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Preface

This book was written for students in an upper-division physics labora-
tory course. It covers propagation of error, regression analysis, and related
topics.

The linearity in the book title is between the random and systematic
errors that can be expected in the input data and the resulting variations
in the output parameters derived from that data. Covariance matrices de-
scribe the input and output variations while first-order Taylor expansions
and Jacobian matrices describe the linear relationships involved. Linearity is
guaranteed when first-order Taylor expansions provide accurate input-output
relationships over the range of typical input errors. This is always the case
when the relationships are linear and generally the case when input errors are
small. Moreover, even when the input errors begin contributing nonlinearly,
an analysis based on linearity typically provides a good first approximation.

Microsoft Excel is an excellent platform for demonstrating the material.
The final chapter shows how to use it for the procedures presented here
and several spreadsheet examples can be found on the lab website. Only
Excel’s Regression and Solver programs and its standard matrix and array
functions are used. No other add-ins are needed. A few exercises are scattered
throughout the book to fill in various steps in the logic or to provide practice
with the equations and procedures.

Two noteworthy results are presented in the chapter on regression anal-
ysis. One shows how a least squares solution is equivalent to a maximum
likelihood solution not only for Gaussian-distributed data, but for Poisson-
and binomial-distributed data as well. The other shows how the uncertainty
in an instrument calibration propagates to the uncertainty in any results ob-
tained using that instrument. Hopefully, the reader will find these and other
topics treated rigorously and clearly, but also practically, with formulas and
procedures applicable to many everyday data analysis tasks.
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Chapter 1

Introduction

Data obtained through measurement always contain random error. Random
error is readily observed by sampling—making repeated measurements while
all experimental conditions remain the same. For various reasons the mea-
sured values will vary and might then be histogrammed as in Fig. 1.1. Each
histogram bin represents a possible value or range of values as indicated by
its placement along the horizontal axis. The height of each bar gives the
frequency, or number of times a measurement falls in that bin.

The measurements are referred to as a sample, the number of measure-
ments is the sample size and the histogram is the sample frequency distri-
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Figure 1.1: A sample frequency distribution for 100 measurements of the length
of a rod.
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10 CHAPTER 1. INTRODUCTION

bution. Dividing the frequencies by the sample size yields the fraction of
measurements that fall in each bin. A histogram of this kind is called a
sample probability distribution because it provides an estimate for the prob-
ability to fall in each bin. Were new sample sets taken, the randomness of
the measurement process would cause each new sample distribution to vary.
However, with an ever increasing sample size, the law of large numbers states
that the sample probability distribution converges to the parent probability
distribution—a complete statistical description of that particular measure-
ment.

Thus, a single measurement is simply one sample from a parent distri-
bution. It is typically interpreted as the sum of a fixed “signal” component
and a random “noise” component. The signal is taken as the mean of the
parent distribution and the noise results from stochastic processes that cause
individual measurements to deviate randomly from that mean.

The experimenter gives physical meaning to the signal through an un-
derstanding of the measuring instrument and its application to a particular
apparatus. For example, a thermometer’s signal component might be inter-
preted to be the temperature of the system to which it is attached. Obviously,
the interpretation is subject to possible deviations that are distinct from and
in addition to the deviations associated with the measurement noise. For ex-
ample, the thermometer may be out of calibration or it may not be in good
thermal contact with the system. Such problems give rise to a deviation
between the measurement mean and the true value of the physical quantity
being measured.

Measurement error refers to the difference between a measurement and
the true value and thus consists of two components. The deviation between
an individual measurement and the mean of its distribution is called the
random error. The deviation between the distribution mean and the true
value is called the systematic error. Measurement uncertainty refers to the
experimenter’s inability to provide specific values for either error in any par-
ticular measurement. However, estimates of reasonably likely deviations will
be needed for data analysis. Indeed, the term measurement uncertainty often
refers to such quantitative estimates.

Theoretical models provide relationships among physical variables. For
example, the temperature, pressure, and volume of a quantity of gas might
be measured to test various equations of state such as the ideal gas law or
the Van der Waals model, which predict specific relationships among those
variables.



11

Broadly summarized, statistical analysis often amounts to a compatibility
test between the measurements and the theory as specified by the following
two hypotheses:

Experimental: The measurement uncertainties are well characterized.

Theoretical: The underlying true physical quantities follow the predicted
relationships.

Experiment and theory are compatible if the deviations between the mea-
surements and predictions can be accounted for by reasonable measurement
errors. If they are not compatible, at least one of the two hypotheses must be
rejected. The experimental hypothesis is usually first on the chopping block
because compatibility depends on how the random and systematic errors are
modeled and quantified. Only after careful assessment of both sources of er-
ror can one conclude that predictions are the problem. However, even when
experiment and theory appear compatible, there is still reason to be cau-
tious—one or both hypotheses can still be false. In particular, systematic
errors are often difficult to disentangle from the theoretical model.

The goal of this book is to present the statistical models, formulas, and
procedures needed to accomplish the compatibility test for a range of exper-
imental situations commonly encountered in the physical sciences.

In Chapter 2 the basics of random variables and probability distributions
are presented and the law of large numbers is used to highlight the differences
between sample averages and expectation values.

Four of the most common measurement probability distributions are de-
scribed in Chapter 3. Chapter 4 introduces the joint probability distribution
for multiple random variables and the related topics of statistical indepen-
dence, correlation, and the covariance matrix. Chapter 5 discusses systematic
errors and other measurement issues.

Chapter 6 provides propagation of error formulas for determining the
uncertainty in variables defined from other variables. Chapter 7 discusses
regression analysis based on the principle of maximum likelihood. Chapter 7
also treats special situations such as uncertainty in the independent variable
and systematic errors that can be modeled with instrument calibrations.

Chapter 8 demonstrates the central limit theorem with one- and two-
dimensional examples. Chapter 9 discusses the evaluation of regression re-
sults and the chi-square random variable and Chapter 10 provides a guide to
using Excel for regression analysis.
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Linear Algebra and Taylor Expansions

Linear algebra is an indispensable tool for data analysis. It condenses equa-
tion sets into single vector equations and replaces summation symbols with
the implied sums of linear algebra multiplication rules. The notation used is
as follows.

Column and row vectors will be displayed in bold face type. For example,
the main input data to an analysis will typically be represented by the set
yi, i = 1...N . It will be referred to as the data set {y} (or {yi} if the index
name is to be identified), by the expression “the yi” or by the column vector

y =











y1
y2
...
yN











(1.1)

The transpose of a column vector— signified with a superscript T —is a row
vector with the same elements in the same order. The transpose of y is

yT = (y1, y2, ..., yN) (1.2)

The product yTy is an inner product—a scalar given by

yTy = (y1, y2, ..., yN)











y1
y2
...
yN











=
N
∑

i=1

y2i (1.3)

The product yyT is an outer product— the N ×N matrix given by

yyT =











y1
y2
...
yN











(y1, y2, ..., yN)

=











y21 y1y2 ... y1yN
y2y1 y22 ... y2yN
...

...
. . .

...
yNy1 yNy2 ... y2N











(1.4)
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The output or results of an analysis will typically be represented by the
set {a} of size M , i.e., ak, k = 1...M , or by the column vector a. The N
input yi are typically measurements and each comes with some uncertainty.
Because of this, there will be some uncertainty in the M values of ak derived
from them. The analysis must not only provide the ak from the yi, but also
the uncertainty in the ak arising from the uncertainty in the yi.

The relationship between the input and output uncertainties is largely
determined by the M × N (M rows by N columns) Jacobian matrix [Ja

y ]
giving the partial derivatives of each ak with respect to each yi.

[Ja
y ]ki =

∂ak
∂yi

(1.5)

Matrices such as [Ja
y ] will be represented by a descriptive name in regular

math fonts surrounded by square brackets. Double subscripts outside the
square brackets (k and i above) label the row and column, respectively, of
the identified element. For Jacobians, a subscript and superscript inside the
square brackets identify the variable sets involved and are a reminder of the
units for the elements; [Ja

y ]ki has the units of ak/yi.
Variances, covariances, and the covariance matrix are discussed more fully

in Chapter 4. Briefly stated, the covariance matrix for a data set describes
the fluctuations that can be expected in the set elements if the procedure to
obtain the data set were repeated over and over. Diagonal elements provide
information (variances) about the size of the fluctuations that can be ex-
pected for each variable. Off-diagonal elements provide information (covari-
ances) describing correlations that can be expected between the fluctuations
of any two variables.

Covariance matrices for the input yi and output ak will be written [σ2
y ]

and [σ2
a], respectively, with the subscripts y and a providing the data sets

involved. The superscript 2 in a covariance matrix such as [σ2
y ] is a reminder

that the ith diagonal element has the units of y2i and off-diagonal elements
have the units of yiyj.

The transpose of a matrix, signified by a superscript T outside the square
brackets, has the same matrix elements but interchanges the rows of the
original matrix for the columns of its transpose and vice versa. Thus, the
transpose of [Ja

y ] is the N ×M (N rows by M columns) matrix [Ja
y ]

T with
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elements given by

[Ja
y ]

T
ik = [Ja

y ]ki (1.6)

=
∂ak
∂yi

Matrix inversion will be signified by a superscript −1 outside the square
brackets and is only valid for certain square matrices. The inverse [X]−1 of
an N ×N invertible matrix [X] satisfies

[X][X]−1 = [X]−1[X] = [1] (1.7)

where [1] is the N × N unit matrix with ones along the diagonal and zeros
elsewhere. It is also called the identity matrix because it leaves any appro-
priately sized vector or matrix unchanged under multiplication from the left
or right.

When two matrices, two vectors, or a vector and a matrix are multiplied,
their sizes must be compatible and their ordering matters. The adjacent
indices in a multiplication will be summed over in forming the result and
must be of the same size. For example, [Ja

y ][J
a
y ]

T is an M ×M matrix with
elements given by

[[Ja
y ][J

a
y ]

T ]kj =
N
∑

i=1

[Ja
y ]ki[J

a
y ]

T
ij (1.8)

The elements of the Jacobian are defined as for any partial derivative.
After performing an analysis, thereby finding the ak from the yi, change one
yi to y

′
i—that is, change it by the small amount ∆yi = y′i−yi. Redo the anal-

ysis. Each ak will change by ∆ak (to a′k = ak +∆ak). Make the change ∆yi
smaller and smaller until the ∆ak are proportional to ∆yi. For ∆yi in this
linear regime, the elements of the Jacobian are given by: [Ja

y ]ki = ∆ak/∆yi.
Of course, elements of the Jacobian can also be obtained by analytic differ-
entiation (Eq. 1.5) when the functional form: ak = fk({yi}) is known.

With the Jacobian in hand, if all the yi are then simultaneously allowed
to change—within the linear regime—to a new set {y′i}, a first-order Taylor
expansion gives the new a′k for this set

a′k = ak +
N
∑

i=1

∂ak
∂yi

(y′i − yi) (1.9)
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or

∆ak =
N
∑

i=1

[Ja
y ]ki∆yi (1.10)

which is just the kth row of the vector equation

∆a = [Ja
y ]∆y (1.11)

The Jacobian evaluated at one set of yi describes how all the ak will change
when any or all of the yi change by small amounts.

To similarly express the row vector, ∆aT , recall the rules for the trans-
pose of a matrix-matrix or vector-matrix multiplication: The transpose of a
product of terms is the product of the transpose of each term with the terms’
ordering reversed: [[A][B]]T = [B]T [A]T . Thus, the equivalent transpose to
Eq. 1.11 is

∆aT = ∆yT [Ja
y ]

T (1.12)

Small Error Approximation

The first-order Taylor expansion expressed by Eqs. 1.9-1.12 describes how
changes to the input variables will propagate to changes in the output vari-
ables. It is the basis for propagation of error and regression analysis— topics
covered in Chapters 6 and 7. However, one issue is worthy of a brief discus-
sion here.

In order for the first-order Taylor expansion to be valid, the effects of
higher-order derivatives must be kept small. This happens for any size ∆yi
when higher-order derivatives are absent, i.e., when the relationships between
the ak and the yi are linear. When the relationships are nonlinear, it requires
keeping the range of possible ∆yi small enough that throughout that range,
the higher-order terms in the Taylor expansions would be small compared
to the first-order terms. The range of possible ∆yi is determined by the
measurement uncertainty and will be assumed small enough to satisfy this
requirement.

Chapter 9 presents calculations that can be used to check for nonlinear
effects. However, analysis of data having large uncertainties that could take
∆yi outside the linear regime will only be treated for a few special cases. If
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the uncertainties are too big to trust treatments based on first-order Taylor
expansions, reducing them into the linear regime serves two purposes. It not
only makes the uncertainty calculations more trustworthy, it also lowers the
uncertainties in the final results.



Chapter 2

Random Variables

The experimental model treats each input or measured yi as a random sam-
ple—a quantity whose value varies randomly as the procedure used to obtain
it is repeated. Possible values occur randomly but with fixed probabilities as
described next.

When the possible yi form a discrete set, the quantity P (yi) gives the
probability for one particular yi to occur. The complete set of probabilities
for all yi is called a discrete probability function (or dpf).

When the possible values cover a continuous interval, their probabilities
are described by a probability density function (or pdf). With the pdf p(y)
specified for all possible values of y, the differential probability dP (y) of an
outcome between y and y + dy is given by

dP (y) = p(y)dy (2.1)

Probabilities for outcomes in any range are obtained by integration. The
probability of an outcome between y1 and y2 is given by

P (y1 < y < y2) =

∫ y2

y1

p(y) dy (2.2)

Continuous probability distributions become effectively discrete when the
variable is recorded with a chosen number of significant digits. The proba-
bility of the measurement is then the integral of the pdf over a range ±1/2
of the size, ∆y, of the least significant digit.

P (y) =

∫ y+∆y/2

y−∆y/2

p(y′) dy′ (2.3)

17
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Note how the values of P (y) for a complete set of nonoverlapping intervals
covering the entire range of y-values would map the pdf into an associated
dpf. Many statistical analysis procedures will be based on the assumption
that P (y) is proportional to p(y). For this to be the case, ∆y must be small
compared to the range of the distribution. More specifically, p(y) must have
little curvature over the integration limits so that the integral becomes

P (y) = p(y)∆y (2.4)

Both discrete probability functions and probability density functions are
referred to as probability distributions. The P (yi), being probabilities, must
be between zero and one and are unitless. And because p(y)∆y is a probabil-
ity, p(y) must be a “probability per unit y” and thus it must be nonnegative
with units inverse to those of y.

Before discussing important properties of a distribution such as its mean
and standard deviation, the related subject of sampling is addressed more
generally.

Law of Large Numbers

P (y) for an unknown distribution can be determined by acquiring and his-
togramming a sample of sufficient size.

For a discrete probability distribution, the histogram bins should be la-
beled by the allowed values yi. For a continuous probability distribution,
the bins should be labeled by their midpoints yi and constructed as adja-
cent, non-overlapping intervals spaced ∆y apart and covering the complete
range of possible outcomes. The sample, of size N , is then sorted to find the
frequencies f(yi) for each bin.

The law of large numbers states that the sample probability, f(yi)/N ,
for any bin will approach the predicted P (yi) more and more closely as the
sample size increases. The limit satisfies

P (yi) = lim
N→∞

1

N
f(yi) (2.5)

Sample Averages and Expectation Values

Let yi, i = 1...N represent sample values for a random variable y having
probabilities of occurrence governed by a pdf p(y) or a dpf P (y). The sample
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average of any function g(y) will be denoted with an overline so that g(y) is
defined as the value of g(y) averaged over all y-values in the sample set.

g(y) =
1

N

N
∑

i=1

g(yi) (2.6)

For finite N , the sample average of any (nonconstant) function g(y) is
a random variable; taking a new sample set of yi would likely produce a
different sample average. However, in the limit of infinite sample size, the
law of large numbers implies that the sample average converges to a well
defined constant depending only on the parent probability distribution and
the particular function g(y). This constant is called the expectation value of
g(y) and will be denoted by putting angle brackets around the function.

〈g(y)〉 = lim
N→∞

1

N

N
∑

i=1

g(yi) (2.7)

To obtain analytical expressions for expectation values that do not require
an infinite sample, Eq. 2.7 can be cast into a form suitable for use with a
given probability distribution as follows. Consider a large sample of size
N that has been properly histogrammed. If the variable is discrete, each
possible value yj gets its own bin. If the variable is continuous, the bins are
labeled by their midpoints yj and the bin widths ∆y are chosen small enough
to ensure that (1) the probability for a y-value to occur in any particular bin
will be accurately given by P (yj) = p(yj)∆y and (2) all yi sorted into a bin
at yj can be considered as contributing g(yj)— rather than g(yi)— to the
sum in Eq. 2.7.

After sorting the sample yi-values into the bins, thereby finding the fre-
quencies of occurrence f(yj) for each bin, the sum in Eq. 2.7 can be grouped
by bins and becomes

〈g(y)〉 = lim
N→∞

1

N

∑

all yj

g(yj)f(yj) (2.8)

Note the change from a sum over all samples in Eq. 2.7 to a sum over all
histogram bins in Eq. 2.8.

Moving the limit and factor of 1/N inside the sum, the law of large
numbers (Eq. 2.5) can be used giving

〈g(y)〉 =
∑

all yj

g(yj)P (yj) (2.9)
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Note that any reference to a sample is gone. Only the range of possible
y-values, the probability distribution, and the arbitrary function g(y) are
involved. Equation 2.9 is called a weighted average of g(y); each value of
g(yj) in the sum is weighted by the probability of its occurrence P (yj).

For a continuous probability density function, substitute P (yj) = p(yj)∆y
in Eq. 2.9 and take the limit as ∆y → 0. This converts the sum to the integral

〈g(y)〉 =
∫ ∞

−∞

g(y) p(y) dy (2.10)

Eq. 2.10 is a weighted integral with each g(y) weighted by its occurrence
probability p(y) dy.

Some frequently used properties of expectation values are given below.
Justifications are given based on simple substitutions for g(y) in Eqs. 2.9
or 2.10 or based on the operational definition of an expectation value as an
average for an effectively infinite data set (Eq. 2.7).

1. The expectation value of a constant is that constant: 〈c〉 = c. Substi-
tute g(y) = c and use normalization condition (discussed in the next
section). Guaranteed because the value c is averaged for every sampled
yi.

2. Constants can be factored out of expectation value brackets: 〈c u(y)〉 =
c 〈u(y)〉. Substitute g(y) = c u(y), where c is a constant. Guaran-
teed by the distributive property of multiplication over addition for
the terms involved in the average.

3. The expectation value of a sum of terms is the sum of the expectation
value of each term: 〈u(y) + v(y)〉 = 〈u(y)〉+ 〈v(y)〉. Substitute g(y) =
u(y)+v(y). Guaranteed by the associative property of addition for the
terms involved in the average.

But also keep in mind that the expectation value of a product is not
necessarily the product of the expectation values: 〈u(y)v(y)〉 6= 〈u(y)〉 〈v(y)〉.
Substituting g(y) = u(y)v(y) does not, in general, lead to 〈u(y)v(y)〉 =
〈u(y)〉 〈v(y)〉.

Normalization, Mean and Variance

Probability distributions are defined so that their sum or integral over any
range of possible values gives the probability for an outcome in that range.
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Consequently, if the range includes all possible values, the probability of an
outcome in that range is 100% and the sum or integral must be equal to one.
For a discrete probability distribution this normalization condition becomes

∑

all yj

P (yj) = 1 (2.11)

and for a continuous probability distribution it becomes

∫ ∞

−∞

p(y) dy = 1 (2.12)

The normalization sum or integral is also called the zeroth moment of the
probability distribution as it is the expectation value of y0. The other two
most important expectation values of a distribution are also moments of the
distribution.

The mean µy of a probability distribution is defined as the expectation
value of y itself. It is the first moment of the distribution.

µy = 〈y〉 (2.13)

If P (y) or p(y) is specified, µy could be evaluated using g(y) = y in Eq. 2.9
or 2.10, respectively.

The mean is a measure of the central value of the distribution. It is a
point at the “center of probability” in analogy to a center of mass. Were
mass distributed along the y-axis in proportion to P (y) (point masses) or
in proportion to p(y) (a mass distribution), µy would be the center of mass.
The median is also a quantitative and common measure of the center of a
distribution. It is that value of y where there is equal probability above as
below. The mean is the only measure that will be considered further.

The quantity µy is sometimes called the true mean to distinguish it from
the sample mean. The sample mean of a set of yi is simply the sample average
of y—defined by Eq. 2.6 with g(y) = y.

ȳ =
1

N

N
∑

i=1

yi (2.14)

The sample mean is often used as an estimate of the true mean because,
by definition, it becomes exact as N → ∞. In addition, the sample mean
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satisfies another important property for any good estimate. Taking the ex-
pectation value of both sides of Eq. 2.14 and noting that 〈yi〉 = µy for all N
samples (Eq. 2.13) gives

〈ȳ〉 =

〈

1

N

∑

N

yi

〉

=
1

N

N
∑

i=1

〈yi〉

=
1

N

N
∑

i=1

µy

=
1

N
Nµy

= µy (2.15)

thereby demonstrating that the expectation value of the sample mean is equal
to the true mean. Any parameter estimate having an expectation value equal
to the parameter it is estimating is said to be an unbiased estimate; it will
give the true parameter value “on average.” Thus, the sample mean is an
unbiased estimate of the true mean.

After the mean, the next most important descriptor of a probability dis-
tribution is its standard deviation—a measure of the how far away from the
mean individual sample values are likely to be. The quantity

δy = y − µy (2.16)

is called the deviation—the signed difference between a sample value and
the mean of its parent distribution. One of its properties, true for any dis-
tribution, can be obtained by rewriting Eq. 2.13 in the form

〈y − µy〉 = 0 (2.17)

Deviations are signed quantities and for any distribution, by definition, the
mean deviation is always zero.

Themean absolute deviation is the expectation value of the absolute value
of the deviation: 〈|y − µy|〉. This quantity would be nonzero and a reason-
able measure of the expected magnitude of typical deviations. However, the
mean absolute deviation does not arise naturally when formulating the basic
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statistical procedures considered here. The mean squared deviation, on the
other hand, plays a central role and so the standard measure of a devia-
tion, i.e., the standard deviation σy, is taken as the square root of the mean
squared deviation.

The mean squared deviation is called the variance and written σ2
y for a

random variable y. It is the second moment about the mean and defined as
the following expectation value

σ2
y =

〈

(y − µy)
2
〉

(2.18)

For a given probability distribution, the variance could then be evaluated
with g(y) = (y − µy)

2 in Eq. 2.9 or 2.10.
The standard deviation σy is the square root of the variance— the square

root of the mean-squared deviation. Thus, it is often referred to as the rms
or root-mean-square deviation—particularly when trying to emphasize its
role as the typical size of a deviation.

The variance has units of y2 while the standard deviation has the same
units as y. The standard deviation is the most common measure of the width
of a distribution and the only one that will be considered further.

Expanding the right side of Eq. 2.18 gives σ2
y =

〈

y2 − 2yµy + µ2
y

〉

and
then taking expectation values term by term, noting µy is a constant and
〈y〉 = µy, gives

σ2
y =

〈

y2
〉

− µ2
y (2.19)

This equation is useful for evaluating the variance of a given probability
distribution and in the form

〈

y2
〉

= µ2
y + σ2

y (2.20)

shows that the expectation value of y2 (the second moment about the origin)
exceeds the square of the mean by the variance.

The sample variance is then given by Eq. 2.6 with g(y) = (y − µy)
2. It

will be denoted s2y and thus defined by

s2y =
1

N

N
∑

i=1

(yi − µy)
2 (2.21)

Taking the expectation value of this equation shows that the sample variance
is an unbiased estimate of the true variance.

〈

s2y
〉

= σ2
y (2.22)
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The proof is similar to that of Eq. 2.15, this time requiring an application of
Eq. 2.18 to each term in the sum.

Typically, the true mean µy is not known and Eq. 2.21 can not be used
to determine s2y. Can the sample mean ȳ be used in place of µy? Yes, but
making this substitution requires the following modification to Eq. 2.21.

s2y =
1

N − 1

N
∑

i=1

(yi − ȳ)2 (2.23)

As will be proven later, the denominator is reduced by one so that this
definition of the sample variance will also be unbiased, i.e., will still satisfy
Eq. 2.22.

The sample mean and the sample variance are random variables and
each follows its own probability distribution. They are unbiased; the means
of their distributions will be the true mean and true variance, respectively.
The standard deviations of these distributions will be discussed in Chapters 7
and 9.



Chapter 3

Probability Distributions

In this section, definitions and properties of a few fundamental probability
distributions are presented.

The Gaussian Distribution

The Gaussian or normal probability density function has the form

p(y) =
1

√

2πσ2
y

exp

(

−(y − µy)
2

2σ2
y

)

(3.1)

and is parameterized by two quantities: the mean µy and the standard devi-
ation σy.

Figure 3.1 shows the Gaussian pdf and gives various integral probabili-
ties. Gaussian probabilities are described relative to the mean and standard
deviation. There is a 68% probability that a sample from a Gaussian distri-
bution will be within one standard deviation of the mean, 95% probability
it will be within two, and a 99.7% probability it will be within three. These
“1-sigma,” “2-sigma,” and “3-sigma” probabilities should be committed to
memory. A more complete listing can be found in Table 10.2.

The Binomial Distribution

The binomial distribution results when an experiment, called a Bernoulli
trial, is repeated a fixed number of times. A Bernoulli trial can have only

25
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Figure 3.1: The Gaussian distribution labeled with the mean µy, the standard
deviation σy and some areas, i.e., probabilities.

two outcomes. One outcome is termed a success and occurs with a probability
p. The other, termed a failure, occurs with a probability 1 − p. Then, with
N Bernoulli trials, the number of successes y can be any integer from zero
(none of the N trials were a success) to N (all trials were successes).

The probability of y successes (and thus N − y failures) is given by

P (y) =
N !

y!(N − y)!
py(1− p)N−y (3.2)

The factor py(1− p)N−y would be the probability that the first y trials were
successes and the last N − y were not. Since the y successes and N − y
failures can occur in any order and each distinct ordering would occur with
this probability, the extra multiplicative factor out front, called the binomial
coefficient, is needed to count the number of distinct orderings.

