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The Statistical Analysis of Roll Call Data
JOSHUA CLINTON Princeton University
SIMON JACKMAN and DOUGLAS RIVERS Stanford University

We develop a Bayesian procedure for estimation and inference for spatial models of roll call
voting. This approach is extremely flexible, applicable to any legislative setting, irrespective of
size, the extremism of the legislators’ voting histories, or the number of roll calls available for

analysis. The model is easily extended to let other sources of information inform the analysis of roll call
data, such as the number and nature of the underlying dimensions, the presence of party whipping, the
determinants of legislator preferences, and the evolution of the legislative agenda; this is especially helpful
since generally it is inappropriate to use estimates of extant methods (usually generated under assumptions
of sincere voting) to test models embodying alternate assumptions (e.g., log-rolling, party discipline). A
Bayesian approach also provides a coherent framework for estimation and inference with roll call data
that eludes extant methods; moreover, via Bayesian simulation methods, it is straightforward to generate
uncertainty assessments or hypothesis tests concerning any auxiliary quantity of interest or to formally
compare models. In a series of examples we show how our method is easily extended to accommodate
theoretically interesting models of legislative behavior. Our goal is to provide a statistical framework for
combining the measurement of legislative preferences with tests of models of legislative behavior.

Modern studies of legislative behavior focus
upon the relationship among the policy pref-
erences of legislators, institutional arrange-

ments, and legislative outcomes. In spatial models of
legislatures, policies are represented geometrically, as
points in a low-dimensional Euclidean space. Each leg-
islator has a most preferred policy or ideal point in this
space and his or her utility for a policy declines with
the distance of the policy from his or her ideal point;
see Davis, Hinich, and Ordeshook (1970) for an early
survey.

The primary use of roll call data—the recorded
votes of deliberative bodies1—is the estimation of ideal
points. The appeal and importance of ideal point esti-
mation arises in two ways. First, ideal point estimates let
us describe legislators and legislatures. The distribution
of ideal points estimates reveals how cleavages between
legislators reflect partisan affiliation or region or be-
come more polarized over time (e.g., McCarty, Poole,
and Rosenthal 2001). Roll call data serve similar pur-
poses for interest groups, such as Americans for Demo-
cratic Action, the National Taxpayers Union, and the
Sierra Club, to produce “ratings” of legislators along
different policy dimensions. Second, estimates from roll
call analysis can be used to test theories of legislative
behavior. For instance, roll call analysis has been used
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in studies of the U.S. Congress, both contemporary and
historical (e.g., Canes-Wrone, Brady, and Cogan 2002;
Jenkins 1999; Schickler 2000), state legislatures (e.g.,
Wright and Schaffner 2002), courts (Martin and Quinn
2001), comparative politics (Londregan 2000b), and in-
ternational relations (Voeten 2000). In short, roll call
analysis make conjectures about legislative behavior
amenable to quantitative analysis, helping make the
study of legislative politics an empirically grounded,
cumulative body of scientific knowledge.

Current methods of estimating ideal points in polit-
ical science suffer from both statistical and theoretical
deficiencies. First, any method of ideal point estimation
embodies an explicit or implicit model of legislative be-
havior. Generally, it is inappropriate to use ideal points
estimated under one set of assumptions (such as sin-
cere voting over a unidimensional policy space) to test
a different behavioral model (such as log-rolling). Sec-
ond, the computations required for estimating even the
simplest roll call model are very difficult and extending
these models to incorporate more realistic behavioral
assumptions is nearly impossible with extant methods.
Finally, the statistical basis of current methods for ideal
point estimation is, to be polite, questionable. Roll call
analysis involves very large numbers of parameters,
since each legislator has an ideal point and each bill
has a policy location that must be estimated. Popular
methods of roll call analysis compute standard errors
that are admittedly invalid (Poole and Rosenthal 1997,
246) and one cannot appeal to standard statistical the-
ory to ensure the consistency and other properties of
estimators (we revisit this point below).

In this paper we develop and illustrate Bayesian
methods for ideal point estimation and the analysis of
roll call data more generally. Bayesian inference pro-
vides a coherent method for assessment of uncertainty
and hypothesis testing in the presence of large num-
bers of parameters, and recent advances in computing
put Bayesian modeling (via Monte Carlo simulation)
well within the reach of social scientists. Using our
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approach, we show how it is possible to extend the
standard voting model to accommodate more complex
behavioral assumptions. Our goal is to provide a sta-
tistical framework for combining the measurement of
legislative preferences with tests of models of legisla-
tive behavior.

