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Abstract

We introduce the concept of a triad census of a digraph arid shcw hc it

can be used to enumerate various types of subgraph configurations. We

give the basic probabilities needed for computing means and variances for

a triad census under the UJMAN distribution for digraphs. These concepts

are combined to provide a way of testing propositions about social struc-

ture using sociometric data. An application to O8 sociograins is given.
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1. Introduction

Graph theory and network concepts are corrronly used by social scientists

to operationalize theoretical statements about structural regularities in

social systems. These concepts are especially appropriate for models of

the fine structure of interpersonal relations. Here the identification of

individuals as "nodes" and interpersonal relations as "edges" in a graph

is imnediate. Graphtheoretic concepts are used to represent both models

of social structure and data on social structure. A basic reference

detailing the application of graph theory to models of social structure is

Harary, Norn and Cartwright [1965]. The usual data representation, the

sociogram, was introduced by Moreno [19314].

Theoretical statements incorporating network analogies have been

fonnalized in mathentical models of social and perceptual behavior. For

example, the cogri-tive balance theory of Heider [191414] was fonrialized

by Cartwright and Harary [1956],Davis [1967] and Flament [1963]. Horrns'

[1950] propositions about behavior in groups were fonralized by Davis and

Leirthardt [1972] and Holland and Linhardt [1971]. Radcliff-Brc.jn's 119140]

and Nadel's [1957] theoretical statements on kinship and role systems were

fonnalized by White [l963J and White and Lorrain [1972]. We view these

models as "global" in the sense that they imply that the entire organization

of the system will fit into some relatively simple patterns.

Sociomet-ric data have corrnon1y been collected by investigators interested

in sill-sca1e social systems. In the years since the introduction of the
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technique, data have been compiled on a large variety of groups by numerous

investigators (see, for example, Davis and Leinhart [1972]). The complexity

of this data has led to the development of various techniques and algo-

Tithms for organizing and simplifying them (see, for example, Moreno, et.

al. [1960] and Boyle [1969]). Most analyses of sociometric data to

social structure have focused on global properties such as cliques, status

hierarchies and corruiiunication paths.

Although there is an abundance of theory, mDdels, data and data analyUc

procedures, it seems fair to say that our understanding of small-scale social

structure has not advanced much beyond the fundamental insights of Moreno,

Heider and Homans. We believe that a major reason for this is the discrep-

ancy between the local level at which the data are collected and the global

level at which the rrDdels are conceptualized. We propose to bridge this

gap by examining local structural properties which are expected to hold,

on the average, across entire social systems. This approach permits the

formalization and empirical study of propositions concerning the effect of

social organization on individual perception and behavior. Such propositions

are quite corrmn in the sociological and social psychological literature.

Davis [1963] presents a review of propositions about average local properties

of social networks. He takes 56 major sociological arid social

psychological propositions from the writings of a variety of authors and

restates them in graph.theoretic terms. He then shows that the propo-

sitions are statements about the consequences of local structire in

interpersonal relations.

S
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In the absence of a statistical methodolo' for testing empirical

tendencies of local structure) even Davis' theoretical reformulation

remiins little nre than an interesting exercise in forlism. Our

purpose here is to propose such a methodo1o, (for an earlier state-

ment of our approach see: (Holland and Leinhardt [1970].) Using this methodolo'

a variety of propositions concerning local structure in networks of

interpersonal relations can be irdeled in graphtheoretic terms and tested

by determining the discrepancy between empirically observed structure

and that which would obtain by chance. 1hi1e we emphasize the sociometric

interpretation of graphs,this interpretation is not essential to the

development or use of our methods.

In sections 2 through 5 we develop the technical rrteria1 needed for

our method. In section 6 the use of the method is described and some

examples are discussed.

2. The Thiad Census of a Digraph

A. Some notation and preliminaries

For a detailed discusion of meny concepts and results from graph

theory, we refer the reader to Harary, Nonn and Caxwright [1965].

However, we briefly discuss a few graph theoretic concepts which we

use repeatedly.

Digraphs and Socioirtrices: The basic nathentical entity that concerns

us is the binary directed graph, or digraph. A digraph is a set of "nodes"

and a set of directed "lines" or "edges" connecting pairs of nodes. In

sociometric choice data, the nodes correspond to the 'individual group
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meithers and there is a directed line connecting node i to node j if

and only if person i chooses person j according to the sociometric

choice criterion employed. The adjective "binary" in the definition of

a digraph refers to the added restriction that we only consider whether or

not a line connects i to j so that we do not allow for the possibility

that choices may have "strengths" attached to them or that they may be

of different types. Thus the digraph is the mathematical representation

of the simplest form of sociometric choice data -- unranked choices on a

single criterion.

We denote the ninber of nodes in a digraph by -- the group size.

If the nodes are numbered in some arbitrary way from 1 to g, then we may

create a useful matrix representation of the digraph as follows. Let X

be a g by g matrix whose (i,j) entry is:

x [i i i± (2-1)ij 1° otherwise

Note that we use i-*j to mean that there is a directed line from node

i to node j-- there may also be a directed line from node j to node ibut

this possibility is neither implied nor denied by the notation i±j. The

matrix X is called the adjacency matrix in graph theory and the sociornatrix

in sociometry. We use the latter term. The main diagonal of X corresponds

to self-choice in the sociometric context, and for many reasons it is

convenient for us to assume that X. .0. Because self-choice is often:ii
disallowed in sociometric data, this restriction is generally not significant.

There are some applications of digraphs which allow self-choice (especially

.
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if the nodes correspond to groups of people rather than to individuals but

we ignore this possibility here. The sociomatrix, X, is not exactly the

same thing as the digraph because it implies that the nodes have been labeled

from 1 to g in some arbitrary way. Strictly speaking, each sociomatrix

corresponds to a labeled diaph, whereas two different sociometrices can

represent the same unlabeled digraph. In this latter situation the two

sociontrices will only differ by a simultaneous r.i-colunri permutation.

There correspond to any unlabeled digraph a certain number of labeled

digraphs. These are called the labeled versions of the digraph.

Subgraphs ,Dyads and Triads: Fundamental to the methods we discuss is the

notion of a subgraph of a digraph. If we delete some of the nodes and all
the lines in a digraph that either go to or come from the deleted nodes,

the resulting entity is a subgraph of the digraph. If we delete all but

k of the nodes)then we shall call the result a k - subgraph. Since a k-

subgraph is also a digraph with k nodes) it rry be represented by a k by k

sociomatrix,and it has a certain ninrüer of labeled versions. There are

k-subgraphs in a digraph with g nodes.

Tkio digraphs with g nodes are said to be isorrDrphic if they are the

same digraph in the sense that they can both be represented by the same

sociomatrix. This means that if digraph 1 is represented by sociontrix

X and digraph 2 by Y then there is a rcc.-colurrni permutation of Y call it

Z, such that, as matrices, Xz Z. The notion of isoirphism partitions

digraphs into isorrrphism classes. For example, when g2, there are 3

isorrDrphism classes or dyads as illustrated in Figure 2-1. We adopt the
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names null, asyrrmetric and n&itual to describe the three dyad types.

