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Abstract

We present a study of finite a and volume effects of the leptonic decay constant f of
heavy pseudoscalar mesons in the static approximation. This study is performed on a
number of lattices at # = 5.74, 6.0 and 6.26 covering sizes from about 0.7 fm to 2 fm.
We confirm that beyond 1.5 fm the volume dependence is negligible. By carefully
analysing results obtained using different trial wave functions for the heavy meson we
find no dependence on the smearing. We also give results for the mass difference of the
scalar - pseudoscalar and the A, - pseudoscalar. Using the mass of the pseudoscalar
meson we estimate the distance of string breaking in the static quark potential.
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1. Introduction

There is continued interest in applying the infinite mass effective theory (IMET) [1]
to compute properties of heavy-light quark systems in the range of the b- and c-
quarks. However the issue of the domain of its validity is still unsettled: it most likely
depends on the particular observables under consideration. Lattice methods offer a
laboratory to establish beyond which mass the infinite mass limit could be regarded
as a good approximation. The lattice formulation of IMET, originally suggested by
Eichten [2], has been studied subsequently by a number of authors [3-9]. There are
strong indications, that the infinite mass limit of the leptonic decay constant f of the
pseudoscalar heavy-light meson needs large corrections to be applicable in the D-meson
region. In order to reach a definite conclusion on f and other quantities such as the
scalar-pseudoscalar mass splitting As and the A; - pseudoscalar mass difference Ay,
however, one has to gain better control on various systematic effects of the infinite
mass lattice results. There are a number of issues to be addressed such as constraints
of finite lattice resolution and extension, finite u and d quark mass and the necessity
of renormalisation. In addition one has to bear in mind, that before one can extract
any reliable information, one has to achieve ground state enhancement by suitable
smearing techniques [3, 4, 10].

In this paper, we intend to consolidate previous static lattice results on f [3, 4] with
respect to the error sources mentioned above and to explore the feasibility of studying
As and A,. For that purpose, we present in the following a fairly comprehensive
analysis, performed on lattices ranging in size from about 0.7 to 2 fm at 8 = 5.74, 6.0
and 6.26. Particular emphasis will be given to the pitfalls of ground state projection.
We will show that we can safely identify the ground state contributions in the b-quark
mesons when smeared interpolating fields are used for the mesons. Using several
different interpolating fields we find no dependence of the final result on the type of
wave function used. This is what is to be expected and it is contrary to results found

in ref. [7].

In order to connect the lattice results to physics, it is important to address finite
a and finite size effects as well as renormalisation. We find that the volume effects
are negligible beyond lattice sizes of 1.5 fm. Finite a effects turn out to be small
when choosing the string tension as the appropriate mass scale. In this way, the
most serious source of uncertainty on f remains the perturbative determination of its
renormalisation factor Z. Of course all statements that we make here are true within
the quenched approximation. We have no way of giving a reliable estimate of the error
due to quenching.

The paper is organized as follows: Section 2 will deal with the smearing technique for
ground state enhancement using gauge invariant wave functions. Section 3 contains
the lattice results on the pseudoscalar mass and leptonic decay constant as well as the
mass splittings of scalar-pseudoscalar, Ag, and A;-pseudoscalar, Aj. Their connection
to physical quantities is discussed in section 4. The reader not interested in lattice



in lattice technicalities may go directly to section 4. In section 5 we discuss the
availability of the physics of string breaking in the environment of quenched com-
putations and give an estimate of the string breaking distance R, obtained in the
quenched approximation. The parameters and technical details characteristic to our
simulations are collected for convenience in appendix A.

2. Smearing Techniques

In this work we consider correlation functions of interpolating fields for hadrons that
consist of light quarks (/) and one heavy quark (k). The heavy quark is treated in
the static approximation with its propagator given by[2,11]

Sw(zy)=ézg5 { O(za—1y4) WHZ;ya, za )yt (2.1)
+  O(ys— z4) W(524,94)77 1},
* = (1£74)/2
Here W(Z; z4,y4) = [1342: Us(Z,t) is the gauge parallel transporter from point (Z, 4)

to (Z,ys — a). In eq.(2.1), the exponential prefactor exp(—|c4 — ys| ms) has been
dropped, since this corresponds only to a common shift of all energy levels by the
bare mass of the heavy quark.

In order to connect to physical i.e. renormalisation group invariant quantities within
the static approximation, we have to go beyond the formal expression of eq.(2.1).
This amounts to taking into account the renormalisation of currents and the effect
of the self energy of a static quark which in the continuum limit is divergent. We will
discuss this issue in more detail in section 4.1. Given the renormalisation constant
of the axial current, Z,,,, the physical decay constant f is calculated through the
lattice matrix element

< O|MEH(0)|P >= Z3}, f/Mp[2 &% . (2.2)

In this equation, all quantities are understood to be in the static approximation. For

later use we define
— {a,(e~**Mp)
F f MP ( (6—2/3MB)

The matrix element < 0|M!¢/¢(0)|P > is independent of the mass of the heavy

quark, m,. The logarithmic mass dependence of f/Mp enters through the mass
erendence of Z.:. This logarithmic dependence is cancelled in the definition of
F, which is the proper quantity that has a finite limit as m; — oo. The field

Mf;i;i"c(x,t) is the time component of the local axial vector current in the general

notation

)s/ug 3

ME (z,1) = RI(Z,¢) T V(1) (2.4)
where the indices I, J denote smearing local fields with trial wave functions of type
P(E,t) =Y N(F,GU®) IFt) (2.5)



and T' = 9475 in eq. (2.2). ®7(Z,#;U(t)) depends in a gauge invariant way on the link
variables denoted by U(t). The case of the local interpolating field that appears in the
definition of the decay constant in eq.(2.2) is given by

(E, U () = bz

In order to calculate the matrix element required in eq.(2.2) one starts from the meson~
meson correlation function

CETHL() = 3 < ME(8,1) IMEF@,0)t > . (2.6)

T

Due to the positivity of the transfer matrix [12], this has the general representation

CEHH () = 30 < 0|MET(,0)In, 7 >< n, /| MEH(8,0)]1(0 > exp(—Ma(7)t)
n>1

(2.7)
Note that we distinguish between the “masses” M, in the static approximation, that
appear in the above formula and the physical mass of the meson (e.g. Mp ) as used
in eq.(2.2). Eq. (2.7) gives the formula appropriate for an infinitely large temporal
lattice, since for the time extent of about 4 fm used in our simulations, corrections
to the infinite limit are expected to be negligible. We have also assumed in this
decomposition, that the trial wave functions ®7(Z,#;#(t)) do not introduce angular
momentum and hence the intermediate meson states |n,y > are uniquely labelled by
the spin/parity quantum numbers characteristic to I' and the excitation level n. Due
to the additional spin symmetry of IMET [13] we only need to distinguish between
pseudoscalar P (7 = vs) and scalar S (o = 1) particles, the vector being degenerate to
the pseudoscalar.

For sufficiently large time separation ¢, all contributions are exponentially suppressed
with respect to the ground state (n = 1) in eq.(2.7). Therefore, the matrix element
defining f in eq.(2.2) can be obtained by choosing I,..., L = loc referred to as “local-
local” correlation function. In the following, we will use the shorthand notations
1,95 >= |P >, My(vs) = Mp and M;(1) = Ms.

Ground state dominance of the correlation function is signalled by the occurrence of
a plateau, i.e. the ‘local mass’

WEHE (1) = log(CE (1) [CE MMt — a)) . (28)

is t-independent for a range of ¢. So far, it has been found impossible to attain such
a plateau within the static approximation, before the signal is lost in the statistical
noise. The situation of our purely local data from lattice D2a (the notation for our
lattices being defined in table 1) is depicted by the diamonds in fig. 1. Given the
statistical errors it is again not possible to establish the existence of a plateau, up to
time separation of ¢ = 10a (or t ~ 3.6GeV ).

The situation is greatly improved by using appropriate smearing techniques [10].
Translation invariance and the hermiticity of ® imply the symmetry relations for the
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expectation values

Cl{,loc;J,lor.'(t) — Céoc,[;loc,J(t) . (2 9)
In other words we can choose whether to smear the light or the static quark in the
correlator, without change in the expectation values. Moreover, we have

C{,loc;J,loc(t) — Cg,loc;lyloc(t) ) (2.10)

The statistical errors of these quantities, however, do not at all obey such identities!
We demonstrate this fact for the second of these equations in fig. 2 where we show
a comparison of the ‘local masses’ obtained from Cloclocilloc(t) and Closloeslioe(t) 4
Cloclilocloc(t) for gaussian smearing. There is a dramatic difference in errors between
the two cases. So it is much more advantageous to smear the static quark source than
to apply smearing to the static sink®. The appendix B presents arguments for this
empirical error behavior. The difference in error bars shown in fig. 2 amounts to a
significant improvement in our ability to localize the plateau®. Smearing both heavy

and light quarks on lattice C4 at 8 = 6.0, we could not do better.