A STATISTICAL MODEL FOR ROLL CALL
ANALYSIS

In theoretical work on spatial voting models, utility
functions are usually deterministic and the precise
functional form, aside from an assumption of quasi-
concavity, is not specified. For empirical work, it is
convenient to choose a parametric specification for the
utilities and to add a stochastic disturbance. Several
different specifications have been used, but all are quite
similar. We assume a quadratic utility function for leg-
islators with normal errors. Poole and Rosenthal (1997,
235–36) assume Gaussian utilities with extreme value
errors. Heckman and Snyder (1997) assume quadratic
utilities with uniform errors for one of the alternatives
and nonstochastic utility for the other. See Table 2 for
a comparison of the specifications.

The data consist of n legislators voting on m different
roll calls. Each roll call j = 1, . . . , m presents legislators
i = 1, . . . , n with a choice between a “Yea” position ζ j

and a “Nay” position ψ j , locations in R
d, where d

denotes the dimension of the policy space. Let yi j = 1
if legislator i votes Yea on the jth roll call and yi j = 0
otherwise. Legislators are assumed to have quadratic
utility functions over the policy space, Ui (ζ j ) =
−‖xi − ζ j‖2 + ηi j , and Ui (ψ j ) = −‖xi −ψ j‖2 + νi j ,
where xi ∈ R

d is the ideal point of legislator i , ηi j and νi j
are the errors or stochastic elements of utility, and ‖·‖ is
the Euclidean norm. Utility maximization implies that
yi j = 1 if Ui (ζ j ) > Ui (ψ j ) and yi j = 0 otherwise. The
specification is completed by assigning a distribution
to the errors. We assume that the errors ηi j and νi j
have a joint normal distribution with E(ηi j ) = E(νi j ),
var(ηi j − νi j ) = σ 2

j and the errors are independent
across both legislators and roll calls. It follows that

P(yi j = 1) = P(Ui (ζ j ) > Ui (ψ j ))

= P(νi j − ηi j < ‖xi −ψ j‖2 − ‖xi − ζ j‖2),

= P(νi j − ηi j < 2(ζ j −ψ j )
′xi

+ψ′
jψ j − ζ′

jζ j )

= Φ(β′
j xi − α j ), (1)

where βj = 2(ζ j −ψ j )/σ j , α j=(ζ′
jζ j −ψ′

jψ j )/σ j , and
Φ(·) denotes the standard normal distribution func-
tion. This corresponds to a probit model with an un-
observed regressor xi corresponding to the legislator’s
ideal point (a logit model results if the errors have
extreme value distributions). The coefficient vector βj
is the direction of the jth proposal in the policy space
relative to the Nay position.

Given the assumptions of independence across leg-
islators and roll calls, the likelihood is

L(B, α, X | Y) =
n∏

i=1

m∏

j=1

Φ(x′
iβj − α j )yi j

× (1 − Φ(x′
iβj − α j ))1−yi j , (2)

where B is an m× d matrix with jth row β′
j , α =

(α1, . . . ,αm)′, X is an n × d matrix with ith row x′
j , and

Y is the n × m matrix of observed votes with (i, j)th
element yi j .

The model, as described above, is the simplest pos-
sible form and is a convenient starting point for more
elaborate models. For instance, we show later how it
is possible to add party effects to this specification.
Clinton and Mierowitz (2001) modify this framework
to study agenda dependence. It is also possible to in-
corporate vote trading and cue-taking into the model
by making the utility of one legislator dependent upon
either the utility or the voting behavior of another.

The spatial voting model is equivalent to the two-
parameter item response model used in educational
testing,2 where βj is the item discrimination parameter
and α j is the item difficulty parameter, but in the roll
call context the latent trait or “ability” parameter xi
is the ideal point of the ith legislator. There is a large
literature in psychometrics on estimation of these mod-
els (e.g., Baker 1992 and Bock and Aitken 1981), but
the focus is usually on estimation of the βj (the item
parameters), which are used for test equating. In roll
call analysis, however, primary interest almost always
centers on the xi (the ideal points), while in psycho-
metrics the x j (ability parameters) are usually treated
as random effects.

