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In this paper, we study the stationary analysis of the model M/M/3/n+1 with linear retrial rates and 
with state dependent parameters by introducing the bivariate process {(C(t), Q(t)), t  0}. Some 
numerical results are also presented. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

  

  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 

INTRODUCTION  
 

A retrial queueing system is described by an arriving customer, finds the server busy, joins the retrial group to try again for service after a random 
amount of time. Retrial queueing systems have been widely used to model many problems in modern telephone switching systems, computer and 
communication systems. For detailed survey one can see yang and Templeton (1987). Most papers assume that each orbiting customer seeks 
service independently of each other after a random time exponentially distributed with a fixed rate. Nevertheless, there are other queueing 
situations in which the retrial rate does not depend on the number of customers in the orbit. Some notable works in this directions are Fayolle 
(1986) and Martin and Artalejo (1995). Artalejo and Gomez-Corral (1997), in their paper incorporate both possibilities by assuming that time 
intervals between successive repeated attempts are exponentially distributed with parameter (1-0j)+j, when the orbit size is j. 
 

Gomez-Correl and Ramalhoto (1999) assumed the time intervals between successive repeated attempts to be exponentially distributed with 
parameter i(1-0j)+ji, and they find the stationary distributions of the bivariate Markov processes associated with M/M/2/2+1 and M/M/3/3 
queues. 
 

The purpose of this paper is to analyse the retrial queueing model M/M/3/n+1 using the technique of Gomez-Correl and Ramalhoto (1999).The rest 
of the article is organized as follows: We describe the Mathematical model in section 2. In section 3, we carry out the stationary analysis 
M/M/3/n+1 retrial queueing model. Section 4 contains some numerical results corresponding to the model in section 3. 
 

MATHEMATICAL MODEL 
 

We consider a retrial queueing system with c servers and d waiting positions. When the c servers are busy, an arriving customer (called primary 
customer) occupies a waiting position and, when one server becomes free, one of the waiting customers immediately enter the servers. Otherwise, 
When  the c servers are busy and the d waiting positions are occupied, the customer immediately enter the orbit (called orbit customer). The state 
of the system at time t is described by the bivariate process {(C(t), Q(t)),t  0}, where C(t) is the total number of servers and waiting position 
occupied and Q(t) denotes the number of orbiting customers. The model is denoted by M/M/r/r+d. The arrival rates of the primary customer is i if 
C(t) = i and the rate of orbit customer equals ij where C(t) = i and Q(t) = j. The service rate equals i when C(t) = i. The state space S = {0, 1, 2, ... 
c} x  Z+  noted in Asmussen (1987), of the Markov process {X(t), t  0} is ergodic if and only if there exists a probability solution P = {(P0j

, P1j, ... 
Pcj), j 0} to equality PQ = 0, where Q is the infinitesimal matrix of the process {X(t), t 0}. In this case the vector P is the stationary distribution 
of {X(t), t  0}. In section 3, we take C(t) = i, i  {0, 1, 2, 3, 4} called model 1. 
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The Analysis  
 

Let {X(t), t  0} be a time homogeneous Markov process, where X(t) the bivariate process (C(t), Q(t)), C(t) is the number of customers in the 
system and Q(t) is the number in the orbit. Here the bivariate limit process X takes values on the lattice semi-strip S = {0, 1, 2, 3, 4} x Z+. The 
infinitesimal matrix is Q = (qij), where 
 

Q = 































..................

...000

...00

...00

...00

...000

44

33

22

11

0

AB

CAB

CAB

CAB

CA

 

with (A0+C)e = o, (Bi + Ai + C)e = 0, e = (1,1,1, ...)’, 
 

Ai = 































)(000
)(00

0)(0
00)(
000)(

444

33333

22222

11111

000









i

i

i

i

 

Bi = 























00000
0000

0000
0000
0000

3

2

1

0

i

i

i

i







 

C = 























40000
00000
00000
00000
00000


 

 

i = 0, 1, 2, 3, ..., 10 = 0, 20 = 0, and 30 = 0, where ij = i(1-oj)+ji. 
 

The Markov process {X(t), t 0} is Ergodic if and only if there exist a solution P = (P0, P1, P2, ... Pi, ...), where Pi =  (Pio, Pi1, Pi2, Pi3, Pi4), the matrix 
equation. 
 