The binomial distribution has a mean

µy = N p (3.3)

and a variance
σ2
y = N p(1− p) (3.4)

It will prove useful to rewrite the distribution and the variance in terms of
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N and µy rather than N and p. Substituting µy/N for p, the results become

P (y) =
N !

y!(N − y)!

1

NN
(µy)

y(N − µy)
N−y (3.5)

σ2
y = µy

(

1− µy

N
)

(3.6)

The binomial distribution arises, for example, when histogramming sam-
ple frequency distributions. Consider N samples from a given probability
distribution for a random variable x. A particular bin at xj represents a
particular outcome or range of outcomes and the parent distribution would
determine the associated probability P (xj) for a result in that bin. While
any distribution might give rise to the P (xj), the frequency in that partic-
ular histogram bin would be governed by the binomial distribution. Each
Bernoulli trial consists of taking one new sample and, according to its value,
either sorting it into that bin—a success with a probability P (xj), or not
sorting it in that bin—a failure with a probability 1−P (xj). After N sam-
ples, the number of successes (the bin frequency y) is a binomial random
variable with that N and µy = NP (xj).

The Poisson Distribution

Poisson-distributed variables arise, for example, in particle and photon count-
ing experiments. Under unchanging experimental conditions and averaged
over long times, “counts” or “clicks” from a particle or photon detector might
be occurring at an average rate of, say, one per second. Over many ten-second
intervals, ten counts would be the average, but the actual number in any par-
ticular interval will often be higher or lower with probabilities governed by
the Poisson distribution.

More specifically, if µy is the average number of counts expected in an
interval (which need not be integer valued), then the counts y actually mea-
sured in any such interval (which can only be zero or a positive integer) will
occur randomly with probabilities governed by the Poisson distribution

P (y) = e−µy
(µy)

y

y!
(3.7)

Not all counts are Poisson distributed. The Poisson Variables addendum on
the lab website describes conditions that guarantee a count will be Poisson

http://www.phys.ufl.edu/courses/phy4803L/statistics/Poisson.pdf
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Figure 3.2: Poisson probability distributions for means of 1.5 and 100.

distributed. It also gives a derivation of the Poisson distribution and the
related exponential distribution based on the assumption that the proba-
bility per unit time for an event to occur is constant. Poisson probability
distributions for µy = 1.5 and µy = 100 are shown in Fig. 3.2.

One can show (see Exercise 1) that the variance of a Poisson distribution
is the mean.

σ2
y = µy (3.8)

For large values of µy, the Poisson probability for a given y is very nearly
Gaussian—given by Eq. 2.4 with ∆y = 1 and p(y) given by Eq. 3.1 (with
σ2
y = µy). That is,

P (y) ≈ 1
√

2πµy

exp

[

−(y − µy)
2

2µy

]

(3.9)

Eqs. 3.8 and 3.9 are the origin of the commonly accepted practice of ap-
plying “square root statistics” or “counting statistics,” whereby a Poisson-
distributed variable is treated as a Gaussian-distributed variable with the
same mean and with a variance chosen to be µy or some estimate of µy.

One common application of counting statistics arises when a single count
is measured from a Poisson distribution of unknown mean and observed to
take on a particular value y. With no additional information, that measured
y-value becomes an estimate of µy and thus it also becomes an estimate of the
variance of its own parent distribution. That is, y is assumed to be governed
by a Gaussian distribution with a standard deviation given by

σy =
√
y (3.10)
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Gaussian binomial Poisson uniform

p(y) = P (y) = P (y) = p(y) =

form
1√
2πσ2

exp

[

− (y − µ)2

2σ2

] N !

y!(N − y)!
py(1− p)N−y e−µµ

y

y!

1

|b− a|
mean µ Np µ (a+ b)/2

variance σ2 Np(1− p) µ (b− a)2/12

Table 3.1: Common probability distributions with their means and variances.

Counting statistics is a good approximation for large values of y—greater
than about 30. Using it for values of y below 10 or so can lead to significant
errors in analysis.

The Uniform Distribution

The uniform probability distribution is often used for digital meters. A
reading of 3.72 V on a 3-digit voltmeter might imply that the underlying
variable is equally likely to be any value in the range 3.715 to 3.725 V.
A variable with a constant probability in the range from a to b (and zero
probability outside this range) has a pdf given by

p(y) =
1

|b− a| (3.11)

Exercise 1 Eqs. 2.13 and 2.18 provide the definitions of the mean µy and
variance σ2

y with Eqs. 2.9 or 2.10 used for their evaluation. Show that the
means and variances of the various probability distributions are as given in
Table 3.1. Also show that they satisfy the normalization condition.

Do not use integral tables or the Γ function. Do the normalization sum
or integral first, then the mean, then the variance. The earlier results can
often be used in the later calculations.

For the Poisson distribution, evaluation of the mean should thereby demon-
strate that the parameter µy appearing in the distribution is, in fact, the
mean. For the Gaussian, evaluation of the mean and variance should thereby
demonstrate that the parameters µy and σ2

y appearing in the distribution are,
in fact, the mean and variance.
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Hints: For the binomial distribution you may need the expansion

(a+ b)N =
N
∑

y=0

N !

y!(N − y)!
aybN−y (3.12)

For the Poisson distribution you may need the power series expansion

ea =
∞
∑

y=0

ay

y!
(3.13)

For the Gaussian distribution be sure to start by eliminating the mean
(with the substitution y′ = y − µ). The evaluation of the normalization
integral I =

∫∞

−∞
p(y) dy is most readily done by first evaluating the square

of the integral with one of the integrals using the dummy variable x and the
other using y. (Both pdfs would use the same µ and σ.) That is, evaluate

I2 =

∫ ∞

−∞

∫ ∞

−∞

p(x)p(y) dx dy

and then take its square root. To evaluate the double integral, first eliminate
the mean and then convert from Cartesian coordinates x′ and y′ to cylindrical
coordinates r and θ satisfying x′ = r cos θ, y′ = r sin θ. Convert the area
element from dx′ dy′ to r dr dθ and set the limits of integration for r from 0
to ∞ and for θ from 0 to 2π.

Exercise 2 (a) Use a software package to generate random samples from
a Gaussian distribution with a mean µy = 0.5 and a standard deviation
σy = 0.05. Use a large sample size N and well-chosen bins (make sure
one bin is exactly centered at 0.5) to create a reasonably smooth, bell-shaped
histogram of the sample frequencies vs. the bin centers.
(b) Consider the histogramming process with respect to the single bin at the
center of the distribution—at µy. Explain why the probability P for a sample
to fall in that bin is approximately ∆y/

√

2πσ2
y, where ∆y is the bin size, and

use that probability with your sample size to predict the mean and standard
deviation for that bin’s frequency. Compare your actual bin frequency at µy

with this prediction. Is the difference between them reasonable? Hint: the
bin frequency follows a binomial distribution, which has a mean of NP and
a standard deviation equal to

√

NP (1− P ).



Chapter 4

Statistical Dependence

Statistical procedures typically involve multiple random variables as input
and produce multiple random variables as output. Probabilities associated
with multiple random variables depend on whether the variables are statis-
tically independent or not. Statistically independent variables show no re-
lationships among their natural random deviations. Statistically dependent
variables can show correlated deviations.

Two events are statistically independent if knowing the outcome of one
has no effect on the outcomes of the other. For example, if you flip two coins,
one in each hand, each hand is equally likely to hold a heads or a tails. Know-
ing that the right hand holds a heads does not change the equal probability
for heads or tails in the left hand. The two coin flips are independent.

Two events are statistically dependent if knowing the results of one affects
the probabilities for the other. Consider a drawer containing two white socks
and two black socks. You reach in without looking and pull out one sock in
each hand. Each hand is equally likely to hold a black sock or a white sock.
However, if the right hand is known to hold a black sock, the left hand is
now twice as likely to hold a white sock as it is to hold a black sock. The
two sock pulls are dependent.

The unconditional probability of event A, expressed Pr(A), represents the
probability of event A occurring without regard to any other events. The
conditional probability of “A given B,” expressed Pr(A|B), represents the
probability of event A occurring given that event B has occurred. Two
events are statistically independent if and only if

Pr(A|B) = Pr(A) (4.1)

31
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Whether events are independent or not, the joint probability of “A and B”
both occurring—expressed Pr(A∩B)— is logically the equivalent of Pr(B),
the unconditional probability of B occurring without regard to A, multiplied
by the conditional probability of A given B.

Pr(A ∩B) = Pr(B) Pr(A|B) (4.2)

Then, substituting Eq. 4.1 gives the product rule valid for independent events.

Pr(A ∩ B) = Pr(A) Pr(B) (4.3)

Equation 4.3 states another common definition of independence—that the
probability for two independent events to occur is simply the product of the
probabilities for each to occur.

And, of course, the roles of A and B can be interchanged in the logic or
equations above.

For a random variable, an event can be defined as getting one particular
value or getting within some range of values. Consistency with the product
rule for independent events then requires a similar product rule for the pdfs
or dpfs governing the probabilities of independent random variables.

The joint probability distribution for two variables gives the probabili-
ties for both variables to take on specific values. For independent, discrete
random variables x and y governed by the dpfs Px(x) and Py(y), the joint
probability P (x, y) for values of x and y to occur is given by the product of
each variable’s probability

P (x, y) = Px(x)Py(y) (4.4)

And for independent, continuous random variables x and y governed by the
pdfs px(x) and py(y), the differential joint probability dP (x, y) for x and y
to be in the intervals from x to x+ dx and from y to y + dy is given by the
product of each variable’s probability

dP (x, y) = px(x)py(y)dx dy (4.5)

The product rule for independent variables leads to the following impor-
tant corollary. The expectation value of any function that can be expressed
in the form f1(y1)f2(y2) will satisfy

〈f1(y1)f2(y2)〉 = 〈f1(y1)〉 〈f2(y2)〉 (4.6)
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if y1 and y2 are independent.
For discrete random variables, the proof starts from the definition of the

expectation value for a function of two discrete random variables followed by
an application of Eq. 4.4 as follows:

〈f1(y1)f2(y2)〉 =
∑

all y1,y2

f1(y1)f2(y2)P (y1, y2)

=
∑

all y1

∑

all y2

f1(y1)f2(y2)P1(y1)P2(y2)

=
∑

all y1

f1(y1)P1(y1)
∑

all y2

f2(y2)P2(y2)

= 〈f1(y1)〉 〈f2(y2)〉 (4.7)

Similarly for continuous random variables, the proof starts from the definition
of the expectation value for a function of two continuous random variables
followed by an application of Eq. 4.5 as follows:

〈f1(y1)f2(y2)〉 =

∫ ∞

−∞

∫ ∞

−∞

f1(y1)f2(y2) dP (y1, y2)

=

∫ ∞

−∞

∫ ∞

−∞

f1(y1)f2(y2)p1(y1)p2(y2) dy1 dy2

=

∫ ∞

−∞

f1(y1)p1(y1) dy1

∫ ∞

−∞

f2(y2)p2(y2) dy2

= 〈f1(y1)〉 〈f2(y2)〉 (4.8)

A simple example of Eq. 4.6 is for the expectation value of the product of
two independent random variables, y1 and y2; 〈y1y2〉 = 〈y1〉 〈y2〉 = µ1µ2. For
the special case where the independent samples yi and yj come from the same
distribution—having a mean µy and standard deviation σy, this becomes
〈yiyj〉 = µ2

y for i 6= j. Coupling this result with Eq. 2.20 (〈y2i 〉 = µ2
y + σ2

y)
for the expectation value of the square of any y-value gives the following
relationship for independent samples from the same distribution

〈yiyj〉 = µ2
y + σ2

yδij (4.9)

where δij is the Kronecker delta function—equal to 1 if i = j and zero if
i 6= j.
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A related corollary arises from Eq. 4.6 with the substitutions: f1(y1) =
y1−µ1 and f2(y2) = y2−µ2 where y1 and y2 are independent random samples
from the same or from different distributions.

〈(y1 − µ1)(y2 − µ2)〉 = 〈y1 − µ1〉 〈y2 − µ2〉 (4.10)

Here µ1 and µ2 are the means of the distributions for y1 and y2 and satisfy
〈yi − µi〉 = 0. Thus, the right-hand side of Eq. 4.10 is the product of two
zeros and demonstrates that

〈(y1 − µ1)(y2 − µ2)〉 = 0 (4.11)

for independent variables.
Note that both y1−µ1 and y2−µ2 always have an expectation value of zero

whether or not y1 and y2 are independent. However, the expectation value
of their product is guaranteed to be zero only if y1 and y2 are independent.
Nonzero values for this quantity are possible if y1 and y2 are not independent.
This issue will be addressed shortly.

The product rule (Eqs. 4.4 and 4.5) can be extended—by repeated multi-
plication—to any number of independent random variables. The explicit
form for the joint probability for an entire data set yi, i = 1...N will be
useful for our later treatment of regression analysis. This form depends on
the particular probability distributions for the yi. Often, all yi come from
the same kind of distribution: either Gaussian, Poisson or binomial. These
kinds of data sets lead to the joint probability distributions considered next.

For N independent Gaussian random variables, with the distribution for
each yi having its own mean µi and standard deviation σi, the joint proba-
bility distribution becomes the following product of terms—each having the
form of Eq. 2.4 with p(yi) having the Gaussian form of Eq. 3.1.

P ({y}) =
N
∏

i=1

∆yi
√

2πσ2
i

exp

[

−(yi − µi)
2

2σ2
i

]

(4.12)

where ∆yi represents the size of the least significant digit in yi, which are all
assumed to be small compared to the σi.

For N independent Poisson random variables, with the distribution for
each yi having its own mean µi, the joint probability distribution becomes
the following product of terms—each having the Poisson form of Eq. 3.7.

P ({y}) =
N
∏

i=1

e−µi (µi)
yi

yi!
(4.13)



35

For N independent binomial random variables, with the distribution for
each yi having its own mean µi and number of trials Ni, the joint probabil-
ity distribution becomes the following product of terms—each having the
binomial form of Eq. 3.5.

P ({y}) =
N
∏

i=1

Ni!

(Ni − yi)!yi!

1

NNi

i

(µi)
yi(Ni − µi)

Ni−yi (4.14)

The joint probability distributions of Eqs. 4.12-4.14 are the basis for re-
gression analysis and, as shown in Chapter 7, produce amazingly similar
expressions when applied to that problem.

Correlation

Statistically independent random variables are always uncorrelated. Corre-
lation describes relationships between pairs of random variables that are not
statistically independent.

The generic data set now under consideration consists of pairs of ran-
dom variables, x and y, say—always measured or otherwise determined in
unison—so that a single sample consists of an x, y pair. They are sampled
repeatedly to make a set of pairs, xi, yi, i = 1...N , taken under unchanging
conditions so that only random, but perhaps not independent, variations are
expected.

Considered separately, each variable varies randomly according to an un-
derlying probability distribution. Treated as two separate sample sets: xi,
i = 1...N and yi, i = 1...N , two different sample probability distributions
could be created—one for each set. The sample means x̄ and ȳ and the
sample variances s2x and s2y could be calculated and would be estimates for
the true means µx and µy and true variances σ2

x and σ2
y for each variable’s

parent distribution, px(x) and py(y). These sample and parent distributions
would be considered unconditional because they provide probabilities with-
out regard to the other variable’s values.

The first look at the variables as pairs is typically with a scatter plot
in which the N values of (xi, yi) are represented as points in the xy-plane.
Figure 4.1 shows scatter plots for five different 1000-point samples of pairs
of random variables. For all five sample sets, the unconditional parent pdfs,
px(x) and py(y), are exactly the same, namely Gaussian distributions having
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12.3859866 3.768247 13.20983 3.940571 14.37164 4.092471 14.92469686
12.92952701 3.963918 12.25293 3.990535 14.38602 3.842683 12.42682852
14.84479046 3.883082 16.03258 3.96786 12.56186 4.066542 14.66543924
14.2968161 3.843316 14.78141 4.00784 14.24232 3.913901 13.13901785

13.96867669 4.005338 14.43642 4.107398 14.60585 4.100188 15.00186623
13.63509925 4.037445 13.08559 3.980415 13.37247 3.950136 13.50135286
13.21259817 3.818129 14.19584 4.098536 14.95143 4.09648 14.96478983
13.63248556 4.100148 13.11326 4.010504 13.15 3.964028 13.64030367
14.12228724 3.98887 12.08419 4.179714 15.43139 3.927785 13.27787082
13.42842939 4.015294 13.5981 4.058577 15.85655 3.954981 13.54980472
14.44702706 4.112009 12.09149 3.904301 13.71838 4.112697 15.1269893
13.14688859 3.840876 13.28762 4.006037 14.33683 3.795298 11.95297489
13.96653012 3.945918 13.99328 3.944161 13.57655 4.066088 14.66088367
13.27230419 3.956455 13.79522 4.158466 15.05252 3.878676 12.78676284
12.62221918 4.09005 12.34564 4.047978 14.19746 4.002671 14.02672884
16.54043835 4.004634 12.14601 4.153113 14.86997 4.085522 14.85520662
13.85817757 4.115209 14.42852 3.866664 12.27124 3.874497 12.74495514
14.22370956 4.198661 16.12773 3.796669 12.25717 3.825973 12.25973317
15.58978962 4.063404 13.4154 3.971138 14.77607 4.120464 15.20463247
15.23186227 4.013308 15.14039 3.884708 11.96083 4.052102 14.52102807
14.29895827 3.925827 14.35914 3.83001 13.11322 3.870446 12.70445336
13.69447941 3.913251 14.55598 3.939723 13.32211 3.990799 13.90801035
15.49113573 4.042911 11.93551 3.911886 13.189 3.930299 13.30299599
12.66488983 4.020951 13.30007 4.094558 13.90913 4.020142 14.20140889
14.43997335 4.075006 11.79499 3.858791 13.60738 4.181289 15.81288695
15.03481675 4.02089 11.58601 3.973485 14.06732 3.987671 13.87669869
13.47915529 3.956117 14.18133 4.011186 13.21782 3.917627 13.17629424
14.09844199 4.012303 13.9663 4.022801 14.09632 3.889093 12.89092484
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Figure 4.1: The behavior of uncorrelated and correlated Gaussian random vari-
ables. The leftmost figure shows uncorrelated variables, the middle two show
partial correlation and the two on the right show total correlation. The upper two
show positive correlations while the lower two show negative correlations.

the following parameters: µx = 4, σx = 0.1 and µy = 14, σy = 1. Even
though the unconditional pdfs are all the same, the scatter plots clearly
show that the joint probability distributions are different. The set on the left
is uncorrelated and the other four are correlated.

For the uncorrelated case on the left, the probability for a given y is
independent of the value of x. For example, if only those points within some
narrow slice in x, say around x = 4.1, are analyzed—thereby making them
conditional on that value of x, the values of y for that slice have the same
probabilities as for the unconditional case— for example, there is still an
equal probability for a y-value above the mean of 14 as below it.

The other four cases show correlation. Selecting different slices in one
variable will give different conditional probabilities for the other variable. In
particular, the conditional mean for one variable goes up or down as the slice
moves up or down in the other variable.

The top two plots show positively correlated variables. The bottom two
show negatively correlated variables. For positive correlation, the conditional
mean of one variable increases for slices at increasing values for the other
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variable. When one variable is above (or below) its mean, the other is more
likely to be above (or below) its mean. The product (x − µx)(y − µy) is
positive more often than it is negative and its expectation value is positive.
For negative correlation, these dependencies reverse— the variables are more
likely to be on opposite sides of their means and the expectation value of
(x−µx)(y−µy) is negative. For independent variables, (x−µx)(y−µy) has
an expectation value of zero.

One measure of correlation is just this expectation value. The covariance
σxy between two variables x and y is defined as the expectation value

σxy = 〈(x− µx)(y − µy)〉 (4.15)

It is limited by the size of σx and σy. The Cauchy-Schwarz inequality states
that σxy can vary from −σxσy to σxσy.

− σxσy ≤ σxy ≤ σxσy (4.16)

Thus, σxy is often expressed

σxy = ρ σxσy (4.17)

where ρ, called the correlation coefficient, is between -1 and 1. Correlation
coefficients at the two extremes represent perfect correlation where x and
y follow a linear relationship exactly. The correlation coefficients used to
generate Fig. 4.1 were 0, ±0.7 and ±1.

The sample covariance of a data set is defined by

sxy =
1

N − 1

N
∑

i=1

(xi − x̄)(yi − ȳ) (4.18)

and is an unbiased estimate of the true covariance σxy, converging to it in
the limit of infinite sample size. The inequality expressed by Eq. 4.16 is also
true for the sample standard deviations and the sample covariance with the
substitution of sx, sy and sxy for σx, σy and σxy, respectively. The sample
correlation coefficient r is then defined by sxy = rsxsy and also varies between
-1 and 1.

It is informative to see one method for generating two correlated random
variables having a given correlation coefficient. Let R1(0, 1) and R2(0, 1)
represent two independent random samples from any distributions with a
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mean of zero and standard deviation of one. It is not hard to show that
random variables x and y generated by

x = µx + σxR1(0, 1) (4.19)

y = µy + σy

(

ρR1(0, 1) +
√

1− ρ2 R2(0, 1)
)

will have means µx and µy, standard deviations σx and σy, and correlation
coefficient ρ.

Equation set 4.19 shows that while the deviations in x arise from R1 only,
the deviations in y arise from one component proportional to R1 plus a sec-
ond independent component proportional to R2. The required correlation is
achieved by setting the relative amplitude of those two components in pro-
portion to ρ and

√

1− ρ2, respectively. The Correlated RV.xls spreadsheet
uses these equations to generate correlated random variables with Gaussian
or uniform distributions for R1 and R2.

Of course, a sample correlation coefficient from a particular data set is a
random variable. Its probability distribution depends on the true correlation
coefficient and the sample size. This distribution is of interest, for example,
when testing for evidence of any correlation—even a weak one—between
two variables. A sample correlation coefficient near zero may be consistent
with the assumption that the variables are uncorrelated. A value too far
from zero, however, might be too improbable under this assumption, thereby
implying a correlation exists.

The Covariance Matrix

The covariance matrix describes all the variances and covariances possible
between two or more random variables. For the set: y1, y2, and y3, the
covariance matrix [σ2

y ] would be

[σ2
y ] =





σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33



 (4.20)

where the variances and covariances are the elements of [σ2
y ]:

[σ2
y ]ij = σij

= 〈(yi − µi) (yj − µj)〉 (4.21)

http://www.phys.ufl.edu/courses/phy4803L/statistics/Correlated RV.xls
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and µi is the mean of yi. Note how Eq. 4.21 properly defines both the
off-diagonal elements as the covariances and the diagonal elements σii =
σ2
i = 〈(yi − µi)

2〉 as the variances. It also shows that the covariance matrix
is symmetric about the diagonal with [σ2

y ]ij = [σ2
y ]ji and thus is its own

transpose. In linear algebra notation, the entire matrix can be written as the
expectation value of an outer product:

[σ2
y ] =

〈

(y − µ)(yT − µT )
〉

(4.22)

If all variables are independent, the covariances are zero and the covari-
ance matrix is diagonal and given by

[σ2
y ] =





σ2
1 0 0
0 σ2

2 0
0 0 σ2

3



 (4.23)

When variables are independent, their joint probability distribution fol-
lows the product rule— leading to Eq. 4.12, for example, when they are all
Gaussian. What replaces the product rule for variables that are known to
be dependent—that have a covariance matrix with off-diagonal elements?
No simple expression exists for the general case. However, the Gaussian
joint probability distribution (for N variables) having means µi and having
variances and covariances satisfying Eq. 4.21 would be expressed

P ({y}) =

(

∏N
i=1 ∆yi

)

√

(2π)N
∣

∣[σ2
y ]
∣

∣

exp

[

−1

2
(y − µ)T

[

σ2
y

]−1
(y − µ)

]

(4.24)

where
∣

∣[σ2
y ]
∣

∣ is the determinant of [σ2
y ] and

[

σ2
y

]−1
is its inverse. Normal

vector-matrix multiplication rules apply so that the argument of the expo-
nential is a scalar.

Note that Eq. 4.24 is the general form for a Gaussian joint pdf and reduces
to the special case of Eq. 4.12 for independent variables, i.e., for a diagonal
covariance matrix.
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Chapter 5

Measurement Model

This short chapter presents an idealized measurement model appropriate for
the treatments presented. It also briefly addresses analysis of data with
systematic errors and correlations.

Random Errors

A measurement y can be considered the sum of the mean of its probability
distribution µy and a random error δy that scatters individual measurements
above or below the mean.

y = µy + δy (5.1)

For most measurements the true mean is unknown and thus the actual ran-
dom error (or deviation) δy = y − µy cannot be determined. Whenever
possible, however, the experimentalist supplies an estimate of the standard
deviation σy to set the scale for the size of typical deviations that can be
expected. The variance of each yi in a data set should be consistent with its
definition as the mean squared deviation and the covariances between each
pair of yi should be consistent with their definition—Eq. 4.21. As will be
discussed in Chapter 8, the values, variances, and covariances of a data set
are often the only quantities that will affect the results derived from that
data.

One method for estimating variances and covariances for a measurement
set is to take a large sample of such sets while all experimental conditions
remain constant. The resulting sample variances and covariances might then
be calculated and assumed to be the true variances and covariances for any
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future measurement sets of the same kind. Often, only rough estimates
are made. The experimenter may assume covariances are all zero because
the measurements are expected to be statistically independent. Standard
deviations may be estimated from an analog meter’s smallest division or a
digital meter’s least digit. Of course, estimates are not exact, but for now, all
variances and covariances entering into an analysis will be assumed known.
Issues associated with uncertainty in [σ2

y ] will be put off until Chapter 9.

Systematic Errors

In contrast to random errors, which cause measurement values to differ ran-
domly from the mean of the measurement’s parent distribution, systematic
errors cause the mean of the parent distribution to differ systematically from
the true value of the physical quantity the mean is interpreted to represent.
With yt representing this true value and δsys the systematic error, this rela-
tionship can be expressed

µy = yt + δsys (5.2)

Sometimes δsys is constant as yt varies. In such cases, it is called an offset
or zeroing error and µy will be always be above or below the true value by
the same amount. Sometimes δsys is proportional to yt and it is then referred
to as a scaling or gain error. For scaling errors, µy will always be above or
below the true value by the same fractional amount, e.g., always 10% high.
In some cases, δsys is a combination of an offset and a scaling error. Or, δsys
might vary in some arbitrary manner.