Identification

As it stands, model (2) is not identified. For example,
suppose that we transform the matrix of ideal points
X by premultiplying by an invertible d × d matrix R
and apply the inverse transformation to the direction
vectors B, X∗ = XR and B∗ = BR−1. Then the likeli-
hood L(B, α, X | Y) = L(B∗, α, X∗ | Y) for all possible
voting patterns Y: no data can distinguish between the
different parameter values because any translation or
rotation of the ideal points and proposals leaves the
distances between ideal points and alternatives un-
changed.

Identification is essential for standard methods of
estimation, such as maximum likelihood, which are in-
consistent when the model is unidentified. The role
of identification in Bayesian estimation is more con-
troversial. Bayesian procedures can be applied to
unidentified models, though the data are only infor-
mative about identified parameters (e.g., Neath and
Samaniego 1997). However, in many cases it is difficult
to formulate a reasonable prior for problems involving

2 This equivalence has been noted by several authors, including
Bailey and Rivers (1997), Londregan (2000a), and Poole and
Rosenthal (1997, 247).
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arbitrary rescalings. For example, we may have some
prior information about tomorrow’s temperature, but
it is very difficult to quantify this information unless we
agree in advance whether temperature is measured on
the Fahrenheit, the celsius, or some other scale. This is
a simple example of normalization. The same problem
occurs in policy spaces since both the origin and the
metric are arbitrary.

Rivers (2003) derives necessary and sufficient con-
ditions for identification of multidimensional spatial
models based upon a priori restrictions on the ideal
point matrix X. In the case of a unidimensional policy
space, the identifying conditions are straightforward:
Two linearly independent restrictions on the ideal point
matrix X are required. One possibility is to constrain
the positions of two legislators at arbitrary positions,
e.g., Kennedy at −1 and Helms at +1. Alternatively,
we can constrain the ideal points to have mean zero
and standard deviation one across legislators. This is
sufficient for local, but not global, identification (since
the left–right direction can be reversed by reflecting the
ideal points around the origin and reversing the policy
directions).

In d-dimensional choice spaces, d(d + 1) linearly in-
dependent a priori restrictions on the ideal points X are
required for identification. Thus, in two dimensions, it is
necessary to fix the positions of three legislators (three
ideal points, each with two elements). In general, local
identification can be achieved by fixing the positions
of d + 1 legislators. Estimation becomes progressively
more difficult in higher dimensions. In addition to the
necessary identifying restrictions, it is also beneficial to
add other a priori information (see Jackman 2001 for
an example).

ESTIMATION AND INFERENCE

The classical or frequentist approach treats ideal points
as fixed but unknown parameters. An estimation tech-
nique, such as maximum likelihood, is evaluated by
considering its sampling distribution. We imagine the
ideal points and other parameters to be fixed and draw
repeated samples from the same data generating pro-
cess. Each of these samples is a hypothetical roll call
governed by the same ideal points and bill parame-
ters. Because voting is probabilistic (see equation [1]),
each sample yields different votes and hence different
estimates of the ideal points and other parameters. The
sampling distribution of an estimated ideal point is its
distribution across a set of hypothetical roll calls.

TABLE 1. Number of Parameters in Roll Call Analyses
Dimensions (d )

Legislators Roll Calls
Legislature (n) (m) 1 2 3
U.S. Supreme Court, 1994–97 9 213 435 657 879
105th U.S. Senate 100 534 1,168 1,802 2,436
93rd U.S. House 442 917 2,276 3,635 4,994
U.S. Senate, 1789–1985 1,714 37,281 76,276 115,271 154,266
U.S. House, 1789–1985 9,759 32,953 75,485 118,017 160,549

The Bayesian approach, in contrast, treats the un-
known ideal points and other parameters as random
variables and conditions upon the observed roll call
data. We represent any a priori information by a prior
distribution over the parameters. Bayes’ formula de-
scribes how to combine the prior information with the
observed data to obtain a posterior distribution which
summarizes our information about the parameters hav-
ing seen the roll call data. The Bayesian approach, as
we will see, allows us to make probability statements,
such as “Kennedy is more likely than O’Connor to be
the median justice on the Supreme Court.” Of course,
this kind of statement is meaningless from the fre-
quentist perspective, which treats the ideal points as
fixed.