In order to construct the purely local quantity < 0jM!e%/¢(0)|P > from the smeared

/ Y45
correlation function CI7i17 (t) and C'oclosilJ (1), one has first to establish their plateaus
/%] Y475

as described in eq.(2.8). We fit data showing ground state dominance to the one-
exponential expressions

CI,J;I,J(t) ~ l < OlMI,J (6,0)'13 > |2 exp(—MPt)

145 Y45

= Aexp(—Mpt) (2.11)
Cloctos (1)~ < O|Mble(@,0)|P >< PIMLT (D,0)]7]0 > exp(—Mpt)
= Bexp(—Mpt) (2.12)

and retrieve the local matrix element in form of the ratio B/vV/A.

Clearly the trial wave functions ®/ and @’ have to be constructed such that the excited
state contributions are sufficiently suppressed so that the one-exponential behavior in
the previous equations can be observed before the statistical noise dominates the signal
for both correlators given in (2.11) and (2.12).

To achieve this goal, we have considered three types of wave functions[10]:

1. Gaussian:

(Z,7;U(t)) = (1 + aH)"(E, 5:U(2))

with the hopping matrix

3
H(Z,7U®) = Y (UAE, )6z 73 + UHE ~ 1,063 3,2)

i=1

3This observation has been made already in ref. [8].
41t turns out that for the final determination of the decay constant, however, the statistical error

is very similar in the two cases.



that contains the optimisation parameters a and n.

2. Exponential:

(2, i U(t)) = (Kzg — HE TU()™
with the optimisation parameter K.

3. Combinations:

w (T, i U(2)) + BC(Z, T3 U(2)).

Let us briefly discuss some features of these wave functions:®

All wave functions are defined local in time which means that they involve gauge
fields only in one time slice and are gauge covariant. The first property is needed
in order that eq. 2.7 holds. The second one insures that no problems due to gauge
fixing occur. Such problems could arise, for example, due to noise originating from
incomplete gauge fixing. In addition, the necessity to work in the Coulomb gauge for
all other wave functions that have been suggested [14] means that a significant amount
of numerical effort is spent in the gauge fixing procedure. The gaussian wave function
given above is therefore comparatively cheap to compute.

The exponential wave function needs the calculation of a 3-dimensional scalar propa-
gator through the solution of a linear equation. We refer to it as an exponential wave
function because the 7 — ¥ dependence in the non-interacting case (U;(Z,t) = 1) is of
Yukawa-type. This particular wave function was found [3] to be very effective in pro-
jecting onto the ground state at relatively small 8 (f =~ 5.7). In our new simulations,
we have switched to using the gaussian wave function (this notation originates again
from its dependence on Z — i in the free case), because it is numerically much cheaper.
As we will demonstrate in the following, the two wave functions are equally good in
projecting onto the ground state around 8 = 6.0 and for B = 6.26 the gaussian wave
function achieves very early ground state dominance. Although ®% has not been tried
out at this S value, we expect ®C to be superior in ground state projection.

In our previous calculation we tuned the parameter(s) in the wave function to obtain
early plateaus in the smeared-smeared and local-smeared local masses. Defining

. TP T@Y(#,0)(37(,0)1

" =< SN, 0)(8 (5, 0)1] (213)

the optimisation of the wave functions coincided with an r.m.s. radius r, of approxi-
mately 0.3 fm. This is quite a reasonable size for a hadronic wave function.

5 Additional aspects are discussed in an early investigation [10].



3. Signals from the Lattice

3.1 Pseudoscalar Mass and Decay Constant

As we already pointed out, smearing of the quark fields is crucial for filtering the
ground state before noise sets in. Needless to say, the results must be independent
of the details of the applied smearing. This issue has been addressed already in the
first calculations of ' in the static approximation [3, 5], where different wave functions
were reported to render consistent results. More recently ref. [7] supposedly revealed
a systematic dependence of F on the wave function size, particularly at larger values
of B. In order to settle this question, we performed a careful analysis on wave function
dependence at 8 = 6.26. We used a 18> x 48 lattice (denoted by D2a in table 1), and
six different wave functions, whose parameters are listed in table 2. The first three
wave functions are constructed using a combination of a local and a gaussian wave
function with n = 100, a@ = 4. The remaining three represent pure gaussian smearing.
To convey a physical idea of the involved sizes we quote the r.m.s radii r, (defined in
eq.(2.13)) as well as the radii r; (defined as in eq.(2.13) but with 2 replaced by |Z]).
As can be seen from table 2, r; is varied within 3.9¢ < r; < 6.5a.

The impact of smearing on the t-dependent masses, as derived from C,{;’,‘Y’:;‘”“ (“smeared
- smeared”) is demonstrated in fig.1. We can clearly ascertain a universal plateau, inde-
pendent of the particular wave function chosen. Approximate ground state dominance
sets in as early as £ = 2a. Fits to eq.(2.11) in the t-range of the plateau yield consistent
mass values, as can be seen from table 26.

Since the smeared-smeared correlation function is convex (cf. eq. (2.7)), we were able
to identify its ground state plateau rather unambiguously. The evaluation of local-
smeared correlation functions, on the other hand, poses a more serious problem, as
they do not share this convexity property. We show their t-dependent masses in fig. 3:
without prior knowledge of the height of the plateau (and in particular with the larger
error bars in the t-dependent masses obtained in ref. [7]), one is liable to misidentify
the position of the plateau and thus to end up with wave function dependent results.
It is therefore important to ensure that the plateau has the same height for both
local-smeared and smeared-smeared correlators. For this purpose, we have inserted
into fig. 1 and 3 the plateau as obtained from a fit to smeared-smeared correlators.
(using the best wave function with & = 4, n = 100). Although the t-dependent masses

SFig. 1 shows quite a strong scatter in the data at intermediate and large values of {. We inves-
tigated this in some detail: The error estimates of the t-dependent masses were calculated using the
covariance matrix. One may suspect that the off diagonal elements of the covariance matrix in them-
selves are not estimated accurately enough, leading to unreliable error estimates in the t-dependent
masses. To check this suspicion, we estimated the error of the error with the jackknife procedure
and found it to be only of the order of 15%, in agreement with a gaussian distribution. Furthermore
no signs of significant autocorrelations were revealed by the data (using binning). We conclude that
the reason for the scatter in fig. 1 is that correlations over more than one time-slice are not strong.
This fact actually improves the errors for the mass from the smeared-smeared correlators: different
patches of ¢t contribute independent information.



depend substantially on the underlying wave functions, they finally end up in the same
plateau!

So it is obvious that the evaluation of smeared correlators has its pitfalls. An appro-
priate procedure to determine F is to first determine the ground state mass from the
smeared-smeared correlator and then to inject it into a constrained fit of the local-
smeared correlator. These fits, done in the region of the respective plateaus yield
consistent results. This is demonstrated in table 2, where the resulting values for ¥
are given for all six wave functions as a function of ¢,in, the minimum time separation
used in the fit to the local-smeared correlator. The stability of F', under variations
of the wave function and t,,;,, is remarkable. We therefore corroborate our previous
conclusion [15] that there is no spurious dependence of F on the size of the wave
function.

In addition, we have tried an alternative procedure, based on the relation

- CLTdecdoc(y) [\ [CLAIT () ~< O|MI(0)|P > exp(—Mp £/2) ,  (3.1)
which holds in the region where both correlation functions on the L.h.s. show ground
state dominance. Performing fits to this ratio, we obtain results consistent with those
from the method described above. But the statistical errors are larger, because one has
to exclude part of the plateau of the smeared-smeared correlator from the analysis’.

Let us finally mention that the optimal wave function (a = 4, n = 100) carries an
r.m.s. radius of about 0.3fm, in agreement to earlier findings [3].

In completing our systematic study on the smaller lattices, we restrict ourselves to the
use of optimal wave functions, with r; ~ 0.3fm. In fig. 4 we show the t-dependent
masses from the local-smeared correlators for the lattices A3, C3 and D2a correspond-
ing to the B values of 5.74, 6.0 and 6.26. Note that the data points again converge
into their respective errors bands, as determined from fits to the smeared-smeared
correlators. The numerical results for all the lattices are collected in table 3. Here we
quote values on Mp and F' as well as indicate their stability with respect to different
fit ranges in ¢, at ‘various quark masses and 3 values. By looking at these numbers, we
conclude that the results for ¥ and Mp are again fairly insensitive to the wave func-
tions chosen, once the fit region is appropriately identified: a variation of the lower cut
tmin in the fitting procedure renders results for F , that become stable, as soon as i,,:,
lies within the plateau. In addition, we stress the agreement of the results for lattices
A3 with A3a and C3 with C3a respectively. The old calculations [3] on A3a and C3a

“had been done with the exponential wave function, whereas the results on A3 and C3
are obtained with ®¢. We find a beautiful stability of the results with respect to the
shape of the wave function. Furthermore, ®% gives earlier plateaus at 8 = 5.74 but at
B = 6.0 no clear difference is visible. This, together with the early plateaus achieved
at B = 6.26, indicate that ®€ is the better choice at larger 8, a feature that is very
welcome, given the low numerical cost of constructing ®S.