Combining Eqs. 5.1 and 5.2

y = yt + δy + δsys (5.3)

expresses how random and systematic errors contribute to a measurement.
Accuracy refers to the size of possible systematic errors while precision refers
to the size of possible random errors.

Systematic errors should typically be neglected in the first round of data
analysis in which results and their uncertainties are obtained taking into
account random errors only. Then one determines how big systematic errors
might be, how they might behave (e.g., offset and/or gain errors), and how
they would change the results. If the changes are found to be small compared
to the uncertainties determined in the first round, systematic errors have been
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demonstrated to be inconsequential. If systematic errors could change results
at a level comparable to or larger than the uncertainties determined in the
first round, those changes are significant and should be reported separately.

Correlated Data

Measurement values are often statistically independent. One measurement’s
random error is unlikely to be related to another’s. However, there are oc-
casions when correlated measurement errors can be expected. For example,
simultaneously measured voltages are prone to correlated random errors be-
cause similar electrical interference (e.g., from power lines) might be picked
up in both measurements. Measurement timing is a common aspect of corre-
lation because temporal fluctuations are a common manifestation of random
error. Measurements made closely in time—shorter than the time scale for
the fluctuations—are likely to have correlated random errors.

Correlations can also arise by pre-treating uncorrelated data. For ex-
ample, the current I in some circuit element might be determined from a
measurement of the voltage V across a resistor R wired in series with that
element. An application of Ohm’s law gives I = V/R. In the next chapter
you will see how the uncertainty in I is determined. It will depend on the
measured values for V and R and their uncertainties. V and R are likely
to be statistically independent. However, if the experiment involves making
many current determinations using the same resistor, the current values Ii
will have correlated errors even if the measured Vi are statistically indepen-
dent. The correlation arises because a single value of R and its uncertainty
are used for calculating all Ii and their uncertainties. The random error in
that R-value would then affect all Ii systematically. A common mistake is
to treat the I-values as if they were statistically independent.

Correctly dealing with correlated input data is discussed in the next chap-
ter and in Chapter 7. In general, the simplest solution is to work directly
with uncorrelated (usually raw) data whenever possible. Thus, the measure-
ments above should be analyzed by substituting Vi/R for Ii in the theoretical
predictions so that only the independent variables, Vi and R, appear directly.
The quantity R would likely combine algebraically with other model parame-
ters and only at the latest possible stage of the analysis (after any regression
analysis, for example) should its value and uncertainty be used.
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Chapter 6

Propagation of Error

Direct transformations of random variables will be treated in this chapter.
A direct transformation gives M output variables ak, k = 1...M as defined
from N input variables yi, i = 1...N according to M given functions

ak = fk(y1, y2, ..., yN) (6.1)

If the full set of N input variables are acquired repeatedly, they would
vary according to their joint probability distribution py({y}). And as each
new set is acquired, the transformation Eqs. 6.1 lead to a new set ofM output
variables, which then would vary according to their joint distribution pa({a}).
Determining the relationship between the input and output distributions is
a common analysis task.

Propagation of error provides the variances and covariances that can be
expected for the output variables given the values, variances and covariances
for the input variables. The treatment will require that the input varia-
tions cause only proportional variations in the output variables, i.e., that the
output variables follow a first-order Taylor expansion in the input variables.
Measurement errors are often small enough to satisfy this requirement and
thus propagation of error is one of the more commonly used data analysis
procedures. However, it deals only with the input and output covariance
matrices and so a couple of special cases will be examined first that deal
directly with the joint probability distributions themselves.
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Complete Solutions

A complete solution to the problem would determine pa({a}) given py({y})
and Eqs. 6.1. This calculation can be difficult when several variables are
involved. Even with one input and one output variable, extra care is needed
if a given value of a can occur for more than one value of y.

The simplest case involves two variables that are single-valued, invertible
functions of one another: a = f(y), y = g(a), and g(f(y)) = y for all y. The
y and a variables can be considered input and output, respectively, but the
transforms must work in either direction. In this special case, the probability
distributions pa(a) and py(y) will satisfy

pa(a) =
py(y)
∣

∣

∣

da
dy

∣

∣

∣

(6.2)

where the derivative da/dy would be determined directly from f(y) or im-
plicitly from g(a). The inverse function y = g(a) is used to eliminate y from
the final expression for pa(a).

Figure 6.1 shows a simple example where a =
√
y and the input dis-

tribution py(y) is a Gaussian of mean µy and variance σ2
y . Assuming the

probability for negative y-values is negligible, a =
√
y and y = a2 are single-

valued and da/dy = 1/2
√
y = 1/2a. Equation 6.2 then gives

pa(a) =
py(a

2)
∣

∣

∣

da
dy

∣

∣

∣

=
2a

√

2πσ2
y

e−(a2−µy)2/2σ2
y

Equation 6.2 can be extended to two or more variables, but the complexity
multiplies quickly. The simplest multivariable case involves two pairs of
variables having a unique, one-to-one relationship between each pair—where
a1 = f1(y1, y2), a2 = f2(y1, y2) and the inverse functions y1 = g1(a1, a2),
y2 = g2(a1, a2) exist. In this case,

pa(a1, a2) =
py(y1, y2)

∣

∣

∣

∣

∣

∣

∂a1
∂y1

∂a1
∂y2

∂a2
∂y1

∂a2
∂y2

∣

∣

∣

∣

∣

∣

(6.3)
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Figure 6.1: Single variable probability density function transformation. py(y) is
the Gaussian distribution plotted along the horizontal axis. The transformation is
a =

√
y (black curve) and results in pa(a)— the skewed distribution plotted along

the vertical axis. The probabilities in the black shaded bins in each distribution
(areas py(y) dy and pa(a) da) must be equal because samples in that y-bin would
have square roots that would put them into the corresponding a-bin. The same
argument holds for the blue shaded bins. Thus, the ratio pa(a)/py(y) must ev-
erywhere be equal to |dy/da| determined by the functional relationship between a
and y.

The matrix of derivatives inside the determinant of Eq. 6.3 is the Jacobian for
the transformation from the set {y} to the set {a}. Again, inverse functions
may be needed to express the result as a function of a1 and a2 only.

A useful example for this 2 × 2 case is the Box-Müller transformation
which creates Gaussian random variables from uniform ones. For this trans-
formation y1 and y2 are independent and uniformly distributed on the interval
[0, 1]. Thus, a properly normalized joint pdf for y1 and y2 is given by

p(y1, y2) = 1 0 > y1, y2 ≥ 1 (6.4)

= 0 otherwise
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If y1 and y2 are randomly chosen from this joint pdf and then a1 and a2 are
calculated according to

a1 =
√

−2 ln y1 sin 2πy2 (6.5)

a2 =
√

−2 ln y1 cos 2πy2

then a1 and a2 will be independent, Gaussian-distributed random variables—
each with a mean of zero and a variance of one. This fact follows after
demonstrating that the Jacobian determinant is 2π/y1 and that Eqs. 6.5
give y1 = exp[−(a21 + a22)/2]. Equation 6.3 then gives:

p(a1, a2) =
1

2π
exp[−(a21 + a22)/2] (6.6)

which is a properly normalized joint pdf describing two, independent Gaus-
sian random variables, a1 and a2, of zero mean and unit variance.

An integral transformation arises when adding two continuous random
variables, say, x and y. Specific values for the sum z = x + y can be made
with different combinations of x and y. The general form for the pdf for the
sum, pz(z), can be expressed as a convolution of the pdfs px(x) and py(y) for
x and y.

pz(z) =

∫ ∞

−∞

px(x)py(z − x)dx (6.7)

Note that pz(z) is the product of the x-probability density at any x with the
y-probability density at y = z − x (so that x + y = z) integrated over all
possible x.

The convolution behavior is illustrated by the frequency distributions
shown in Fig. 8.1. The top-left graph shows a histogram for 10,000 samples
from a uniform distribution in the range from 0 to 1. The solid line is
the expected frequency distribution for this probability distribution. The
two graphs at the bottom of this figure show the distributions obtained by
adding either two (left) or three (right) such uniform random variables. The
solid curves show the expected frequency distributions predicted by one or
two applications of Eq. 6.7. Adding two uniform random variables results
in a triangular or piecewise linear distribution. Adding a third results in a
piecewise quadratic distribution.
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Propagation of Error

Propagation of error will here refer to a restricted case of transformations
where the ranges for the yi are small enough that Eq. 6.1 for each ak would
be well represented by a first-order Taylor series expansion about the means
of the yi.

If there were no random error in any of the yi and they were all equal to
their true means µi, Eq. 6.1 should then give the true means of the calculated
ak, which will be denoted αk

αk = fk(µ1, µ2, ..., µN) (6.8)

Assuming each yi is always in the range µi ± 3σi, propagation of error
formulas will be valid if, over such ranges, the ak are accurately represented
by a first-order Taylor expansion of each fk about the values µ1, µ2, ..., µN .

ak = fk(y1, y2, ..., yN)

= fk(µ1, µ2, ..., µN) +

∂fk
∂y1

(y1 − µ1) +
∂fk
∂y2

(y2 − µ2) + ...+
∂fk
∂yN

(yN − µN)

= αk +
N
∑

i=1

∂fk
∂yi

(yi − µi) (6.9)

where Eq. 6.8 has been used in the final step. In linear algebra form, Eq. 6.9
becomes the kth element of the vector equation:

a = α+ [Ja
y ](y − µ) (6.10)

where the M ×N Jacobian has elements given by

[Ja
y ]ki =

∂fk
∂yi

(6.11)

Equation 6.10 is often used in the form

∆a = [Ja
y ]∆y (6.12)

where ∆a = a−α and ∆y = y − µ are the deviations from the means.
To see how the first-order Taylor expansion simplifies the calculations,

consider the case where there is only one calculated variable, a, derived from
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Figure 6.2: Single variable propagation of error. Only the behavior of f(y) over
the region µy ± 3σy affects the distribution in a.

one random variable, y, according to a given function a = f(y). Figure 6.2
shows the situation where the standard deviation σy is small enough that for
y-values in the range of their distribution, a = f(y) is well approximated by
a straight line— the first-order Taylor expansion of f(y) about µy.

a = f(µy) +
df

dy
(y − µy) (6.13)

where the derivative is evaluated at µy. With a linear relation between a and
y, the distribution in y will lead to an identically-shaped distribution in a
(or one reversed in shape if the slope is negative). With either sign for the
slope, µa = f(µy) and σa = σy|df/dy| would hold.

A second-order term in the Taylor expansion—proportional to (y −
µy)

2—would warp the linear mapping between a and y. In Fig. 6.2, for
example, a = f(y) is always below the tangent line and thus the mean of the
a-distribution will be slightly less than f(µy). Such higher order corrections
to the mean will be addressed at the end of this chapter, but they will be
assumed small enough to neglect more generally.

When more than one random variable contributes to a calculated vari-
able, the one-to-one relationship between the shape of the input and output
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distributions is lost. The distribution for the calculated variable becomes
something akin to a convolution of the distributions for the contributing
variables. The central limit theorem discussed in Chapter 8 states that with
enough contributing variables, the calculated quantities will be Gaussian-
distributed no matter what distributions govern the contributing variables.
But whether the distributions for the ak turn out to be Gaussian or not
and no matter what distributions govern the yi, if the first-order Taylor ex-
pansion is accurate over the likely range of the yi, propagation of error will
accurately predict the most important parameters of p({a})— the means,
variances, and covariances as follows.

The mean of ak is its expectation value and evaluated from Eq. 6.9 be-
comes

µak = 〈ak〉

=

〈

αk +
N
∑

i=1

∂fk
∂yi

(yi − µi)

〉

= αk +
N
∑

i=1

∂fk
∂yi

〈(yi − µi)〉

= αk (6.14)

where the expectation values 〈yi − µi〉 = 0 (Eq. 2.17) have been used to
eliminate all terms in the sum. This demonstrates the important result that
the quantity ak = fk(y1, y2, ..., yM) will be an unbiased estimate of the true
αk.

Recall that elements of the covariance matrix for the ak are defined by:

[σ2
a]kl = 〈(ak − αk)(al − αl)〉 (6.15)

and that the entire covariance matrix (Eq. 4.22) can be expressed

[σ2
a] =

〈

(a−α)(a−α)T
〉

(6.16)

The kl element of [σ2
a] is the covariance between ak and al and the kk element

(kth diagonal element) is the variance of ak. Substituting Eq. 6.10 and its
transpose for a and aT in Eq. 6.16 then gives:

[σ2
a] =

〈

[Ja
y ](y − µ)(y − µ)T [Ja

y ]
T
〉

(6.17)
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for which a general element is

[σ2
a]kl =

〈

N
∑

i=1

N
∑

j=1

∂fk
∂yi

(yi − µi)(yj − µj)
∂fl
∂yj

〉

(6.18)

Rearranging the terms in the sum, factoring constants (the derivatives) out
from the expectation values and then using Eq. 4.21 for the variances and
covariances of the yi, Eq. 6.18 becomes:

[σ2
a]kl =

N
∑

i=1

N
∑

j=1

∂fk
∂yi

∂fl
∂yj

〈(yi − µi)(yj − µj)〉

=
N
∑

i=1

N
∑

j=1

∂fk
∂yi

∂fl
∂yj

[σ2
y ]ij (6.19)

Proceeding from Eq. 6.17, the same logic means the expectation angle
brackets can be moved through the Jacobians giving

[σ2
a] = [Ja

y ]
〈

(y − µ)(y − µ)T
〉

[Ja
y ]

T

= [Ja
y ][σ

2
y ][J

a
y ]

T (6.20)

where Eq. 4.22 was used in the final step. Equations 6.19 and 6.20 give the
covariance matrix [σ2

a] associated with the ak in terms of the covariance ma-
trix [σ2

y ] associated with the yi and the Jacobian describing the relationships
between the ak and the yi. The partial derivatives in [Ja

y ] are simply constants
that should be evaluated at the expansion point, µ1, µ2, ..., µN . However, as
the true means are typically unknown, the derivatives will have to be evalu-
ated at the measured point y1, y2, ..., yN instead. This difference should not
significantly affect the calculations as all fk(yi) are assumed to be linear over
a range of several σi about each µi and thus the derivatives must be nearly
constant for any yi in that range.

Equations 6.19 and 6.20 are the same general formula for propagation of
error. Various formulas derived from them are often provided to treat less
general cases. One such formula is simply a rewrite for a diagonal element of
the covariance matrix. [σ2

a]kk, the variance of ak, denoted σ2
ak, is especially

important because its square root is the standard deviation, i.e., the random
uncertainty in ak.

σ2
ak =

N
∑

i=1

(

∂fk
∂yi

)2

σ2
i + 2

N−1
∑

i=1

N
∑

j=i+1

∂fk
∂yi

∂fk
∂yj

σij (6.21)
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The factor of 2 in the double sum arises because Eq. 6.19 would produce
two equivalent cross terms while the sum above includes each cross term
only once. The first sum includes all terms involving the variances of the
yi, and the second sum—over all pairs i, j where j > i—includes all terms
involving the covariances between the yi. Note that whenever correlated
variables are used together as input to a calculation, the uncertainty in the
calculated quantity will have to take into account the input covariances via
this equation.

Now consider the case for the variance σ2
ak when all yi are independent,

i.e., when their covariances σij, i 6= j are all zero. In this case, Eq. 6.21
simplifies to

σ2
ak =

N
∑

i=1

(

∂fk
∂yi

)2

σ2
i (6.22)

This is the most common propagation of error formula, but it only applies
to uncorrelated yi.

Special conditions can lead to uncorrelated output variables. In gen-
eral, however, any two output variables will be correlated (have nonzero
off-diagonal [σ2

a]kl) whether the input variables are correlated or not. For the
special case where all yi are independent, Eq. 6.19 simplifies to

[σ2
a]kl =

N
∑

i=1

∂fk
∂yi

∂fl
∂yi

σ2
i (6.23)

which is not likely to be zero without fortuitous cancellations.

Exercise 3 Simulate 1000 pairs of simultaneous measurements of a current
I through a circuit element and the voltage V across it. Assume that the
current and voltage measurements are independent. Take I-values from a
Gaussian with a mean µI = 76 mA and a standard deviation σI = 3 mA.
Take V -values from a Gaussian with a mean µV = 12.2 V and a standard
deviation σV = 0.2 V.

Calculate sample values for the element’s resistance R = V/I and power
dissipated P = IV for each pair of I and V and create a scatter plot for the
1000 R,P sample pairs. Calculate the predicted means (Eq. 6.8) and vari-
ances (Eq. 6.22) for the R and P distributions and calculate their predicted
covariance (Eq. 6.23). Evaluate the sample means (Eq. 2.14) for the 1000 R
and P values, their sample variances (Eq. 2.23), and the sample covariance
between R and P (Eq. 4.18).
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Quantitatively compare the predictions with the sample values. This com-
parison requires the probability distributions for the sample means, sample
variances, and sample covariances. Some of these distributions will be dis-
cussed later. Their standard deviations will be given here as an aid to the
comparison. The standard deviation of the mean of N sample resistances is
predicted to be σR̄ = σR/

√
N . Similarly for the power. Check if your two

sample means agree with predictions at the 95% or two-sigma level. A frac-
tional standard deviation is the standard deviation of a quantity divided by
the mean of that quantity. The fractional standard deviation of the two sam-
ple variances are predicted to be

√

2/(N − 1). For N = 1000, this is about
4.5%, which is also roughly the fractional standard deviation of the sample
covariance in this case. So check if your sample variances and covariance
agree with predictions at the 9% or two-sigma level.

Take the 1000-point samples repeatedly while keeping an eye out for how
often R̄ and P̄ are above and below their predicted means. P̄ should behave as
expected—equally likely to be above or below the predicted mean. However,
R̄ is more likely to be above the predicted mean than below it. The reason for
this behavior is the nonlinear dependence of R on I as discussed next.

Correction to the Mean

To check how nonlinearities will affect the mean, Eq. 6.14 is re-derived—this
time starting from a second-order Taylor expansion.

For a function a = f(y1, y2) of two random variables y1 and y2, the
second-order Taylor series expansion about the means of y1 and y2 becomes

a = f(y1, y2)

= f(µ1, µ2) +
∂f

∂y1
(y1 − µ1) +

∂f

∂y2
(y2 − µ2) (6.24)

+
1

2!

(

∂2f

∂y21
(y1 − µ1)

2 +
∂2f

∂y22
(y2 − µ2)

2 + 2
∂2f

∂y1∂y2
(y1 − µ1)(y2 − µ2)

)

Taking the expectation value of both sides of this equation noting that 〈a〉 =
µa, 〈yi − µi〉 = 0, 〈(yi − µi)

2〉 = σ2
i , and 〈(y1 − µ1)(y2 − µ2)〉 = σ12, gives

µa = f(µ1, µ2) +
1

2

(

∂2f

∂y21
σ2
1 +

∂2f

∂y22
σ2
2 + 2

∂2f

∂y1∂y2
σ12

)

(6.25)
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For the power values of Exercise 3, the three terms in parentheses are
all zero— the first two because the second derivatives are zero, the third
because the covariance between I and V is zero. For the resistance values,
however, the term in parentheses is nonzero (due to the (1/2)(∂2R/∂I2)σ2

I

term only) and adds 0.25 Ω to µR —a relatively insignificant shift compared
to the standard deviation of the distribution for R in the exercise: σR ≈ 7 Ω.
However, it is significant when compared to the standard deviation for a
thousand-point average R̄ where σR̄ ≈ 0.2 Ω is also small.

For the more general case in which a = f(y1, y2, ...yN) is a function of N
variables, the second-order Taylor expansion becomes

a = f(µ1, µ2, ...µN) + [Ja
y ]∆y +

1

2

(

∆yT [Ha
yy]∆y

)

(6.26)

where [Ja
y ] is now a 1 × N matrix (row vector) with the ith element given

by ∂f/∂yi and [Ha
yy], the Hessian matrix, is the N ×N symmetric matrix of

second derivatives

[Ha
yy]ij =

∂2f

∂yi∂yj
(6.27)

Taking expectation values of both sides of Eq. 6.26 then gives a result
that can be expressed:

µa = f(µ1, µ2, ...µN) +
1

2

N
∑

i=1

N
∑

j=1

[Ha
yy]ij[σ

2
y ]ij (6.28)
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Chapter 7

Regression Analysis

Regression analysis refers to procedures involving data sets with one or more
dependent variables measured as a function of one or more independent vari-
ables with the goal to compare that data with a theoretical model and extract
model parameters and their uncertainties. A common example is a fit to a
set of measured (xi, yi) data points predicted to obey a straight-line relation-
ship: y = mx+ b. Regression analysis then provides an estimate of the slope
m and the intercept b based on the data.

The dependent variables will be denoted yi, i = 1...N and each yi will
be modeled as an independent sample from either a Gaussian, Poisson, or
binomial probability distribution. The independent variables (the xi in the
straight line fit) can also be random variables, but this possibility will only
be considered after treating the simpler case where the independent variables
are known exactly.

The dependent variables yi in a regression analysis are typically assumed
to be statistically independent with no correlations in their error distribu-
tions. If correlations exist, they should be taken into account. One treatment
is addressed later in this chapter, but until then, all yi will be considered sta-
tistically independent.

The model is that the mean of the distribution for each yi depends on
the independent variables associated with that data point through a fitting
function with M unknown theory parameters αk, k = 1...M

µi = Fi(α1, α2, ..., αM) (7.1)

where the subscript i in Fi({α}) denotes the independent variables. Equa-
tion 7.1 is intentionally written without any explicit independent variables.
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In a regression analysis they simply distinguish the point by point dependen-
cies of the µi on the αk. As far as regression is concerned, the fitting function
is simply N equations for the µi in terms of the M values for the αk.

Equation 7.1 is written as defining the true means µi in terms of the true
theory parameters αk. Except in simulations, both are usually unknown.
The version

yfiti = Fi(a1, a2, ...aM) (7.2)

gives the corresponding quantities determined by the fit. The yfiti are the
estimates of µi obtained via the same fitting function as Eq. 7.1 but with
each αk replaced by a corresponding estimate ak as determined by the fit.
Even though the ak depend on the yi only indirectly via the fitting process,
they are nonetheless associated with one particular data set and are random
variables; the fitted ak would change if the yi were resampled.

Principle of Maximum Likelihood

The estimates ak are obtained according to the principle of maximum likeli-
hood in that they are chosen to maximize the probability of the data set from
which they are derived. As a result, should the experiment and theory be
deemed incompatible, they will be incompatible regardless of the parameter
values. Any other values will only make the data less likely. Any parameter
determined by this principle is called a maximum likelihood estimate or MLE.

With the yi statistically independent, the product rule applies. Variables
governed by Gaussian, Poisson, or binomial distributions have joint proba-
bilities given by Eqs. 4.12, 4.13 or 4.14, respectively. These give the actual
probability for the data set— larger for data sets that are more likely and
smaller for sets that are less likely. This product probability becomes depen-
dent on the ak when the µi are replaced with the estimates yfiti as expressed
through Eq. 7.2. The ak that produce the yfiti that produce the largest pos-
sible joint probability become the MLE’s for the αk. The yfiti are commonly
called the best fit (to the input yi) and thus the ak are also called the best-fit
parameters.

For a continuous function f(a1, a2, ...), conditions for a local maximum are
that ∂f/∂ak = 0 for all k. When f represents a joint probability, satisfying
these conditions usually finds a global maximum. To find the maximum, a
useful trick is to first take the natural logarithm of f(a1, a2, ...) and maximize
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that. This works because ∂(ln f)/∂ak = (1/f) ∂f/∂ak and, because f will
be nonzero and finite, where one derivative is zero, so is the other.

The natural logarithm of the joint probability is called the log likelihood
L and thus defined by

L = lnP (7.3)

Using L simplifies the math because it transforms the products into sums
which are easier to differentiate. The actual value of L is unimportant. Its
only use is in maximizing the probability with respect to the fitting param-
eters by imposing the condition

∂L
∂ak

= 0 (7.4)

for each ak. In general, ak —and the yfiti they produce—will refer to MLE
values. Where derivatives are taken, they are normally evaluated at the MLE
values.

As mentioned, the dependence of L on the ak arises when the yfiti are
used as estimates of the µi in the joint probability. Because any term that
is independent of yfiti will automatically have a zero derivative with respect
to all ak, only terms that depend on µi need to be kept when evaluating L.

For a Gaussian data set where P ({y}) is given by Eq. 4.12, Eq. 7.3 gives
(after dropping terms that are independent of µi and substituting yfiti for µi)

L = −1

2

N
∑

i=1

(

yi − yfiti
)2

σ2
i

(7.5)

For a Poisson data set (Eq. 4.13) L becomes

L =
N
∑

i=1

yi ln y
fit
i − yfiti (7.6)

And for a binomial data set (Eq. 4.14) L becomes

L =
N
∑

i=1

yi ln y
fit
i + (Ni − yi) ln(Ni − yfiti ) (7.7)

Because L depends only indirectly on the ak through the yfiti , the deriva-
tives in Eq. 7.4 are evaluated according to the chain rule

∂L
∂ak

=
N
∑

i=1

∂L
∂yfiti

∂yfiti
∂ak

(7.8)
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where the partial derivatives ∂yfiti /∂ak are determined by the particular form
for the fitting function, Eq. 7.2.

For Gaussian-distributed yi, where L is given by Eq. 7.5, Eq. 7.4 becomes

0 =
∂

∂ak

[

−1

2

N
∑

i=1

(yi − yfiti )2

σ2
i

]

=
N
∑

i=1

yi − yfiti
σ2
i

∂yfiti
∂ak

(7.9)

For Poisson-distributed yi, where L is given by Eq. 7.6, Eq. 7.4 becomes

0 =
∂

∂ak

[

N
∑

i=1

(

yi ln y
fit
i − yfiti

)

]

=
N
∑

i=1

(

yi
yfiti

− 1

)

∂yfiti
∂ak

=
N
∑

i=1

yi − yfiti
yfiti

∂yfiti
∂ak

(7.10)

Equation 7.10 is remarkably similar to Eq. 7.9. The numerator in each
term of both equations,

(

y − yfiti
)

∂yfiti /∂ak, is the same and the denomina-
tor in Eq. 7.10, yfiti , is, in fact, the variance σ2

i of a Poisson distribution
(Eq. 3.8) having a mean of yfiti —and after all, the mean is exactly what yfiti
is estimating. Thus, if

σ2
i = yfiti (7.11)

is used when fitting Poisson-distributed yi, Eq. 7.10 is exactly the same as
Eq. 7.9.