Bayesian methods are often thought of primarily as a
way to use nonsample information in estimation. (See
Western and Jackman 1994 for some examples from
political science.) Our motivation for using Bayesian
methods in roll call analysis, however, is rather differ-
ent. Roll call data sets are usually very large, so in most
cases the benefit to introducing additional a priori infor-
mation is slight. Instead, the real benefit to the Bayesian
approach is that it turns a very difficult classical estima-
tion problem into a fairly routine application of Markov
chain Monte Carlo (MCMC) simulation. Moreover, the
Bayesian approach lets us make inferences about ideal
points and substantive hypotheses that were intractable
with classical techniques. And in addition, the Bayesian
model and estimation procedures are easily extended
to handle more complex formulations.

To understand better the computational challenge
that roll call analysis presents for classical estimation,
consider the number of parameters that need to be es-
timated in some typical applications. With data from
n legislators voting on m roll calls, a d-dimensional
spatial voting model gives rise to a statistical model
with p= nd + m(d + 1) parameters. Table 1 presents
values of p for five different data sets. A moderately
sized roll call data set (say the 105th U.S. Senate) with
n = 100, m= 534 nonunanimous roll calls, and d = 1
yields p= 1,168 unknown parameters, while a two-
dimensional model has p= 1,802 parameters. A typical
House of Representatives (e.g., the 93rd House) set has
n = 442 and m= 917, so a one-dimensional model has
p= 2,276 parameters, while a two-dimensional model
has p= 3,635 parameters. Pooling across years dra-
matically increases the number of parameters: For in-
stance, Poole and Rosenthal (1997) report that fitting a
two-dimensional model to roughly 200 years of U.S.
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House of Representatives roll call data gave rise to an
optimization problem with p> 150,000 parameters.

The proliferation of parameters causes several prob-
lems. The usual optimality properties of conventional
estimators, such as maximum likelihood, may not hold
when, as in this case, the number of parameters is a
function of the sample size (see Lancaster 2000 for a
recent survey). In particular, the customary asymptotic
standard error calculations, using the inverse of the in-
formation matrix, are not valid. As a practical matter,
the size of the information matrix is too large for direct
inversion. Poole and Rosenthal (1997, 246) take the
obvious shortcut of fixing the bill parameters at their
estimated values before calculating standard errors for
the ideal point estimates. They point out that this is
invalid, but it reduces the computational burden by an
order of magnitude.

The Bayesian methods of estimation and inference
proposed here are valid for finite samples and do not
rely any large sample approximations. The number of
parameters is fixed for any particular estimation prob-
lem by the actual number of legislators and roll calls
and Bayes’ theorem gives the posterior distribution of
the parameters conditional upon the observed data.
The only approximation involved is the simulation
of the posterior distribution and this approximation
can be made to any desired degree of accuracy by in-
creasing the number of simulations (n.b., not the sample
size, which is fixed for any given data set).

Details of the Bayesian simulation procedure we
adopt are provided in the Appendix, but a brief heuris-
tic explanation may be useful. The fundamental diffi-
culty in roll call analysis is that everything other than the

TABLE 2. Comparison of Ideal Point Estimation Methods
CJR W-NOMINATE Heckman–Snyder
Legislators’ utilities, deterministic component
Quadratic Gaussian, with fixed scale parameter Quadratic

Legislators’ utilities, stochastic components
Normal (yielding a probit model Type 1 extreme value (logit) Difference of utilities for “Yea” and

or Type 1 extreme value “Nay” alternatives has a stochastic
(yielding logit) component with U [0, 1] distribution,

yielding a linear probability model

Identification for one-dimensional case
Fix two legislators ideal points Constrain legislators’ ideal points Identified only up to scale or

at −1 and 1, or constrain ideal to [−1, 1] reflection
points to have mean zero and
unit variance