PQ = 0                                                                          ... (3.1) 
This is  equation to  
(0+oj) P0j = 1 P1j, j  0                                                                                        ... (3.2) 
 

(1+1+ 1j) P1j = 0P0j +0j+1P0j +1+ 2P2j, j  0                                                                                                       ... (3.3) 
 

(2+2+ 2j) P2j = 1P1j +1j+1P1j +1+ 3P3j, j  0                                                                                                       ... (3.4) 
 

(3+3+ 3j) P3j = 2P2j +2j+1P2j +1+ 4P4j, j  0                                                                                                       ... (3.5) 
 

(4+4) P4j = 3P3j +3j+1P3j +1+ 4P4j-1, j  0                                                                                                        ... (3.6) 
 

We define generating functions 
 

Pi(z) = 


0j
Pijzj , i = 0, 1, 2, 3, 4                                                                                                                         ... (3.7) 

 

Applying (3.9) on both sides of (3.2), (3.3), (3.4), (3.5), (3.6),  we get 
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(0+0) P0(z) + 0zP '
0  (z) = 1P1(z) + 0P00                                                                                                                ... (3.8) 

1z2P '
1 (z)+(1+1+1)zP1(z)+0P00=0zP '

0 (z)+(0z+0)P0(z) +2zP2(z)+1zP10                                                                                              ... (3.9) 

2z2P '
2 (z)+(2+2+2)zP2(z)+1P10=1zP '

1 (z)+(1z+1)P1(z)+3zP3(z) + 2zP20.                                                                                            .. (3.10) 
 

3z2P '
3 (z)+(3+3+3)zP3(z)+2P20=2zP '

2 (z)+(2z+2)P2(z)+4zP4(z)+ 3zP30                                                                                                                             ... (3.11) 

 (4+4 - 4z)zP4(z)+3P30=3zP '
3 (z)+(3z+3)P3(z)                                                                                                          ...  (3.12) 

 

Multiplying (3.9) to (3.12) by z-1 and adding the resulting equalities and (3.8), we get. 

4zP4(z) = 


3

0i
izP '

i (z)+i(Pi(z)-Pi0)                                                                                                                    ... (3.13) 

 

Differentiating the equation (3.8) with respect to z 

iP
'
i (z)=(0+0+0)P

'
0 (z) +0z P "

0  (z)                                                                                                          ... (3.14) 
 

From (3.2), (3.8) and (3.14) we can write (3.9) as  

12zP2(z) = 01z3P "
0 (z) + {((0 + 0 + 0) 1+0(1+1+1))z2 ... (3.15) 

-01z}P '
0  (z)+(((0+0)(1+1)+01)z-01)P0(z)                                             +(-(0(1+1)+(0+0)1)z+01)P00 

 
Differenting (3.15 with respect to z and multiply the resulting relation by z and after some algebraic manipulation we get, 

12z2P '
2  (z) = 01z4P '''

0 (z) + {((0 + 0 +30) 1+0(1+1+1))z3... (3.16) 

01z2}P ''
0 (z)+(((0+0+0)(1+1+1)+(0+0)1)z2- 01z)P '

0 (z) +                                            01P0(z)-01P00 
 

Substituting (3.2), (3.3), (3.8) and (3.14) to (3.16) into (3.10) and rearranging leads to the following equality. 
 

123zP3(z) = Az4P '''
0 (z) + (Bz3+Cz2)P ''

0 (z)+(Dz2+Ez)P '
0 (z) + (Fz+G)P0(z)                        + (Hz+I)P00 + (0+0)12zP01

 ... (3.17) 
Where  
 

A  =  012 
B = 01(2+2+2) + ((0 + 0 +30) 1+0(1+1+1))2 
C = - 0(12+12), 
D = 0((1+1+1) (2 + 2) + (1+1)2) + (0+0+ 0) 1(2+2+2) + ((0 + 0 + 0) (1+1+1) + (0 +0)1)2,  
E  = - (1(02+ 0(2+2+2))+ ((0+0)1+ 0(1+1 ))2), 
F = ((0+0) (1 + 1) + 01) (2+2)+((0+0) 1 + 01)2,  
G = -(01 (2+2+2-2) + (0 +  0) 12), 
H  = -(012+(0(0+1)+ (0+0) 1)(2 + 2) + (01 +(0+0)1)2), 
I = 012 + (0((2+2 +  2 - 2)+12),  
 