For binomial-distributed yi, where L is given by Eq. 7.7, Eq. 7.4 becomes

0 =
∂

∂ak

[

N
∑

i=1

yi ln y
fit
i + (Ni − yi) ln(Ni − yfiti )

]

=
N
∑

i=1

(

yi
yfiti

− Ni − yi
Ni − yfiti

)

∂yfiti
∂ak

=
N
∑

i=1

yi − yfiti
yfiti (1− yfiti /Ni)

∂yfiti
∂ak

(7.12)
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Once again, the numerator is the same as in Eq. 7.9 and the denominator is
the variance of a binomial distribution (Eq. 3.6) having a mean of yfiti with
Ni trials. Thus, if

σ2
i = yfiti

(

1− yfiti
Ni

)

(7.13)

is used when fitting binomial-distributed yi, Eq. 7.12 is also the same as
Eq. 7.9.

Thus, with the understanding that the σ2
i are appropriately chosen for

the yi at hand, Eqs. 7.9, 7.10 and 7.12 can all be rewritten in the form

N
∑

i=1

yi − yfiti
σ2
i

∂yfiti
∂ak

= 0 (7.14)

This is the kth element of a set of M simultaneous equations which must be
satisfied by the M unknown ak in order for them to be the MLE’s for the αk.

A regression analysis finds the ak that maximize L or, equivalently, that
satisfy equation set 7.14 and it determines their covariance matrix [σ2

a]. Be-
fore discussing how to do this, it is worthwhile to first examine the rela-
tionship between the maximum likelihood principle and the least-squares
principle.

Least-Squares Principle

Aside from an overall multiplicative factor of−1/2, the Gaussian log-likelihood
of Eq. 7.5 is a sum of positive (squared) terms—one for each yi. This sum
is the chi-square (χ2) random variable and is given by

χ2 =
N
∑

i=1

(

yi − yfiti
)2

σ2
i

(7.15)

Thus for Gaussian-distributed yi, L = −χ2/2 and maximizing L is the same
as minimizing χ2. Finding the minimum χ2 proceeds as for maximizing the
log likelihood—by setting to zero its derivatives with respect to each ak —
and leads to the same equation set, Eq. 7.14, to solve for the ak. Since the χ

2

is a “sum of squares,” minimizing it is said to be a least-squares procedure.
Minimizing the χ2 is intuitively satisfying no matter what distribution

governs the yi. A smaller χ2 value means a better fit with deviations, yi−yfiti ,
of smaller magnitude. And there is a sensible dependence on the standard
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deviations—with equal contributions to the χ2 sum for equal deviations in
units of σi. That is, deviations are compared relative to their uncertainty.

As will be shown next, minimizing a χ2 can lead to maximum likelihood
fitting parameters even for non-Gaussian random variables.

Iteratively Reweighted Least Squares

While maximizing the log likelihood is a straightforward way to find the best-
fit ak, minimizing the χ2 is a much more common procedure. Moreover, such
a least squares analysis can also be applied to any yi for which the maximum
likelihood condition, Eq. 7.4, can be cast in the form of Eq. 7.14 with an
appropriate value of σ2

i . For example, least squares can be applied to Poisson
or binomial yi using “best-fit variances” σ2

i = yfiti or σ2
i = yfiti (1 − yfiti /Ni),

respectively.
The logic for using least squares to find maximum likelihood solutions

is based on the fact that, as demonstrated for Gaussian yi, minimizing the
χ2 with the σ2

i held fixed is the same as solving Eq. 7.14—the equation set
for maximum likelihood solutions for Gaussian, Poisson, and binomial yi.
Consequently, for Poisson and binomial yi, if the σ2

i are held fixed at their
best-fit values when finding the χ2 minimum, the ak at that minimum will
be maximum likelihood estimates. Of course, there is a minor “chicken-and-
egg” problem because the best-fit σ2

i are needed to minimize the correct χ2,
but the ak at that minimum are needed to determine those σ2

i . This problem
is easily solved by iteration. In this case it’s called iteratively reweighted
least squares— IRLS for short.

IRLS begins with an initial χ2 minimization using a constant or other es-
timate for the σ2

i . The ak and yfiti at this minimum are then used to determine
a new set of σ2

i , which are then held fixed in the next χ2 minimization. Addi-
tional χ2 minimizations are performed (always with fixed σ2

i ) until they are
self-consistent—with the σ2

i as evaluated at a previous χ2 minimum leading
to those same (now best-fit) ak.

The iterations tend to converge quickly because the fitting parameters
typically depend only weakly on the σ2

i . The dependence is weak enough
that for Poisson-distributed yi, it is often assumed that the input yi should
be good enough estimates of the yfiti for the purposes of calculating the σ2

i .
The fit then uses σ2

i = yi without iteration. This is not unreasonable if the
yi are all 100 or more so that the errors in using yi instead of yfiti for σ2

i are
unlikely to be more than 10%. However, if many of the yi are relatively low,
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using σ2
i = yi can give significantly different fit parameters. With today’s

computers and programming tools there is hardly a reason not to use the
correct σ2

i via iteration.

Sample Mean and Variance

A small detour is now in order—a return to the subject of distribution sam-
pling in light of the principle of maximum likelihood. Recall the definitions
for the sample mean (Eq. 2.14) and the sample variance (Eq. 2.23) for sam-
ples from a common distribution. Can they be demonstrated to satisfy the
principle of maximum likelihood?

The input data in this case now consist of a sample set, yi, i = 1...N ,
all from the exact same probability distribution. The model is that the true
mean is the same for all yi and a maximum likelihood estimate of its value
is sought. This is the simple case of a fit to the constant function— yfiti = ȳ
for all i. The estimate is given the symbol ȳ for reasons that will be obvious
shortly. As a one-parameter fit, M = 1 with yfiti = Fi(a1) = a1 = ȳ and
∂yfiti /∂a1 = 1 for all i. Because all yi are from the same distribution, the σ2

i

will also be the same for all yi; σ
2
i = σ2

y for all i.
After bringing the constant σ2

y out of the summations on both sides of
Eq. 7.14, this quantity cancels. Setting the derivatives to one, and setting
yfiti = ȳ for all i, this equation becomes simply:

N
∑

i=1

yi =
N
∑

i=1

ȳ (7.16)

The right side is simply Nȳ and solving for ȳ then reproduces the standard
definition of the sample mean, Eq. 2.14.

The sample mean has now been proven to be the MLE for the distribution
mean for variables governed by a Gaussian, Poisson or binomial distribution.
The sample mean ȳ has previously been shown (see Eq. 2.15) to be an un-
biased estimate of the true mean µy. Thus, for these three distributions,
the MLE is unbiased. The principle of maximum likelihood does not always
produce unbiased estimates. A biased estimate will have a distribution mean
above or below the true mean and will not give the true mean “on average.”
Bias is considered a significant flaw and, consequently, corrections for it are
sought and applied.
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For a sample set of yi from a common Gaussian distribution, σ2
y becomes

a second parameter suitable for determination according to the principle of
maximum likelihood. Is the sample variance s2y of Eq. 2.23 an MLE for
σ2
y? For this case, the joint probability would now have to include all terms

dependent on µy and σy. Taking the natural logarithm of Eq. 4.12 replacing
all µi with their estimate ȳ and replacing all σ2

i with their estimate s2y (and
dropping all terms independent of these two variables) gives

L = −N ln sy −
1

2

N
∑

i=1

(yi − ȳ)2

s2y
(7.17)

Now, the derivatives of L with respect to both ȳ and sy must be set equal
to zero in order for them to be the MLE’s for µy and σy. Nothing changes
for the ȳ equation and the sample mean (Eq. 2.14) stays the MLE for µy.
Setting the derivative with respect to sy equal to zero then gives

0 =
∂

∂sy

[

−N ln sy −
1

2

N
∑

i=1

(yi − ȳ)2

s2y

]

= −N

sy
+

1

s3y

N
∑

i=1

(yi − ȳ)2 (7.18)

with the solution

s2y =
1

N

N
∑

i=1

(yi − ȳ)2 (7.19)

However, this s2y is seldom used because it is biased—having an expectation
value smaller than the true variance. As will be demonstrated in Exercise 5,
the more common estimate given by Eq. 2.23, with N − 1 in place of N in
the denominator, is preferred because it is unbiased.

Note that the mean of a single sample (a sample of size N = 1) is well
defined. It is that sample value and thus also the MLE of the true mean of its
parent distribution. No estimate of the true variance can be obtained with
only a single sample. Neither Eq. 7.19, which gives an unphysical estimate of
s2y = 0, nor Eq. 2.23, which gives an indeterminate value of 0/0, can be used.
It takes at least two samples to get a sample variance, for which Eq. 2.23
gives the unbiased estimate s2y = (y1 − y2)

2/2.
Of course, samples of size one or two are the smallest possible. Larger

samples give sample means and sample variances which are more precise—
more closely clustered around the true mean and the true variance. The
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variance of ȳ is given in the next exercise. The variance of s2y is discussed in
Chapter 9.

Exercise 4 The variance of the mean σ2
ȳ is most easily determined from

Eq. 2.19— in this case: σ2
ȳ = 〈ȳ2〉 − µ2

y. Evaluate the right side of this
equation to show that

σ2
ȳ =

σ2
y

N
(7.20)

Hint: Re-express ȳ2 as

ȳ2 =

(

1

N

N
∑

i=1

yi

)(

1

N

N
∑

j=1

yj

)

=
1

N2

N
∑

i=1

N
∑

j=1

yiyj (7.21)

before taking the expectation value. Each ȳ in ȳ2 gets its own summation
index to clearly enumerate terms with i = j and i 6= j for use with Eq. 4.9.

Eq. 7.20 indicates that the standard deviation of the mean of N samples
is
√
N times smaller than the standard deviation of a single sample, e.g., the

average of 100 samples is 10 times more precise an estimate of the true mean
than is a single sample. The sample variance of the mean is then defined by

s2ȳ =
s2y
N

(7.22)

and is an unbiased estimate of the true σ2
ȳ .

Exercise 5 Show that Eq. 2.23 is unbiased and satisfies Eq. 2.22. Hint 1:
Explain why each of the N terms in Eq. 2.23 has the same expectation value
and use this fact to eliminate the sum over i—replacing it with a factor of N
times the expectation value of one term (say i = 1). Hint 2: Expand (y1 − ȳ)2

before taking the expectation value term by term. Then use Eqs. 2.14 and 4.9
and/or results from Exercise 4 as needed for the individual terms.
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Weighted Mean

The sample mean ȳ is an unweighted average; each yi has an equal effect on
its value. Suppose that a sample of yi, i = 1...N are again all predicted to
have the same distribution mean µy. For example, they might be results for
the same quantity obtained from different data sets or by different research
groups. But now, the yi don’t all have the same uncertainty—each comes
with its own standard deviation σi. The yi and the σi are given and the MLE
for µy is to be determined. Taking that MLE as my, the regression problem
is again a simple fit to a constant—M = 1, with yfiti = Fi(a1) = a1 = my and
∂yfiti /∂a1 = 1 for all i. The maximum likelihood solution must then satisfy
Eq. 7.14 which becomes the single equation

N
∑

i=1

yi
σ2
i

=
N
∑

i=1

my

σ2
i

(7.23)

my can be factored from the sum giving the result

my =
N
∑

i=1

yi
σ2
i

/

N
∑

i=1

1

σ2
i

(7.24)

This is a weighted average of the yi

my =
w1y1 + w2y2 + ...+ wNyN

w1 + w2 + ...+ wN

(7.25)

where the weight wi for each yi is given by the inverse of the variance for
that yi

wi =
1

σ2
i

(7.26)

Larger standard deviations indicate less precisely known y-values and, ap-
propriately, smaller weights in the average. Weighting a data point’s contri-
bution according to the inverse of its distribution’s variance persists in all
regression problems. The larger the σi, the smaller the weight of that sample
and thus the smaller the effect of that sample on the fitting parameters.

Propagation of error then gives the variance of my via Eq. 6.22 with
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Eqs. 7.25 and 7.26 as

σ2
my =

N
∑

i=1

(

∂my

∂yi

)2

σ2
i

=
N
∑

i=1

w2
i σ

2
i

/(

N
∑

i=1

wi

)2

=
N
∑

i=1

wi

/(

N
∑

i=1

wi

)2

= 1

/

N
∑

i=1

wi (7.27)

Inverting both sides, this result can be expressed more symmetrically as

1

σ2
my

=
N
∑

i=1

1

σ2
i

(7.28)

Effectively, Eqs. 7.24 and 7.28 are a prescription for turning a group of inde-
pendent samples (with known standard deviations) into a single sample my

with a reduced standard deviation σmy.

Linear Regression

The rest of this chapter is devoted to providing solutions to the maximum
likelihood condition (Eq. 7.14) for fixed σ2

i . It covers linear and nonlinear
regression and then several specialized cases such as data sets with uncer-
tainties in the independent variables, data sets with correlated yi, and data
sets collected after an instrument calibration.

In linear algebra form, Eq. 7.14 is just the kth element of the vector
equation

[Jy
a ]

T
[

σ2
y

]−1 (
y − yfit

)

= 0 (7.29)

Bringing the yfit term to the right puts this equation in a form more useful
for finding solutions.

[Jy
a ]

T
[

σ2
y

]−1
y = [Jy

a ]
T
[

σ2
y

]−1
yfit (7.30)
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In these equations, [Jy
a ] is the N ×M Jacobian of partial derivatives of yfiti

with respect to each ak as determined by the fitting function

[Jy
a ]ik =

∂yfiti
∂ak

(7.31)

and
[

σ2
y

]−1
—the inverse of the covariance matrix— is called the weighting

matrix and given by

[

σ2
y

]−1
=











1/σ2
1 0 0 · · ·

0 1/σ2
2 0 · · ·

...
...

...
0 0 · · · 1/σ2

N











(7.32)

It is recommended that the reader check Eq. 7.29 and verify that it is, in-
deed, a vector equation having M elements with the kth element reproducing
Eq. 7.14 including the proper summation over the i index. Consequently,
solving Eq. 7.30 solves all M equations simultaneously and gives the MLE
for all ak at once.

The linear algebra formulas discussed next are demonstrated in Excel
for a quadratic fit using array formulas in Linear Regression Algebra.xlsm
available on the lab website.

Linear regression is used when the fitting function is linear in the fitting
parameters. A linear fitting function with a single independent variable xi

for each yfiti would be of the form

yfiti = a1f1(xi) + a2f2(xi) + ...+ aMfM(xi)

=
M
∑

k=1

akfk(xi) (7.33)

where the fk(x) are given functions of x with no unknown parameters. For
example, a data set for a cart rolling on an inclined track might consist of
the measured cart position yi versus the time ti at each measurement. This
data might then be checked against a predicted quadratic based on motion
at constant acceleration:

yfiti = a1 + a2ti + a3t
2
i (7.34)

This model is linear in the three parameters a1, a2, and a3 associated with
the basis functions: f1(ti) = 1, f2(ti) = ti, and f3(ti) = t2i .

http://www.phys.ufl.edu/courses/phy4803L/statistics/Linear Regression Algebra.xlsm
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Note that when the true parameters αk are used in place of the fitted ak,
Eq. 7.33 gives the true means µi of the distributions for the yi.

µi = α1f1(xi) + α2f2(xi) + ...+ αMfM(xi)

=
M
∑

k=1

αkfk(xi) (7.35)

Equation 7.31 for the Jacobian is then the N ×M matrix given by

[Jy
a ] =











f1(x1) f2(x1) · · · fM(x1)
f1(x2) f2(x2) · · · fM(x2)

...
...

...
f1(xN) f2(xN) · · · fM(xN)











(7.36)

Note that this Jacobian is independent of the entire set of ak. It is this
condition that determines when linear regression is appropriate. The columns
of this matrix must be linearly independent to produce a unique set of ak at
the χ2 minimum.

Equation 7.33 for the column vector of yfiti values can then be expressed
by the vector equation

yfit = [Jy
a ]a (7.37)

and Eq. 7.35 for the true means becomes

µ = [Jy
a ]α (7.38)

Substituting Eq. 7.37 into Eq, 7.30 then gives

[Jy
a ]

T [σ2
y

]−1
y = [Jy

a ]
T [σ2

y

]−1
[Jy

a ]a (7.39)

In this equation, [Jy
a ]

T [σ2
y

]−1
[Jy

a ] is an M ×M symmetric matrix whose
inverse turns out to be the parameter covariance matrix. It will be referred
to as the X-matrix ([X] in equations).

[X] = [Jy
a ]

T [σ2
y

]−1
[Jy

a ] (7.40)

so that Eq. 7.39 becomes

[Jy
a ]

T [σ2
y

]−1
y = [X]a (7.41)
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This equation is solved for the best-fit parameter vector by determining the
inverse of the X-matrix and multiplying it from the left on both sides. This
gives

a = [X]−1 [Jy
a ]

T [σ2
y

]−1
y (7.42)

or
a =

[

Ja
y

]†
y (7.43)

where
[

Ja
y

]†
= [X]−1 [Jy

a ]
T [σ2

y

]−1
(7.44)

is an M×N matrix called the weighted Moore-Penrose pseudoinverse of [Jy
a ].

[

Ja
y

]†
is not a true matrix inverse, which is defined for square matrices only.

However, note that:

[

Ja
y

]†
[Jy

a ] = [X]−1 [Jy
a ]

T [σ2
y

]−1
[Jy

a ]

= [X]−1[X]

= [1] (7.45)

where [1] is the M×M identity matrix. This product of the Jacobian and its
pseudoinverse yields theM×M identity matrix—a key inverse-like property.

The ak are random variables. For each new input set of yi, the output set
of ak would vary according to Eq. 7.43. What can be expected for the means,
variances and covariances for the ak if the input data sets were resampled
over and over again?

That the distribution for ak will be unbiased (have a mean of αk) can be
demonstrated upon taking the expectation value of both sides of Eq. 7.43

〈a〉 =
[

Ja
y

]† 〈y〉
=

[

Ja
y

]†
µ

=
[

Ja
y

]†
[Jy

a ]α

= α (7.46)

where 〈y〉 = µ (from 〈yi〉 = µi) was used to get to line 2, Eq. 7.38 was used
to get to line 3, and Eq. 7.45 was used to get to line 4.

Keep in mind the kth row of Eq. 7.43 is

ak =
[

Ja
y

]†

k1
y1 +

[

Ja
y

]†

k2
y2 + ...

[

Ja
y

]†

kN
yN (7.47)
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and defines a direct linear relationship for each output parameter ak from
any set of input yi. Consequently, the propagation of error formula (Eq. 6.20)
can be used to determine the parameter covariance matrix [σ2

a] in terms of
the input covariance matrix [σ2

y ]. Recall, the M ×N Jacobian appearing in
Eq. 6.20 has elements defined by ∂ak/∂yi, which Eq. 7.47 shows are just the

elements of
[

Ja
y

]†
. Thus the parameter covariance matrix is simply

[σ2
a] =

[

Ja
y

]†
[σ2

y ]
[

Ja
y

]†T
(7.48)

[

Ja
y

]†
can be eliminated from this equation in favor of [Jy

a ] using Eqs. 7.44
and 7.40. The Jacobian [Jy

a ]— the derivatives of the fitting function with re-
spect to the fitting parameters— is the simpler of the two and would be

needed anyway to determine
[

Ja
y

]†
. Note that the rule for taking the trans-

pose gives
[

Ja
y

]†T
=
[

σ2
y

]−1
[Jy

a ] [X]−1 because
[

σ2
y

]−1
and [X]−1 are symmet-

ric about their matrix diagonals and thus they are their own transpose. With
these notes, proceeding from Eq. 7.48 gives

[σ2
a] = [X]−1 [Jy

a ]
T [σ2

y

]−1
[σ2

y ]
[

σ2
y

]−1
[Jy

a ] [X]−1

= [X]−1 [Jy
a ]

T [σ2
y

]−1
[Jy

a ] [X]−1

= [X]−1[X][X]−1

= [X]−1 (7.49)

Taking the inverse of both sides and using Eq. 7.40 then gives

[

σ2
a

]−1
= [Jy

a ]
T [σ2

y

]−1
[Jy

a ] (7.50)

Equation 6.20, [σ2
a] = [Ja

y ][σ
2
y ][J

a
y ]

T , and Eq. 7.50, above, are complemen-
tary relationships for the two most common statistical procedures. Equa-
tion 6.20 applies to propagation of error and gives the output covariance ma-
trix in terms of the input covariance matrix and theM×N Jacobian, [Ja

y ]ki =
∂ak/∂yi based on the direct relationships: ak = fk({yi}). Equation 7.50 ap-
plies to regression analysis and gives the output weighting matrix in terms
of the input weighting matrix and the N × M Jacobian [Jy

a ]ik = ∂yfiti /∂ak
based on the fitting model: yfiti = Fi({ak}).

As Eq. 7.47 demonstrates, every ak is a purely linear function of the yi
and thus the first-order Taylor expansion for each ak about any set of yi
is exact. Recall from Chapter 6, this implies Eq. 6.20 (here, Eq. 7.48 and
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Eq. 7.50) is exact. Linear fitting functions lead to linear direct relationships,
and for both, the validity of the calculated parameter covariance matrix does
not rely on keeping errors small. The calculated [σ2

a] is exact for any given
[σ2

y ] and for any distribution governing the yi.
As was demonstrated in Chapter 6, when the ak are nonlinear functions

of the yi, Eq. 6.20 remains valid, but relies on keeping the σi sufficiently
small. While Eq. 7.50 was obtained for linear fitting functions, as will be
demonstrated later in this chapter, it also remains valid for nonlinear fitting
functions if the σi are kept small enough.

Equally-Weighted Linear Regression

Occasionally, all yi are obtained using the same technique and have the same
uncertainty. Or, lacking better estimates, the uncertainties might simply
be assumed equal. For a data set where the standard deviations are the
same for all yi (σi = σy), the regression equations and results are then called
equally-weighted.

The regression equations simplify because the covariance matrix and the
weighting matrix are proportional to the identity matrix; [σ2

y ] = σ2
y [1] and

[

σ2
y

]−1
= (1/σ2

y)[1], where [1] is the N × N identity matrix. With this
substitution, Eq. 7.40 becomes

[X] =
1

σ2
y

[Xu] (7.51)

where
[Xu] = [Jy

a ]
T [Jy

a ] (7.52)

is the [X] matrix without the intervening weighting matrix and is thus in-
dependent of σy. The inverse of Eq. 7.51 is then [X]−1 = σ2

y [Xu]
−1 where

[Xu]
−1, the inverse of [Xu], is also independent of σy.
By Eq. 7.49, [X]−1 is the parameter covariance matrix. That is,

[σ2
a] = σ2

y [Xu]
−1 (7.53)

thereby demonstrating that every element of the parameter covariance matrix
is proportional to σ2

y and thus the standard deviation of every parameter
(square root of the corresponding diagonal element) is proportional to σy.

Equation 7.42 for the parameter values becomes

a = [Xu]
−1 [Jy

a ]
T
y (7.54)
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showing that σ2
y has canceled and thus the parameter values themselves are

independent of its value. The independence can also be inferred from the χ2

of Eq. 7.15, which becomes

χ2 =
1

σ2
y

N
∑

i=1

(

yi − yfiti
)2

(7.55)

Recall that the best-fit parameters would be those that minimize this χ2.
Because σ2

y factors from the sum, no matter its value, the same sum of squared
deviations must be minimized and thus the same ak will be obtained.

Nonlinear Regression

Linear regression requires that the Jacobian [Jy
a ] be independent of the entire

set of fitting parameters. Fitting functions that are nonlinear in the fitting
parameters do not satisfy this requirement. For example, consider a sample of
a gamma-ray-emitting radioisotope placed in front of a Geiger counter. If the
half-life of the isotope is a few minutes or so, the number of detected gamma
rays yi might be measured over consecutive ten-second intervals as a function
of the interval starting time ti relative to the start of the experiment. The
yi would decrease as the sample decays and a model predicting exponential
decay would be represented

yfiti = a1e
−ti/a2 + a3 (7.56)

where a1 is proportional to the initial sample activity, a2 is the mean lifetime,
and a3 is a constant background level arising from other sources. For this
nonlinear fitting function, the derivative of yfiti with respect to a1 depends on
a2 and the derivative with respect to a2 depends on both a1 and a2.

The solution for the best-fit parameters must still satisfy Eq. 7.30, but
because [Jy

a ] depends on the ak, an iterative solution must be sought. The
user provides initial guesses for the fitting parameters that will be used as
a starting point. From the initial guesses, a nonlinear fitting program will
locate other nearby parameter sets—evaluating the χ2 each set produces.
Each time the program finds that χ2 has decreased, it uses those improved
parameter values as a new starting point for the next iteration. Iterations
continue until the solution to Eq. 7.30 is self-consistent—satisfied with [Jy

a ]
(and perhaps [σ2

y ]) evaluated at the best fit.
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Various algorithms can be used to search parameter space for the best-fit
ak that minimize the χ2. Three commonly used are the Gauss-Newton, the
gradient-descent, and a hybrid of the two—the Levenberg-Marquardt. The
Gauss-Newton algorithm is the most efficient when the starting parameters
are already sufficiently close to the best fit. Its big drawback is that it tends
to fail if the starting parameters are not close enough. The gradient-descent
algorithm is better at improving the fit parameters when their starting values
are further from the best-fit values. Its big drawback is that it tends to take
many iterations to find the best fit. The Levenberg-Marquardt algorithm
elegantly addresses the shortcomings of the other two. In effect, it uses
gradient-descent when Gauss-Newton fails, but switches to Gauss-Newton as
the parameters approach the best fit.

Of course, all three algorithms require user input: the N values of the
independent variable yi and their variances σ2

i , initial guesses for theM fitting
parameters ak, the N values of yfiti using those ak, and the N ×M Jacobian
[Jy

a ]. The yfiti , [Jy
a ] and perhaps [σ2

y ] must be in the form of a spreadsheet
formula or computer code for evaluation at any set of ak. Chapter 10 shows
how to specify this input for regression analysis in Excel.