7A third possibility that has been discussed in ref. [5] differs only slightly from the method used
here.



3.2 Mass splittings

We start with the determination of the mass difference between the scalar and pseu-
doscalar states,

As=Ms— Mp=Ms—Mp . (3.2)
For the scalar state we will discuss results that have been obtained with the inter-
polating field M (Z,t) from eq.(2.4). In order to reduce statistical and systematic
errors the mass difference, in most cases, is determined directly from an analysis of
the ratio of the respective correlators:

RY(t) = CI(8) / CL7 (1) (33)

We find that the scalar ground state signal is somewhat inferior to the respective
pseudoscalar signal. We note in passing that we have attempted to improve signals by
using another operator to excite the scalar state: In the non-relativistic quark model,
the scalar state is a p-wave excitation. We therefore tested in addition an interpolating
field M%o¢(Z, 1) with a p-wave trial wave function ®F which is constructed by applying
a covariant (lattice-) derivative to the wave functions from sect. 3.2. The latter method
produced consistent results, but with larger statistical errors.

The t-dependent masses from smeared-smeared correlators as derived from RY are
plotted in fig. 5. The x-axis is scaled to physical units using the string tension. Com-
paring results obtained at different volumes, the figure demonstrates that finite size
effects are negligible for As. We find first evidence of plateaus in the regions t\/o > 1
for 8 =5.74 and t\/o > 0.7 for # = 6.0 and B = 6.26. However due to the early noise
dominance, the situation is not as clean as in the case of the pseudoscalar yielding to
a larger uncertainty in the determination of Ag. The numbers for Ag, as obtained
from a one-term exponential fit to eq.(3.3), are quoted in table 4. In a few cases where
the plateau for Rs was very limited we fitted separately the two channels to have at
our disposal somewhat larger plateaus at a price of larger error bars. These fits are

indicated by the daggers in table 4.

In an analogous way, we can determine the mass difference between the A, and the
B-meson

Ap = My — Mp = My — Mp. (3.4)
The form of the A-correlator reads
DMty =Y < Tr{y*B"(z,t) B (0,0)]'} > (3.5)
z

where the A-operator B is defined by
B (Zt) = Y e (RI(E D)2 (W(F0)5 (Crs)sy (d7(F,1)); - (3.6)
ab,c,o,8,y

Here a,b,c (e, 3,7) denote color (Dirac) indices and C is the charge conjugation ma-
trix. The field BL*¢(Z,¢) is to be interpreted as a diquark trial wave function for the
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baryon: the two light quark fields are restricted to be local with respect to each other.
Otherwise BL7/(Z,t) amounts to a general wave function ansatz. In ref. [16] where the
mass of A, was computed a diquark type of wave function was used.

Like in the case of Ag, we avoid computing the mass splitting by separate analysis of
the individual correlators, but rather consider their ratio

Ry'(6) =DM (1) [ O35 (@), (3.7)
We plot the t-dependent mass-splitting arising from RL”(t) in fig. 6, where both axis
are scaled to physical units using, as in fig. 5, the string tension. This means that all
data should, apart from scaling violations, merge into one and the same plateau. The
data are consistent with scaling, but the statistical errors are obviously too large to
make a definite case. Note that the t-dependent mass-splitting for § = 6.26 where
a diquark trial wave function is used starts off very high. The effect is due to the
numerator in eq.(3.7). Therefore the underlying diquark type trial wave function
achieves a small overlap with the ground state. The other trial wave functions appear
to do better.

In table 4, we have included the results arising from one-term exponential fits to
€q.(3.7). The fits were done in the t-ranges where the t-dependent mass-splittings are
consistent with a plateau. We stress, however, that the existence of these plateaus is
still debatable. In order to settle this issue more effort must be spent to optimize the
wave functions.

4. Connecting to Physics

4.1 The Renormalisation Problem

We have encountered various quantities in the static approximation on the lattice,
whose physical significance has to be elucidated. The most questionable quantity is the
“pseudoscalar mass” Mp, as it carries a linear divergence, due to the self energy. In this
section we will first investigate whether lowest order effective coupling perturbation
theory allows to extract this linear divergence. If this worked out, one would be able to
produce meaningful numbers on the binding energy B from static lattice calculations.
Another important issue is the renormalisation factor Z,;,; for the axial current. We are
going to consider the possible improvement on this perturbatively computed quantity,
by employing a renormalised coupling.

Binding energy. We start by splitting up the mass into the binding energy B and
the divergent self energy E(a):

Mp=E(@)+B . (4.1)

10



An estimate for the self energy may be obtained in perturbation theory, with the lowest
non-trivial order term being linearly divergent

E(a)lpm =260 + 0@Y), (42)
1
./ (27r)3 45, sin®(k;/2)

G(0) = =0.253(1)

The coupling in eq. (4.2) should be taken at the scale of the cutoff a=?. It has been
suggested [17] that a more suitable expansion parameter than the bare coupling, g2 =
6/8, at this scale is given by

=g/ < TrP,u,> : (4.3)

In addition one observes [18], that the g* terms of the perturbative expansions of
several short distance quantities are much smaller in an expansion in terms of §? as
compared to an expansion in terms of g2, which points to a better convergence of the
former expansions. Finally, it has been shown that indeed the 1-loop relation between
§* and g2 is quite accurate in SU(2) pure gauge theory [19]. It should be noted,
moreover, that the use of an effective coupling similar to eq. (4.3), in the perturbative
expansion of the S-function, amounts to a considerable reduction of subasymptotic
contributions to the string tension [20]. Therefore, to present knowledge, §* is the
appropriate coupling to be used in the perturbative expansion eq. (4.2).

It remains to be checked, however, whether a perturbative estimate of E(a) is sufficient
to extract the binding energy B. This can be done by looking at the resulting estimate
of the binding energy 8:

B= Mp— E(a)pert - (4.4)

It should exhibit scaling behavior, up to terms of order O{a). Using data from table 3
we obtain for the dimensionless ratio B/+/7 the values 1.40(2), 1.80(6), and 1.98(6) at
a/o = 0.38, 0.22, and 0.151, respectively. As the observed variation of B might still
constitute a large O(a) effect, we have in addition computed the quantity

(Vb -2 E(a)'pert)/\/;

with V; the constant piece of the heavy quark potential defined in eq. (4.9) and given
in table 5. It should also be independent of a if E(a)|pers is a good approximation
to the divergent self energy of a static quark. In this case the corrections should be
smaller - of order O(a?). Here, the numbers read (Vo — 2 E(a)|pert)/+/o = 0.008(16),
0.28(3), and 0.56(2) to be compared to Vy//o = 1.70, 2.81, and 4.02, respectively.

31t should be noted that egs. (4.1) and (4.2), are expected to hold at most for an intermediate
range of lattice spacings, since, as one approaches the continuum limit a — 0; g% — 0, possible
non-perturbative terms in eq. (4.2) become increasingly more important when they are inserted into

eq. (4.4).

11



We conclude that on this level there is no justification whatsoever to estimate E(a)
by lowest nontrivial order perturbation theory.

We have discussed this issue in some detail in view of the recent proposal to simulate
heavy quark systems with a nonrelativistic effective Lagrangian [21]. In practice [22,
23], the coupling constants in this effective Lagrangian are estimated from perturbation
theory to first order in §2. They are divergent like E(a). The above considerations
cast considerable doubt on the validity of such a procedure or at least call for a serious
estimate of systematic errors introduced through the uncertainties in the coupling
constants in the effective Lagrangian.

As a result, we have to refrain from quoting any number for the binding energy in a
static-light meson. On the other hand, in mass splittings like As and A,, the self
energies cancel and we obtain relevant estimates that are good to lowest order in 1/m,.

Decay constant. We turn next to the question of optimizing, within a given order, the
perturbative renormalisation factor Z,,:. This quantity is implicitly defined [24, 25]
by matching the continuum (full theory) axial vector correlation function Cy,(t) at

large euclidean time separation ¢ with its lattice counterpart Clociocitosloc(¢).