Differenting (3.17) with respect to z and multiply by z, we get   
 

123z2 P3(z) = 012z5P0
IV(z) + ((3 012  + A)  z4+ Bz3) P0

III (z)  
    + ((2A + C) z3 + (B + D) z2 ) Po

II (z) 
   + ((C + E) z2 + Fz) P’O (z) – GPo(z) – H P00                                                                                         ...(3.18) 
Substituting (3.2), (3.3), (3.4), (3.9), and (3.15) to (3.18) into (3.11), we get  

1234z2 P4(z) = G1z6P0
IV(z) + (G2z5+ G3z4) P0

III (z)+(G4z4+G5z3+G6z2)P "
0 (z) 

      +(G7z3+G8z2+G9z)P '
0 (z)+(G10z2+G11z+G12)P0(z)  

      + (G713z2 + G14 z +G15) P00 + (G16z2+G17z)P01                                                                                                                                                                                           ... (3.19) 
 

where  G1 =  0123, 
 

G2 =  ((3012 + A) 3  + (3 +3 + 3) 012 ),  
G3 =   (B3 - 3 - 012 ),  
G4 =  ((A + C) 3 + A(3 +3 + 33 ) - 201 3),  
G5 =  (B+D)3+B(3+3+3)-23)((0+30+0)1+0(1+1+1)-2013,  
G6 =   0213,  
G7 =  (C(3 +3 + 3  + 3)+E3 - 2 3 ((0 +0  +0) 1 + 0 (1 +1 + 1 )))   
G8 =  (F3+(3+3+3)D-32((0+0+0)(1+1+1)+1(0+0)))                + 2301 - 2 3((0 +0  +0) 1  +0(1 +1 + 1)) 
G9 =  (2310  + 0312)   
G10 =  ((3+3 + 3  )  E -  23  ((0 + 0)  (1 + 1) + 10)),  
G11 =   (- F3 + F (3+3 + 3 ) +  2301 -   23 (0 + 0)  (1 + 1) + 10)), 
G12 =  (-013 (2 - 2)),   



Sangeetha Selvakumaran and Juliet Regina., The stationary analysis of a Retrial Queue With Multiserver  
In n-limited Capacity 

 

16448 | P a g e  

G13 =  {23 (0(1+1) + 1 ( 1+0)) -   32  0 1 (2 + 2) - 3  0 12 + (3 + 3 + 3)} 

 G14 =  H (3 + 3 + 3 -3)   + 2321 - 0301  + 23 (0 (1 + 1) +  
  1 (0 + 0))  
G15 =  (013 (2 - 2)),  
G16 = (12  (3 + 3 + 3 ) (0+ 0) + 31 (2 + 2)(0 +0))  
  + (33(1+1) (0+ 0 + 0)),  
G17  =  (-213 (0 + 0)), 
  For convenience of notation, we re-express some previous equations.  First, from (3.9) we consider the relation  

 1234 P1(z) =  a1zP '
0 (z)+ a2P0(z) + a3 P00.                                                                                                      ...(3.20) 

where  a1 =  0234; a2 = (0 + 0) 234  and  a3 = - 0234,  
  From (3.14), we have that  
 1234  P1(z) = b1 zP0(z) + b2 P0(z)                                                                                      ...(3.21) 
where b1 = 0234; b2 = (0 + 0 + 0) 234  
we can write the equations (3.15) as  
1234 zP2 (z) = c1z3P0(z) +(c2z2 + c3z) P0(z)  
         + (c4z + c5) P0(z) + (c6z + c7) P00                                                                   ... (3.22) 
where c1 =  0134;  c2 = ((0 + 0 + 0) 1 + 0 (1 + 1 + 1))34,  
 c3 = - 0134; c4 = ((0 + 0) (1 + 1) +  0 1)34 ,  
c5 =  - 0134; c6 =-(0(1+1)+(0+0)1)34;  c7 = 0134  
 
From  (3.16) we deduce that   

1234z2P '
2 (z)=d1z4P '''

0 (z)+(d2z3+d3z2)P ''
0 (z)+(d4z2+d5z)P '