The Gauss-Newton algorithm begins with the Jacobian of Eq. 7.31 eval-
uated at the starting parameters. If the starting parameters are near the
best-fit values, the χ2 will be near its true minimum and in that neighbor-
hood will lie on an M -dimensional parabola. The Gauss-Newton algorithm
uses the [Jy

a ] evaluated at the starting parameters to determine this parabola
and then jumps directly to the predicted χ2 minimum.

For a linear fitting function the parabolic shape is guaranteed—even
when the starting parameters are far from the best fit. In effect, this is why
linear regression formulas can find the best-fit parameters without iteration.
For nonlinear fitting functions, the parabolic shape may only extend to a
small neighborhood around the best-fit parameters. If the starting param-
eters are in that neighborhood, the Gauss-Newton algorithm would jump
almost directly to the correct best-fit parameters in one try. However, if the
starting parameters are too far from the best fit, the local derivatives may not
predict where the true minimum in χ2 will be. When the algorithm jumps to
the predicted best-fit parameters, it may find the χ2 has decreased, but not
to its minimum. In that case, it can simply reiterate from there. However, if
at any time it finds that the χ2 has increased rather than decreased, it would
then have no recourse to improve the fit.

Each iteration of the gradient-descent algorithm is guaranteed to improve
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the fit (lower the χ2) and so it can be used when the Gauss-Newton algorithm
fails. It is based on the “χ2 gradient”—a vector of derivatives ∂χ2/∂ak with
components giving the rate of change of χ2 with changes in each parameter.
Recall that χ2 is at a minimum and these derivatives are all zero at the
best fit. Conversely, if any derivatives are found to be nonzero,1 the χ2

is not at its minimum and the parameters are not at the best fit. The
algorithm then simultaneously changes each parameter by an amount ∆ak
proportional to the corresponding derivative but in the opposite direction—
toward decreasing χ2. That is,

∆ak = −κk
∂χ2

∂ak
(7.57)

where the κk are (positive) constants of proportionality determining the size
of the change. While this equation is guaranteed to move ak in the direction
of decreasing χ2, κk can be made too large. The new ak (after the change
is applied) can overshoot the location of the χ2 minimum and the χ2 can
increase instead of decrease. But if the proportionality constants κk are all
made small enough, Eq. 7.57 guarantees the χ2 will decrease. On the other
hand, κk values that are too small will give ∆ak that are too small. The new
ak values will move only a small fraction of the way to the χ2 minimum and
many iterations will be required to locate it.

To get appropriately sized κk values, first note that the fitting parameters
typically have different units of measure and thus the χ2 derivatives will have
different units. To make Eq. 7.57 dimensionally consistent, κk must have the
units of a2k. This can be expressed by rewriting Eq. 7.57

∆ak = −κu2
k

∂χ2

∂ak
(7.58)

with the proportionality constants κk = κu2
k now expressed as the product

of a positive, unitless factor κ common to all parameters and a positive,
parameter-specific, or relative, scale factor u2

k having the same units as a2k.
A poorly scaled set of u2

k values leads to a κ value smaller than neces-
sary and a slow approach to the best fit. Consequently, a gradient-descent

1Starting from Eq. 7.15 and treating the ak therein as a set of unoptimized trial pa-
rameters, it is easy to show that ∂χ2/∂ak is just the kth component of the M -component

vector −2 [Jy
a ]

T [

σ2

y

]−1
(

y − ytrial
)

, with [Jy
a ] and ytrial evaluated with those parameters.
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algorithm typically adjusts κ and the u2
k as the iterations proceed. Good u2

k

values can be determined from the local X-matrix as described shortly. In
any case, the u2

k need only have the correct order of magnitude. If the χ2 does
not decrease after using the current κ and u2

k, a gradient-descent algorithm
will leave the current fit parameters unchanged, decrease κ by some factor,
and try again. Sooner or later the ∆ak will all be small enough that χ2 will
decrease— leading to a new, improved set of parameters from which a new
iteration can proceed.

The elegance of the Levenberg-Marquardt algorithm is in how it monitors
the χ2 during the iterations and smoothly switches between Gauss-Newton-
like and gradient-descent-like algorithms. More details on the gradient-
descent and the Levenberg-Marquardt algorithms will be provided after dis-
cussing the Gauss-Newton algorithm.

If the σ2
i depend on the best fit, iteratively reweighted least squares will

be needed. One might recalculate the σ2
i after each successful χ2 decrease,

or only after finding the minimum χ2 with the current set of σ2
i . Because

self-consistency must ultimately be achieved for both σ2
i and [Jy

a ], the choice
is simply a matter of whether and how fast the solution converges.

The Gauss-Newton Algorithm

Regression formulas for the Gauss-Newton algorithm are essentially identical
to their linear regression counterparts. And while the range of fit parameters
where the algorithm can be applied may be limited, in most cases it will
include the all-important region within a few standard deviations of the best
fit.

The treatment will require distinguishing between the best-fit parameters
ak, k = 1...M and another set—nearby, but otherwise arbitrary. This nearby
“trial” solution will be labeled atrialk , k = 1...M , and gives a trial fitting
function

ytriali = Fi({atrial}) (7.59)

This initial solution must be close enough to the best fit that, for all data
points, a first-order Taylor series expansion about ytriali will accurately repro-
duce the best-fit yfiti .

yfiti = ytriali +
M
∑

k=1

∂ytriali

∂atrialk

(ak − atrialk ) (7.60)
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Where these expansions are accurate, the χ2 surface is parabolic.
Differentiating Eq. 7.60 shows that the elements of the Jacobian [Jy

a ]ik =
∂yfiti /∂ak are

[Jy
a ]ik =

∂ytriali

∂atrialk

(7.61)

That is, the first-order Taylor expansion implies the derivatives at the best
fit are the derivatives at the nearby starting point.

For well-behaved fitting functions, the first-order Taylor expansion is
guaranteed accurate for values of atrialk that are sufficiently close to the ak.
If the expansion remains valid for a wider range of atrialk , the Gauss-Newton
algorithm will likewise find the best-fit ak from those more distant trial so-
lutions. Moreover, the parameter covariance matrix relies on the first-order
Taylor expansion and so its range of validity will have important implications
for parameter uncertainties.

To see how the first-order Taylor expansion will lead to linear regression-
like formulas, first define the modified input data ∆yi and the modified best-
fit ∆yfiti as relative to the trial solution.

∆yi = yi − ytriali (7.62)

∆yfiti = yfiti − ytriali (7.63)

Or, in vector notation

∆y = y − ytrial (7.64)

∆yfit = yfit − ytrial (7.65)

Subtracting [Jy
a ]

T [σ2
y

]−1
ytrial from both sides of the defining equation for

the maximum likelihood solution, Eq. 7.30, then gives

[Jy
a ]

T [σ2
y

]−1
∆y = [Jy

a ]
T [σ2

y

]−1
∆yfit (7.66)

Next, define the modified best-fit parameters ∆ak as the difference be-
tween the actual best-fit parameters and the trial parameters.

∆ak = ak − atrialk (7.67)

or
∆a = a− atrial (7.68)
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With these definitions, the first-order Taylor expansion (Eq. 7.60) can be
written

∆yfiti =
M
∑

k=1

[Jy
a ]ik ∆ak (7.69)

or
∆yfit = [Jy

a ] ∆a (7.70)

Using Eq. 7.70 in Eq. 7.66 then gives the linear-regression-like result

[Jy
a ]

T [σ2
y

]−1
∆y = [Jy

a ]
T [σ2

y

]−1
[Jy

a ] ∆a (7.71)

This equation is now in a form analogous to Eq. 7.39 with the solution for
the best-fit ∆ak analogous to Eq. 7.43.

∆a =
[

Ja
y

]†
∆y (7.72)

where
[

Ja
y

]†
= [X]−1 [Jy

a ]
T [σ2

y

]−1
and [X] = [Jy

a ]
T [σ2

y

]−1
[Jy

a ] as evaluated at
the trial solution.

After Eq. 7.72 is applied to determine the best-fit ∆a, Eq. 7.67 must then
be applied to each element to find the best-fit ak

ak = atrialk +∆ak (7.73)

The resulting values for the ak should then be used as new trial param-
eters atrialk for another iteration of the algorithm. ytriali , ∆yi, [Jy

a ], and if

necessary,
[

σ2
y

]−1
should be reevaluated there and the Gauss-Newton algo-

rithm reiterated. Iterations can be stopped when there are no significant
changes to the ak, i.e., when ∆a = 0. Equation 7.71 with Eq. 7.64 shows

that ∆a = 0 when [Jy
a ]

T [σ2
y

]−1
(y − ytrial) = 0, which is just the condition

for ytrial to be the best-fit solution, namely, Eq. 7.29.
Equation 7.49 then provides [X]−1 as the covariance matrix for the ∆ak.

Because of the constant offset transformation between ∆ak and ak expressed
by Eq. 7.73, propagation of error implies the ak have the exact same covari-
ance matrix.

The Gauss-Newton, gradient-descent, and Levenberg-Marquardt algo-
rithms are demonstrated for simulated exponential decay in the two Ex-
cel workbooks Nonlinear Regression.xlsm and Nonlinear Regression Pois-
son.xlsm for Gaussian- and Poisson-distributed yi, respectively. All three

http://www.phys.ufl.edu/courses/phy4803L/statistics/Nonlinear Regression.xlsm
http://www.phys.ufl.edu/courses/phy4803L/statistics/Nonlinear Regression Poisson.xlsm
http://www.phys.ufl.edu/courses/phy4803L/statistics/Nonlinear Regression Poisson.xlsm
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algorithms are iterative. They differ in how they modify the X-matrix be-
fore taking its inverse and using it to calculate ∆a (from Eq. 7.72) for the
current iteration.

Leaving [X] unmodified corresponds to the Gauss-Newton algorithm.
Zeroing out off-diagonal elements of [X] and multiplying the diagonal

elements by a single, programatically adjusted scale factor λ is a gradient-
descent algorithm with

κu2
k =

(

2λ
N
∑

i=1

1

σ2
i

(

∂yfiti
∂ak

)2
)−1

(7.74)

The unitless scale factor λ common to all ak starts at one, say, and is adjusted
as follows. If the χ2 fails to decrease, leave the ak unchanged and increase
λ by a factor of ten. This decreases all parameter step sizes for the next
iteration and guarantees that with enough failed iterations, the steps will
ultimately become small enough that the χ2 will decrease. If the χ2 success-
fully decreases, keep the new ak and decrease λ by a factor of ten. Decreasing
λ increases the parameter step sizes for the next iteration thereby helping to
keep step sizes near the optimum values.

The Levenberg-Marquardt algorithm multiplies diagonal elements of [X]
by a programatically adjusted factor of 1+λ and leaves off-diagonal elements
unchanged. As a consequence, this algorithm follows a near-gradient-descent
algorithm with decreasing step sizes as λ increases above one and it ap-
proaches the Gauss-Newton algorithm as λ decreases below one. λ starts at
one and is adjusted as for the gradient-descent algorithm. If the χ2 fails to
decrease, leave the ak unchanged and increase λ by a factor of ten for the
next iteration. If the χ2 successfully decreases, keep the new ak and decrease
λ by a factor of ten.

The parameter covariance matrix [σ2
a] = [X]−1 (Eq. 7.49) should always

be obtained using an unmodified X-matrix (Eq. 7.40) with the Jacobian [Jy
a ]

and the input covariance matrix [σ2
y ] evaluated at the best fit.

Uncertainties in Independent Variables

Up to now, only the dependent variables had uncertainty; only the yi were
random variables. What can be done when there are uncertainties in the
independent variable—when the xi are also random variables? There is no
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rigorous treatment for the general case. However, if the xi are statistically
independent and have uncertainties that are small enough, a simple modifi-
cation to the data point weights provides a good statistical model.

Only a single independent variable x will be considered here, i.e., where

yfiti = F (xi; {a}) (7.75)

but the extension to additional independent variables should be obvious.
Letting σxi represent the standard deviation of xi and letting µxi represent
its mean, F (xi; {a}) must be a nearly linear function of xi throughout the
range µxi±3σxi. That is, each yfiti should be well represented by a first-order
Taylor expansion

yfiti = F (µxi; {a}) +
∂F (xi; {a})

∂xi

(xi − µxi) (7.76)

for any xi in this range.
Under these conditions, propagation of error implies that random varia-

tions in xi with a variance of σ2
xi would cause random variations in yfiti with

a variance

σ2

yfiti

=

(

∂F (xi; {a})
∂xi

)2

σ2
xi (7.77)

If the xi are statistically independent from the yi, the variations in yfiti will be
uncorrelated with the variations in yi and propagation of error implies that
the quantity yi − yfiti will have random variations with a variance given by

σ2
i = σ2

yi +

(

∂F (xi; {a})
∂xi

)2

σ2
xi (7.78)

where now the σyi are the standard deviations of the yi (σi previously).
To account for uncertainty in an independent variable, simply replace the

σ2
i appearing in the regression formulas with the modified values of Eq. 7.78.

These values will give the proper weighting matrix for the fit with the correct
dependence on σxi and σyi. Most importantly, the adjusted σ2

i will give the
correct covariance matrix for the fitting parameters and when used in the χ2

of Eq. 7.15 will maintain its proper expectation value—a critical aspect of
the chi-square test discussed in Chapter 9.

The best-fit parameters would need to be known in order to determine
the σ2

i of Eq. 7.78; the σ2
i depend on the derivatives of the fitting function
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with respect to xi and these derivatives will depend on the ak. In keeping
with a key result of iteratively reweighted least squares, the σ2

i should be
recalculated from Eq. 7.78 at the start of each iteration using the current set
of ak and kept fixed while a fit to find the next set of ak is performed. The
iterations should be repeated until a self-consistent solution is obtained.

Regression with Correlated yi

Performing a fit to a set of yi having a nondiagonal covariance matrix [σ2
y ] is

relatively simple if the joint probability distribution for the yi is reasonably
described by the correlated Gaussian of Eq. 4.24. In this case, the regression
formulas already presented remain valid without modification. One need only
substitute the nondiagonal covariance matrix and its inverse for the diagonal
versions assumed up to now.

This simple substitution works because the log likelihood for the corre-
lated joint probability of Eq. 4.24 (multiplied by −2 so it is to be minimized
to maximize the probability) depends on the µi only via a χ2 of the form

χ2 = (y − µ)T
[

σ2
y

]−1
(y − µ) (7.79)

To be a maximum likelihood solution, Eq. 7.79 must produce the minimum
χ2 when yfiti is used for µi.

χ2 =
(

y − yfit
)T [

σ2
y

]−1 (
y − yfit

)

(7.80)

That this χ2 is a minimum with respect to all fitting parameters, implies
that its derivative with respect to every ak is zero. Performing this chain-rule
differentiation then gives:

0 =
∂

∂ak

(

y − yfit
)T [

σ2
y

]−1 (
y − yfit

)

= −
(

y − yfit
)T [

σ2
y

]−1 ∂yfit

∂ak
− ∂yfitT

∂ak

[

σ2
y

]−1
(y − yfit) (7.81)

The two terms in this last equation are scalars. In fact, they are the exact
same scalar, just formed from expressions that are transposes of one another.
Thus, each must be zero at the best fit and choosing the second of these gives

∂yfitT

∂ak

[

σ2
y

]−1 (
y − yfit

)

= 0 (7.82)
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This scalar equation must be true for each of the M fitting parameters ak
and with the definition of the Jacobian (Eq. 7.31), all M equations can be
rewritten in the vector form of Eq. 7.29. Because Eq. 7.29 was the starting
point for the regression results already presented, and because its solution
does not rely on [σ2

y ] being diagonal, the equations for the best-fit parameters
and their covariance matrix do not change when [σ2

y ] is nondiagonal.

Calibrations and Instrument Constants

Systematic errors are common when using scientific instruments. Reducing
them typically involves a calibration. As an example, consider a grating
spectrometer used to determine visible wavelengths from measured diffrac-
tion angles where spectral features such as emission lines from a discharge
tube are observed. Optics, diffraction theory, and spectrometer construction
details predict the wavelengths (the dependent variables yi) based on the
diffraction angles (the independent variables xi) and a set of apparatus pa-
rameters (the instrument constants bj). For a spectrometer, the grating line
spacing and an incidence angle might be instrument constants.

Consider a second example. Many instruments involve electronic circuits
which are susceptible to offset and gain errors. It would then be appropriate
to assume that instrument readings will suffer such effects and that corrected
yi should be obtained from raw instrument readings xi according to yi =
b1 + b2xi, where b1 is the offset error and the deviation of b2 from unity is
the gain error. Based on a factory calibration, a voltmeter offset and gain
might be specified as: b1 = 0± 1 mV and b2 = 1± 0.001. The best estimates
b1 = 0 and b2 = 1 result in yi = xi, i.e., there are no corrections to the raw
readings. However, the uncertainties in b1 and b2 acknowledge that every yi
may be systematically offset by a few mV and systematically off in scale by
a few parts per thousand.

The experimental model is that the instrument (or calibration) constants
do not change during the acquisition of a measurement set, but their true val-
ues are subject to some uncertainty. Making sure the instrument constants
do not change significantly is an important experimental consideration. For
example, temperature affects all kinds of instrumentation and is often asso-
ciated with gain and offset errors. That’s why measurements should always
be made after the electronics have warmed up and why swings in ambient
temperature should be avoided.
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A calibration function for a data set will be expressed

yi = G(xi; {b}) (7.83)

With a given set of bj, j = 1...L, the calibration function transforms each
raw instrument reading xi into an “instrument-measured” yi of some physical
significance.

In some cases, calibrations involve careful investigation of the instrument
resulting in a statistically independent determination of each bj and its un-
certainty. In other cases, the bj and their covariance matrix are determined
by using the instrument to measure standards, i.e., samples or sources for
which the yi are already known. With the corresponding xi measured for a
set of known yi, the (xi, yi) data points are then fit to the calibration equation
treating it as a fitting function for the bj.

yfiti = G(xi; {b}) (7.84)

A regression analysis then determines the best-fit bj and their covariance
matrix [σ2

b ]. This analysis involves uncertainty in the xi and, as discussed
previously, estimates of σxi will be needed and Eq. 7.78 would be used for
determining the σ2

i for the fit. Furthermore, the reference yi values for this
analysis are often highly accurate and their associated σyi may be small
enough to neglect in Eq. 7.78.

In essence, a calibration is simply a determination of the best estimates
bj and their standard deviations (if independent) or, more generally, their
L×L covariance matrix [σ2

b ]. The calibration constants should be considered
a single sample from some joint probability distribution having means given
by the true values {β} and having a covariance matrix [σ2

b ].
With the bj and [σ2

b ] in hand, the instrument is then calibrated and ready
for use in the main investigation—one where the y-values are not known in
advance. For example, wavelengths measured with a spectrometer are used
in a wide range of studies associated with spectral sources and excitation
conditions. To this end, a new set of xi are measured and used with the
calibration constants in Eq. 7.83 to determine a new set of yi-values. These
yi will now be considered “measured” y-values to be used as the dependent
variables in a some new regression analysis associated with that study. How
should the uncertainty in the instrument constants, as represented by [σ2

b ],
be treated and how will it affect the uncertainty in the fitting parameters of
the new, or main, analysis?
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The main regression analysis begins with the assumption that the bj are
exact. The input yi must first be obtained from yi = G(xi; {b}) where the
xi are measured, i.e., random variables. Independent variations in the xi of
variance σ2

xi propagate to independent variations in the yi of variance

σ2
i =

(

∂yi
∂xi

)2

σ2
xi (7.85)

In matrix notation, the covariance matrix becomes

[σ2
y ] = [Jy

x ][σ
2
x][J

y
x ]

T (7.86)

where the N ×N Jacobian [Jy
x ] has only diagonal elements

[Jy
x ]ii =

∂G(xi; {b})
∂xi

(7.87)

Off-diagonal elements are all zero because of the one-to-one relationship be-
tween the xi and yi in Eq. 7.83. The diagonality of [Jy

x ] implies [σ2
y ] of Eq. 7.86

will likewise be diagonal (and the yi can be treated as statically independent)
if, as is usually the case, the xi are statistically independent.

The main regression analysis is then performed with the [σ2
y ] of Eq. 7.86,

but is otherwise an ordinary regression analysis. It determines the M best-fit
parameters ak to the main fitting function yfiti = Fi({a}) and it determines
their covariance matrix [σ2

a]. All previous regression results apply. The effects
of [σ2

b ] are determined only after this solution is obtained.
In the linear regime, a first-order Taylor expansion gives the small changes

to the yi that can be expected from small changes to the bj. And of course,
small changes to the yi lead to small changes in the ak. Once these first-
order Taylor expansions are specified, propagation of error can be used to
determine the contribution to [σ2

a] arising from [σ2
b ]. This new contribution

will be in addition to the [σ2
a] determined from the main analysis and is

readily predicted as follows.
Changes in the yi due to small changes in the bj are assumed to be well

described by a first-order Taylor expansion about their means. In linear
algebra form it is simply

∆y = [Jy
b ]∆b (7.88)

where

[Jy
b ]ij =

∂G(xi; {b})
∂bj

(7.89)
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Equation 7.72 (∆a =
[

Ja
y

]†
∆y) gives the changes in the main fitting

parameters ak that would occur with changes to the yi. Combining this with
Eq. 7.88 then gives the first-order Taylor expansion for the ak as a function
of the bj.

∆a =
[

Ja
y

]†
[Jy

b ]∆b (7.90)

Propagation of error Eq. 6.16 then gives the covariance matrix for the ak in
terms of that for the bj

[σ2(b)
a ] =

〈

∆a∆aT
〉

=
〈

[

Ja
y

]†
[Jy

b ]∆b∆bT [Jy
b ]

T
[

Ja
y

]†T
〉

=
[

Ja
y

]†
[Jy

b ]
〈

∆b∆bT
〉

[Jy
b ]

T
[

Ja
y

]†T

=
[

Ja
y

]†
[Jy

b ][σ
2
b ][J

y
b ]

T
[

Ja
y

]†T
(7.91)

where the (b) in [σ
2(b)
a ] indicates that Eq. 7.91 is the contribution to [σ2

a]
arising from [σ2

b ] and must be added to that due to [σ2
x]. The contribution

due to [σ2
x] is obtained from Eq. 7.48 (with Eq. 7.86 for [σ2

y ]) giving

[σ2(x)
a ] =

[

Ja
y

]†
[σ2

y ]
[

Ja
y

]†T

=
[

Ja
y

]†
[Jy

x ][σ
2
x][J

y
x ]

T
[

Ja
y

]†T
(7.92)

The total covariance matrix is the sum of Eqs. 7.91 and 7.92.

[σ2
a] = [σ2(b)

a ] + [σ2(x)
a ]

=
[

Ja
y

]† (
[Jy

b ][σ
2
b ][J

y
b ]

T + [Jy
x ][σ

2
x][J

y
x ]

T
) [

Ja
y

]†T
(7.93)

Note that the term in parentheses is the final covariance matrix for the yi.

[σ2
y ] = [Jy

b ][σ
2
b ][J

y
b ]

T + [Jy
x ][σ

2
x]][J

y
x ]

T (7.94)

which is simply the propagation of error formula applied to yi = G(xi; {b})
assuming the main fit xi and the calibration bj are statistically independent.
Because changes in the instrument constants propagate through all yi, the
contribution to [σ2

y ] from [σ2
b ] will lead to correlated yi even if the xi are

uncorrelated.
While Eq. 7.94 is the final covariance matrix for the yi, recall that only the

[σ2
y ] due to [σ2

x] (Eq. 7.86) should be used in the main regression analysis—
including the calculation of the χ2. This is because there is only one set
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of bj determining all yi.
2 Consequently, deviations in the bj from their true

values do not add random scatter to the yi. They propagate to systematic
deviations in the yi and then to systematic deviations in the ak. Moreover,
because the ak and the χ2 depend on the [σ2

y ] used for the main fit, if the
wrong [σ2

y ] is used, the ak and χ2 would be wrong as well.

Transforming the Dependent Variables

This chapter finishes with a simple but common case where the dependent
variables for the main regression analysis are not the measured yi directly, but
are, instead, calculated from the yi. For example, one might fit to dependent
variables zi = 1/yi or zi = ln yi or some arbitrary function:

zi = H(yi) (7.95)

where H(yi) contains no random variables except yi.
If H(yi) is invertible, one could simply adjust the fitting function to pre-

dict yi rather than zi. But if the deviations in the yi are small enough, this
situation can be easily handled using the transformed zi as the dependent
variable and getting [σ2

z ] for the fit using propagation of error. In matrix
form:

[σ2
z ] = [Jz

y ][σ
2
y ][J

z
y ]

T (7.96)

where [Jz
y ] is diagonal with elements

[Jz
y ]ii =

∂H(yi)

∂yi
(7.97)

The parameter covariance matrix (Eq. 7.48) becomes

[σ2
a] = [Ja

z ]
†[σ2

z ][J
a
z ]

†T (7.98)

where [Ja
z ]

† is analogous to Eq. 7.44, but with the zi as the dependent vari-
ables. Substituting Eq. 7.96 into the equation above then gives

[σ2
a] = [Ja

z ]
†[Jz

y ][σ
2
y ][J

z
y ]

T [Ja
z ]

†T (7.99)

2One could imagine an odd scenario where a new calibration is performed and a new
set of bj are determined before each yi is determined. In this case, Eq. 7.94 would be the
correct [σ2

y] to use in the main fit and in the calculation of the χ2.
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If the yi are obtained from a calibration function: yi = G(xi; {b}), [σ2
y ] is

then given by Eq. 7.94 and using this in Eq. 7.96 gives the covariance matrix
for the zi.

[σ2
z ] = [Jz

y ]
(

[Jy
x ][σ

2
x][J

y
x ]

T + [Jy
b ][σ

2
b ][J

y
b ]

T
)

[Jz
y ]

T (7.100)

As discussed in the prior section, only the first term should be used in the
regression analysis and for calculating the χ2.

Using Eq. 7.100 in Eq. 7.98 then gives the parameter covariance matrix

[σ2
a] = [Ja

z ]
†[Jz

y ]
(

[Jy
x ][σ

2
x][J

y
x ]

T + [Jy
b ][σ

2
b ][J

y
b ]

T
)

[Jz
y ]

T [Ja
z ]

†T (7.101)

with the first and second terms providing the random and systematic error,
respectively.
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Chapter 8

Central Limit Theorem

The central limit theorem (CLT) states that the sum or mean of a sample
set from an arbitrary distribution follows a Gaussian distribution more and
more closely as the sample size increases. In this chapter two Monte Carlo
simulations are presented. One shows the CLT for samples from a uniform
distribution. The other shows how the CLT might apply to procedures such
as regression analysis which produce multiple output parameters.

