant role of the |Φ1〉 and |Φ2〉 configurations, Eqs. (66)

and (67), respectively, in the full CI expansions of the lowest two 1A1 states of the H4 system.

As can be seen from Table 2 and Fig. 1, the SUMRCCSD(1) potential energy curves represent-

ing the lowest two 1A1 states of are shifted by ∼ 1 millihartree or less relative to the corresponding

SUMRCCSD curves. The errors in the SUMRCCSD(1) results, relative to full CI, range between

0.5 (α ≈ 0) and 2.7 (α ≈ 0.5) millihartree for the ground state and between 4.1 (α ≈ 0) and 3.0

(α ≈ 0.5) millihartree for the first-excited 1A1 state. The errors obtained with the SUMRCCSD

method are virtually identical to those obtained with the simpler SUMRCCSD(1) approxima-

tion. The SUMRCCSD(1) and SUMRCCSD vertical excitation energies ∆ corresponding to the

1 1A1 → 2 1A1 transition agree to within 0.5–1.5 millihartree for all values of α. For comparison,

the MRMBPT(2) approach completely fails for α > 0.15 due to intruder states. The errors in

the MRMBPT(2) results for the 1 1A1 → 2 1A1 excitation energies, relative to full CI, are as

large as 172.8 millihartree in the α ≈ 0.5 region. Even in the region of small α values, where the

MRMBPT(2) approach works best, the errors in the MRMBPT(2) results for the 1 1A1 → 2 1A1

excitation energies are much larger than those obtained with the SUMRCCSD(1) method (cf.,

e.g., the 9.4 millihartree error in the MRMBPT(2) value of ∆ at α = 0 with the 3.6 millihartree

error obtained with the SUMRCCSD(1) approach for the same value of α).

The excellent performance of the SUMRCCSD(1) approach is also observed in the calculations

for the DZ model of Li2. We considered three geometries in this case: the equilibrium geometry,

R = Re = 5.051 bohr (R is the internuclear separation), and two stretches of the Li–Li bond,

R = 1.5Re and R = 2Re. For larger distances R, the ground and the first-excited states of the
1Σ+

g symmetry are dominated by the RHF configuration

|Φ1〉 = |(1σg)2(1σu)2(2σg)2| (68)

and the doubly excited configuration

|Φ2〉 = |(1σg)2(1σu)2(2σu)2|, (69)

so that it is prudent to choose the highest-energy occupied and the lowest-energy unoccupied

molecular orbitals, 2σg and 2σu, respectively, in our SUMRCCSD(1), SUMRCCSD, and

MRMBPT(2) calculations. The results of the two-reference SUMRCCSD(1), SUMRCCSD, and
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MRMBPT(2) calculations for Li2, using configurations |Φ1〉, Eq. (68), and |Φ2〉, Eq. (69), as

references, along with the corresponding full CI results, are shown in Table 3.

The results in Table 3 show that the SUMRCCSD(1) approach provides the potential energy

curves of Li2 that are in excellent agreement with the high quality curves obtained with the

SUMRCCSD method. The SUMRCCSD(1) energies for the lowest two 1Σ+
g states of Li2 are only

slightly above the corresponding SUMRCCSD energies [the difference between the SUMRCCSD(1)

and SUMRCCSD energies is ∼ 2.5 millihartree, independently of the value of R]. In consequence,

the errors in the SUMRCCSD(1) results, relative to full CI, are very small (2.7–2.8 millihartree for

the ground state and 3.1–3.2 millihartree for the first-excited 1Σ+
g state). The errors in the 1 1Σ+

g →
2 1Σ+

g vertical excitation energies (designated by ∆) obtained with the SUMRCCSD(1) method,

relative to full CI, are 0.4–0.5 millihartree, independently of the value of R. The SUMRCCSD

results for the 1 1Σ+
g → 2 1Σ+

g excitation energies are virtually identical to those obtained with

the simpler SUMRCCSD(1) approach. The two-reference MRMBPT(2) method works reasonably

well in the quasi-degenerate region corresponding to larger R values, where the lowest two 1Σ+
g

states are dominated by configurations (68) and (69), but the SUMRCCSD(1) results are much

more accurate [cf., e.g., the 12.8 millihartree error in the MRMBPT(2) result for the vertical

excitation energy ∆ at R = 2Re with the 0.3–0.4 millihartree errors obtained at the same value

of R with the SUMRCCSD and SUMRCCSD(1) approaches]. In the R ≈ Re region, the ground

state is dominated by the RHF configuration |Φ1〉, Eq. (68), but the first-excited state of the 1Σ+
g

symmetry has significant contributions from configurations belonging to M⊥
0 . As a result, the

error in the MRMBPT(2) value for the vertical excitation energy ∆ is as large as 54.0 millihartree

at R = Re. Remarkably enough, the errors in the SUMRCCSD and SUMRCCSD(1) results for

the 1 1Σ+
g → 2 1Σ+

g excitation energy are as little as 0.5 millihartree at R = Re. This clearly shows

that we can tremendously benefit from incorporating the MRMBPT ideas into the SUMRCCSD

scheme.