0 (z) 
      +d6P0(z)+d7P00,                                                                                                                         ...(3.23) 
where d1 = 0134, d2 = ((0 + 0  + 30) 1 + 0  (1 +1 + 1)) 34,    
d3 = 0134, d4= ((0 +0 + 0) (1 + 1 + 1) + (0 + 0 )1) 34, 
d5 = -0134,  d6 = 0134, d7 =  -0134 
From (3.17) we obtain  
 1234 zP3 (z) = e1z4P’0(z) + (e2z3 + e3z2) P0(z) + (e4z2 + e5(z) P0(z)  
         + (e6z + e7) P0 (z) + (e8z + e9) P00 + e10zPo1                    ...(3.24) 
where e1 = 0124,  e2 = 4A. e3 = 4 B, e4 = 4C, e5 = 4D, e6 = 4E, e7 = 4F,  
 e8 = 4G, e9 =  4H, e10 = (0+ 0)  2 14 
From (3.18),  
1234 z2P3 (z) =  f1z5PIV

0  (z) + (f2z4 + f3z3)P0(z) +(f4z3 + f5z2) P0(z)  
+ (f6z2 +  f7z) P0(z) + f8P0(z) + f9 P00   ...(3.25) 
where  f1 = 0124, f2 = (3012 +A)4, f3 = 4 B, f4 = (2A+C)4, f5 = (B+D)4,  
f6 =  (C+E)4, f7 = F4, f8 = –4G;  f9 =–4H; 
From (3.19) we obtain  
41234 z2P4 (z) = g1z6PIV

0(z) + (g2z5 + g3z4) P0(z) + (g4z4 + g5z3 + g6z 2) P0(z)  
           +  (g7z3 + g8z2 + g9z) P0(z) + (g10z2 + g11z + g12) P0(z)  
+ (g13z2 + g14z + g15) P00 +(g16z2 + g17)  Po1  ...(3.26) 
where g1=4G1, g2= 4G2, g3=4G3, g4=4G4; g5=4G5, g6= 4G6,  
g7=4G7,g8=4G8;  g9 =  4G9  g10= 4G10 ;g11 =  4 G11  g12=4G12 ;  
  

g13 = 4G13   ;  g14 =  4 G14 ;  g15 =  4 G15  g16 =  4 G16 ;  g17 =  4 G17   
 

Now using the set of equations (3.20) to (3.25) we have that, after some  tedious algebra  the equality (3.13)can be expressed as follows  
 

41234 z2P4 (z) = 11z5PIV
0(z) + (l2z4 + l3z3 )P0(z) + (l4z3 + l5z2  ) P0(z)  

        + (l6z2+l7z)P0(z)+(l8z+l9)P0(z)+(l10z+l11)P00+l12z Po1  ...(3.27) 

where   
l1=f13; l2 = (2d1+f23+3012), l3=f33; l4 = (2d2+f43+2c1+A3+1b1); 
l5=(d32+f53+B3), l6 = (1230+1b2+2d4+f63+c22+a11+C3); 
l7=(d52+f73+D3+c32); l8 = (1230+1a2+2c4+E3); 
l9=(d62-f83+F3+c52);  
l10={-2301-301(2+2)+1a3+c62+G3-201(2-3)) 
l11=(d72-f93+c72+H3);  
l12=(21(0+0) ( 3+3) + 3(0+0) (2+2)- 32(0+0+0) (1+1)) 
 

Then we deduce from (3.26) and (3.27) that the generating function P0(z) satisfies the following fourth order differential equations. 
 

(A1z6 + A2z5) P0
IV(z) + (A3z5 + A4z4+A5z3)P0

’’’(z)  
+(A6z4 + A7z3+A8z2)P0

’’(z) +(A9z3 + A10z2+A11z)P0
’(z) 

+(A12z2+A13z+A14)P0(z)+(A15z2+A16z+A17)P00+(A18z2+A19z)P01= 0 ...(3.28) 
where A1 = g1, A2 = l1, A3 = g2, A4 = g3-l2, A5 = l3, A6 = g4, A7 = g5-l4, A8 = g6 – l5,  
A9 = g7, A10 = g8 – l6 ;A11= g9-l7, A12 = g10, A13 = g11 - l8, A14 = g12 – l9,  



International Journal of Recent Scientific Research

A15 = g13, A16 = g14 - l10, A17 = g15-l11, A18 = g16, A
 

Replacing the generating function P0(z) and its derivatives in the above differential equation and rearranging its terms, we conclude that the 
sequence               {P0j, j0} satisfies 
 