How closely the output parameters will follow a Gaussian distribution
depends not only on the number of contributing variables, but also the shapes
of their distributions and how each variable contributes to the results. Keep
in mind that the distribution for the results may have very nearly Gaussian
probabilities within one or two standard deviations of the mean, but have
significant differences further from the mean. It typically takes more variables
to get agreement with a Gaussian in the tails of the distribution.

Going hand-in-hand with the central limit theorem are procedures such
as propagation of error and regression analysis which provide the covariance
matrix for the output variables given the covariance matrix for the input
variables. While both procedures require the validity of a first-order Taylor
expansion, this condition is either guaranteed when the relationships between
the input and output variables are linear, or it can be assured for nonlinear
relationships by keeping input errors small enough.

For the simulations discussed here, the output variables will be linear
functions of the input variables. Because the first-order Taylor expansion
will be exact, the calculated covariance matrix will be exact for any size
measurement errors having any distribution and whether the distribution for
the output has converged to a Gaussian or not.

89
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Figure 8.1: Counterclockwise from top left: Sample frequency distributions for
10,000 samples of the sum of 1, 2, 3 and 12 uniformly-distributed random numbers.
The solid lines in the first three histograms are based on the true pdfs. The dotted
lines in all four histograms are based on Gaussian pdfs with that histogram’s true
mean and variance.

Single Variable Central Limit Theorem

A simple demonstration of the central limit theorem involves a single output
variable Y determined as the sum of N independent random variables yi.

Y =
N
∑

i=1

yi (8.1)

where each yi comes from the same distribution with a mean µy and variance
σ2
y but is otherwise arbitrary. Propagation of error then gives the mean of

the sum (Eq. 6.8) µY = Nµy and it gives the variance of the sum (Eq. 6.22)
σ2
Y = Nσ2

y .
For a single output variable, there are no covariances to consider and

according to the central limit theorem, the probability distribution in the
limit of large N is a Gaussian distribution having the form of Eq. 3.1 with a
mean and variance as given above.

Simulations of this kind are demonstrated in Fig. 8.1 where four sample
frequency distributions are shown. Counterclockwise from top left, 10,000
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samples for each histogram were created as the sum of N = 1, 2, 3, or
12 random numbers uniformly distributed on the interval from [0, 1]. This
uniform distribution has a mean of 1/2 and a variance of 1/12 and so prop-
agation of error implies the resulting Y -distributions have means of 0.5, 1.0,
1.5, and 6, and variances of 1/12, 2/12, 3/12, and 1, respectively.

The top-left graph of Fig. 8.1 includes a solid line giving the expected
frequency distribution for samples from a uniform parent distribution (N =
1). The bottom-left (N = 2) and bottom-right (N = 3) graphs include solid
lines giving the expected frequency distributions for samples from parent
distributions obtained by one or two convolutions according to Eq. 6.7. All
four cases include a dashed curve giving the expected frequency distribution
for samples from a Gaussian distribution with a mean and variance equal to
that of the true distribution.

Note how the approach to a Gaussian shape is becoming evident after
summing as few as three uniform random variables. But keep in mind that
the true distribution for this three-variable sum extends only from 0 to 3
and has zero probability density outside this ±3-sigma range, whereas a
true Gaussian random variable would have around 0.3% probability of being
there. Note that the N = 12 frequency distribution (top-right in Fig. 8.1)
agrees very well the Gaussian, dashed-line prediction and demonstrates that
the 12-sample sum has become nearly Gaussian-distributed as predicted by
the central limit theorem.

Multivariable Central Limit Theorem

The simulations for multiple output variables will come from a common re-
gression analysis task—fitting a slope m and intercept b to N data points
(xi, yi), i = 1...N , all of which are predicted to lie along a straight line:
y = mx+ b.

The simulated data are generated according to yi = 3xi + 15 + error.
That is, for some fixed set of xi, the yi are created as the sum of a true
mean µi = 3xi + 15 and a zero-mean random variable— the measurement
error—created using a random number generator.

To demonstrate the central limit theorem, the random error for the yi
are all drawn from a uniform distribution in the interval from -6 to 6, which
has a mean of zero and a variance σ2

y = 12. The equally-weighted regression
formula, Eq. 7.54, is used to get the least-squares estimates for m and b for
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Figure 8.2: 3-point data sets. Top right: one sample data set with its fit-
ted line. Top left and bottom right: frequency distributions for the slopes and
intercepts. Bottom left: scatter plot for the slopes and intercepts.

each data set. With σ2
y = 12, Eq. 7.53 will give the true parameter covariance

matrix in all cases.
Figures 8.2 and 8.3 summarize the results from two simulations. For

each simulation, 10,000 data sets were created and fit to a straight line—
producing 10,000 pairs of (m, b) values, one for each set. Because of the
added random error, the fitted slopes and intercepts deviate from the true
values of 3 and 15, respectively. Because each data set has different random
errors, each set produces a different pair; m and b are a random variable pair.

Each figure shows one sample data set (top right) as well as a scatter plot
(1500 points, bottom left) and frequency distributions for both m (top left)
and b (bottom right) for all 10,000 data sets. For Fig. 8.2 every data set has
three data points (for x-values of 1, 10, and 20). Data sets for Fig. 8.3 have
20 data points (for integer x-values from 1 to 20).

Qualitatively, the negative correlation indicated in both scatter plots can
be understood by considering the top right graphs in the figures showing a
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Figure 8.3: 20-point data sets. Top right: one sample data set with its
fitted line. Top left and bottom right: frequency distributions for the slopes and
intercepts. Bottom left: scatter plot for the slopes and intercepts. Solid lines
provide Gaussian predictions.

typical data set and fitted line. Simultaneously high values for both the slope
and intercept would produce a fitted line lying entirely above the true line
with the deviation between them growing as x increases. Random errors are
unlikely to reproduce this behavior by chance. A similar argument would
apply when the slope and intercept are simultaneously low. However, with a
high slope and a low intercept, or vice versa, the fitted line would cross the
true line and the deviations between them would never get as large. Data sets
showing this behavior are not as unlikely and lead to negative correlations
as evidenced in the scatter plots.

In the histograms and scatter plots for Figs. 8.2 and 8.3, the solid lines are
associated with predictions based on the assumption that m and b vary ac-
cording to the correlated Gaussian distribution of Eq. 4.24 with the predicted
covariance matrix of Eq. 7.53.

The solid vertical and horizontal guidelines are positioned ±σm and ±σb

about the predicted means of 3 and 15, respectively, and would be expected
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to include 68% of the points if m and b followed Gaussian distributions.
For the 20-point data sets, this fraction was about 0.5% below the Gaus-
sian prediction for both the slopes and intercepts. The 3-point data sets
had a significantly lower fraction—around 63% for the intercepts and 65%
for the slopes. For the 20-point data sets, the fraction of m- and b-values
within 2-sigma of their means agreed well with the 95% prediction based on
a Gaussian-distributed variable. For the 3-point data sets, the two-sigma
fractions were a percent or two higher than the Gaussian prediction.

Demonstrating the sample and predicted m, b correlations, the ellipse in
each scatter plot is an iso-probability contour assumingm and b are Gaussian-
distributed with the predicted covariance matrix. All values for m and b on
the ellipse would make the argument of the exponential in Eq. 4.24 equal to
−1/2. That is, those m, b values would occur with a probability density that
is down by a factor of exp(−1/2) from the peak density at m = 3 and b = 15.
A two dimensional integration of a Gaussian joint pdf gives the probability
enclosed by the ellipse and evaluates to 1 − exp(−1/2) = 0.39. Thus, if the
results followed Gaussian predictions, 39% should fall inside the ellipse. The
20-point data sets had about 38% inside the ellipse, while the 3-point data
sets had a significantly lower fraction—around 31%.

In conclusion, both the 3-point data sets and the 20-point data sets show
non-Gaussian distributions form and b. Compared to Gaussian expectations,
the histograms for both the slope and intercept show fewer values in both
the peak and tails of the distributions and more in the shoulders— likely a
result of the same property of the uniform distribution used for the input
noise. The difference is quite pronounced for the 3-point data sets. It is
much more subtle for the 20-point data sets— indicating that with more
data points, m and b follow a more Gaussian-like distribution as predicted
by the central limit theorem.

Basically, the central limit theorem guarantees that if enough data go
into determining a set of results and their covariance matrix, then the distri-
bution for those results will be approximately Gaussian with that covariance
matrix.



Chapter 9

Evaluating a Fit

Graphical Evaluation

Evaluating the agreement between a fitting function and a data set typically
begins with a graph. The steps will be described for the common case of a fit
to a single dependent variable yi as a given function of a single independent
variable xi. The main graph should show the fitting function as a smooth
curve without markers for a set of x-values that give a good representation
of the best-fit curve throughout the fitting region. Plotting it only for the
xi of the data points may be insufficient if they are too widely spaced. It is
also sometimes desirable to extrapolate the fit above or below the range of
the data set xi.

The input data points (xi, yi) should not be connected by lines. They
should be marked with an appropriately sized symbol and error bars—
vertical line segments extending one standard deviation above and below
each point. If there are x-uncertainties, horizontal error bars should also be
placed on each point. Alternatively, the x-uncertainties can be folded into
a σi calculated according to Eq. 7.78, which would then be used for vertical
error bars only.

Figure 9.1 shows a case where the error bars are too small to show clearly
on the main graph. The fix is shown below the main graph—a plot of the
residuals yi − yfiti vs. xi with error bars. If the σi vary too widely to all show
clearly on a residual plot, logarithmic or other nonlinear y-axis scaling may
fix the problem. Or, normalized residuals (yi − yfiti )/σi (without error bars)
could be used.

95
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Figure 9.1: Top: main graph for a fit to a calibration function for a visible
spectrometer. Bottom: corresponding residual plot.

The purpose of these graphs is to make it easy to see each data point’s
residual relative to its standard deviation and to assess the entire set of
residuals for their expected randomness.

Specifically look for the following fitting problems and possible causes.

• Residuals seem nonrandom and show some kind of trend. For example,
data points are mostly above or mostly below the fit, or mostly above at
one end and mostly below at the other. Residuals should be random. In
particular, positive and negative residuals are equally likely and should
be present in roughly equal numbers. Trends in residuals may indicate
a systematic error, a problem with the fitting program, or an incorrect
fitting model.

• Too many error bars miss the fitted curve. Approximately two-thirds
of the error bars should cross the fit. If the residuals are random and
simply appear larger than predicted, the σi may be underestimated.

• There are outliers. Outliers are points missing the fit by three or more
σi. These should be very rare and may indicate data entry mistakes,
incorrect assignment of xi, or other problems.
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• The fit goes through most data points near the middle of the error bars.
This behavior is not all that unlikely if there are only a few data points,
but with larger data sets it indicates the σi have been overestimated—
the measurements are more precise than expected. On average, the yi
should miss the fit by one error bar and about one-third of the error
bars should miss the fit entirely.

The χ2 Distribution

The χ2 appearing in Eq. 7.15 will be called the “best-fit” chi-square to dis-
tinguish it from another version—the “true” chi-square that uses the true
theory parameters αk and thus the true means µi.

χ2 =
N
∑

i=1

(yi − µi)
2

σ2
i

(9.1)

The chi-squares of Eq. 7.15 and 9.1 are different random variables with dif-
ferent distributions.

Equations 9.1 and 7.15 can also be used, respectively, to define true and
best-fit versions of the chi-square random variable for Poisson- and binomial-
distributed yi. For Poisson yi, simply use σ2

i = µi for the true χ2 and
σ2
i = yfiti for the best-fit χ2. For binomial yi, use σ2

i = µi(1 − µi/Ni) and
σ2
i = yfiti (1 − yfiti /Ni), respectively, for the true and best-fit χ2. Except in

simulations the true parameter values are not normally known and thus the
true means and the true chi-square cannot be determined. Hence, the χ2,
without a qualifier, should be understood to be the best-fit value.

The χ2 is commonly used as a “goodness of fit” statistic. If the σi and
the fitting function are correct, likely values for the χ2 variable can be quite
predictable. An unlikely, i.e., “bad,” χ2 value is an indication that theory and
measurements are incompatible. To determine whether or not a particular
χ2 value is reasonable, the χ2 probability distribution must be known.

The χ2 probability distribution depends on the particular probability dis-
tributions governing the yi as well as the number of data points N and the
number of fitting parameters M . The quantity N − M is called the chi-
square’s degrees of freedom and is a major factor in determining the distri-
bution. Each data point adds one to the degrees of freedom and each fitting
parameter subtracts one.
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Evaluating the expectation value or mean of the χ2 distribution begins
with the definition, Eq. 2.18, for the variance of each yi—rewritten in the
form

〈

(yi − µi)
2

σ2
i

〉

= 1 (9.2)

Summing over all N data points gives

〈

N
∑

i=1

(yi − µi)
2

σ2
i

〉

= N (9.3)

The sum in this expression is the true χ2 of Eq. 9.1. Thus, the mean of the
distribution for the true χ2 is equal to the number of data points N .

How does the mean of the χ2 distribution change when χ2 is evaluated
with Eq. 7.15 using the yfiti in place of the µi? It turns out that the best-fit
χ2 satisfies

〈

N
∑

i=1

(yi − yfiti )2

σ2
i

〉

= N −M (9.4)

The mean of the best-fit χ2 is equal to the number of degrees of freedom,
i.e., smaller than that of the true χ2 by the number of fitting parameters M .

The proof of Eq. 9.4 is given in the Regression Analysis Addendum. In
fact, in Exercise 5 you demonstrated Eq. 9.4 for the special case of a fit to
the constant function: (yfiti = ȳ, M = 1) with equally weighted y-values
(σi = σy). The proof is based on Eq. 2.18 and thus valid for any distribution
for the yi, but it does require that the y

fit
i follow a first-order Taylor expansion

in the ak over the range of likely fitting parameters.
For fixed σi it is easy to see why some reduction in the χ2 should always be

expected when yfiti replaces µi. After all, the fitted ak and their corresponding
yfiti are specifically chosen to produce the lowest possible χ2 for one particular
data set— lower even than would be obtained (for that data set) with the
true αk and their corresponding µi. Thus, for any data set, the χ2 using yfiti
can only be equal to or less than the χ2 using the µi. The average decrease is
M , but the actual decrease can be smaller or larger for any particular data
set.

According to Eq. 9.4, the mean of the chi-square distribution is N −M .
How far above (or below) the mean does the χ2 value have to be before
one must conclude that it is too big (or too small) to be reasonable? That
question calls into play the width or variance of the χ2 distribution.

http://www.phys.ufl.edu/courses/phy4803L/statistics/matproof.pdf
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The variances of the best-fit and true χ2 distributions depend on the
probability distribution for the yi. For the true χ2, the variance is readily
predicted starting from Eq. 2.19.

σ2
χ2 =

〈

(

χ2
)2
〉

−
(〈

χ2
〉)2

=

〈(

N
∑

i=1

(yi − µi)
2

σ2
i

)(

N
∑

j=1

(yj − µj)
2

σ2
j

)〉

−N2

=
N
∑

i=1

N
∑

j=1

〈(

(yi − µi)
2

σ2
i

)(

(yj − µj)
2

σ2
j

)〉

−N2 (9.5)

where Eq. 9.3 has been used for the expectation value of χ2.
In the double sum there are N2−N terms where i 6= j and N terms where

i = j. Assuming all yi are statistically independent, Eq. 4.6 applies and thus
each of the terms with i 6= j has an expectation value of one—equal to the
product of the expectation value of its two factors (each of which is unity by
Eq. 9.2). The N terms with i = j become a single sum of terms of the form:
〈(yi − µi)

4/σ4
i 〉. Making these substitutions in Eq. 9.5 gives

σ2
χ2 =

N
∑

i=1

〈

(yi − µi)
4

σ4
i

〉

−N (9.6)

The quantity

βi =

〈

(yi − µi)
4

σ4
i

〉

(9.7)

is called the normalized kurtosis and is a measure of the peakedness of the
distribution for yi. The more probability density further from the mean (in
units of the standard deviation), the higher the kurtosis. The expectation
values determining βi were evaluated for several probability distributions
using Eq. 2.9 or 2.10. The results follow.

For yi governed by a Gaussian distribution, the result is βi = 3 and using
this in Eq. 9.6 gives

σ2
χ2 = 2N (9.8)

For yi governed by a Poisson distribution, βi = 3 + 1/µi giving

σ2
χ2 = 2N +

N
∑

i=1

1

µi

(9.9)
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For yi governed by a binomial distribution, βi = 3 +Ni/µi(Ni − µi)− 6/Ni

giving

σ2
χ2 = 2N +

N
∑

i=1

[ Ni

µi(Ni − µi)
− 6

Ni

]

(9.10)

For yi governed by a uniform distribution, βi = 1.8 giving

σ2
χ2 = 0.8N (9.11)

Equations 9.8-9.11 give four different values for the variance of the true
χ2 distribution for yi that follow four different distributions—Gaussian, bi-
nomial, Poisson, and uniform. Equation 9.3 gives the common value for
the mean in all four cases. While the mean and variance do not provide a
complete description of these chi-square distributions, they are a good start.
Tabulations and other information about the χ2 distribution found in text-
books and statistics software typically apply only to Gaussian-distributed
yi.

As to the distribution for the best-fit χ2, only for Gaussian-distributed
yi is it well known. It is the textbook chi-square distribution with N − M
degrees of freedom; it has a mean of N − M and a variance of 2(N − M).
Simple Monte Carlo simulations1 with Gaussian-distributed yi confirmed the
predicted means and variances for both the true and best-fit χ2-distributions.

The same simulations, but with Poisson, binomial, and uniformly-distri-
buted yi confirmed the predicted means for the true and best-fit χ2 as well
as Eqs. 9.9-9.11 for the true χ2 variances. As to the best-fit χ2 variance,
the simulations demonstrated that it moved toward better agreement with
the textbook χ2 distribution. For Poisson yi (with µy = 10), for example,
where the true χ2 variance is larger than it is for Gaussian yi, the best-fit χ

2

variance decreased from the true χ2 variance by more than it did for Gaussian
yi. In contrast, for uniformly-distributed yi, where the true χ2 variance is
considerably less than it is for Gaussian yi, the best-fit χ2 variance actually
exceeded the true χ2 variance.

Textbook chi-square distributions will be assumed appropriate in the fol-
lowing discussions, but if evaluating χ2 probabilities is an important aspect

1Sample sets of yi of size N = 20 were randomly generated from a common distribution
with a given mean µy and variance σ2

y. The sample mean ȳ, the true χ2 and the best-fit
χ2 were calculated for each of 20,000 such sets to get precise estimates of the means and
variances of these χ2 variables.



101

of the analysis, keep this assumption in mind. For example, the noteworthy
chi-square test, discussed next, would depend on the distribution for the yi.

The χ2 Test

The chi-square test uses the χ2 distribution to decide whether a χ2 value from
a fit is too large or too small to be reasonably probable. While reporting the
best-fit χ2 should be standard practice when describing experimental results,
the test itself is no substitute for a graphical evaluation of a fit.

The following discussion applies to Gaussian-distributed yi and thus the
textbook χ2 distributions.

Consider a fit to a data set with N − M = 50 degrees of freedom. The
mean of the χ2 distribution would be 50 and its standard deviation would
be σχ2 =

√

2(N −M) = 10. While the χ2 distribution is not Gaussian, χ2

values outside the two-sigma range from 30 to 70 should be cause for concern.
So suppose the actual χ2 value from a fit is significantly above N − M

(indicating that the data are missing the fit by more than expected) and the
analysis must decide if the χ2 is too big. To decide the issue, the chi-square
distribution is used to determine the probability of getting a value as large
or larger than the actual χ2 value from the fit. If this probability is too
small to be accepted as a chance occurrence, one must conclude that the χ2

is unreasonably large.
The χ2 may sometimes come out too small—well under the expected

value of N −M thereby suggesting that the data and fit may agree too well.
To check if the χ2 is too low, the chi-square distribution is used to find the
probability of getting a value that small or smaller. If this probability is too
low to be accepted as a chance occurrence, one must conclude that the χ2

is unreasonably small. One caveat seems reasonable. There should be at
least three degrees of freedom to test for an undersized χ2. With only one or
two degrees of freedom, the χ2 probability density is nonzero at χ2 = 0 and
decreases monotonically as χ2 increases. Thus, for these two cases, smaller
χ2 values are always more likely than larger values.

If the χ2 is unacceptably large or small, the deviations are not in accord
with predictions and the experimental model and theoretical model are in-
compatible. The same problems mentioned earlier for a graphical assessment
may be applicable to an unacceptable χ2.
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Uncertainty in the Uncertainty

It is not uncommon to be unsure of the true σi associated with a set of
measurements. If the σi are unknown, the χ2 cannot be calculated and the
chi-square test is unusable. More importantly, the σi determine the weighting

matrix
[

σ2
y

]−1
(Eq. 7.32) and with Eqs. 7.49 and 7.40, they also determine

the parameter covariance matrix [σ2
a]. If the σi are unknown or unreliable,

the parameter uncertainties would be unknown or unreliable as well.
What can be done in this case? One accepted practice is to adjust the

measurement uncertainties so that the χ2 is equal to its expectation value of
N −M . Forcing χ2 = N −M is a valid method for adjusting uncertain σi

to achieve a predictable level of confidence in the parameter uncertainties.
The technique is straightforward for an equally-weighted data set. Find

that one value for σy that gives χ
2 = N−M . Equation 7.55 shows this would

happen if the following sample variance of the fit were used for σ2
y :

s2y =
1

N −M

N
∑

i=1

(

yi − yfiti
)2

(9.12)

Eq. 7.53 demonstrates that the parameter covariance matrix [σ2
a]— every

element—would then be proportional to this sample variance.
Equation 9.12 is a generalized version of Eq. 2.23 for determining a sample

variance. Equation 9.12 is the general case where the yfiti are based on the M
best-fit parameters of some fitting function. Equation 2.23 can be considered
a special case corresponding to a fit to the constant function, where all yfiti
are the same and given by the single (M = 1) best-fit parameter ȳ.

Exercise 5 and Eq. 9.4 demonstrate that Eqs. 2.23 and 9.12 give a sample
variance s2y that is an unbiased estimate of the true variance σ2

y . For an
equally-weighted fit then, forcing χ2 = N − M is the simple act of using
that unbiased estimate for σ2

y in the formulas for the parameter covariance
matrix.

If the σi are known to vary from point to point, forcing χ2 = N − M
would proceed a bit differently. The relative sizes of the σi must be known in
advance so that forcing χ2 = N −M determines a single overall scale factor
for all of them. Relatively-sized σi might occur when measuring wide-ranging
quantities with instruments having multiple scales or ranges. In such cases
the measurement uncertainty might scale with the instrument range used for
the measurement.
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Initial estimates for the input σi would be set in accordance with the
known ratios. The fit is performed and the χ2 is evaluated. Then a single
scale factor multiplying all σi would be determined to achieve a chi-square
value of N − M . Scaling all the σi by the factor κ =

√

χ2/(N −M) does
this. It scales the present χ2 by a factor of 1/κ2 (to N − M). The input
covariance matrix [σ2

y ] would scale by κ2 and Eq. 7.49 with Eq. 7.40 implies
that the parameter covariance matrix [σ2

a] would scale by κ2 as well. On

the other hand, Eq. 7.43 with the equations for
[

Ja
y

]†
and [X] show that the

fit parameters are unaffected by the scale factor. There is no effect on the
parameters because the scaling does not change the relative weighting of the
data points.

When the σi are known, the normal randomness in the data set deviations
leads to a randomness in the χ2 value for the fit. When the σi are adjusted
to make χ2 = N − M , that randomness is transferred to the measurement
uncertainties and to the parameter uncertainties. The covariance matrices
[σ2

y ] and [σ2
a] that result from forcing χ2 = N −M become random variables.

They become sample covariance matrices and should be written [s2y] and [s2a].
For example, parameter standard deviations obtained from the diagonal

elements of [s2a] become sample standard deviations. As discussed shortly,
confidence intervals constructed with sample standard deviations differ some-
what from those constructed with true standard deviations.

Forcing χ2 = N − M uses the random fit residuals to determine the si
used as estimates for the true σi. Consequently, the technique is better suited
for large data sets where the large number of residuals ensures a reasonable
precision for those estimates.

To appreciate the sample size issue, consider an experiment with N =
M +200 data points all with equal uncertainty. The expectation value of χ2

is then 200 with a standard deviation of 20. Suppose that an initial estimate
of σy makes the the best-fit χ2 come out 100. The chi-square distribution
with 200 degrees of freedom shows that a value outside the range 200± 60 is
less than 1% likely, so a value of 100 means something is amiss. Scaling the
σy down by a factor of

√
2 will raise the χ2 to 200—the predicted average

χ2 for this case. Your confidence in the original σy is not all that high and
scaling it that amount is deemed reasonable. The residuals are examined
and seem random. This is a good case for forcing χ2 = N −M . The degrees
of freedom are so high that using sy for σy may give a better estimate of
the true parameter covariance matrix than one obtained using an uncertain
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estimate of σy based on other considerations.
Next consider an equally-weighted data set where N −M = 5 so that the

expectation value of χ2 is five. Suppose that using an initial estimate of σy,
the best-fit chi-square comes out ten. The residuals are random and show
no systematic deviations from the fit. This time, σy would have to be scaled
up by a factor of

√
2 to bring the χ2 down to five. Again, your confidence in

σy is not high and you are not uncomfortable scaling them this much. But
should you? With five degrees of freedom, a χ2 value of 10 or more is not
all that rare and is expected to occur with about an 8% probability. With
fewer degrees of freedom, it is not as clear whether to abandon the original
σy and force χ2 = N −M instead.