Cao(t)eMH = 22, (a,my)eMPiCloclosloslos(4) (1 + O(1/my)) . (4.5)

Y45

Since eq.(4.5) has to hold also in the range of intermediate time separation ¢, the
renormalisation constant Z,;,; can be calculated in perturbation theory:

loc,loc;loc,loc
(Mg —~Mp)t C’H‘Ys (t)

CAo (t)

My — Mp = my, — E(a) has to be determined in perturbation theory only to remove
the t—dependence of the r.h.s. and there is no linear divergence in Z,a; [25].

tha.t(a’ mh) =e€ Ipert . (4-6)

The result is: 2 |
Zotat(aymp) = 1 + f—;(; log(a ms) — 2.372) . (4.7)

This is a first order perturbative result and it is not a priori clear which coupling
should be used in eq. 4.7. It is common practice (see ref. [25] and references therein)
in numerical estimates of eq.(4.7) and hence of F to use the bare coupling g2 as this
choice seems to be natural in connection with lattice regularisation. However, the
expansion in the coupling constant has to approximate a physical correlation function
both in the continuum (left hand size of eq. (4.5)) and on the lattice (right hand
size of eq. (4.5)). As we have already pointed out in connection with eq. (4.3) g2 is
not a good expansion parameter and should be replaced by a renormalised coupling
constant defined by some physical process [18] . We may use the MS coupling at
a suitable scale which is known to give well behaved expansions for many physical
quantities. For this purpose we have to estimate the appropriate scale and establish
the relationship between g% and g2. To estimate the appropriate scale in eq. (4.7)
we note that eq. (4.6) is valid for ¢ >> 1/my, due to the expansion in 1/m;. On
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the other hand, the time separation is required to be small compared to a typical
non-perturbative scale, such that the correlation functions can be approximated by
perturbation theory. This sets the requirement ¢t << 0.5fm. For m; = O(m,), these
requirements don’t leave much of a window and we conclude that the coupling constant
should be evaluated at a scale of about 3 GeV. An estimate for this coupling in pure
SU(3) gauge theory is given by [18]

1
gff—s(%) = g5 < 3TrPy, > +0.02461 . (4.8)

This refers to the MS coupling in the continuum of the pure SU(3) gauge theory.
The corresponding expression has been shown to be rather accurate at values of the
lattice spacing a=! = 4GeV in the pure SU(2) gauge theory [19]. As input into eq.(4.8)
we need, in principle, an estimate for the lattice spacing at a small value of the bare
coupling constant. Using the values for the string tension in table 5 (and for the larger
B, the 2-loop renormalisation group equation) we obtain consistently

$=(3GeV) =1.9(1) ;5 Zstar(a,ms) = 0.71 + 0.048(log(amy) — 1.43)

Let us estimate roughly the uncertainty of this renormalisation constant. The loga-
rithmic correction varies only by £0.007 over our range of lattice spacings at m; =
4.6GeV =~ m,. Varying the argument of g2 between 1.5 GeV or 9 GeV produces a
maximal change in Z,; of £0.08. This range also covers changes arising from using a
different quantity like the p-mass to set the scale and a change to other renormalised
couplings like g3,5 or a coupling defined from the force between heavy quarks [20] °.

4.2 Setting the Scale

We obtain physical results by forming dimensionless ratios, determining their value
through the simulation and identifying one quantity with its experimentally measured
value. In this way, a reference scale enters. Within the quenched approximation, a
natural choice is the string tension o, since it does not involve an extrapolation in
quark mass. It carries the disadvantage, though, that it can only be determined from
experiments in a rather indirect way.

String tension calculations in lattice gauge theory mainly bear two sources of system-
atic errors. Firstly the individual values of the potential are determined at finite values
of the euclidean time separation, which makes them prone to pollution by “excited
states”. This error is presumably smaller [26, 27] than the statistical errors of the
measurements used here. Secondly the potential parameters are determined from fits
within a certain range of the quark separation R. In order to study scaling violations
effects, it is crucial to use potential parameters, that have been obtained from fits to a
definite parametrisation and fit range in physical units. Here, we follow the philosophy
of employing the data from ref. [26] and [27], and restricting ourselves to the range

9Note, however, that this range does not include the bare coupling constant.
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0.3 fm < R < 1.0 fm'® In the following, we use results for o extracted from fits
done with one assumption on the subleading term, namely the one suggested by the
bosonic string picture [28]:

2
a V(R) = aVy — %—G(R/a) +aoc R, R=|B|, for BV/G>03  (49)

In the R-range given in eq. (4.9), such a parametrisation of the potential is in agreement
with all existing lattice simulation results.

Apart from the direct results obtained in simulations, table 5 contains interpolated
values for B = 5.74 and 6.26. For these two f values, Vpa and log(oa?) have been
interpolated linearly in B using the two neighbouring Monte-Carlo results. Some un-
certainty due to possible deviations from such behavior has been taken into account.
Using the values collected in table 5 we can thus express all lattice quantities in phys-
ical units.

A second choice for setting the scale is the mass of the p resonance M,. Before the
p mass can be utilized to set the scale, its lattice prediction has to be extrapolated
into the chiral regime, however. On the lattice, an accurate computation of M, has
been performed in the quenched approximation at § = 5.7, 8 = 6.0 and 8 = 6.3 by
the APE group [29]. Our own determinations are listed in table 6: M,a = 0.534(11),
0.341(15) and 0.208(15) at B = 5.74, 6.0 and 6.26 respectively. The 8 = 6.00 value is
in perfect agreement with the result of ref. [29], although we have used a significantly
smaller lattice.

Extrapolation in Quark Mass. For completeness, we will now present some details
on quark mass extrapolation. One makes a linear ansatz for the vector meson mass

1 1 1
LI = —_t— - .
a My(,1') B+C(2n+2n' ﬂc) (4.10)
The critical value &, follows from the relation
1 1 1 )
2 2 "N - =
a* Mp(lLI)=A (2’c + 57 K'c) (4.11)

suggested by lowest order chiral perturbation theory [30]. By ! and !’ we denote
quantities obtained using correlators of light quarks. Here, k. differs from its free
value of 1/8 because of the explicit breaking of the chiral symmetry in the lattice
regularisation [31]. Our fits to eq. (4.11) are shown in fig. 7, for degenerate and non-
degenerate light quark masses. The linear dependence of both M3(1,1') and My (1,1')
on the quark masses is very well satisfied. The « values corresponding to the up and
down quark (x,) and to the strange quark («,) can be extracted from

A (;1— - %)/(aaz) — (13TMeV/420MeV)?

10We are aware of the effects from the subleading terms and other overall uncertainties due to
the parametrisations used. We expect that they have little impact on the size of scaling violations,
however.
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2K, + 2K,

A - ni) /(0a?) = (494M eV /420 MeVY?

when the string tension ca? is used to set the scale (with analogous expressions when
scaling with M,a). In addition, we quote results for a large number of L and a
values, computed at a quark mass m,, of approximately twice the strange quark mass
defined by M%(l,1)/oc = 4. They do not require any extrapolation, but only a mild
interpolation in the case of the # = 6.26 data.

In table 6 we list our results for the vector meson mass at k. and k,. Tables 7 and
8 give the values, after linear extrapolations to zero quark mass and to m,'!, for the
bare decay constant and mass-splittings, respectively.

As we will base our analysis in the following on the scales extracted from the string
tension and the p-mass, we briefly investigate, in how far we can expect consistent
results from these two scales. Figure 8 shows the ratio m,/+/o as a function of the
lattice spacing. Perturbative arguments suggest that the dependence of physical ratios
on the lattice spacing is linear in the case of the Wilson action'?. A linear extrapolation
in the lattice spacing is shown in the figure. The result at a = 0 is some 10% low from
the experimental value of 1.75-1.83.

Let us comment finally on the possibility to base the scale on the 7 decay constant.
Our data for f, show non-linear behavior in the quark mass. Recent calculations of f.
have been able to reach smaller quark masses with good precision and can therefore be
extrapolated [32]. Within errors, fra and M,a give the same lattice spacing at f = 5.8
and 6.0. The situation for our data is demonstrated in fig. 9. Taking into account the
uncertainty in the perturbative renormalisation of fp, which is not included in fig. 9,
we see that the Monte Carlo results for fp/My are consistent with the experimental
numbers and therefore the lattice spacings agree within errors. We therefore use
_exclusively the string tension and the p mass to convert our results to physical units.

4.3 Finite Size Scaling

In fig. 10 we plot F /Z4a¢ as a function of the spatial lattice length L, both in units of
the string tension, at quark mass m,, twice the strange quark mass. We wish to make
two comments on the finite size behavior of these data:

1. As the entries into fig. 10 are statistically independent, an alternative search for
possible a—effects may proceed via a global fit to the L-dependence. The latter is
exponential, with a characteristic decay given by the mass of lowest lying glueball,
which winds around the periodic volume. Since mg++/v/o ~ 3.5 [33], the sensitivity
of our computer experiment is much too low to exploit this.