P0j = j–1 P0j-1-  j-2P0j-2,j  3   
 

where 
j-1 =  - 

1114

71013

1(
)(1()2)(1()1((

jjjAA
jAjjAjA



 j-2 =  - 
1114

6912

(
()3)(2()2((

jjjAA
jAjjAjA



  P03 = 2P02-1-  1P01; P02 = 

where  1=
81114

101318

22
(

AAA
AAA




   1=
81114

912

63
(

AAA
AA




 It follows by induction form (3.28) that 

P01=
0

0

C
B

P00, where  B0 = -(A13 +A6); C0 = A11 + A

     

where 
 

Theorem 3.1. If |limj j | = + , then the stationary distribution of                 {X(t), t 
 
 
 
 
 
 
 
 
 
 

where 

 

  

Notice, that the stationary probabilities Pij,(i,j)E , have been written in terms of P
{X(t), t  0} is reduced to find P00 to any desired accuracy by using the equation (3.30).
 

Numerical study 
 

Numerical calculations were performed to obtain the values of the  probabilities, for fixed values of parameters 
=αi(1-0j) + jµi, where µi = 1/2i and αi = 1/i+3, 0
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It follows by induction form (3.28) that  

+ A14 + A19 

                                                                                             

 

, then the stationary distribution of                 {X(t), t  0} is given by 

E , have been written in terms of P00. Hence, the computation of the stationary distribution of 
to any desired accuracy by using the equation (3.30).  

Numerical calculations were performed to obtain the values of the  probabilities, for fixed values of parameters 
 i  4, j 0 . Some selective results are exhibited in table 4.1
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(z) and its derivatives in the above differential equation and rearranging its terms, we conclude that the 

                                                                                                 ... (3.29) 

                                                                                           ... (3.30) 

 
. Hence, the computation of the stationary distribution of 

Numerical calculations were performed to obtain the values of the  probabilities, for fixed values of parameters i = 1/ i+1, i = 1 / i+2 and ij 
table 4.1 
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We can extend it to n-limited capacity in similar mannar. 
 

CONCLUSION  
 

If we use n-limited capacity model then we can get service in quickly. 
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Table 1 The steady state probabilities 
 

0 0.2 0.4 0.6 0.8 1.0 
p00 0.0052 0.0053 0.0055 0.0057 0.0059 
p01 0.0006 0.0003 0.0002 0.0001 0 
p02 0.0007 0.0005 0.0004 0.0003 0.0002 
p03 0.0003 0.0002 0.0001 0.0001 0.0001 
p04 0 0 0 0 0 
p05 0 0 0 0 0 

: : : : : : 
p10 0.0034 0.0070 0.0109 0.0152 0.0198 
p11 0.0010 0.0008 0.0006 0.0004 0.0002 
p12 0.0012 0.0011 0.0011 0.0010 0.0009 
p13 0.0004 0.0004 0.0004 0.0003 0.0003 
p14 0 0 0.0001 0.0001 0.0001 
p15 0 0 0 0 0 

: : : : : : 
p20 0.0062 0.0137 0.0216 0.0302 0.0395 
p21 0.0047 0.0039 0.0029 0.0019 0.0008 
p22 0.0089 0.0082 0.0076 0.0070 0.0064 
p23 0.0041 0.0038 0.0035 0.0032 0.0029 
p24 0.0002 0.0003 0.0006 0.0007 0.0008 
p25 0 0 0 0 0 

: : : : : : 
p30 0.0048 0.0170 0.0297 0.0435 0.0584 
p31 0.0117 0.0091 0.0059 0.0022 0.0020 
p32 0.0460 0.0432 0.0404 0.0373 0.0339 
p33 0.0288 0.0260 0.0239 0.0220 0.0200 
p34 0.0019 0.0028 0.0051 0.0062 0.0067 
p35 0 0 0 0 0 

: : : : : : 
p40 0.1032 0.1399 0.1837 0.2333 0.2887 
p41 0.2422 0.2022 0.1669 0.1318 0.0951 
p42 0.3682 0.3329 0.3047 0.2780 0.2510 
p43 0.1771 0.1693 0.1595 0.1487 0.1369 
p44 0.0144 0.0168 0.0306 0.0370 0.0394 
p45 0 0 0 0 0 

: : : : : : 
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