When should the σi be scaled to give χ2 = N − M? The technique is
appropriate whenever the σi are unknown or uncertain. Of course, the chi-
square test is then unusable as a compatibility test between measurements
and theory. After all, the measurement uncertainties have been adjusted
specifically to achieve the “ideal” value of χ2 = N−M . A rough compatibility
test would then rely on rough experimental estimates of the true σi. Scaling
the σi by factor of two to achieve χ2 = N −M might be deemed acceptable,
but scaling them by a factor of ten might not. In general, one should be
wary of accepting a scale factor much bigger than 3 or much smaller than
1/3. Even a coarse assessment of experimental variables should be able to
distinguish measurement uncertainties at that level. Moreover, one must still
examine residuals for systematic deviations. Masking mistakes, systematic
errors or incorrect models by forcing χ2 = N−M is obviously a poor practice.

The Reduced χ2 Distribution

Dividing a chi-square random variable by its degrees of freedom N−M gives
another random variable called the reduced chi-square.

χ2
ν =

χ2

N −M
(9.13)

Dividing any random variable by a constant results in a new random
variable with a mean divided down from that of the original by that constant
and with a variance divided down from that of the original by the square of
that constant. Thus, the reduced chi-square distribution will have a mean of
one for all degrees of freedom and a variance of 2/(N −M).
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Figure 9.2: The reduced chi-square pdfs p(χ2
ν) for degrees of freedom (dof)

1, 2, 4, 10, 30, 100. The tall distribution peaking at χ2
ν = 1 is for dof = 100. The

curves get broader and lower as the dof decrease. For dof = 1, the distribution
(red) is singular at zero.

Reduced chi-square distributions for various degrees of freedom are shown
in Fig. 9.2. Table 10.3 can be used to look up reduced chi-square probabilities
for up to 200 degrees of freedom. The table can also be used for determining
χ2 probabilities using the scaling described above. For example, with 100
degrees of freedom, the probability a χ2 will exceed 120 is the same as the
probability that a χ2

ν (with 100 degrees of freedom) will exceed 1.2, which is
about 8 percent.

For large N −M , the chi-square and the reduced chi-square distributions
are approximately Gaussian—the former with a mean ofN−M and standard
deviation of

√

2(N −M), and the latter with a mean of one and a standard

deviation of
√

2/(N −M). This approximation is used in the next exercise.
Dividing both sides of Eq. 9.12 by σ2

y and eliminating the sum using
Eq. 7.55 gives

s2y
σ2
y

=
χ2

N −M
(9.14)

and shows that the ratio of the sample variance to the true variance is a
reduced chi-square random variable with N −M degrees of freedom.

The fact that the χ2
ν distributions narrow as the sample size N increases,

makes sense with respect to the law of large numbers. The distribution
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becomes more sharply peaked around its expectation value of one (where
s2y = σ2

y) and so indicates that the sample variance s2y becomes a more precise
estimate of the true variance σ2

y as the sample size increases.

Exercise 6 It is often stated that uncertainties should be expressed with only
one significant figure. Some say two figures should be kept if the first digit is
1. Roughly speaking, this suggests uncertainties are only good to about 10%.
Suppose you take a sample set of yi and evaluate the sample mean ȳ. For
the uncertainty in ȳ, you use the sample standard deviation of the mean sȳ.
Show that it takes around 200 samples if one is to be about 95% confident
that sȳ is within 10% of σȳ. Hint: sy will also have to be within 10% of
σy. Thus, you want to find the number of degrees of freedom such that the
probability P (0.9σy < sy < 1.1σy) ≈ 0.95. Convert this to a probability on χ2

ν

and use near-Gaussian limiting behavior appropriate for large sample sizes.
Then show you can use Table 10.3 and check your results.

Confidence Intervals

Consider a set of M fitting parameters ak and their covariance matrix [σ2
a]

obtained after proper data collection and analysis procedures. Recall that the
set of ak should be regarded as one sample governed by some joint probability
distribution having the known covariance matrix and some unknown true
means αk, which are the ultimate targets of the experiment. What can be
said about them?

The ak and [σ2
a] can simply be reported, leaving the reader to draw conclu-

sions about how big a deviation between the ak and αk would be considered
reasonable. More commonly, the results are reported using confidence in-
tervals. Based on the best-fit ak and the [σ2

a], a confidence interval consists
of a range (or interval) of possible parameter values and a probability (or
confidence level) that the true mean will lie in that interval.

To create confidence intervals requires that the shape of the joint distribu-
tion be known. Its covariance matrix alone is insufficient. Often, confidence
intervals are created assuming the variables are governed by a Gaussian joint
distribution, but they can also take into account other information, such as
a known non-Gaussian distribution for the ak or uncertainty in the [σ2

a].
If a random variable y follows a Gaussian distribution, a y-value in the

range µy ± σy occurs with a 68% probability and a y-value in the range
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µy ± 2σy occurs with a 95% probability. This logic is invertible and one can
construct confidence intervals of the form

y ± zσy

for any value of z and the probability such an interval will include the true
mean µy will be 68% for z = 1, 95% for z = 2, etc. Such confidence intervals
and associated probabilities are seldom reported because they are well known
and completely specified once y and σy are given.

Note that the discussion above is unmodified if y is one variable of a
correlated set having the given σ2

y but otherwise arbitrary covariance matrix.
For a Gaussian joint distribution, the unconditional probability distribution
for y—obtained by integrating over all possible values for the other variables
in the set—can be shown to be the single-variable Gaussian distribution
with a variance of σ2

y and a mean µy. It does not depend on any of the other
random variable values, variances, or covariances.

Occasionally, one might want to describe confidence intervals associated
with multiple variables. For example, what is the confidence level that both of
two means are in some stated range. If the variables are statistically indepen-
dent, the probabilities for each variable are independent and the probability
for both to be in range is simply the product of the probabilities for each
to be in range. When the variables are correlated, the calculations are more
involved and only one will be considered.

A constant-probability contour for two correlated Gaussian variables, say
y1 and y2, governed by the joint distribution of Eq. 4.24, is an ellipse where
the argument of the exponential in the distribution is some given constant.
The ellipse can be described as the solution to

χ2 =
(

yT − µT
) [

σ2
y

]−1
(y − µ) (9.15)

where χ2 is a constant. Eq. 4.24 shows that e−χ2/2 would give the probability
density along the ellipse as a fraction of its peak value at y = µ where the
ellipse is centered. For example, on the χ2 = 2 ellipse the probability density
is down by a factor of 1/e.

The probability for (y1, y2) values to be inside this ellipse is the integral
of the joint distribution over the area of the ellipse and is readily shown to be
1 − exp(−χ2/2). For χ2 = 1 (akin to a one-sigma one-dimensional interval)
the probability is about 39% and for χ2 = 4 (akin to a two-sigma interval)
the probability is about 86%.
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Reversing the logic, this same ellipse can be centered on the measured
(y1, y2) rather than on the means (µ1, µ2). If the (y1, y2) value were in-
side the ellipse centered at (µ1, µ2), then (µ1, µ2) would be inside that same
ellipse centered on (y1, y2). Since the former occurs with a probability of
1− exp(−χ2/2), this is also the probability (confidence level) for the latter.

Two-dimensional confidence ellipses do not change if the two variables
involved are part of a larger set of correlated variables. One can show that in-
tegrating the joint Gaussian distribution over all possible values for the other
variables leaves the two remaining variables described by a two-dimensional
joint Gaussian distribution with the same means, variances, and covariance
as in the complete distribution.

Student-T Probabilities

When the χ2 is forced to N − M , the parameter covariance matrix is a
random variable—a sample covariance matrix—and confidence levels de-
scribed above change somewhat. Only single-variable confidence intervals
and Gaussian-distributed variables will be considered for this case.

When using a fitting parameter ak and its sample standard deviation sak,
one can again express a confidence interval in the form

ak ± zsak

However, now that the interval is constructed with a sample sak rather than
a true σak, intervals for z = 1 (or z = 2) are not necessarily 68% (or 95%)
likely to include the true value. William Sealy Gosset, publishing around 1900
under the pseudonym “Student” was the first to determine these “Student-T”
probabilities.

A difference arises because sak might, by chance, come out larger or
smaller than σak. Recall its size will be related to the random scatter of
the data about the best fit. When the probabilities for all possible values of
sak are properly taken into account, the confidence level for any z is always
smaller than would be predicted based on a known σak of the same size as
sak.

In effect, the uncertainty in how well sak estimates σak decreases the
confidence level for any given z when compared to an interval constructed
with a true σak of the same size. Because the uncertainty in sak depends on
the degrees of freedom, the Student-T confidence intervals also depend on
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the degrees of freedom. The larger the degrees of freedom, the better the
estimate sak becomes and the closer the Student-T probabilities will be to
the corresponding Gaussian probabilities.

Table 10.4 gives some Student-T probabilities. As an example of its use,
consider five sample yi-values obtained from the same Gaussian distribution,
which are then used to calculate ȳ and sȳ. There are four degrees of freedom
for a ȳ calculated from five samples. Looking in the row for four degrees
of freedom, the 95% probability interval for the true mean is seen to be
ȳ ± 2.78sȳ. If one were ignorant of the Student-T probabilities one might
have assumed that a 95% confidence interval would be, as for a Gaussian,
ȳ ± 2 sȳ.

Exercise 7 Three sample values from a Gaussian pdf are 1.20, 1.24, and
1.19. (a) Find the sample mean, sample standard deviation, and sample
standard deviation of the mean and give the 68% and 95% confidence in-
tervals for the true mean based on this data alone. (b) Now assume those
three sample values are known to come from a probability distribution with
a standard deviation σy = 0.02. With this assumption, what are the 68%
and 95% confidence intervals? Determine the reduced chi-square and give
the probability it would be this big or bigger.

The ∆χ2 = 1 Rule

An optimization routine, such as Excel’s Solver program, is quite suitable
for performing linear or nonlinear regression. A tutorial on using Solver for
regression analysis is given in Chapter 10. However, Solver does not provide
the fitting parameter variances or covariances. The entire covariance matrix
[σ2

a] can be determined analytically from Eq. 7.50, or elements of [σ2
a] can be

determined numerically based on the “∆χ2 = 1 rule” as described next. As
an added benefit the numerical procedure can also provide a check on the
range of validity of the first-order Taylor expansions.

The best-fit χ2 is the reference value for calculating ∆χ2. That is, ∆χ2 is
defined as the difference between a chi-square calculated using some unopti-
mized trial solution and the chi-square at the best fit. The best-fit chi-square
is defined by Eq. 7.15 (or Eq. 7.80, which is also valid for nondiagonal [σ2

y ]).
The trial parameters, denoted atrialk , will be in the neighborhood of the best-
fit ak and, when used with the fitting function, will give an unoptimized
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fitting function
ytriali = Fi({atrialk }) (9.16)

and an unoptimized χ2 determined from Eq. 7.15 or Eq. 7.80 using the ytriali

for yfiti in those formulas. Using the linear algebra form of Eq. 7.80, ∆χ2 is
thus defined

∆χ2 =
(

y − ytrial
)T [

σ2
y

]−1 (
y − ytrial

)

(9.17)

−
(

y − yfit
)T [

σ2
y

]−1 (
y − yfit

)

Note that
[

σ2
y

]−1
must be the same, best-fit value in both terms above. For

Poisson yi, for example, use σ2
i = yfiti even for the unoptimized χ2—do not

use σ2
i = ytriali .

The first-order Taylor expansion for each ytriali as a function of atrial about
the best fit becomes

ytriali = yfiti +
M
∑

k=1

∂Fi

∂ak
(atrialk − ak) (9.18)

Or, in linear algebra form

ytrial = yfit + [Jy
a ] ∆a (9.19)

where the Jacobian is evaluated at the best fit and ∆a = atrial −a gives the
deviations of the trial fitting function parameters from their best-fit values.

Defining
∆y = y − yfit (9.20)

and substituting Eq. 9.19 into Eq. 9.17 then gives

∆χ2 =
(

∆yT −∆aT [Jy
a ]

T
)

[

σ2
y

]−1
(

∆y − [Jy
a ] ∆a

)

−∆yT
[

σ2
y

]−1
∆y

= ∆aT [Jy
a ]

T [σ2
y

]−1
[Jy

a ] ∆a

−∆aT [Jy
a ]

T [σ2
y

]−1
∆y −∆yT

[

σ2
y

]−1
[Jy

a ] ∆a

= ∆aT [X]∆a (9.21)

= ∆aT
[

σ2
a

]−1
∆a (9.22)
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where the best-fit condition—Eq. 7.29, [Jy
a ]

T [σ2
y

]−1
∆y = 0, and its trans-

pose—were used to eliminate the last two terms in the second equation.

Eq. 7.40 ([X] = [Jy
a ]

T [σ2
y

]−1
[Jy

a ]) was used to get to the third equation and
Eq. 7.49 ([X]−1 = [σ2

a]) was used to get the final result.
Equation 9.21 describes a multidimensional parabola with a minimum

(∆χ2 = 0) at the best fit (∆a = 0). It gives the second-order Taylor expan-
sion for ∆χ2 given the validity of Eq. 9.19—the first-order Taylor expansion
for the fitting function. Because it’s an expansion about the χ2 minimum,
the first-order terms— linear in the ∆ak —are all zero and Eq. 9.21 gives the
second-order terms—quadratic in the ∆ak. Equation 9.21 is exact for linear
fitting functions, but for nonlinear fitting functions its validity is limited to
∆ak values that are small enough for higher-order terms to be negligible. Be-
cause [X] provides the quadratic coefficients, it is referred to as the curvature
matrix.

The ∆χ2 = 1 rule effectively solves Eq. 9.22 for elements of [σ2
a] based

on ∆χ2 values obtained using Eq. 9.17. The ∆χ2 = 1 rule is derived in the
Regression Algebra addendum and can be stated as follows.

If a fitting parameter is offset from its best-fit value by its stan-
dard deviation, i.e., from ak to ak ± σak, and then fixed there
while all other fitting parameters are readjusted to minimize the
χ2, the new χ2 will be one higher than its best-fit minimum.

Where Eq. 9.22 is valid, so is the following equation—a more general
form of the ∆χ2 = 1 rule showing the expected quadratic dependence of ∆χ2

on the change in ak.

σ2
ak =

(atrialk − ak)
2

∆χ2
(9.23)

Here, ∆χ2 is the increase in χ2 after changing ak from its best-fit value to
atrialk . However, it is not the increase immediately after the change. It is the
increase only after refitting all other fitting parameters for a minimum χ2

obtained while keeping the one selected atrialk fixed. The immediate change
should follow Eq. 9.22 and is likely to be larger than predicted by Eq. 9.23.
However, depending on the degree of correlation among the ak, some of the
immediate increase upon changing to atrialk will be canceled after the refit.
Re-minimizing by adjusting the other parameters is needed to bring the ∆χ2

into agreement with Eq. 9.23.

http://www.phys.ufl.edu/courses/phy4803L/statistics/matproof.pdf
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The covariances between ak and the other parameters can also be deter-
mined by keeping track of the parameter changes after the refit. If some
other parameter with a best-fit value of am goes to a′m after the refit, the
covariance between ak and am, including its sign, is given by

[σ2
a]km =

(atrialk − ak)(a
′
m − am)

∆χ2
(9.24)

A coarse check on the validity of the first-order Taylor expansion of 9.19
and the resultant second-order Taylor expansion of Eq. 9.22 is important
when working with nonlinear fitting functions and is easily performed with
the same calculations. One simply checks that the variances and covariances
obtained with Eqs. 9.23 and 9.24 give the same result using any atrialk in
the interval: ak ± 3σak —a range that would cover most of its probability
distribution. The check should be performed for each parameter of interest,
varying atrialk by small amounts both above and below the best-fit value and
sized so that ∆χ2 values come out around 0.1 and around 10. If all four
checks give the same results, the χ2 is parabolic over that parameter range.
If the results vary significantly, the χ2 is not parabolic and the first-order
Taylor expansion is not a good approximation over the ak ± 3σak range.
Higher-order terms can bias the ak and skew their probability distribution.



Chapter 10

Regression with Excel

Excel is a suitable platform for all the statistical analysis procedures discussed
in the preceding chapters. Familiarity with Excel is assumed in the following
discussion, e.g., the ability to enter and graph data and evaluate formulas.

Linear algebra expressions are evaluated using array formulas in Excel.
To use an array formula, select the appropriate rectangular block of cells
(one- or two-dimensional), click in the edit box, enter the array formula, and
end the process with the three-key combination Ctrl|Shift|Enter. The entire
block of cells is evaluated according to the formula and the results are placed
in the block. Errors with various behaviors result if array dimensions are
incompatible with the particular operation or if the selected block is not of
the appropriate size. Excel will not allow you to modify parts of any array
area defined by an array formula. For example, Clear Contents only works if
the cell range covers the array completely.

The built-in array functions useful for linear regression formulas are:

MMULT(array1, array2): Returns the matrix product of the vectors and/or
matrices in the order given in the argument list.

TRANSPOSE(array): Returns the transpose of a vector or matrix.

MINVERSE(array): Returns the inverse of an invertible matrix.

MUNIT(integer): Returns the unit (or identity) matrix of size integer.

MDETERM(array): Returns the determinant of a square matrix.

113
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array1 ∗ array2: Returns the result of an element by element multiplication.
If array1 and array2 are identically shaped, array1 ∗ array2 returns
the same size array with each element equal to the product of the
corresponding elements in each array. If one argument is a column
vector and the other is a row vector, the ∗ product is an outer product
having the same number of rows as the column vector and the same
number of columns as the row vector. If one argument is a matrix and
the other is a column or row vector, the vector is replicated in adjacent
rows or columns until it has the same number of rows or columns as the
matrix. If the two matrices to be multiplied do not have the same size,
elements are deleted from the rightmost columns and/or bottom-most
rows until they do.

Other binary operations, including +,−, and /, between the two arrays
behave similarly.

The array functions above can be used to make the vectors and matrices
needed in statistics formulas. For example, a diagonal covariance matrix or
weighting matrix is easily constructed using the following vector to diago-

nal matrix array expression.

MUNIT(N) ∗ vector: Returns an N × N diagonal matrix with elements
equal to the corresponding elements of the column or row vector (of
size N).

To make a diagonal covariance matrix from a vector of standard deviations
simply replace vector with vector^2 so that elements of the vector are squared
before being used to make the diagonal matrix. Replace ∗vector with /vec-
tor^2 to make the corresponding diagonal weighting matrix. The vector to
diagonal matrix construction is also useful for making a diagonal Jacobian
matrix such as in Eq. 7.87 or Eq. 7.97. Simply construct a column for the
needed derivatives and use it as the vector above.

A column vector of standard deviations can be extracted from a covari-
ance matrix using the following diagonal elements from matrix array
expression.

MMULT(MUNIT(N) ∗ array, ROW(1:N)^0): Returns an N × 1 column
vector containing the diagonal elements of the N ×N matrix array.

Note that ROW(1:N) returns a column vector of the integers from 1 to N .
Raising it to the zeroth power makes all N elements equal to one. Thus,
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ROW(1:N)^0 is a column vector of 1’s. MUNIT(N) ∗ array creates an N×N
array with the diagonal elements of array unchanged, but with all other
elements zeroed out. Matrix multiplying by the column vector of 1’s then
creates a column vector containing the diagonal elements of array. To create
a column of standard deviations from a covariance matrix array, simply take
the square root of the expression above, i.e., SQRT(...).

An array need not be created in a worksheet cell range before using it in
another array formula. Even for small data sets, putting an N ×N diagonal
weighting matrix or an N × N diagonal Jacobian matrix on a worksheet
serves little purpose. Such matrices are better represented by the column
of variances or derivatives used to define them. How can such matrices be
created and referenced if not in and by their cell range? One method is to
use the expression for the matrix in the other array formula. For example,

wherever a 12×12 weighting matrix
[

σ2
y

]−1
is needed, one could use the array

expressionMUNIT(12) / D1:D12^2 assuming D1:D12 is the cell range where
the column vector of 12 standard deviations is located.

A better method is to use the Name Manager located in the FORMULAS

toolbar. You supply a unique reference name along with a spreadsheet for-
mula as could be evaluated in a cell or cell range and the Name Manager regis-
ters the association. The name can then be used in other spreadsheet formu-
las. For example, N in the expression MUNIT(N) must resolve to the actual
value needed. It could be given explicitly as with the 12 in the weighting ma-
trix example above. N could also be defined by the ROWS(array) function
which returns the number of rows in array, for example, by ROWS(D1:D12)
above. And it could be created in the Name Manager using either the ex-
plicit value or the expression. However, the argument 1:N in the expression
ROW(1:N)^0 for the column vector of 1’s must be handled differently. The
function ROW(range) returns a column vector of the worksheet row numbers
where the elements of range are located and, consequently, range must re-
solve to an explicit cell range.1 Thus, with a 3× 3 covariance matrix in cells
C5:E7, a column vector with the three standard deviations could be created
using the array formulas:

SQRT(MMULT(MUNIT(3)∗C5:E7,ROW(1:3)^0)) or
SQRT(MMULT(MUNIT(ROWS(C5:E7))∗C5:E7,ROW(C5:E7)^0))

1The cell range 1:12 in the expression ROW(1:12) (missing an explicit column value)
resolves to the range A1:A12.
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Figure 10.1: Excel’s linear regression dialog box.

Array formulas are used for a simple linear regression problem in the Linear
Regression Algebra.xlms spreadsheet on the lab website. Examine the names
in the Name Manager for examples of named ranges and named variables
created with these formulas. However, the body of the spreadsheet uses only
explicit cell ranges. Try changing them to the named ranges and named
variables to learn about the convenience of these constructs.

Excel’s Linear Regression Program

Excel’s linear regression program is for equally-weighted fits only. Moreover,
it does not allow the user to provide σy. It uses the sy of Eq. 9.12 for σy

in determining the parameter covariance matrix. That is, it forces χ2 =
N −M . It must first be installed from the FILE|Options|Add-Ins page. Select
Excel Add-ins, click Go..., check the Analysis ToolPak and OK. The Regression
program can then be found inside the Data Analysis program group in the
Analysis area of the DATA toolbar. The dialog box appears as in Fig. 10.1.

To use the regression program, first construct columns for xi and yi—
each as a column of length N . The steps will be described for a quadratic

http://www.phys.ufl.edu/courses/phy4803L/statistics/Linear Regression Algebra.xlsm
http://www.phys.ufl.edu/courses/phy4803L/statistics/Linear Regression Algebra.xlsm
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fit: yfiti = a1 + a2xi + a3x
2
i (M = 3) having the basis functions: f1(xi) = 1,

f2(xi) = xi, and f3(xi) = x2
i . Next, create a side-by-side block of M more

columns, one for each of the fk(xi). For the example, a columns of 1’s,
then a column of xi and then a column of x2

i would make the parameters in
the vectors and matrices appear in the order a1, a2 then a3. In turns out
unnecessary to create the column of ones for the a1 parameter. The Excel
regression program can add a constant to any fitting function without one.
If linear algebra formulas will be used, however, creating the column of ones
for the additive constant would be required.

Select the column containing the yi-values for the Input Y-Range. For the
Input X-Range, select the rectangular block containing all fk(xi) values— the
Jacobian [Jy

a ]. For the quadratic fit, select the two columns containing xi

and x2
i or select all three columns including the column of ones. Leave the

Constant is Zero box unchecked if only the xi and x2
i columns were provided.

It would be checked if the fitting function did not include a constant term
or if a constant term is included as a column of ones in the Jacobian. Leave
the Labels box unchecked. If you would like, check the Confidence Level box
and supply a probability for a Student-T interval next to it. Intervals for the
95% confidence level are provided automatically. Select the New Worksheet

Ply radio button or the Output Range. For the latter, also specify the upper
left corner of an empty spreadsheet area for the results. Then click OK.

The output includes an upper Regression Statistics area containing a pa-
rameter labeled Standard Error. This is the sample standard deviation sy from
Eq. 9.12. The lower area contains information about the constant— labeled
Intercept—and the fitting parameters ak —labeled X Variable k. Next to the
best-fit parameter values— labeled Coefficients—are their sample standard
deviations sak —labeled Standard Error. The last two double columns are
for the lower and upper limits of Student-T intervals at confidence levels of
95% and the user specified percentage.

General Regression with Excel

Excel’s Solver can find the best-fit parameters for both linear or nonlinear
fitting functions. The Solver can handle weighted yi and correlated yi. It
must first be installed as an Excel add-in—as described previously for Excel’s
linear regression program—and will then be found in the Analysis area of the
DATA toolbar.
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The Solver requires the user to construct a cell containing either a chi-
square to minimize or a log likelihood to maximize. For pure Gaussian-,
binomial-, or Poisson-distributed yi with negligible uncertainty in the inde-
pendent variables, one could construct the appropriate log likelihood function
L and maximize that once as described below. For pure Gaussian yi, a single
χ2 minimization is equivalent and is the more common practice. In fact, χ2

minimization—with iterative reweighting—has been shown to be equiva-
lent to maximizing likelihood for Poisson- or binomial-distributed data and
it is one of the few plausible alternatives if uncertainties in the independent
variables must also be taken into account. Recall, iterative reweighting is
appropriate whenever the σ2

i depend on the best fit. It requires iteration un-
til minimizing the χ2—using fixed σ2

i that have been evaluated at the best
fit— returns the best fit.

Even if a binomial or Poisson log likelihood can be maximized, a χ2

calculation is still needed for a χ2 test. In addition, χ2 calculations can be
used to find the parameter uncertainties using the ∆χ2 = 1 rule and they
can be used to check the validity of the first-order Taylor expansions.

The following instructions describe a single iteration and the iteration
method assuming that the σ2

i or the input covariance matrix [σ2
y ] depends on

the best fit.

1. Set up an area of the spreadsheet for the fitting parameters ak. Using
Solver will be somewhat easier if the parameters are confined to a
single block of cells. Enter initial guesses for the values of each fitting
parameter.

2. Enter the data in columns, starting with xi and yi.

3. Use the fitting function to create a column for yfiti from the xi and the
initial guesses for the ak.

4. Add additional columns for other input information or derived quanti-
ties as needed. For example, if the xi and/or yi are Gaussian-distributed
random variables, with known uncertainties, add a column for the raw
standard deviations σxi and/or σyi. If the yi are from a Poisson or bino-
mial distribution, create a column for σ2

i according to Eq. 7.11 or 7.13.
If there is uncertainty in the independent variables, create a column for
the derivatives of the fitting function ∂Fi/∂xi and another for the final
σ2
i of Eq. 7.78.
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5. Create the main graph. Plot the (xi, yi) data points with error bars,
but without connecting lines. Add a plot of yfiti vs. xi as a smooth
curve without markers. You can improve the smoothness of the fitted
curve by checking the Smoothed line option in the Format Data Series

property tab.