Figure 2-1 goes about here

When g3, there are 16 isomorphism classes or triads. These are

illustrated and named in Figure 2-2. We have adopted the triad naming

convention of Holland and Leinhard± [1970], which is described in the

legend. of Figure 2-2.

Figure 2-2 goes about here

When g > 14, the number of isorrorphism classes of digraphs grcs very

rapidly -- for g14 there are 218)and for g5 there are 9608 (see Harary

[1955]). We refer to the isoirorphism classes of digraphs with g

nodes as the digraph t1pes.
B. The Triad Census

In a digraph there are () distinct 3-subgraphs formed by selecting

each of the possible subsets of 3 nodes and their corresponding lines.

These subgraphs can be classified by their isorrorphism type. Let T

denote the number of these 3-subgraphs of isorrorphism type u (where u

ranges over the 16 triad names given in Figure 2-2). The triad census

T is the vector of 16 components given by:

T
(T003' T012,..., T300).

(2-2)

We have adopted the folling ordering of the components of T to simplify

coiraninication: 003,012, 102, 021D, 021U, 021C, 111D, lllU, 030T, 030C,

201, 120D, l2OU, 120C, 210, 300.

A triad census rray be regarded as a way of reducing the entire

sociomatrix X to a smaller set of 16 sunur.xy statistics. When g > 5 .
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Null

• -_________ • Asyrruietric

.( >. Mutual

Fige 2-1: The 3 IsonDrphism Classes for Di'aphs with g2 (i.e., the

Dyad rpes).
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Figure 2-2: The 16 Isorrorphism Classes for digraphs with g3 (i.e., the
Triad Types). Triad naming convention: first digitnuniber of mutual

dyads; second digitnurriler of asr1retrie dyd; thd critnurrTher of null
dyads; trailing letters further differentiate arong triad types.

003I
012

0 0

102 02W 021U 021C .
_ _ A A>0 •—*

0301 030C

/ AA A.-->*
201 120D 120U 120C

0

/
2W

0
1p_
300
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this is a real reduction in information since X contains rrre than 16

elements of data. In general, knowing the triad census of a digraph does

not uniquely determine the digraph. However, as we show in section 4, T contains

a surprising amount of useful inforntion about X.

A triad census is a special case of the rrore general concept of a

k-subgraph census. Thus we might also consider a dyad census, a tetrad

census or even a pentad census. We show in section 4 that a dyad census

can be computed from a triad census. Furtherore there are so many tetrad

types (218) and pentad types (9608) that a k-subgraph census for k > 4 is

often rrore cumbersome than the original sociomatrix. Thus the triad

census occupies an important position among k-subgraph censuses in that it

is both manageable and yet contains a substantial amount of useful informa-

tion.

For various random digraphs, the first and second rioments of a triad

census are readily computed. These computations are illustrated in

section 5 for a particular random digraph (Corollary 2). This permits

us to test propositions about average local structure in specific

digraphs using the triad census (see section 6 ).

Because a triad census T is a surrtion over all 3-subgraphs, the

information in T is relatively stable and is not siificant1y affected by

a few changes in the lines of the digraph. For this reason, reduction to

the triad census is not as affected by sociometric measurement error or

rmasking (see Holland and Leinhardt [1973]) as are methods which focus on

specific linkages and individual nodes. This property of the triad census
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has both advantages and disadvantages. On the one hand, conclusions

drawn from T are likely to be relatively robust, but on the other, if

interest focuses on a few specific nodes or lines,the triad census rry

not be useful.

3. Configurations in Di graphs

A. Reasons for considering configurations

Davis and Leinhardt [1972] present a procedure in which a version

of the triad census is used to test a model of small-scale social

structure. Distilling a set of structural propositions from Horrris

[1950]1they examined the triad types to determine which ones were

logically inconsistent with the propositions. They felt that, formalized

in this fashion, a fair interpretation of Hornans was that the inconsistent

triads would be empirically rare. They then showed that a social structure

coithining clusters, Davis [1967], with a transitive hierarchy, French [1956],

was implied by the propositions. Their empirical analysis of sociometric

data lent some support to the model)as did a latter analysis by Davis [1970].

However, a re-examination of this model revealed that it and most other

structural models of interpersonal affect assumed that the affective choice

relation is transitive, Holland and Leinhardt [1971]. The models them—

selves could be expressed as transitive graphs (t-graphs) upon which some

additional constraints had been applied. 'Iftansitivity, however, is not

a characteristic of a triad. Father, it is a property of a 1owerorder

configuration which is contained in varying degree by some triad types.

For example, assume the triad type 300 represents the sociogram of a three
person group. (Refer to Figure 2-2 for triad names.) It is transitive from .



—9—

the point of view of each rrither. That is, the -transitive condition,

i+j, j-*k, i÷k,holds for all 6 permutations of i, j, k. On the other

hand, if one examines the 120C triad type1the transitivity condition

holds only once while it is contradicted, i.e., i±j, j+k and not i-k,

twice. Thus, if Horrns' propositions are in fact statements about the

propensity for affective choice to tend toward transitivity and avoid

intransitivity, then a failure to recognize the complex nature of triads

iry yield erroneous conclusions. Indeed, our reanalysis of Davis' [1970]

results yielded a high level of confinition for the t-graph model (see

Holland and Leinhardt [19 71]).

It is useful to pursue the notion of transitivity in interpersonal

affect because it demonstrates the utility of thinking of structural

propositions in termis of configurations of social relations. Consider, for

example, the statement by Heider [1957] in regard to positive interpersonal

sentiment in triadic situations: "In the p-o-x triad, the case of three

positive relations rry be considered psychologically...transitive" (p.2O6).

For Heider, transitivity defines cognitive balance in affective situations.

His examples of balanced psychological structures are configurational in

that they emphasize transitivity from the point of view of p, the perceiver,

and not necessarily from the points of view of the other entities.

In an alternative to the t-graph model, Mazur [1971] put forth another

structural proposition. He argued that interpersonal affect data could be

explained by the proposition: "Friends are likely to agree, and unlikely

to disagree; close friends are very likely to agree, and very unlikely

to disagree" (p. 308). If one assumes that an asymmetric pair represents
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"friends" while a mutual pair represents "close friends" then Mazur's

proposition anrunts to a set of hypotheses concerning the relative

empirical frequency of simultaneous choice of individuals by "friends"

and "close friends". Since the choices of the third individual are not

at issue1 Mazur's proposition is not about triads but refer's instead to

configurations contained in triacis.