Our final example is methylene [59]. As mentioned in the Introduction, the OSA SUMRCCSD

approach provides excellent (∼ spectroscopic) results for the very small energy gap between the

ground state, X 3B1, and the lowest excited state of the 1A1 symmetry, A1A1 ≡ 1 1A1 [51, 52]. The

OSA SUMRCCSD method is also capable of providing the excellent description of the singlet–

singlet (2 1A1 − 1 1A1) energy separation [50]. For example, the full CI value of the singlet–

singlet energy gap in the DZP methylene molecule is 168.907 millihartree [143]. The two-reference

SUMRCCSD method gives 169.885 millihartree [50], in excellent agreement with full CI.

The success of the two-reference SUMRCCSD method in describing the 2 1A1 − 1 1A1 energy

gap in methylene is largely (but not entirely) related to the quasi-degenerate character of the

lowest two 1A1 states, which are both dominated by two closed-shell configurations,

|Φ1〉 = |(1a1)
2(2a1)

2(1b2)
2(3a1)

2| (70)
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and

|Φ2〉 = |(1a1)
2(2a1)

2(1b2)
2(1b1)

2|, (71)

involving active orbitals 3a1 and 1b1. Thus, by choosing orbitals 3a1 and 1b1 as active orbitals

in the SUMRCCSD calculations, we should (and we do) obtain excellent results for the singlet–

singlet energy separation. It is interesting to note though that the two-reference MRMBPT(2)

method does not provide very good results in this case, in spite of the apparently two-reference

character of the lowest two 1A1 states. For example, the error in the 1 1A1 → 2 1A1 excitation

energy obtained with the MRMBPT(2) approach for the DZP methylene model, relative to full

CI, is 11.344 millihartree. This should be compared to a much smaller, 0.978, millihartree error

obtained with the two-reference SUMRCCSD method (see Table 4).

The results in Table 4 show that the description of the lowest two 1A1 states of methylene

by the two-reference SUMRCCSD(1) approach is almost as good as that provided by its parent

SUMRCCSD analog. Although the differences between the SUMRCCSD(1) and SUMRCCSD

individual energies are somewhat larger than in the case of the H4 and Li2 systems, the vertical

excitation energies corresponding to the 1 1A1 → 2 1A1 transition in methylene (the ∆ values in

Table 4) obtained in the SUMRCCSD(1) and SUMRCCSD calculations are essentially identical,

independent of the basis set employed. Indeed, the differences between the ∆ values resulting

from the SUMRCCSD(1) and SUMRCCSD calculations are 0.958 millihartree for the DZP ba-

sis set, 1.389 millihartree for the [5s4p3d/3s2p] basis set, and 1.503 millihartree for the largest

[5s4p3d2f1g/3s2p1d] basis set. The difference between the ∆ values obtained in the SUMR-

CCSD(1) and full CI calculations with the DZP basis set is 1.936 millihartree, which should be

compared to a 0.978 millihartree difference between the SUMRCCSD and full CI values of ∆.

Thus, we can summarize this section by stating that the SUMRCCSD(1) approach provides a

viable alternative to the SUMRCCSD method. At least for the small molecular systems tested

in this work and in our original study [59], the SUMRCCSD(1) approach is capable of providing

the results of the SUMRCCSD quality at the fraction of the computer effort associated with the

SUMRCCSD calculations. We are encouraged by the preliminary results overviewed in this section

and we will work on generalizing the two-reference SUMRCCSD(1) approach of Ref. 59 to larger

model spaces.

5 Summary

We overviewed our recent results in the area of the genuine SUMRCC theory. We focused on a new

type of the noniterative corrections to the SUMRCC energies, obtained by extending the MMCC

formalism of Refs. 7, 117–123 to a multi-reference case, and on combining the SUMRCCSD and

MRMBPT approaches by replacing the cluster amplitudes of the SUMRCCSD method that carry
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only core and virtual orbital indices by their first-order MRMBPT estimates. We believe that

the multi-reference variant of the MMCC theory provides us with a systematic way of improving

the SUMRCC results by adding relatively simple, noniterative, state-specific corrections to the

SUMRCC energies. In particular, the multi-reference extension of the MMCC formalism sug-

gests simple ways of restoring the symmetric treatment of manifolds of excitations corresponding

to different reference configurations, broken by the conventional SUMRCC approximations, and

simple ways of incorporating higher–than–double excitations in the SUMRCCSD method. We

demonstrated that the SUMRCCSD(1) approach of Ref. 59, in which the core–virtual cluster am-

plitudes of the SUMRCCSD theory are approximated by the first-order MRMBPT expressions,

gives the results of the SUMRCCSD quality at the fraction of the computer effort associated

with the SUMRCCSD calculations. We believe that the SUMRCCSD(1) approach may allow us

to extend the existing two-orbital/two-electron SUMRCCSD approaches to larger active spaces,

since the SUMRCCSD(1) method eliminates one of the main bottlenecks of the SUMRCC theory,

which is the requirement of assigning a separate large set of core–virtual cluster amplitudes to each

reference configuration. Clearly, there may exist other ways of estimating the SUMRCC cluster

amplitudes via low-order MRMBPT expressions. We are currently exploring other MRMBPT-

based SUMRCC approximations. The results of these studies will be reported as soon as they

become available.
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