Excel draws the fitted curve connecting the (xi, y
fit
i ) points in the or-

der given from first to last. If the xi are not in either ascending or
descending order, the resulting curve will not represent the fit. Either
sort the data rows using the Sort function in the DATA tab, or make
another column with appropriate and ordered x-values, evaluate the
yfit-values there, and use these two columns for the plot. The spacing
of the x-values should be chosen small enough to guarantee a smooth
curve. If desired, the range of x-values can be chosen to show the fitted
curve outside the measured range.

6. Verify that the column of yfiti -values and its graph depend on the values
placed in the cells for the fit parameters. Adjust the fit parameters
manually to get the fitted curve close to the data points. Solver may
fail to find the best-fit parameters if the starting values are not close
enough.

7. Columns for the deviations yi−yfiti (residuals) and normalized residuals
(yi − yfiti )/σi are also handy—both for evaluating χ2 and for making
plots of these quantities versus xi for fit evaluation.

8. Construct the χ2 cell. If a log likelihood maximization is to be per-
formed, construct the L cell as well.

If needed, the L cell is easily constructed according to Eq. 7.6 or 7.7. If
the yi are independent, a column of their associated standard deviations σi

would be needed for a calculation of the χ2 according to Eq. 7.15. An extra
column for the N terms in χ2 (and in L, if needed) should be constructed for
summing. The SUM(array) and SUMSQ(array) spreadsheet functions are
useful for summing elements of an array or their squares.

If the yi are correlated, the χ
2 of Eq. 7.80 would be needed and the N×N

weighting matrix
[

σ2
y

]−1
would have to be specified. Correlated yi arise, for

example, when they are obtained by preprocessing raw data. Details of the
raw data and processing steps then determine the variances and covariances
of the yi.
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Figure 10.2: Excel’s Solver dialog box.

If the σ2
i or the weighting matrix

[

σ2
y

]−1
depend on the best fit, a con-

stant copy will be needed for an IRLS procedure. Recall that IRLS requires

minimizing the χ2 with the σ2
i (or

[

σ2
y

]−1
) held fixed. For uncorrelated yi,

the σ2
i could be calculated in a spreadsheet column with an adjacent column

reserved for the constant copy to be used in Eq. 7.15. If a constant copy of
[

σ2
y

]−1
is needed for a calculation of the χ2 according to Eq. 7.80 (or for a

calculation of the parameter covariance matrix [σ2
a] according to Eq. 7.50), it

would best be created in the Name Manager. Simply use the ak and/or yfiti to
create any needed calculated columns and reserve adjacent columns for the

constant copies to be used in creating
[

σ2
y

]−1
.

A simple way to make a constant copy is to use the spreadsheet Copy com-
mand from the calculated column and then the Paste Special|Values command
to the column reserved for the copy. This sets the copied cells to fixed num-
bers while leaving the cells with the formulas undisturbed. Be sure to use

the constant σ2
i or

[

σ2
y

]−1
for the calculation of the χ2 cell.

To run one iteration of the Solver:

9. Run the Solver. The dialog box is shown in Fig. 10.2.
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10. Provide the cell address of the χ2 or L in the Set Objective: box. Click
the Min radio button next to To: for a χ2 minimization or click the Max

button for an L maximization.

11. Provide the cell addresses for the fitting parameters in the By Changing
Variable Cells: box. Be sure to uncheck theMake Unconstrained Variables

Non-Negative box if any of your fitting parameters may be negative.
This box could be checked to constrain all fitting parameters to be
positive if that is the only appropriate solution. Many other Solver
options are available, but the default values will typically give good
results. For example, use the default solving method, GRG Nonlinear,

which is similar to the gradient-descent algorithm.

12. Click on the Solve button. The Solver’s algorithm then starts with your
initial fitting parameters—varying them to find those values which
minimize χ2 or maximize L.

If iterative reweighting is needed, remember to repeat the Copy–Paste

Special|Values commands to update any constant columns from their source
columns based on the most recent yfiti and/or ak. Repeat iterations of the
Solver until there are no significant changes to the ak.

Parameter Variances and Covariances

Solver does not provide parameter variances or covariances. The best way to
get them is to construct the Jacobian matrix (according to Eq. 7.31) so that
the entire covariance matrix [σ2

a] can be obtained from Eq. 7.50 using array
formulas. Otherwise, each parameter’s variance and its covariances with the
other parameters can be individually determined using the following proce-
dure based on the ∆χ2 = 1 rule. This procedure is also useful for checking
whether the first-order Taylor expansions are valid over each parameter’s
likely range.

The procedure is a numerical recipe for determining elements of [σ2
a] by

checking how χ2 changes when parameters are varied from their best-fit val-
ues. Remember, only the yfiti should be allowed to change as the parameters

are adjusted; the σ2
i should not. If the σ2

i or
[

σ2
y

]−1
are calculated, use the

constant copy evaluated at the best fit.
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13. Save the best-fit parameters and the best-fit χ2 to a new block of cells
using the Copy–Paste Special|Values procedure so they will not update
in the subsequent steps.

14. Change the value in the original cell containing one of the fitting pa-
rameters, say ak, by a bit— trying to change it by what you suspect
will be its uncertainty. Call this new (unoptimized) value atrialk . The
χ2 will increase because it was originally at a minimum.

15. Remove the cell containing ak from the list of adjustable parameters
and rerun the Solver. The other parameters might change a bit and
the χ2 might go down a bit, but it will still be larger than the best-fit
χ2.

16. If χ2 increased by one, then the amount that ak was changed is its
standard deviation: σ2

ak = (atrialk − ak)
2. If the increase in ∆χ2 is more

(or less) than one, the tested change in ak is larger (or smaller) than
σak and the quadratic dependence of Eq. 9.23 can then be used to
determine σ2

ak.

17. The covariances between ak and the other parameters can also be de-
termined by keeping track of the changes in the other parameters after
the re-optimization. Equation 9.24 can then be used to solve for the
covariances.

18. Check that this procedure gives roughly the same parameter variances
and covariances using atrialk values both above and below ak and sized
such that ∆χ2 values are around 0.1 and around 10. If σ2

ak is reasonably
constant for all four cases, one can be reasonably assured that the χ2

is roughly parabolic throughout the likely parameter range: ak ± 3σak.

Multicollinearity and Other Problems

Multicollinearity is a problem in regression analysis that arises when columns
of the Jacobian [Jy

a ] are not all linearly independent, i.e., when one or more
columns can be expressed (exactly or nearly) as a linear superposition of
other columns. Exact multicollinearity causes an X-matrix that is not in-
vertible and results in fitting parameters at the χ2 minimum that are not
unique. Near multicollinearity causes an X-matrix that is ill-conditioned —
numerically difficult to invert accurately and sensitive to small variations
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in the Jacobian. It results in highly correlated fitting parameters that are
likewise numerically difficult to determine accurately. Diagnosing and treat-
ing multicollinearity—topics only briefly touched upon below—depend on
whether the regression is linear or nonlinear and other details of the model
and the data.

Collinearity between two parameters, say aj and ak, may be observ-
able in the parameter covariance matrix by a correlation coefficient ρjk =
[σ2

a]jk/
√

[σ2
a]jj[σ

2
a]kk near 1 or -1. Multicollinearity among more than two

parameters can be diagnosed by performing an equally-weighted linear re-
gression on each column of the Jacobian, column k say, against all the other
columns. An R-square2 near one then indicates column k is highly correlated
with one or more of the other columns and parameter ak may be part of a
multicollinearity problem.

One might ignore the problem of multicollinearity if all parameters of
interest are well determined by the fit. If important parameters turn out
to be problematic, a more detailed analysis of how the χ2 varies with the
fit parameters could be helpful. Fixing, constraining, eliminating, or com-
bining fitting parameters and their associated functional dependencies might
be appropriate. There are also regression techniques specialized for multi-
collinearity such as principal component analysis and ridge regression.

In addition to multicollinearity problems, the Solver may fail to find the
best fit for a variety of other reasons. If the initial parameter guesses are not
close enough to the best-fit values, they may need to be readjusted before the
program will proceed to the solution. If a parameter wanders into unphysical
domains leading to an undefined function value, constraints may need to be
placed on its allowed values.

Solver sometimes has problems with poorly scaled models where y-values,
parameters, or the target cell are extremely large or small. Solver has a de-
fault option to Use Automatic Scaling, which does not always fix the problem.
If it is unchecked, check it to see if enabling it fixes the problem. If not, try
explicit parameter scaling. For example, if the y-values of a measured expo-
nential decay are of order 106 while the mean lifetime is of order 10−6 s, and
the background is around 103, rather than fit to Eq. 7.56, Solver performs

2R-square or R2 is a measure of how well the yi fit the linear model by comparing
the best-fit deviations yi − yfiti to the deviations yi − ȳ for a model where all yi are
simply samples from a common distribution with a mean of ȳ. Its value can be expressed:
R2 = 1− Σ(yi − yfiti )2/Σ(yi − ȳ)2.
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xi yi

2 2.4
3 6.7
5 27.8
6 43.2
8 80.7
9 104.5

Table 10.1: Data for regression exercises.

better with
yfiti = 106a1e

−106ti/a2 + 103a3

so that all three fitting parameters are of order unity.

Regression Exercises

In these last exercises you will perform equally-weighted fits for the data of
Table 10.1 to a quadratic formula: yfiti = a1 + a2xi + a3x

2
i . You will solve

it three ways: using Excel’s linear regression program, evaluating the linear
algebra regression formulas, and using the Solver program. Augment and
save the spreadsheet as you work through the exercises, but the questions
must be answered on a separate sheet clearly labeled with the question part
and the answer. Feel free to cut and paste from the spreadsheet, but it will
not be opened or graded. This is a fit of N = 6 points to a formula with
M = 3 fitting parameters; it has N −M = 3 degrees of freedom. Keep this
in mind when discussing χ2, χ2

ν or Student-T probabilities, which depend on
the degrees of freedom.

Exercise 8 Start by creating the 6-row column vector for y, i.e., the yi in
Table 10.1 and the 6×3 Jacobian matrix [Jy

a ], i.e., three side-by-side columns
of 1’s for a1, xi for a2, and x2

i for a3. This matrix will also be needed shortly
when the regression formulas are used. Use it now as you solve the problem
using Excel’s linear regression program. Remember that if you include the
column of 1’s in the Input X Range, the Constant is Zero box must be checked.
(a) Locate the parameters ak and their sample standard deviations sak. (b)
Locate the sample standard deviation sy and show a calculation of its value
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according to Eq. 9.12. Hint: Add a column for yfiti and another for yi − yfiti .
Then use the Excel SUMSQ(array) function to do the sum of squares.

Exercise 9 Now use the equally weighted linear regression formulas to solve
the problem. First create the 3 × 3 matrix for [Xu]

−1 based on Eq. 7.52 for
[Xu]. Hint: This formula and those to follow will require array formulas and
Excel’s MMULT, TRANSPOSE, and MINVERSE array functions. Next,
construct the 3-row column vector for the best fit parameters a according
to Eq. 7.54 and show they agree with Excel’s regression results. Finally,
construct the parameter covariance matrix [σ2

a] from Eq. 7.53 using σy =
sy and show how the parameter sample standard deviations sak provided by
Excel’s regression program can be obtained from this matrix.

Exercise 10 Excel’s linear regression program assumes no prior knowledge
of σy (except that it is the same for all yi). The parameter standard deviations
returned by the program are calculated using the random variable sy as an
estimate of σy. Consequently, they are sample standard deviations sa and
this is why Student-T probabilities are used when Excel constructs confidence
intervals. Give the linear regression program’s 95% confidence interval (for
the quadratic coefficient only) and show how it can be obtained from a3, sa3
and the Student-T table.

Exercise 11 If the true σy is known, its value should be used in Eq. 7.53
for determining [σ2

a], which then becomes a true covariance matrix. For this
question assume the yi of Table 10.1 are all known to come from distribu-
tions with σy = 0.5. The data are still equally weighted and thus the best-fit
parameter values and the sample standard deviation sy do not change. Give
the true parameter standard deviations σak for this case. Note the important
scaling implied by Eq. 7.53, namely, that σak/σy is a constant. It can be
applied here for translating from Excel’s sak to an σak appropriate for a given
σy. Give the 95% confidence interval for the quadratic coefficient. Should
you use Student-T or Gaussian probabilities for this case?

Exercise 12 (a) Do a graphical evaluation of the fit assuming σy = 0.5.
Add a cell for σy and reference it to evaluate χ2 according to Eq. 7.15 or
Eq. 7.55. Evaluate χ2

ν according to Eq. 9.13 or χ2
ν = s2y/σ

2
y. Note that these

four formulas for χ2 and χ2
ν are just different ways to calculate and describe

the exact same information about the actual and expected deviations. What
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is the probability that a χ2 or χ2
ν random variable would come out as big or

bigger than it did here? (b) For this data and fit, how small would σy have
to get before one would have to conclude (at the 99% level, say) that the fit
deviations are too big to be reasonable?

Exercise 13 (a) Use Solver to do the fit. The Solver will be used in a single
χ2 minimization; no iteration will be needed. Demonstrate that the ak do
not depend on the value used for σy —that with any σy the optimized ak are
the same as those from the linear regression program. (b) Use the ∆χ2 = 1
rule to determine the parameter standard deviations. Start by assuming σy is
unknown and use the sample standard deviation sy for σy in the calculations.
Recall, this means the parameter covariance matrix and standard deviations
will be sample values. What value of χ2 does this produce? Why is this value
expected? Use the ∆χ2 = 1 rule to determine the sample standard deviation
sa3 for the a3 fit parameter only. Show it is the same as that obtained by
Excel’s linear regression. (c) Now assume it is known that σy = 0.5 and use
it with the ∆χ2 = 1 rule to determine the standard deviation σa3 in the a3
parameter. Compare this σa3 value with the sa3 value from part (b) and show
that they scale as predicted by Eq. 7.53.
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Gaussian

Probabilities µ µ LFσ

z 0.00 0.02 0.04 0.06 0.08

0.00 0.00000 0.00798 0.01595 0.02392 0.03188
0.10 0.03983 0.04776 0.05567 0.06356 0.07142
0.20 0.07926 0.08706 0.09483 0.10257 0.11026
0.30 0.11791 0.12552 0.13307 0.14058 0.14803
0.40 0.15542 0.16276 0.17003 0.17724 0.18439

0.50 0.19146 0.19847 0.20540 0.21226 0.21904
0.60 0.22575 0.23237 0.23891 0.24537 0.25175
0.70 0.25804 0.26424 0.27035 0.27637 0.28230
0.80 0.28814 0.29389 0.29955 0.30511 0.31057
0.90 0.31594 0.32121 0.32639 0.33147 0.33646
1.00 0.34134 0.34614 0.35083 0.35543 0.35993

1.10 0.36433 0.36864 0.37286 0.37698 0.38100
1.20 0.38493 0.38877 0.39251 0.39617 0.39973
1.30 0.40320 0.40658 0.40988 0.41308 0.41621
1.40 0.41924 0.42220 0.42507 0.42785 0.43056
1.50 0.43319 0.43574 0.43822 0.44062 0.44295

1.60 0.44520 0.44738 0.44950 0.45154 0.45352
1.70 0.45543 0.45728 0.45907 0.46080 0.46246
1.80 0.46407 0.46562 0.46712 0.46856 0.46995
1.90 0.47128 0.47257 0.47381 0.47500 0.47615
2.00 0.47725 0.47831 0.47932 0.48030 0.48124

2.10 0.48214 0.48300 0.48382 0.48461 0.48537
2.20 0.48610 0.48679 0.48745 0.48809 0.48870
2.30 0.48928 0.48983 0.49036 0.49086 0.49134
2.40 0.49180 0.49224 0.49266 0.49305 0.49343
2.50 0.49379 0.49413 0.49446 0.49477 0.49506

2.60 0.49534 0.49560 0.49585 0.49609 0.49632
2.70 0.49653 0.49674 0.49693 0.49711 0.49728
2.80 0.49744 0.49760 0.49774 0.49788 0.49801
2.90 0.49813 0.49825 0.49836 0.49846 0.49856
3.00 0.49865 0.49874 0.49882 0.49889 0.49896

Table 10.2: Half-sided integral of the Gaussian probability density function. The
body of the table gives the integral probability P (µ < y < µ+ zσ) for values of z
specified by the first column and row.
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Reduced

Chi-Square

Probabilities χ 1ν

P 0.99 0.98 0.95 0.9 0.8 0.2 0.1 0.05 0.02 0.01 0.001

ν

1 0.000 0.001 0.004 0.016 0.064 1.642 2.706 3.841 5.412 6.635 10.827

2 0.010 0.020 0.051 0.105 0.223 1.609 2.303 2.996 3.912 4.605 6.908

3 0.038 0.062 0.117 0.195 0.335 1.547 2.084 2.605 3.279 3.782 5.422

4 0.074 0.107 0.178 0.266 0.412 1.497 1.945 2.372 2.917 3.319 4.617

5 0.111 0.150 0.229 0.322 0.469 1.458 1.847 2.214 2.678 3.017 4.103

6 0.145 0.189 0.273 0.367 0.512 1.426 1.774 2.099 2.506 2.802 3.743

7 0.177 0.223 0.310 0.405 0.546 1.400 1.717 2.010 2.375 2.639 3.474

8 0.206 0.254 0.342 0.436 0.574 1.379 1.670 1.938 2.271 2.511 3.265

9 0.232 0.281 0.369 0.463 0.598 1.360 1.632 1.880 2.187 2.407 3.097

10 0.256 0.306 0.394 0.487 0.618 1.344 1.599 1.831 2.116 2.321 2.959

11 0.278 0.328 0.416 0.507 0.635 1.330 1.570 1.789 2.056 2.248 2.842

12 0.298 0.348 0.436 0.525 0.651 1.318 1.546 1.752 2.004 2.185 2.742

13 0.316 0.367 0.453 0.542 0.664 1.307 1.524 1.720 1.959 2.130 2.656

14 0.333 0.383 0.469 0.556 0.676 1.296 1.505 1.692 1.919 2.082 2.580

15 0.349 0.399 0.484 0.570 0.687 1.287 1.487 1.666 1.884 2.039 2.513

16 0.363 0.413 0.498 0.582 0.697 1.279 1.471 1.644 1.852 2.000 2.453

17 0.377 0.427 0.510 0.593 0.706 1.271 1.457 1.623 1.823 1.965 2.399

18 0.390 0.439 0.522 0.604 0.714 1.264 1.444 1.604 1.797 1.934 2.351

19 0.402 0.451 0.532 0.613 0.722 1.258 1.432 1.587 1.773 1.905 2.306

20 0.413 0.462 0.543 0.622 0.729 1.252 1.421 1.571 1.751 1.878 2.266

22 0.434 0.482 0.561 0.638 0.742 1.241 1.401 1.542 1.712 1.831 2.194

24 0.452 0.500 0.577 0.652 0.753 1.231 1.383 1.517 1.678 1.791 2.132

26 0.469 0.516 0.592 0.665 0.762 1.223 1.368 1.496 1.648 1.755 2.079

28 0.484 0.530 0.605 0.676 0.771 1.215 1.354 1.476 1.622 1.724 2.032

30 0.498 0.544 0.616 0.687 0.779 1.208 1.342 1.459 1.599 1.696 1.990

32 0.511 0.556 0.627 0.696 0.786 1.202 1.331 1.444 1.578 1.671 1.953

34 0.523 0.567 0.637 0.704 0.792 1.196 1.321 1.429 1.559 1.649 1.919

36 0.534 0.577 0.646 0.712 0.798 1.191 1.311 1.417 1.541 1.628 1.888

38 0.545 0.587 0.655 0.720 0.804 1.186 1.303 1.405 1.525 1.610 1.861

40 0.554 0.596 0.663 0.726 0.809 1.182 1.295 1.394 1.511 1.592 1.835

42 0.563 0.604 0.670 0.733 0.813 1.178 1.288 1.384 1.497 1.576 1.812

44 0.572 0.612 0.677 0.738 0.818 1.174 1.281 1.375 1.485 1.562 1.790

46 0.580 0.620 0.683 0.744 0.822 1.170 1.275 1.366 1.473 1.548 1.770

48 0.587 0.627 0.690 0.749 0.825 1.167 1.269 1.358 1.462 1.535 1.751

50 0.594 0.633 0.695 0.754 0.829 1.163 1.263 1.350 1.452 1.523 1.733

60 0.625 0.662 0.720 0.774 0.844 1.150 1.240 1.318 1.410 1.473 1.660

70 0.649 0.684 0.739 0.790 0.856 1.139 1.222 1.293 1.377 1.435 1.605

80 0.669 0.703 0.755 0.803 0.865 1.130 1.207 1.273 1.351 1.404 1.560

90 0.686 0.718 0.768 0.814 0.873 1.123 1.195 1.257 1.329 1.379 1.525

100 0.701 0.731 0.779 0.824 0.879 1.117 1.185 1.243 1.311 1.358 1.494

120 0.724 0.753 0.798 0.839 0.890 1.107 1.169 1.221 1.283 1.325 1.447

140 0.743 0.770 0.812 0.850 0.898 1.099 1.156 1.204 1.261 1.299 1.410

160 0.758 0.784 0.823 0.860 0.905 1.093 1.146 1.191 1.243 1.278 1.381

180 0.771 0.796 0.833 0.868 0.910 1.087 1.137 1.179 1.228 1.261 1.358

200 0.782 0.806 0.841 0.874 0.915 1.083 1.130 1.170 1.216 1.247 1.338

Table 10.3: Integral of the χ2
ν probability density function for various values of

the number of degrees of freedom ν. The body of the table contains values of
χ2
ν , such that the probability P of exceeding this value is given at the top of the

column.
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Student-T Probabilities

P 0.99 0.95 0.90 0.80 0.70 0.68 0.60 0.50

ν

1 63.6559 12.70615 6.31375 3.07768 1.96261 1.81899 1.37638 1.00000

2 9.92499 4.30266 2.91999 1.88562 1.38621 1.31158 1.06066 0.81650

3 5.84085 3.18245 2.35336 1.63775 1.24978 1.18893 0.97847 0.76489

4 4.60408 2.77645 2.13185 1.53321 1.18957 1.13440 0.94096 0.74070

5 4.03212 2.57058 2.01505 1.47588 1.15577 1.10367 0.91954 0.72669

6 3.70743 2.44691 1.94318 1.43976 1.13416 1.08398 0.90570 0.71756

7 3.49948 2.36462 1.89458 1.41492 1.11916 1.07029 0.89603 0.71114

8 3.35538 2.30601 1.85955 1.39682 1.10815 1.06022 0.88889 0.70639

9 3.24984 2.26216 1.83311 1.38303 1.09972 1.05252 0.88340 0.70272

10 3.16926 2.22814 1.81246 1.37218 1.09306 1.04642 0.87906 0.69981

11 3.10582 2.20099 1.79588 1.36343 1.08767 1.04149 0.87553 0.69744

12 3.05454 2.17881 1.78229 1.35622 1.08321 1.03740 0.87261 0.69548

13 3.01228 2.16037 1.77093 1.35017 1.07947 1.03398 0.87015 0.69383

14 2.97685 2.14479 1.76131 1.34503 1.07628 1.03105 0.86805 0.69242

15 2.94673 2.13145 1.75305 1.34061 1.07353 1.02853 0.86624 0.69120

16 2.92079 2.11990 1.74588 1.33676 1.07114 1.02634 0.86467 0.69013

17 2.89823 2.10982 1.73961 1.33338 1.06903 1.02441 0.86328 0.68919

18 2.87844 2.10092 1.73406 1.33039 1.06717 1.02270 0.86205 0.68836

19 2.86094 2.09302 1.72913 1.32773 1.06551 1.02117 0.86095 0.68762

20 2.84534 2.08596 1.72472 1.32534 1.06402 1.01980 0.85996 0.68695

21 2.83137 2.07961 1.72074 1.32319 1.06267 1.01857 0.85907 0.68635

22 2.81876 2.07388 1.71714 1.32124 1.06145 1.01745 0.85827 0.68581

23 2.80734 2.06865 1.71387 1.31946 1.06034 1.01643 0.85753 0.68531

24 2.79695 2.06390 1.71088 1.31784 1.05932 1.01549 0.85686 0.68485

25 2.78744 2.05954 1.70814 1.31635 1.05838 1.01463 0.85624 0.68443

26 2.77872 2.05553 1.70562 1.31497 1.05752 1.01384 0.85567 0.68404

27 2.77068 2.05183 1.70329 1.31370 1.05673 1.01311 0.85514 0.68369

28 2.76326 2.04841 1.70113 1.31253 1.05599 1.01243 0.85465 0.68335

29 2.75639 2.04523 1.69913 1.31143 1.05530 1.01180 0.85419 0.68304

30 2.74998 2.04227 1.69726 1.31042 1.05466 1.01122 0.85377 0.68276

31 2.74404 2.03951 1.69552 1.30946 1.05406 1.01067 0.85337 0.68249

32 2.73849 2.03693 1.69389 1.30857 1.05350 1.01015 0.85300 0.68223

33 2.73329 2.03452 1.69236 1.30774 1.05298 1.00967 0.85265 0.68200

34 2.72839 2.03224 1.69092 1.30695 1.05249 1.00922 0.85232 0.68177

35 2.72381 2.03011 1.68957 1.30621 1.05202 1.00879 0.85201 0.68156

36 2.71948 2.02809 1.68830 1.30551 1.05158 1.00838 0.85172 0.68137

37 2.71541 2.02619 1.68709 1.30485 1.05116 1.00800 0.85144 0.68118

38 2.71157 2.02439 1.68595 1.30423 1.05077 1.00764 0.85118 0.68100

39 2.70791 2.02269 1.68488 1.30364 1.05040 1.00730 0.85093 0.68083

40 2.70446 2.02107 1.68385 1.30308 1.05005 1.00697 0.85070 0.68067

∞ 2.57583 1.95996 1.64485 1.28155 1.03643 0.99446 0.84162 0.67449

Table 10.4: Student-T probabilities for various values of the number of degrees
of freedom ν. The body of the table contains values of z, such that the probability
P that the interval y ± zsy will include the mean µy is given at the top of the
column.
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