An examination of Davis [1963] reveals numerous other structural

propositions that can be fonm1ized in terms of configurations. The

concepts of cross—pressures (Berelson, et al., [1954]), homophily-

heterophily (Lazarsfeld and Mertori [1954]), structural balance (Cartwright

and Harary [1956]), distributive justice (Horrns [1961]), cliques (Horrns

[1950]; Lazarsfeld and Merton [1954]; Lipset, et al. [1956]), innovation

in ideas (Katz and Lazarsfeld [1955]), attitude change (Horrris [1950])

and conflict (Colerrn [1957]), as reformulated by Davis ,are all propositions

about local structure and ny be described by configurations within a

di graph

B. Structure of Configurations

Configurations and subgraphs are similar except that in a configuration

only some of the lines between a subset of nodes are of interest. We shall

try to rr]<e this vague idea more precise. In section 2 we introduced the

concepts of labeled and unlabeled subgraphs of a digraph, and the socio-

matrix, X. For any 3-subgraph we may construct a 3 by 3 sociomatrix such

as the one given in (3-1):

.
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x.. x.1
13 ik1

Ix. — x. I (3—1)
Ji

-J
where i, j and k are 3 distrinct nodes. There are 266LI possible zero-

one sociomatrices of the form (3-1 and they correspond to the set of

all possible labeled 3-node digraphs. These in turn are the labeled

versions of the 16 non-isorrcrphic unlabeled 3-node digraphs. It is

easier to illustrate h to construct a configuration than to give a

precise definition of this concept. We begin with the pairs of sub-

scripts that appear on the entries of (3-1). The first step is to select

a subset of these ordered pairs of subscripts. For example, to define

the configuration that corresponds to "intransitivity'we select these

three ordered pairs: ij, jk, 1k. The order of the pairs indicates the

direction of the relation. Next, associate a zero or a one with each

ordered pair of subscripts that has been selected. For example, for

intransitivity we associate a 1 with ij, another 1 with jk and a 0 with

1k. These correspond to: i÷j, j÷k and not i-k. For convenience these

item can be arranged in a rrtrix as fo11is:

ij jk ik\
(3—2)

1 1 0/

The first row of the rrtrix that describes a configuration is the

"reading rule" for the configuration. The second r defines the

configure.tion type. Jkio different configurations can have the same

reading rule but be of different types. For example, the configuration
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that corresponds to "transitivity" has the same reading nile as (3-2)

but a different type. It is given by:

jk ik\
I (3—3)

1 1 /

It is convenient to have a picture for a configuration. We adopt

the following conventions for drawing them. For an ordered pair of

nodes, ab: (i) if ab is not in the reading rule,then no arrow is drawn

from a to b; (ii) if ab is in the reading nile and has a 1 associated

with it1then a solid arri is drawn from a to b; (iii) if ab is in the

reading rule and has a 0 associated with it)then a dashed arrow is drawn

from a to b. For example, the matrix given in (3-2) can be represented

by Figure 3-1.

Figure 3-1 goes about here

inother example of a configuration comes from Mazur 's proposition

about agreement among friends. The reading rule for configurations

which pordray situations in which friends agree or disagree in their

choices of a third individual is: ij, ji, ik, jk. If close friends are
pairs of individuals who choose one another then disagreement among

close friends can be represented by the following configu-ation matrix:

ii ii lic jk
(3_it)

1 1 1 0)
it is obvious that this matrix is equivalent to the matrix:

/
ji 1k jk\

I I (3—5)
1 0 1/

S



-12a-

Figure 3—1: Pictorial Representation of the Configuration Defined

by (3—2).

k

/
/

/
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The pictorial representation of (3_Li) and (3-5) is given in Figure 3-2.

Figure 3-2 goes about here

While we have only discussed configurations that involve 3 nodes,

i.e., 3-configurations, it is clear that this is not an essential part

of the concept. In general, one may have reading rules that involve k

distinct nodes) and these result in various types of k-configurations.

If a 3-configuration has a reading rule that involves all 6 of the

ordered pairs ij, ji, ik, ki, jk, k,then it is equivalent to a triad.

The main reason for considering configurations is that they are a

frcre refined set of concepts than the triads. A single triad may contain

many different configurations. Furthermore, many sociological and social

psychological propositions about networks make predictions about

configurations rather than about triads. However, in the next section we

show that the triad census can be used to enumerate all 3-configurations.

This1 along with other kncwn properties of the triad census, is what makes

it a basic tool.

4. Linear Combinations of Triad Frequencies

Once we consider a vector such as the 16 triad frequencies that make

up a triad census, T, it is natural to consider any linear combination of

the elemants of the vector. We use the vector notation:

(4—1)

where u is always assumed to run over the triad types given in Figure 2-2.

A. Dyads from Thiads

A simple property of a triad census T is that it determines how many nodes

there are in the digraph. This is because the total number of triads in

a diaph with g nodes is and furthere if e' (1, 1, ..., 1)
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Figure 3-2: Pictorial Representation of Configurations Given by (3-u).

// \



Thus, to find g we merely compute

Equation (4-2) is a simple and yet

combination of triad frequencies.
imitual, asyrrnrietric arid null dyads

m , a , n denote the number ofU U U
are contained in a triad of type

contained in exactly g-2 triads,

mt T m T = (g-2) M,

fm (4-2) and solve for g.

important example of a linear

Let N, A and N denote the number of

in the digraph. Furtheniore, let

mutual, asyrrmetric and null dyads that

u. Since every dyad in a digraph is

it is easy to see that

at T = a T (g—2) A, (4_4)u u
U

n' T ' n T = (g—2) N. (4—5)
-. -. u U

U

If we regard g as given, then M, A and N can be written as linear com-

binations of the triad frequencies where the weights are m/(g_2)

a/(g-2) and n/(g_2). The weights used for enumerating N, A and N are

given in Table 4—i.

Since the total number of directed lines (or ttchoicestt), C, is given

by

C = 2M+A, (4—6)

it is clear that C, too, can be expressed as a linear combination of the

triad frequencies. The weights for C are given in Table 4-1.

B. In- and Out-degrees from Triads

The row and coluim surr of a sociomatrix X will be denoted by {X1÷}

and }, respectively. In the sociometric contect, X. is the niner

of choices rrade by individual i)whiie X is the number of choices received

-14-

= T= ( (4—2)

('4—3)

.

.and
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by individual j. X and X. are also called the out-degree and the

in-degree, respectively, of node i. In this notation we have C given

in (4-6) also given by

C X÷ X.4 ('4—_/)

1

It is sometimes convenient to suniirize a set of numbers by their

mean and variance. We now do this to the two sets of "degrees ' {X1
and fX+}. From (Lf..7) we see that the mean in—degree and the mean out-degree

are the same and are given by

5 C/g . (4—8)

Since C can be expressed as a linear combination of triad frequencies it

follows that can also be so expressed. What is rrore interesting is the

fact that the variances of the in-degrees and of the out-degrees can both

be determined by C and linear combinations of the triad frequencies.

Because this fact is useful to us and not widely known we include a proof

of it now. We denote the variance of the } by S1 and of the
by S. where

and
S (hg) (X1-)2 ('4

S (hg) (X+_)2 . ('4—10)
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The proof is divided into two parts given in Lenuis 1 and 2 below.

Lenirnal: Le-tB. X.. >. and B = X.. X. then— in . . ji Ici — out . . ij ik
ij<k ij<k

(a) (2/g) B - ( - 1) (4-11)

2
(b) S0 (2/g) B - ( - 1) (4-12)

out

where X is defined in (4-8) and (4-7).

Proof: Since the proofs of (a) and (b) are nearly identical1we only

prove (a).