11The values of these quantities at ma, can be directly obtained from tables 3 and 4.
121t should be remembered, that this is a perturbative argument. It is in no way obvious that this
behavior is the same for long-distance, nonperturbative quantities.
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2. One might speculate that the finite size effects seen within the intermediate regime
of fig. 10 originate from a distortion of the light-quark wave function in the finite
volume. For an exponentially decaying wave function, the finite size effects on the
wave function at the origin are again exponential in L. The characteristic scale in this
domain is the coefficient in the falloff of the wave function. A rough estimate is given
by 1.5 in units of the string tension [34]. We find that the data in fig. 10 can indeed
be fitted with the form Fo~3/4 = 3.64(8) — C exp(—1.51/ L) with a x2/DoF = 8/9, if

the error of the most precise point is increased to lie in the general ballpark of £0.15.

From the above observations we may conclude that within a precision of about 10
percent one can neglect finite size effects on Fo~3/4, in the range /oL > 3. This
remains true also for smaller quark masses, as can be seen by looking at the entries in
table 3 for the lattice A3, A3a and A5. We therefore assume that finite size effects are
negligible beyond /oL > 3 for the light quark masses considered here and we proceed
to analyse our results in more detail at /oL =~ 3.

Fig. 11 shows the a-dependence of the bare decay constants at the s quark mass and
at the u quark mass with both setting the scale through /o and M,. Putting in the
value Zy,: = 0.71(8) we obtain

F, = 0.61(4)(71)GeV*?, F, = 0.53(5)(6)GeV>/? (4.12)
with /o and
F, = 0.67(18)(7)GeV??, F, = 0.59(18)(6)GeV>/? (4.13)

from the M,-scale. The values given in eq. 4.12 and 4.13 are in perfect agreement, with
the latter ones having very large errors. The first errors given above are statistical and
the second result from our estimated uncertainty of Z,,,;. We have not included an
error for the extrapolation, since our data points at the smallest value of a are within
the error bar of the extrapolated values.

From eq. 4.12 we obtain the IMET lattice predictions for the decay constants of B-
mesons evaluated in the static approzimation

frs =266 £ 22 £ 26 MeV foru=230£224+26 MeV.  (4.14)

The central value is significantly lower than the ones of the first calculations [3, 5].
Firstly, there is a significant a-dependence when the scale is set by the p-mass, as
anticipated in ref. [4]. Secondly, as we explained in section 4.1 the use of renormalised
perturbation theory in the determination of Z,,; decreases the value of the decay
constant by about 13%.

For the D-meson one definitely needs the 1/Mp correction since by stretching the
validity of IMET down to the charm mass, we obtain the extremely high values of
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fou = 359(34)(39) and f., = 405(27)(46) MeV which contradict results both from
lattice calculations with fully propagating quarks and from sum rule evaluations [35).

If one looks at the analogue of fig. 10 for the 1P - 1S splitting, As, one observes a
significant scatter in the data coming from different 8’s. This indicates that As/ Vo
has a stronger a-dependence than the decay constant. Looking at the results given in
Table 4, however, we find no significant finite size effects for L/o 2 2 on the level
of our statistical uncertainties. Therefore, we can extract the splitting directly at
L+/o ~ 3. In fig. 12, we show the a-dependence of Ag at quark mass mg,. The linear
extrapolation to the continuum gives 344(37) MeV from fig. 12a and 383(72) MeV
from fig. 12b. At smaller quark masses, our results are too inaccurate to allow for such
an extrapolation. We note, however, that no significant quark-mass dependence was
observed for this splitting.

Unfortunately a similar analysis is not feasible at the moment for the Baryon-Meson
splitting, A,. The best we can do, is to take figure 6 as an indication that there is
a plateau at Ap/+/7 ~ 1.5. This produces a rough estimate of 600MeV for the A; -
B-meson mass splitting. Much more work is needed to check the existence of plateaus,
the a-dependence, quark-mass dependence and finite size effects for this quantity.

5. String Breaking

We turn now to another observable that may be calculated from our simulation results.
It is of interest, because it gives information about the forces between static charges in
the full theory, i.e. it is a quantity calculated in the quenched approximation which can
provide information about ¢g forces with dynamical fermions. In full QCD simulations
the breaking of the QCD string, i.e. the flattening of the heavy quark potential at large
distances, has been searched for some time. No effect was found in the most serious
effort [36]. In the following, we estimate the distance R;, where the full QCD potential
flattens off using only quantities calculated in the quenched approximation [15].

Consider a large Wilson loop W(R, T), with T >> R, in full QCD. It has a represen-
tation in terms of the eigenvalues of the QCD-hamiltonian (or transfer matrix):
W(R,t)= Y [ (R)P exp(~Va(R)Y) - (5.1)
n>0
Here exp(-V, (R)) are the eigenvalues of the transfer matrix in the corresponding
charged sector of the Hilbert space: the states in this sector transform under gauge
transformations according to the 3-representation at position 0 and according to the 3-
representation at position R. The same states contribute in the spectral decomposition
of the correlation function

HBt) = < MeI(@,1) [MI(R, 0]t M (R,0) M=) (0,0)]F >

Y45 Y4°Ys Y4Ys V4TS

S 1eH (B exp(~Va(B)) (5.2)

n2>0
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The ground state potential V(E) = Vp(E) can therefore be called a static quark
potential or a static meson potential. Physically, the first interpretation is sensi-
ble at relatively short distances, whereas the second one is the appropriate language
for large distances (compared to the confinement scale). This can even be put into
a quantitative relation: we expect |cH(R)|? << |c¥(R)?> at small distances and
| (R.)I2 >> I%W(ﬁ)lz at large distances. Furthermore, at large distances, the po-
tential will approach a constant up to non-leading terms (Yukawa-type interactions),
because the correlation function factorises:

log[H(R, )] = log|(Cyecd#")?] + O(expl-m.BJt/R) . (5.3)

Y45

Simulation results of full QCD [36] indicate, that the QCD-potential is approximated
rather well by the quenched potential out to relative large distances, up to about
R ~ 0.7fm. At very large distances, on the other hand, we expect that H (ﬁ, t) is
represented with some accuracy by the quenched approximation. We must switch
from one correlation function to the other when using the quenched approximation,
since we have to put in the breaking of the string by hand. Obviously, the quenched
approximation does not have much to say about the intermediate regime.

The asymptotic behavior of the correlation function H(R,t) is given by the mass in
the static approximation. So we define the string breaking distance R; by

V(Rs) = 2Mp, (54)

with V(R) being the quenched potential including the self-energy term that cancels
in eq.(5.4). R, defined in this way, gives an upper bound to the distance where the
potential starts deviating significantly from the form of eq.(4.9).

From eq.(4.9) with G(R/a) ~ a/(47R), we can calculate R,

T

o0 (5.5)

Ry = (Mp - %Vo)/d + \/[(MP - ';'VB)/U]"’ +
As table 3 does not show any significant finite size effects on Mp within the whole
range of 1.5 < L./o < 4.5, we can safely neglect finite size effects on R;. We have
extrapolated Mp at L\/o ~ 3 linearly in 1/« and calculated R, at x, and «,. The
results are listed in Table 8. Figure 13 shows the a dependence and our extrapolation
to a = 0. For all quark masses, the continuum value is at R, = 4/+/c with about 10%
statistical error. We estimate an uncertainty for the extrapolation in a of 10%, since
the a-dependence is rather steep and end up with

Ry =1.9(2)(2)fm (5.6)
for all quark masses my < 2ms;.

Such distances are difficult to reach in a potential calculation including dynamical
fermions. It should be noted, however, that the screening of the potential is expected
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to appear at distances that are rather independent of the dynamical quark mass and
hence can be observed with relatively large quark masses 2.

6. Summary and Conclusions

In this work we have investigated in detail the various aspects of the static approxi-
mation. We summarize here the main outcome of this study:

1. In order to filter out the ground state before noise sets in, one must use extended
fermion fields. By varying the trial wave functions at 8 = 6.26 we found that
extended plateaus in the local masses occur for wave functions with r.m.s. radius
of about 0.3 fm. Using wave function with larger or smaller radii, the quality
of the plateaus deteriorates. In particular for the local-smeared correlators the
quality of the plateaus depends crucially on the choice of a good trial wave
function. For the very small or large wave functions the plateaus set in at larger
times where errors become significant. For these wave functions we can safely
identify the region of the plateau only by using our knowledge of the height
of the plateau deduced from looking at the smeared-smeared correlator. If we
then fit in the range of the identified plateau we arrive at results which are all
consistent and stable under variation of the time interval of the fit. The error
bars are smallest for the best wave function. The results are insensitive to a
change of shape of the trial wave functions of given r.m.s. radius. We therefore
conclude that the results for the decay constant in the static approximation are
stable under variations of the size and shape of the trial wave functions as long
as plateaus are correctly identified in the manner discussed in section 3. This
corroborates our previous findings [4].