S (hg) (X - )2 (hg) (X.)2 - ()2 (4-13)

But

X..

j
+1 i,j,k J •

x..x.+ji }ci . . ji i<i . .ij<k ik<j

z2 X••XJ•+X•• . (4—14)
ij<k ij

In (4-14) we nde use of the fact that

X?. X.. (4-15)
ij ij

Hence we have

(hg) (X1)2 (2/g) B + . (4-16)

.
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Putting (-16) into ('-l3) completes the proof.

The next leim shows that B. and B ny both be expressed asin out
linear combinations of the triad frequencies so that together with

Lemma 1 it proves that S and S2 are determined by the triad frequencies.in out
Before we state Leirirra 2 we need to define two special configurations

which we shall call B. and B configurations.in out

A B1 configuration is defined by the rratrix

ji ki
1 1 , (L_l7)

while a B0t configuration is defined by the iratrix

ij ik\
1 i) . (L_l8)

In Figure -l we illustrate B1 and B0t configurations using the

conventions of Figure 3-1 and 3-2.

Figure L_1 goes here

It is easy to see that B. gives the number of B. configurationsin in
and that B gives the nrber of B configurations. Lerrma 2 showsout out
that B. nd B can also be computed from the triad census.in out

Lenuia 2: B. and B are givenin — out

(a) B. b. T (L_l9)in in,u uu

(b) B b T (—2O)out out,u uu

where b. and b are given in Table '4-1.in,u — out,u
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Figure 4-1: Pictorial Representation of Bth arid 3out Configurations.

.

-17a-

J

.

.

J

Bin configuration

Ic

.
3-
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Proof: Again we only prove (a). First we note that every B configuration

in the graph is contained in exactly one 3-subgTaph. Hence to count Bin

configurations) we only need to weight each triad frequency by the nuither

of B1 configurations contained in that triad type. To finish the proof

we observe that these weights are exactly the values of binu given in

Table -l.
C. Counting Configurations from Triads

The proof of Lenuma 2 irkes use of the fact that the number of configurations

of certain types can be counted using only the triad census, T. This leads

us to consider counting all of the possible types of 3-configurations

using only the triad census. Evidently, this requires no new ideas since

any configuration that involves 3 nodes is contained in exactly one 3-

subgraph. Thus, to count the nuither of 3-configurations of a given type

that arise in a digraph)we need only find out hi rrny of these are in each

of the 16 triad types and then sum the correspondingly weighted tri,ad

frequencies. If a configuration only involves two nodes, the same rule

applies except that in order to take care of the fact that each 2-

configuration is contained in g-2 triads, we must divide the weighted

sum of triad frequencies by g-2. This is why the factor g-2 arises

when we count dyad types from the triad frequencies.

As an example, suppose we wish to find the nimber of intransitive

configurations in a given digraph. An intransitive configuration is

a 3-configuration and can therefore be enumerated by the above rule. The

weights used for counting intransitive as well as transitive configurations

from T are given in Table '.1—1.
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.
As a final example of counting a 3-configuration using T we consider

the one given in (3-3), (3.—4) and in Figure 3-2. Each weight given in

Table L_l for this configuration (the colurrn marked "close friends

disagreeing") is found by counting the number of mutual dyads in the

given triad type for which only one member of the mutual pair chooses the

other triad member.

Table -l goes about here

The discussion of sections 4A and 'B shows why the linear combinations

of triad frequencies are important. They give additional information about

the graph, information which iray not be obvious from the triad census

itself, but which is implied by it. Thus the set of all linear combinations

of the triad frequencies is a natural extension of the triad census. While

not all linear combinations of triad frequencies have interpretations in

terms of counting configurations, many do and the concept of configurations

is a key to understanding the set of all linear combinations of the triad

frequencies.

5. The Distribution of a Random Subgraph Census

Various notions of "random" digraphs have statistical utility in the

analysis of sociometric data (see Holland and Leirthardt [1970] and the

appendix to this paper for further discussion). When we obtain a triad

census from an actual sociomatrix, it is also useful to know what we would

expect the triad census to be from a random digraph. While the exact

probability distribution of a triad census from a random digraph is very

complicated, it is also true that when there is a sufficient number of nodes .
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Table '4-1: Selected Weighting Vectors.

4i > bO
H •r-1 )> 4- H•
r1 H 1)+ (fl

TRIAD
e m a

flu c b0t,

003 1 0 0 3 0 0 0 0 0 0

012 1 0 1 2 1 0 0 0 0 0

102 1 1 0 2 2 0 0 0 0 0

021D 1 0 2 1 2 0 1 0 0 0

021U 1 0 2 1 2 1 0 0 0 0

021C 1 0 2 1 2 0 0 0 1 0

hiD 1 1 1 1 3 1 0 0 1 0

111U 1 1 1 1 3 0 1 0 1 1

030T 1 0 3 0 3 1 1 1 0 0

030C 1 0 3 0 3 0 0 0 3 0

201 1 2 0 1 '4 1 1 0 2 2

120D 1 1 2 0 '4 2 1 2 0 0

120U 1 1 2 0 14 1 2 2 0 0

120C 1 1 2 0 14 1 1 1 2 1

210 1 2 1 0 5 2 2 3 11
300 1 3 0 0 6 3 3 6 0 0

(g)

(g-2)M (g-2)A (g-2)N (g-2)C B. B0t
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(say, at least 10) and when certain other nondegeneracies obtain (such as

a sufficient number of dyads of each type,a rardom triad census has an

approxate multivariate normal distribution. (See Holland and Leinhardt

[1970] for some simulation results.) In this section, we give foniiulas

for the means, variances and covariances of the components of T for a

very general class of random digraphs. We also give special results for

a particular class of random digraphs which we have found useful.

A. Ivbirnts of a Subgraph Census

We begin by considering the number of k-subaphs of a given digraph

that are of a particular isorrorphism class. We justify this extra gen-

erality on the grounds that it entails no additional difficulties and that

the general results for k-subgraphs may be rrore useful for related problems.

We specialize to triads in section 5B.

Let u and v denote two isorrürphism classes for k-subgraphs. (In the

triad case, the range of values for u and v are given in Figure 2-2.) For

k-subgraphs where k > , the possibilities are very numerous -- some are

given in Ivbon [1968].

In Theorem 1, beli, we give foniulas for the means, variances and

covariances for the number of k-subgraphs of types u and v for a random

digraph generated by a completely general stochastic mechanism. In

Corollary 1 we specialize this result to the case of a triad census, and

in Corollary 2 we specialize even further to the rroments of a triad census

where the random digraph is of the special variety used in Holland and Leinhardt [1970].

We need some notation. Let K and L be subscripts that refer to the

distinct k-subgraphs of a given digraph. Thus, we shall speak of 1< being

of a particular isoror'phism class, etc.
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We next define the indicator variables HK(u) by:

1 if K is of isorrrphism class u
HK(u) (5—1)

0 otheqise

The nuither of k-subgraphs of the given di graph that are of type u, H,

is then given by the sum over K of HK(u), i.e.

IIu H<(u)
. (5—2)

K

Since we provide formulas that hold for a wide class of random digraphs,

we need a notation for various probabilities that arise in the calculations

and which must be computed explicitly for any particular application of the

general results. Thus we define

pK(U) P K is of type P HK(u) (5-3)

pK,L(u,v) P K is of type u and L is of type

P
HK(u)

1 and HL(v) 1 . (5_Li)

We also need a notation for certain average probabilities which can be

computed from PK(U) and PK,L(u,V).
The first of these is easy since it is

just the average value of pK(u) over all values of K,i.e.,

(u) —i-- (5-5)

() K

In order to define the other average probabilities that arise, we

need to examine the relationship between two k-subgraphs nire carefully.
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.Let

IKflLI the number of nodes that K and L have in convmn. (5-6)

The possible values for K(LI are 0,1,... ,k. When JKCII 0, K

and L are disjointwhile when KL k, K and L are identical. In

general, there are

pairs of k-subgraphs of a digraph on g nodes for which K ( L j.

Now we define the average value of PKL(u,v) over all choices of K

and L such that IKnLi as

— 1
K L(u,v). (5-8)

P(uv) g g-] k KLJj
k k-j j

.It should be emphasized that the various probabilities defined

in (5—3), (5—4), (5-5), and (5—8) must be calculated explicitly in

order to apply the general results to particular cases. Thus, we

use Theorem 1 to specify what probabilities must be computed and

coiibined to get the ncments of a subgraph census.

Theorem 1: Using the notation given above and assuming that a random

digraph is generated some specific but completely general stochastic
mechanism the first and second rroments of defined in (5-2) are given

.
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(a)
ECHU) :()j(u)

(b) Var(H) Cu) (l-(u))+ () (()C.(uu)-((u))2]
(5-10)

(c) Cov(H,H)
- ()uv) + () (k):.,V - (5-11)

Proof: First we prove (a).

E(H) E( HK(u) ) E(H<(u))
K K

but HK(u) is an indicator variable so that its expected value is merely

its probability of being one, thus

E(H) P {<(u) Cu)

proving part (a).

Since formula (b) is the special case of formula (c) for uv,

we only prove (c).

Coy (H, H) Coy ( HK(u), HL (v))
K L

Coy (HK(u), HL(v)).
K,L

But Coy (HK(u), HL(v))

P HK(u) 1 and HL(v) -
P{HK(u) i) p HL(v)

PK,L(u,v) - K (u)

thus

Coy (H,H)
K,L

K,L (u,v)
K,L

1L
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1

jO IKLIi
-

[( (u)] ()
(v)

jO () () () (uv) -

()2(U)(V)
. (5-12)

We nc use the fo11iing fact about binomial coefficients:

jO( () () (5-13)

Using (5_13)we rry rewrite (5—12) as fo1lcis:

Coy (H H )
U, V

jQ (= () (uv) - ( jO () () (u)(v)

() (:) (ic) [(uv) — (u)(v)] (5—14)

We get (c) from (5-14) and the observation that if u v then

since a k-subg'aph can only be of one isorrDrphism type. We get (b) from

(5-14) and the fact that if uv then (u,u)

B. Moments of a Triad Census

The fo11ing corollary fol1s inmediately from Theorem 1 in that it

specializes it to k3 -- the triad census. It is almost exactly the same

as Theorem 1 of Holland and Linhardt [1970] except that it a11s a more

general stochastic mechanism to generate the random digraph.

Corollary 1: Under the assumptions of Theorem 1, the first and second

moments of a triad census T are given y:

.



(a) E(T) () (u)

2

(5-15)

(b) Var (Ta) () (u) (l-(u)) + () • () () [(uu)-((u))2] (5-16)

(c) Ccv (TUTV) - () (u)(v) + () () () (5-17)

In Holland and Leinhardt [1970] we derived some of the relevant probabilities

for a particular random digraph that was introduced in Davis and Leinhardt

[1972]. Since we have discussed these derivations extensively elsewhere,

we shall only give a description of the random digraph and the complete

tables of the relevant probabilities.

The UIMAN Random Digraph Distribution: This is the probability dis-

tribution on the set of all digraphs with g nodes which makes all digraphs

with given values of N, A, and N (defined in (14_3), (L_!4) and (L_5))

equally likely. In other words, this is the uniform distribution on the

set of all labeled digraphs having given values of N, A, and N -- hence

the notation UIMAN. One way to generate random digraphs from this dis-

tribution is as follcs. First randomly allocate M mutual pairs to the

() possible pairs. Next randomly allocate A asymmetric pairs to the

rerrining ((fl - N) pairs and then randomly and independently orient the

asymmetric pairs. The result is a random labeled digraph with the given

values of M, A, and N and all such digraphs are equally likely to be

generated by this mechanism.

A random digraph with the UIMAN distribution possesses certain properties
which simplify the calculation of pK(u), pKL(u,v), (uv) and (u). The

UIMAN distribution on the set of digraphs is "horrDgeneous" in the sense

that it is invariant under permutations of the labels given to the nodes.
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Because of this property, pK(u) does not depend on K so that we have

(u) p(u) (5—18)

P {triad involving nodes 1,2,3 is of type u}

Furtherricre, the probabilities PKL(u,v) only depend on u,v and I K LI

so that if KrLj

then

.(u,v) P(uV) . (5-19)

,Finally it is also easy to see that for the U IMAN distribution

p0(u,v) p1(u,v) . (5—20)

Corollary 2 suirirrrizes the above discussion.

Corollary 2: For a triad census T from a random diaph with the U IMAN

distribution the means ,variances and covariances are given :

(a) E(T) () p(u) (5-21)

(b) Var (Ta) p(u)(l-p(u)) +
2

() [(u - (p(u))2]

+
()

(g-3) [p2(u,u) - (p(u))2] (5-22)

(c) Coy (T,T) - () p(u) p(v) ÷ () 2 ( ) [p0(u,v)
- (p(u))2]

+
()

(g-3) [p2(u,v) - p(u) p(v)], (5-23)

where

p(u), p(u,v) and p2(u,v) are given in Tables 5-1, 5-2, and 5-3.
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In Holland and Leinhardt [1970] we illustrated ha some of the values

of p(u), P0(u,v) and p2(u,v) are calculated so we do not repeat these

derivations here. Tables 5-1,2,3 give the formulas for p(u), p0(u,v) and

p2(u,v)
for the U!MAN distribution, extending the coesponding tables in

Holland and Leiithardt [1970] which only gave values for the intransitive

triad types, i. e., those which contain at least one intransitive configu-

ration.

In Tables 5-1,2,3, we have used the decending factorial notation in

which XX-1 (X-k+1). Fithermore, Tables 5-1,2,3 contain only the

nLunerator for the probabilities. The denomenators are respectivly

D1, D2 and D3 where

D1 () (5_2)

D2 () (5_25)

D3 () (5_26)

Tables 5-1,2,3 go about here

C. Moments of Linear Combinations of a Triad Census

Once all the work has been done to generate the means, variances and

covariances for a random triad census T, it is very simple to calculate

the corresponding nürrients of any linear combination, 9. 'T. It is an
elementary result from probability theory that if 9.'T and stT denote

two linear combinations of the components of a triad census then

E(9.'T)
(5_27)

Var
(5_28)

and

Coy (9.'T, s'T) z s
(5_29)

where T L(T) is the vector of eected values of the Tu and T is
the covariarice matrix of T.