2. Having established the wave function independence of the decay constant we
studied scaling, using the best wave function at each value of 8. We find that
for L 2 1.5 fm the volume dependence of f is negligible. Using results at a
fixed volume of about (1.5 fm)3 we observe the a-dependence to be rather strong
when the mass of the p meson is used to set the scale. If, on the other hand,
the physical scale is based on the string tension the a-dependence turns out to
be much weaker. In other words, at small B values one is faced with significant
effects from the choice of scale. After continuum extrapolation, however, both
alternatives are observed to yield identical results within error bars. But the
latter are considerably reduced in the string tension option.

3. In our original calculation of f [3] we anticipated systematic errors arising from
the renormalisation constant Z,:, the choice of physical scale and the a — 0
extrapolation. Here we have carried out the a — 0 extrapolation and found a

13Note that the significant change compared to the numbers given in ref. [37), is due to a copying
mistake in that reference.
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10% correction due to the scale and a 13% correction due to the renormalisation
constant Zy,:. All these corrections act in the same direction, i.e. they lower
the estimate for f. As a consequence, we finally end up with *

foa = 230(22)(26) M eV, fos = 266(17)(30)MeV.

4. In the mass range of the D-meson there is a substantial difference between the
result for f obtained in the static approximation and using propagating heavy
quarks, which points to large 1/Mp corrections.

5. The plateau of the local mass for the scalar correlator is not as wide as for the
pseudoscalar. This means that the result for the scalar-pseudoscalar splitting Ag
is less conclusive than for the pseudoscalar mass. We do not observe a definite
dependence on the light quark mass. Extrapolating to a = 0 our results at light
quark mass twice the strange quark we estimate

As = 344(37) MeV.

For A; the situation is even less clear and more study is required to establish a
reliable estimate.

6. From our quenched calculation we are able to produce an upper bound for the
distance where string breaking should occur in the full QCD. After extrapolating
to a = 0 we obtain

By = 1.9(2)(2) fm.

We do not observe a strong dependence on the light quark when we vary from
the chiral limit to quarks of mass twice the strange quark mass.
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7. Appendix A: Simulation Parameters

We work in the quenched approximation, using the standard Wilson formulation [38,
39] of the lattice action

S =S¢+ SF (7.1)
with 1
S6(U) = BX. L1 - gRe Tr Pul2)} (7.2)
T u>v
and

Sr(8,0,0) = T ¥(@)U(z) — 3 31 Ue)(1 - n)U(@) Uz +ah)  (73)

+ Y(z)(1+7,)Ul(2)¥(z —ait) ]}
= UMY

Here, as in most of the following, we have suppressed Dirac and color indices. a denotes
the lattice constant and P,,(z) is the product of gauge parallel transporters U,(z) €
SU(3) around an elementary plaquette and is given by

| Pu(s) = Uu(@)Us (e + ai)Ul(c + ad)U}(z) (7.4)

The gauge fields are periodic functions of z, and the fermion fields ¥ are taken periodic
in space over a length L and antiperiodic in time over a time extent L,;. The hopping
parameter & is related to the bare quark mass m by

1
* = ama+4)

In order to quantify finite a and finite size effects, the calculations have been performed
on a series of lattices which differ in the coupling constant 8 and in the lattice size
L. In table 1 we give the parameters and nomenclature for the various lattices. The
physical lattice spacing and size of the lattice, obtained by fixing the string tension o
to the value (420MeV)?, are given in the last two columns.

(7.5)

Our Monte Carlo procedure employs a hybrid over-relaxation algorithm {40] to produce
independent gauge configurations. In this algorithm N almost microcanonical over-
relaxation sweeps [41] through the lattice are followed by one standard Metropolis
sweep[42]. This combination is called one iteration. We separated our measurements
by 100 iterations with N=1 at 8 = 5.74, 200 iterations with N=2 at 8 = 6.0 and 150
iterations with N=3 at # = 6.26.

As demonstrated in section 3.1, in order to obtain a reliable signal for the correlation
functions and thus for the physical quantities of interest, we must smear the hadronic
fields. This requires calculating the product of a finite-mass quark propagator S with
smearing wave function ®(z,z4). This product is given by the solution of

> M(z,y)[D_ S(y,2)0(z,z4)] = O(z,z4) , (7.6)
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where M is the fermion matrix of eq.(7.3). The linear equation (7.6) is preconditioned
through an even-odd partitioning of the matrix [43] and then solved by the minimal
residual algorithm [44]. In order to speed up the process further, the solution at
the respectively higher quark mass is used as starting guess in the algorithm. For the
quark masses used in this calculation, this combination saves a factor of 2-4 in cpu time
compared to the standard conjugate gradient method. The accuracy needed in the
matrix inversion is determined by testing the convergence of all correlation functions
that are used in the calculation.

Let us briefly comment on the error analysis of the simulation results. We have gen-
erally binned our results into groups of up to 5 measurements, keeping, however, a
minimum of around N;, = 20 bins. As to be expected, no significant bin-size depen-
dence of the statistical errors was found for the simulation parameters given above.
The statistical error of a function F(P,..., P") of quantities P’ that are simple aver-
ages over configurations, was calculated using

1 dF dF
A(F) = e \Jg—:l 7P cov(P¢, P7) — 75 (7.7)
with the covariance matrix given by
. 1 Npin _ . _
cov(P', P?) = > (P — Pi)(P} - Pi) . (7.8)
m. k=1

P} is the average of P in the k** bin. This procedure was applied e.g. for the time-
dependent masses discussed in section 3.1. Statistical errors of parameters originating
from fits to correlation functions or ratios of correlation functions as well as from fits
extrapolating in mass were always determined by the use of the jackknife method [45]
(with binning to control autocorrelations).

8. Appendix B: Variance of “local-smeared” correlators

In the following, we consider the variance of the correlations CHh(¢) and P ().
Under two assumptions we derive an inequality which corresponds to the behavior of
fig. 2.

As we calculate the real part of the correlation functions, there are two contributions

(one from the operator squared, one from the operator times its adjoint). Since the

discussion is completely identical for the two terms we write only the first one in the

following. In the case where we smear the light quark on the “source side” this is given

by

dHer ()} = (8.1)
Z < My (Z,1) IMER (0, 01T MEL(F, 1) [MEL(0, 01 > —[Cr™ ()

= £ (0,1) [ME (0, 0] M (0,1) IMER(@, 01 > —[Cr™ (@)
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. Here we have added a flavor index 1,2 to the quark fields: M%‘,I(.%', t) = RI(Z,t) T I (3,1).
It keeps track of the proper contractions of quark fields in eq. (8.2)'°. It can be shown

that
oH{CFH (1)} = o*{CPHM (1)} = o {CF (1)) (8.2)

We proceed by expressing the first 6 part of the variance through the eigenstates of the
transfer matrix. States |B;(0)Bz(0) > with two static mesons (with different flavors)
at ¥ = 0 contribute. Denoting the energy of these states by exp(—EZE (0)), we obtain

dHCEM ()} + [CFMOP = 3 Y exp(-EZE(0) ) +(,2) (8.3)

"“n

.y
7(3/& x) = 7(1"’37) =< OIMF,I(O’t) M{"‘fz’(ﬁa t)ln;Bl(ﬁ)B2(6) > (8'4)
< n; By(0) B0 F (@, 6:(0) T ka(0) L(Z)F'(Z,0;u(0)) T ho(0)l0 >

Correspondingly we have

G2{CHI (1)) 4 [C”’“(t)]z (8.5)
E<M 1(&,8) IMEL (O, 0T MEL (3, 8) (M0, 0)]F >

- z < Mp,(Z,4) B(0,0)F1(0,7U(0)) T hy(Z,0)

1o (7,¢) (0,0)F (0, :U(0)) T ho(3,0) > ,

d{cr ey + [C””(t)]’ 23l ~EPP(E-9) 1) o(3,3) (8:6)
zy "
a@F) = a@§) = <OM(F) ME,@)In: By(@)Ba(@) > (87)

< n;Bl(z)Bz(mlll(O)F’(o,x,U) T hi(3) LOFO,7:U) T ka0 >

For large values of ¢, the expressions for o2 a.re dominated by the n = 1 contribution.
Let us assume that EBB (Z) increases with 77, i.e. that the interaction between the
static mesons is attractive. Then exp(—EPE(Z —7) t) ~ g7 exp(—EBB(0) t) in the
limit of large t. Since a(Z,Z) = v(Z,7) we obtain (in the limit of large ¢)

LT LI ~ - -

oH{CF*(8)} — oH{Cr " (1)} ~ exp(—EPP(0) 1) D_ 1(7,) - (8.8)
Ty

Since we are using wave functions without nodes, v(¥,Z) is expected to be positive for

all Z,%. The second contribution to the variance is identical to the above except that

we have B;—B, correlation functions instead of B;—B,.