In section 6 we show h to use these results to develop statistical

tests of propositions about local structure in empirical socioniatrices.
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Table 5-1: Ninnerators for p(u) Under UjMAN Distribution.

.
u p(u)

(3)
003 n

012 3 a n(2)

102 3. m (2)

3 (2)021D na
3 (2)021U na
3 (2)

021C

hiD 3man

111U 3man
3 (3)

030T

030C

201 3 n m2

3 (2)120D ma
3 (2)120U ma
3 (2)120C

210 3 am2
(3)

300 m

.



(6)n

3 a

3 m

3 (2) ('4n

3 (2) ('4)n

3 (2) (14)n

('4)3man

('4)3man

3 (3)a n3
1 (3) (3)n

3

(2) (3)ma n

3 (2) (3)ma n
3 (2) (3)ma n
3 ma n3

m3 (3)

9 a2n'4

9 m a n'4

9 (3) (3)n

9 (3) (3)n

9 (3) (3)
n

(2) (3)9ma n

(2) (3)9ma n

9 ('4) (2)n

3 (If) (2)n

9 ma n3

9 (3) (2)ma n
9 (3) (2)ma n
9 (3) (2)ma n

(2) (2) (2)9m a n

3 m3 a n2

(2) (Lf)9m n

9 (2) (3)-ma n

m a(2')n(3)

9 (2) (3)ma n
(2) (3)9m an

(2) (3)9rn an

9 (3) (2)ma n
3 (3) (2)-ma n

9

9 (2) (2) (2)-m a n

9 (2) (2) (2)-m a n

9 (2) (2) (2)-m a n

(3) (2)9m an

3 m'4 n2

Table 5—2:

003

-2Gb-

Numerator for p0(u,v) Under UIMAN Distribution.

(part 1)

102

012

102

021D

021U

021C

hiD

11 1U

030T

030C

201

120D

120U

120C

210

300

021D

9 ('4) (2)n

9 ('4) (2)
n

9 ('4) (2)
n

9 (3) (2)-ma n

9 (3) (2)-ma n

9 (5) n

3 (5) n

m(2)a(2)n(2)

9 ('4)

n-ma n

9 ('4)ma n
9 ('4)ma n
9 (2) (3)a n

3 (3) (2)a n
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(part 2)

021U 0210

003

012

102

hiD "U

021D

021U a(n(2)

021C (4) (2)n 9 (4) (2)n ———

hiD (3) (2)—ma n 9 (3) (2)ma n m(2)a(2)n(2)

9 (3) (2)—ma n 9 (3) (2)ma n (2) (2) (2)9m a n m(2)a(2)ri(2)

030T
16
—a n (5)a n 9ma n 9 (4)ma n

0300
16—a n 3 (5)a n 3ma 3 (4)ma -i

201 9 (2) (2) (2)—m a n
9 (2) (2) (2)m a n m3a (2) 9 m3a n2

120D m a n 9 (4)ma n 9
(2)a(3)nm 9 (2) (3)m a n

120U m a n 9 (4)ma n 9 (2) (3)m a n 9 (2) (3)m a n

1200 (4)—ma n 9 (4)ma n 9 (2) (3)m a n 9 (2) (3)m a n

210 9 (2) (3)—m a n
9 (2) (3)m a n (3) (2)m a n m(3)a(2)n

300 (3) (2)—m a n 3 (3) (2)m a n 3 ma n 3 m an

.

.

.



Table 5—2: (cont'd) -26d-

(part 3)

030C

1 (6)
a

3 (2) (3)-m a n

3 (5)m a

3 (5)a

3 (5)- ma

3 (2) (14)a

1 (3) (3)a

003

012

102

021D

021U

021C

111D

11 1U

030T

030C

201

120D

120U

120C

210

300

030T

9 (6)
a

3 (6)a

9 (2) (3a

9 (5)ma
9 (5)m a

9 (5)ma
9 (2) (14)a

3 (3) (3)a

201

m(4)n(2)

(3) (2)m a n

(3) (2)m a n

(3) (2)m a n

(L)m an

(5)m n

120D

9 (2) (14)a

9 (2) (14)a

9 (2) (14)-m a

9 (3) (3)-m a

3 (14) (2)a

9

9

14

9
14

9
2

9

3



Ta,ble 5—2: (cont'd) —26e-

(part 4)

120U 120C

003 --- ---

012 ——— ———

102 ——- —-—

021D --- ——-

021U ——— ———

021C ——- ———

hiD ——— ———

hllu --- --- --- --- .
030T ——— ———

030C ——— ———

201 ——— ——— ———

120D ——— ——— ———

120U -- m(2)a(4) ——— ———

120C ———

210 9 m4 a2

3 (4) (2) 3 (4) (2) 3 m5 a m6300 a a
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6. Testing Structural Hypotheses

In this section we make use of the tools developed in the previous

sections in a procedure for testing propositions about local structure in

a sociomatrix. In outline, the procedure has these steps:

(1) Operationalize the proposition into a hypothesis that a particular

3-configuration will tend to occur or fail to occur in the sociontrix

(this hypothesis will usually be directional).

(2) Find the weighting vector which when applied to the triad census

will enumerate the critical 3-configuration.

(3) Use the weighting vector to enumerate the critical 3-configuration

as well as to compute its mean and variance for a random triad census.

(4) Set up a test statistic that compares the observed arid the

expected number of critical configurations and use this discrepancy as a

basis for testing the structural proposition.

We discuss each of these steps in turn.

A. Operationalizing a Structural Proposition

In this initial step we take a proposition about the structure of a

network and translate it, if possible, into a prediction about the nuffber

of 3-configurations of a particular type in observed sociomatrices. As

an example we consider Mazurts [1971] proposition mentioned earlier in

section 3A. We first note that a simple sociomatrix indicating choice or

non-choice does not represent the strength of the relation so that Mazur' s

distinction between "friends" and "close friends" has to be made on some

other basis if this proposition is to be operationalized and tested on

binary choice data. We follow Mazur's suggestion and assume that mutual
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dyads indicate "close friends" while asyrrmetric dyads indicate "friends".

Mazur's proposition leads us to examine not one but seven different 3-

configurations. They all have the reading rule given by:

ij ji 1k jk . (6—1)

The first two pairs in the reading rule refer to the pair of individuals
who are designated "close friends", "friends" or neither. The second two

pairs in the reading rule refer to the choice or non-choice of other group

merrers by the pair in question. For example, the configuration that

corresponds to "close friends agreeing on their choices" is given by:

fij ji 1k jk\
(6—2)

1 1 1 1

On the other hand "close friends agreeing on their non-choices" is the

configuration:

ji 1k jk\
3 . (6—3)

1 0

0)
"Close friends disagreeing on their choices" is given by either:

ji 1k jk\
(5_L)

1 1 0 1

or

ji 1k jk\
(6—5)

1 1 1 0

as mentioned earlier in section 3B. Since the reading rule is understood

here to be the one given in (6-1) we shall use the follciiing shorthand

notation for these configurations: (6-2) is denoted by 1111, (6-3) by 1100,
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and (6_14) or (6-5) by 1101/1110. Thus, we only use the 1ier part of the

configuration matrix and if there are two equivalent forir they are

separated by a slash. In this notation Mazur's proposition mekes predictions

about the folling seven configurations: 1111, 1110, 1101/1110, 1011/0111,

1000/0100, 1010/0101, 1001/0110. The first three deal with agreement and

disagreement anong "close friends" while the second four deal with agree-

ment and disagreement anong "friends".