Therefore — accepting the above assumption — we arrive at the conclusion that (at
large t) the variance of the correlation function can be reduced if we smear the heavy
quark on the “source side” compared to the other cases. In fig. 2, this effect is there
for all values of ¢, which is expected following the argument given above if one assumes
that EBB(Z) increases with z° for general n.

15This is necessary since we want to calculate the variance of the observable that is defined after
we have integrated out the fermion fields.
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Table Captions

Table 1: Parameters of the lattices used for this work. The inverse lattice spacing and the
spatial extension L in physical units are obtained from fixing the string tension

to (420MeV)2.

lattice | B | L/a, L/a | no. config’s. | a™*/GeV | L/ fm
Al |5.74 4, 24 404 112 0.70
A2 |574| 6, 24 131 1.06
A3 | 5.74 8, 24 170 141
Al3a | 5.74 8, 24 100 - 141
A4 |574] 10, 24 213 1.76
A5 | 574 12, 24 140 2.12
B1 5.82 6, 28 100 1.32 0.90
Cl |6.00 6, 36 S 227 1.88 0.63
C2 ]6.00 8, 36 100 0.84
C3 ]6.00 12, 36 204 1.26
C3a | 6.00 12, 36 100 1.26
C4 |6.00 18, 36 27 1.89
D1 |6.26 12, 48 103 2.78 0.85
D2 |6.26 18, 48 33 1.28
D2a |6.26| 18, 48 43 1.28
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Table 2: Bare decay constant and mass in lattice units, using the static approximation for
the 182 x 48 lattice at 8 = 6.26 and x = 0.1492. The smallest time separation
in the correlators used for the fit is given by ¢,.:x/a and the largest is fixed at
tmaz/a = 17. An asterisk (*) indicates that the fit was not accepted due to either
the missing of a plateau in the local masses in the region of the fit or a value of
x? larger than the one to be expected including the correlations of the data.

a n rifa|rzfa| aMp |itmm/a @32 F | Z 4104
Toctgaus | 2.5 | 3.9 |0.569(7) | 2 | 0.235(19)"
| 4 | 0.223018)°
6 | 0.21318)"
8 | 0.208(20)
10 | 0.205(21)
12 | 0.203(24)
Toctgaus | 35 | 46 | 0.566(7) | 2 | 0.221(19)°
4 | o0211(19)
6 | 0.204(20)"
8 | 0.200021)
10 | 0.198(22)
12 | 0.195(25)
loct+gaus | 4.1 | 5.0 | 0.566(7) 2 0.216(19)*
4 | 0.208(19)*
6 | 0.201(20)*
8 | 0.198(20)
10 | 0.196(22)
12 0.192(25)
270 | 42 | 46 | 0.566(7)| 2 | 0.201(15)
4 | 0.200015)"
6 | 0.198(18)
8 | 0.195(18)
10 | 0.194(20)
12 | 0.190(22)
4100 | 52 | 56 |0565(8) | 2 | 0.188(15)°
4 | 0.190(16)*
6 | 0.190(17)
8 | 0.189(20)
10 | 0.188(21)
12 | 0.185(25)
5160 | 6.1 | 6.5 | 0.566(8) | 2 | 0.170(13)"
4 | 0.176(15)"
6 | 0.180(18)
8 | 0.181(20)
10 | 0.181(21)
12 | 0.180(24)
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Table 3: Bare decay constant and mass in lattice units, using the static approximation.

An asterisk (*) indicates that the fit was not accepted due to a large x? or the
missing of a plateau in the local masses in the region of the fit. A dagger (})
indicates that smearing was applied to both heavy and light quarks.

latt. K K a n |rfa a*2F| Zstar aMp
tmin =28 tmin =3@  tmin =44 Imin =5a  tpin = 6a

A1 [0.1560 | 3010 | 1.8 | 0.751(35) 0.770(51) 0.781(66) 0.788(74) 0.834(28)
Al |0.1580 2010 | 1.8 | 0.751(33)* 0.771(50) 0.785(63) 0.791(69) 0.833(27)
A2 | 0.1560 2010 | 2.6 | 0.775(31)" 0.798(46) 0.810(60) 0.817(65) 0.833(27)
A2 | 0.1580 2010 | 2.6 | 0.757(31)* 0.774(47) 0.784(61) 0.789(65) 0.811(29)
A3 | 0.1560 3010 | 2 * 0.840(31)" 0.019(46) 0.882(43) 0.900(46) | 0.855(17)
A3 | 0.1620 2010 | 2 * 0.769(33)* 0.785(41) 0.798(43) 0.811(41) | 0.785(21)
A3 | 0.1635 2010 | 2 * 0.745(31)* 0.756(39) 0.766(39) 0.780(34) | 0.768(20)
A3a | 0.1560 | 0.1866 0.874(16) 0.884(26) 0.879(20) 0.834(59) 0.837(5)
A3a | 0.1600 | 0.1866 0.840(18) 0.836(26) 0.822(20) 0.829(64) 0.792(5)
A3a | 0.1620 | 0.1866 0.810(25) 0.808(35) 0.794(44) 0.803(78) 0.772(6)
A3a | 0.1635 | 0.1866 0.805(33) 0.790(43) 0.772(56) 0.780(95) 0.758(8)
A4 [ 0.1560 2010 | 3.6 | 0.782(22) 0.809(35)" 0.820(43) 0.841(50) 0.835(54) | 0.831(21)
A4 | 0.1580 2010 | 3.6 |0.765(25)* 0.788(36) 0.804(44) 0.813(51) 0.804(55) | 0.810(23)
A5 | 0.1560 2.0 10 0.777(19) 0.809(33)* 0.854(42) 0.834(46) 0.840(49) | 0.841(18)
A5 | 0.1620 2.0 10 0.740(18)° 0.768(31) 0.781(40) 0.790(40) 0.793(37) | 0.792(18)
A5 | 0.1635 2.0 10 0.719(22)* 0.760(44) 0.745(47) 0.748(50) 0.745(47) | 0.779(20)
BI | 0.1557 | 0.1856 19 * 0.635(60)  0.618(69) 0.590(31) 0.764(13)
Bl | 0.1574 | 0.1856 1.9 * 0.618(63) 0.596(71) 0.571(81) 0.749(15)
Bl | 0.1587 | 0.1856 1.9 * 0.609(72) 0.581(81) 0.558(98) 0.746(18)
C1 01525 4050 | 38 | 0313(19) 0.322(27) 0.326(33) 0.325(37) 0.646(28)
C2 | 0.1500 4025 | 3.2 | 0.333(16)* 0.340(22)° 0.368(31) 0.376(50) 0.704(9)
c2 | 01525 4025 | 32 | 0.351(18) 0.356(24) 0.364(37) 0.669(10)
C3 | 0.1525 2050 | 4.0 | 0.345(10)° 0.365(18)" 0.379(24) 0.383(31) 0.397(43) | 0.690(18)
C3 | 0.1540 4050 | 4.0 |0.330(10)* 0.347(16)* 0.360(29) 0.369(26) 0.375(37) | 0.665(18)
c3 | 0.1558 4050 | 4.0 | 0316015 0.334(24) 0.346(30) 0.354(37) 0.365(47) | 0.652(16)
C3a | 0.1525 | 0.1854 40 : 0.451(06)* 0.415(14) 0.304(19) 0.390(25) | 0.687(12)
C3a | 0.1540 | 0.1854 4.0 *  0431(06)° 0.395(14)* 0.371(20) 0.369(26) | 0.666(13)
C3a | 0.1550 | 0.1854 4.0 + 0.416(08)* 0.381(14)* 0.359(20) 0.359(27) | 0.653(14)
C4 01525 40 507 ¥ 0.353(14)" 0.361(16)* 0.368(18) 0.371(19) | 0.672(14)
D1 | 0.1492 4100 | 5.0 | 0.190(11F 0.195(14) 0.201(16) 0.206(20) 0.204(21) | 0.541(31)
D2 | 0.1492 4. 100 | 5.5 | 0.203(09)* 0.211(11)* 0.214(13) 0.213(13) 0.598(33)
D2 | 0.1506 4.100 | 5.5 | 0.190(09)* 0.196(11)* 0.198(11) 0.195(11) 0.575(31)
D2 | 0.1514 4.100 | 5.5 | 0.184(10) 0.189(11)* 0.188(11) 0.185(11) 0.565(31)
D2a | 0.1492 4,100 | 5.6 | 0.188(15)° 0.189(16)° 0.190(16) 0.190(18) 0.190{19) | 0.565(8) |
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Table 4: The mass splittings As and A, and the scale of string breaking R} in lattice units
are given. An asterisk indicates that no clear plateau could be identified. The
second column gives the parameters for the gaussian trial wave functions used.
For all lattices smearing was applied either to the heavy or light quark except
for lattice C4 where both quarks were smeared. A dagger ({) denotes numbers
obtained not by fitting the ratio Rs but separately the scalar and pseudoscalar

correlators.