N for the sii of the prediction. We propose to compare the

observed number of the seven configurations mentioned above with the

corresponding number expected in a random sociomatrix having the same

number of mutual, asyrrunetric and null dyads. This is the U MAN distribution

for a random digraph discussed in section 5, and it appears to be especially

appropriate for Mazur' s proposition because they are based on mutual and

asymmetric pairs. In view of the foregoing remerks, we would formulate

Mazur's predictions as given by the second colunui of Table 6-1.

Table 6-1 goes about here

Note that under the UIMAN distribution the seven predictions in Table

6-1 are not independent. For any observed sociorratrix the number of con-

figurations of the first four types in Table 6-1, those grouped under

"friends", sum to (g-2)A. The last three types, that are grouped under

"close friends", sum to (g-2)M. These suimtions also apply to the

expected values under the UIMAN distribution. There are therefore only 5

independent predictions. Such considerations must often be taken into

consideration when examining ucre than one configuration.
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TaMe 6-1: Results of Testing Mazur's Proposition.

Median T() for
Configuration I'bdel Predicted sign -t08 socioutrices

1011/0111 + 2.36

1000/0100
Aent

+ 1.82
Priends

{
1010/0101 ' —1.73

1001/0110
Disaeemt

Close
1111 Aent + 3.148

1100 + 1.73Friends

1101/1110 } Disagreement —3.81

.

I
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B. The Weighting Vector

In this step, we conpute the number of ways each critical configuration

occurs within the 16 triad types. Each resulting set of 16 numbers forn

the elements of the weighting vector that is applied to the triad census

to enumerate the critical configuration. For example, consider the

configuxtion denoted 1111 above from (6-2). As we go through the list

of triad types in Figure 2-2 we see that this configuration does not occur

in any triads until we come to the triad lOU. This triad contains

exactly one configuration of type 1111. Triads 210 and 300 contain,

respectively, 1 and 3 configurations of this type. Hence, the weighting

vector for the 1111 configuration is (0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 3).

Table 6-2 gives the weighting vectors for all of the configurations critical

to Mazur's proposition.

Table 6-2 goes about here

The formulas for the mean and variance of the number of these

configurations in a random triad census from the UI MN\T distribution are

given by fonr&ilas (5-27) and (5-28). A computer program that carries out

these calculations has been written and is implimented on the TROLL

interactive computer system of the National Bureau of Economic Research, Inc.

C. Setting up the Test Statistic

We let denote the weighting vector for a critical configuration, and

T denote the triad census vector as usual. Then 'T is the number of times

the critical configuration occurs in the observed sociomatrix. Under the

UIMAN distribution the expected number of these configurations is T where

is given by Corollary 2 (a). The variance where T is a
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Table 6-2: Weighting Vector for Configurations Critical to Mazur's Proposition. .
1011 1000 1010 1001 1101

Triad 0111 0100 0101 0110 1111 1100 1110

003 0 0 0 0 0 0 0

012 0 1 0 0 0 0 0

102 0 0 0 0 0 1 0

021D 0 0 2 0 0 0 0

021U 0 2 0 0 0 0 0

021C 0 1 0 1 0 0 0

111D 0 0 0 1 0 0

111U 0 0 1 0 0 0 1

030T 1 1 1 0 0 0 0

030C 0 0 0 3 0 0 0

120D
•

120U 0 0 2 0 1 0 0

120C 1 0 0 1 0 0 1

210 1 0 0 0 1 0 1

300 0 0 0 0 3 0 0

.
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16x16 matrix whose main diagonal elements are given by Corollary 2(b)

and off-diagonal elements are given by Corollary 2(c).

The difference

- (6-6)

is the discrepancy between the observed and expected nunter of critical

configurations. Under the assumption that the triad census is random

(UIMAN) the test statistic, TCQ), defined by:

— 2.

T()
(6-7)

has an approximate normal distribution with mean zero and variance one.

Approximate significance levels for values of T(Q) may be obtained from

tables of the nor,il distribution. See Holland and Leinhardt [1970]

for some simulation results bearing on the adequacy of this approximation.

Using a computer program, we have calculated the value of T(2) in

408 socioniatrices (randomly selected from those collected by Davis and

Leinhardt [1972]) for the seven critical configurations for Mazur's

proposition. In the last column of Table 6-1 we give the median value

of i(L) over these 08 sociomatrices for each of the seven critical

configurations. The results indicate that by and large the predictions

for r(2.) that derive from Mazur's proposition are supported. All of

the median t (2.) values have the predicted sign. Furthernore, Mazur' s

prediction that close friends will agree nre than friends seems to be

substantiated by direct comparison of the median T(2W) values.
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D. Another Exaule, Transitivity

Consider the follcMing proposition stated by Davis, Holland and

Leinhart (1971); "Interpersonal choices tend to be transitive -- if P

chooses 0 and 0 chooses X, then P is likely to choose X" (p. 309).

Elsewhere (Holland and Leinhardt [1971]), we have described the social

structural consequences of the transitivity of interpersonal affect when

social status is associated with asymmetry and clustering is associated

with mutuality. Here we use our method to explore the proposition's

empirical validity.

There are two critical configurations, given in (3-2) (intransitivity)
and (3-5) (trans:Ltivity). The corresponding weighting vectors are given

in Table 4-1. Using the 08 sociorrtrices mentioned above we obtained

median T (2.) values of 5.18 for transitivity and -3.89 for intransitivity.

These results support the proposition that interpersonal choices tend to

be transitive.

Hever, these results and those found for Mazur 'S proposition are

not independent of each other. Indeed, the weighting vector for trans-

itively is the componentwise sum of the weighting vector for the

configuration 1011/0111 and two times the weighting vector 1111. The

weighting vector for intransitivity is the sum of the weighting vectors

for configurations 1010/0101 and 1101/1110.

The transitivity prediction is therefore weaker than Mazur's in that it

involves fewer configurations.

We iry view the very strong observed effect of transitivity as the sum

of two more modest effects corresponding to the configurations 1011/0111

arid 1111 or conversely the effects of these two configurations rry be viewed

as the result of being "pulled along" by the very strong transitivity effect.
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7. Surrinxy and Discussion

Our purpose has been to describe a method for fornlizing and testing

theoretical propositions about regularities in social structure. The method

involves the use of graph theoretic concepts to restate verbal propositions

about local structure in terrrs of configurations. Although configurations

are relatively simple graph theoretic concepts we shed that they could be

used to represent some important social structural propositions

Arguing that nest theories of structure in interpersonal relations concern

average local properties we proceeded to develop statistical procedures

for testing the tendency of a particular property to hold across a social

network. With these procedures an investigator can determine whether the

discrepancy between the empirical occurrence, and the chance occurrence of

local structure is statistically significant. Some examples were presented

to illustrate the use of the method and its interpretation.

Sociometric data are quite coirucn. Because of their prevalence and

variety they represent an important and fundamental resource in the study

of structure in interpersonal relations. Hever, these data are complex

and, like all empirical measurements, they contain an unkncn arrcunt of

measurement error. Their inherent complexity and the likely presence of

measurement error significantly reduce their applicability to the study of

global organization in small social systems. Moreover, such application can

also be questioned from the point of view of the level at which the data

are collected. Interpersonal affect or choice data, the nest frequently

collected sociometric data, represent "surveys" of individual attitudes.
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In effect, individuals are asked to provide infonrtion on the nature of

their local ties. The task each group member is presented with is to

judge whether a single link exists from that member to other group members.

Whatever overall consistency exists in these sets of responses derives

from local regularities in interpersonal relations. Although some simple

global rrdels may fit these data, the data are rrrre properly used in the

study of local conditions.

The method we have described possesses several advantages when used

to study local structure in small-scale social systems. First, it leads

investigators to develop operational constructs which are amenable to

empirical testing. Many of the theoretical propositions advanced by

sociologists and social psychologists concern the behavioral and exper—

imental consequences of various arrangements of interpersonal relations.

However, these propositions are rarely stated with precision and an

absence of ambiguity that would permit them to be tested. Second, the

rrthod focuses attention on the analysis of average local structure in

sociometric data. It thereby exploits the essential feature of these data.

Finally the method facilitates the analysis of structural tendencies in

large collections of groups. Only through analyses of large collections of

network data will investigators be able to detect general tendencies in

the structure of social relational systems.

.
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Appendix: Conditional Uniform Distributions for Random Graphs

Various considerations lead us to study random digraphs whose distributions

are different from and often rrre complicated than the U IMAN distribution

discussed in Section 5. In this appendix we describe some of these dis-

tributions and propose an approxirrtion that may help with some of the rrcre

complicated ones.

A. Examples of Random Digraphs

The Uniform Distribution: This is the basic distribution from which all

the others we discuss here may be obtained by conditioning on particular

statistics of the graph. For the uniform distribution, all labeled digraphs

with g nodes are equally-likely. It is easy to generate the sociomatrix (X1)

for a uniformly distributed random digraph, because the are independent

zero-one random variables with

P{X..l} (A-i)
2

The UI C Distribution: This is a simple conditional distribution of the

uniform distribution just described. C defined in (-6) denotes the number

of directed edges in the graph. Thus U C is the uniform distribution con-

ditioned on C. It makes all labeled digraphs with a specified value of C

equally-lixely. It is also easy to generate the sociomatrix for such a

random graph by selecting at random and without replacement C of the g( g-l)

possible ordered pairs of nodes and allocating the C directed edges to them.

In the uniform distribution C is a random variable with a binomial distribution

whereas in the UC distribution C is not random and is fixed at a specified

value.



—36— .
The UI{X. } Distribution: This is the uniform distribution conditioned— 1+

by the out-degrees. For the U{X1÷} distribution, all labeled digraphs

with the specified out-degrees are equally-likely. To generate
(X1)

from UIX1+} observe that all the rows of (X.) are statistically inde-

pendent and that in the row we merely need to choose at random and

thwithout replacement X4 columns (excluding the i—) for the ones and set

the rest equal to zero. This distribution is an important baseline for

the allocation of choices in a sociogram. By transposing (X1) the UI{X1+
becomes the Ul{X÷.} distribution. Note that in the UI{X.+} or the Ul[X+.}

distribution the value of C is fixed since

C'x÷x÷. (A-2)
1 ]

The IJ {X. }, {X÷. } Distribution: In this distribution all labeled

digraphs with the specified values of both and {X} are equally-

likely. It is a highly non-trivial distribution and no simple way seems

to be known for generating random graphs with this exact distribution.

Nevertheless, it is of potential importance in sociometric data analysis

since it conditions out both choices-made and choices—received.

The UIM,fX1+} Distribution: In this distribution we coithine both

UIMAN and U {X1÷}. We need only specify M and {X1÷} since {X1} fixes C

and N and C fix A. N is determined by M,A and g. This is also a highly

non-trivial distribution and no simple way is known for generating graphs

from it. Again, it is of potential importance in sociometry because it

conditions out both choices-made and mutuality. Indeed, we would have

prefered to use this distribution rather than the U MAN but currently are

not able to.
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The UIM, {X1}, {X.} Distribution: In this distribution, all digraphs

with the specified values of N, {X+}, and {X+} are equally-likely. Again

this is a very difficult distribution to work with and no simple way is

known for generating graphs from it. Its value to sociorratric data analysis

sterns from the interpretation that it controls for: (1) choices-rrade

(possibly constrained by the experimental technique), (2) choices-received

(a measure of status and isolation) and (3) mutuality (a measure of friendship).

In slmrkry, there are a variety of possible types of random graphs

besides the UIMAN distribution. We have merely catalogued a few of the

important ones that stem from the notion of the uniform distribution. There

are a host of possibilities for non-uniform distributions but we will not

discuss them here. In a sense, the rin virtue of UIMAN is that it is the

nst highly conditioned uniform distribution that fixes N and A for which

we are currently able to compute the probabilities defined in Section 5.

B. Approxirrate Distributions for the Triad Census

While the UMAN distribution is useful, it does not control for the out-degrees

(which ny reflect experimental constraints like the fixed-choice procedure)

or the in-degrees (which reflect status and isolation). We are left with the

gnawing possibility that an observed triad census T from real data departs

substantially from its UIMAN expected value T not because there is structure

in the sociogram, but because T does not control for all the simple effects

we would like to condition out in our analysis.

Since a direct attack on the exact UIM, {X1÷} or UIM,
{X+}

distribution appears to be too difficult, at least at present, we propose the

folling indirect arid approxinte approach which rrakes use of the simple

nature of the conditional distributions for the multivariate noniial.
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We observe that T is a sum of loosely correlated indicator variables

(i.e. see (5-2) ), and thus it is plausible that under various random dis-

tributions T has an approximete multivariate normal distribution for large

values of g. Thus we have approxintely

T (p, ) (A—3)

for p and computed say from U M. Mect we make use of the folliing fact.

If T has the multivariate norrrl distribution in (A—3) and L T is a vector

of linear combinations of the elements of T then:

E(T L T = L t) p + L' (L L (t-p) (A-u)

and

Coy (T L T L t) - L' (L L (A-5)

Thus it is fairly simple to approximetely condition T on linear combinations

of its elements. N we make one further approximation, instead of conditioning

on {X. } we condition on the mean, C, and variance, S2 of the {X. }. While1+ out'
this is clearly a reduction in the level of conditioning used, it promises to

be useful. For example, if Sutz 0 this means that all the {X1} are equal

(i.e. the fixed - choice procedure). Now we use the result of s?ction that

C and S2 are essentially linear combinations of the triad frequencies toout

transform the problem to one of conditioning T on some of its linear corrinations.

There are various ways to impliment this approach and only direct empirical

will show us which ones are the nDst useful.

.
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