latt. | @ n K. alg al\p Ry/a
2. 10 [ 0.1560 | 0.431(20) | 0.57(8)* | 7.9(3)

A3 | 2. 10 | 0.1620 | 0.482(92)* | 0.46(3)* | 6.9(3)
2. 10 | 0.1635 | 0.500(130)* | 0.43(6)* | 6.7(3)

2.10 [ 0.1560 | 0.413(21) | 0.35(9)* | 7.7(3)

A5 | 2. 10 {0.1620 | 0.435(32) * 7.0(3)
2.10 | 0.1635 | 0.449(34) * 6.8(3)
0.1525 | 0.210(12) * 15.3(9)

C3 | 4. 50 | 0.1540 | 0.196(21) * 14.4(9)
0.1558 | 0.136(86) * 13.9(8)

C4 | 4. 50 |0.1525| 0.210(18) | 0.326(8) | 14.6(8)
DI | 4. 100 | 0.1492 | 0.174(11)* ¥ 21(3)
4. 100 | 0.1492 | 0.149(57)1 * 26(3)

D2 | 4. 100 | 0.1506 | 0.159(53)f * 24(3)
4. 100 | 0.1514 | 0.172(51)f * 23(3)

D2a | 4. 100 | 0.1492 | 0.142(18) | 0.216(14) | 23(1)

Table 5: Values for the constant piece of the quenched QQ potential (eq. 4.9) and the
String tension.

B a Vo a’o Reference
5.70 | 0.631(3) | 0.168(1) 27]
5.74 | 0.636(5) | 0.141(2) | interpolated
5.80 | 0.643(3) | 0.109(1) 27]
5.90 | 0.647(3) | 0.073(2) [27]
6.00 | 0.630(4) | 0.050(1) [26]
6.20 | 0.614(1) | 0.0272(2) |  [26]
6.26 | 0.607(2) | 0.0229(3) | interpolated
6.40 | 0.589(1) | 0.0154(1) | [26]

Table 6: The k-values k. and &, corresponding to zero and strange quark mass are given
for each B. In the two last columns we list the values of M, in lattice units at
ke and £,. The values of k, are obtained using M, as a reference scale.

B Ke Kq aM, aM,

5.74
6.0
6.26

0.16631(19)
0.15716(14)
0.15234(12)

0.16194(15)
0.15493(12)
0.15139(9)

0.534(11)
0.341(15)
0.208(18)

Ps
0.660(8)
0.427(10)
0.263(14)
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Table 7: We give the bare decay constant F /| Z,tar and pseudoscalar mass in lattice units
extrapolated at «. and at x,. The latter was fixed by using both M, and the
string tension (in square brackets) as a reference scale. The subscript u and s
denote quantities evaluated at the chiral limit and at the strange quark mass
respectively.

,3 a3/? Fu / 7 stat a MP., a3/? Fa / 7 stat a MP,
5.74 | 0.768(28) 0.730(8) | 0.814(21)[0.843(17)] | 0.774(5)[0.804(5)]
6.0 0.327(14) 0.627(8) | 0.356(13)[0.369(13)] | 0.655(11)[0.667(10)]
6.26 | 0.177(11) 0.550(30) | 0.189(12)[0.198(12)] | 0.565(31){0.577(31)]
Table 8: The mass splittings As and A, and the scale of string breaking R, in lattice
units are given at k. and at «,. The latter was fixed by using M, and the string
tension (in square brackets) as a reference scale. The notation is the same as in
table 7.
B als, alp, Ry, /a als, ala, R, /a
5.74 | 0.516(29) | 0.387(58) | 6.15(19) | 0.477(19)[0.450(16)] | 0.462(39)[0.512(25)] | 6.75(18)[7.16(19)]
6.0 | 0.211(20) 12.86(73) | 0.217(15)[0.223(13)] 14.95(73)[14.39(67)]
6.26 | 0.179(49) 22(3) | 0.169(51)[0.160(52)] 23(3)[24(3)]
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Figure Captions

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:
Figure 6:
Figure 7:
Figure 8:

Figure 9:

Local masses as defined in eq. (2.8) for the pseudoscalar meson in the static ap-
proximation on an 182 x 48 lattice at 8 = 6.26 and « = 0.1492 are plotted versus
the time separation, t, in lattice units. The diamonds denote the mass from the
“local-local” correlation function. The data denoted by G1,G2 and G3 show
the local mass for smeared-smeared correlators where the trial wave functions
are combinations of a local and a gaussian function. The rest are gaussian trial
wave functions, the smallest being the one with parameters n = 70, = 4 and
the largest with n = 160, = 5.

Local masses from the “local-smeared” correlator for the pseudoscalar meson on
an 183 x 48 lattice at = 6.26 and x = 0.1492. (i) (circles) denotes results
with smearing applied to the static sink; (i) (diamonds) presents results from a
linear combination of a correlator with smearing applied to the static source and
a correlator with smearing as in (i) . In both cases smearing was done using a
gaussian wave function with o = 4,n = 100.

Local masses from the “local-smeared” correlator for the pseudoscalar meson on
an 182 x 48 lattice at 8 = 6.26 and & = 0.1492, with smearing using six different
wave functions listed in table 2. The notation for the wave functions is the same
as fig. 2. The error band arising from fitting the “smeared-smeared” correlator
for the best trial wave function is shown by the two dashed lines.

Local masses from “local-smeared” correlators for the pseudoscalar meson for
lattices A3 and A5 at 8 = 5.74, C3 and C4 at 8 = 6.0 and D2a at 8 = 6.26 (see
table 1) with the error band arising from fitting the corresponding “smeared-
smeared” correlator. The light quark mass is fixed so that Mp(1,1)//o ~ 4.

Local masses from the ratio, Rs, of scalar to pseudoscalar “smeared-smeared”
correlator for lattices A3, A5, C3, C4 and D2a for a light quark mass as in fig. 4.
The time axis is in units of the string tension.

Local masses from the ratio, Ry, of scalar to pseudoscalar “smeared-smeared”
correlator for lattices A3, C3 and D2a for a light quark mass the same as in fig. 4.
Both the time axis and the mass splitting are in units of the string tension.

To determine k. and ay; at f = 5.74, 6.0 and 6.26, linear fits to ME(T)
and My(l,I') are shown, where [,I’ stand for fully propagating quarks of mass
_<_ 2mstrange-

The p mass at the chiral limit is shown as a function of the lattice spacing both
expressed in units of the string tension. The extrapolated value at @ = 0 is
obtained from the linear fit (dashed line) to the four data points.

The ratio of the pseudoscalar decay constant to the vector mass, fp(I,I')/My (1, 1),
is plotted as a function of M3(I,I')/M%(I,l'), where the meaning of [,l’ is the
same as in fig. 7. The stars denote the experimental value for the pion and kaon.
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Figure 10:

Figure 11:

Figure 12:

Figure 13:

—Fa“”/4 is shown vs L\/o. The circles denote the results at § = 6.26 the
squares at 8 = 6.0 and the diamonds at 8 = 5.74. The light quark mass was
fixed at the same value as that in fig 4. The dashed line is the result of fitting
all data to the form Cy — C exp(—1.5L+/o) with Co = 3.64 and C = 4.27.

Continuum extrapolation of F' = —F at light quark mass equal to the strange
quark mass (F,) and at the chlral limit (F,). The values at a = 0 emerge from
the linear fits (dashed lines) to the data points at 8 = 5.74,6.0 and 6.26. In (a)
and (b) both F and a are given in units of the string tension and in (c) and (d)
in units of the p mass.

Continuum extrapolation of the scalar-pseudoscalar mass splitting at twice the
strange quark mass, Ay,. The values at a = 0 result from the linear fits (dashed
lines) to the data at 8 = 5.74,6.0 and 6.26. In (a) we use units set by the string
tension and in (b) by the p mass.

The string breaking distance R/ is shown vs a,/o for three light quark masses:
in (a) at twice the strange quark mass, in (b) at the strange quark mass and in
(c) at the chiral limit. Linear fits to the data at 8 = 5.74,6.0 and 6.26 are shown
by the dashed line together with the extrapolated values at a = 0.
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