Estimation
Exploration of posterior density Alternating conditional maximum FGLS factor analysis

via Markov chain Monte Carlo likelihood

Uncertainty assessments/standard errors
Arbitrarily precise; can be Approximate for ideal points, after None

approximated to any desired conditioning on estimates
degree of accuracy via additional for bill parameters
samples from joint posterior
density of model parameters

votes is unobservable: The ideal points, bill parameters,
and utilities are unknowns. But if it were possible to im-
pute values to the bill parameters and utilities, then the
ideal points could be estimated by regression. By the
same logic, if we were able to impute values for the ideal
points and utilities, the bill parameters could also be
estimated by regression. The MCMC algorithm repeat-
edly performs these imputations and regressions, start-
ing from an arbitrary point and alternating between
simulation of the ideal points, bill parameters, and util-
ities. Under a wide set of conditions (e.g., Tierney 1996)
MCMC algorithms are guaranteed to generate samples
from the posterior density of the model parameters, re-
gardless of where in the parameter space the algorithm
is initialized. In principle, MCMC algorithms are not
hampered by the large number of parameters encoun-
tered in roll call analysis, although obviously compu-
tational time increases with the number of legislators
and/or roll calls (see the Appendix) and monitoring the
performance of the algorithm is more costly.

We use intentionally vague priors for most of the
parameters. For each application below, we describe the
actual prior used, but except where noted, the results
appear to be insensitive to choice of prior.

COMPARISON WITH OTHER METHODS OF
IDEAL POINT ESTIMATION

Having detailed our approach, Table 2 provides a
summary of the differences between our approach,
W-NOMINATE, and the factor-analytic approach of
Heckman and Snyder. Our approach has more in com-
mon with W-NOMINATE than the Heckman–Snyder
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factor analysis approach. The Heckman–Snyder factor-
analyic approach is distinctive in that the relatively
simple statistical model (factor analysis) does not fol-
low neatly from a formal model of legislative voting as
our quadratic-probit model or the normal-logit model
underlying W-NOMINATE3 but provides ideal point
estimates relatively cheaply; indeed, factor analysis
supplies starting values for both the NOMINATE al-
gorithms and our Bayesian simulation approach.

Example 1: 106th U.S. House of
Representatives

To illustrate the differences and similarities between
existing approaches and our simulation-based
Bayesian estimator, we first analyze roll calls from the
106th U.S. House of Representatives via the several
methods. We fit a one-dimensional model to these
data using principal components (extremely similar to
the Heckman–Snyder estimator),4 W-NOMINATE,
as well as our Bayesian approach. We use the probit
version of our model and impose the identifying con-
straint that the legislators’ ideal points have mean zero
and unit variance across legislators. After discarding
lop-sided votes, W-NOMINATE uses 871 roll calls and
does not fit an ideal point for Livingston (R-LA), who
resigned from Congress in February 1999 after voting
on 19 roll calls in the 106th House. Lop-sided votes and
short voting records pose no problems in the Bayesian
approach; we estimate ideal points for all legislators
and include all but unanimous roll calls, yielding
m= 1,073 roll calls in all, comprising 444,326 individual
voting decisions. With predicted probabilities of .5 as
a classification threshold we correctly classify 89.9%
of the individual voting decisions5 and find that 1,007
of the 1,073 (93.8%) roll calls discriminate with respect
to the single latent dimension.6 Of the 66 roll calls that

3 The issue is that the Heckman–Snyder factor analytic statistical
model results from a linear probability model for roll call voting, in
turn driven by the assumption that the stochastic component of the
legislators utility differential (the net utility a legislator has for voting
Yea over voting Nay) follows a uniform distribution. In turn, the util-
ity functions that rationalize this statistical model have unspecified
stochastic components, since there does not exist a distribution such
that the difference of two independent realizations from it yield a
quantity with a uniform distribution. While no more ad hoc than
the usual stochastic assumptions (normal or Type-1 extreme value
errors), the H–S assumptions are somewhat idiosyncratic. This tech-
nical point aside, there are other more practical reasons to prefer our
approach over factor-analytic approaches, such as the availability of
standard errors and the extensibility of the model.
4 We implement the principal components estimator as follows: (1)
compute an n × m matrix D by double-centering the roll call matrix,
(2) compute P, an n × n correlation matrix (the correlation matrix
of D′, using pairwise deletion of missing data), and (3) take the first
d eigenvectors of P as the ideal point estimates for a d-dimensional
model.
5 This classification rate is a function of the unknown model param-
eters and, so, is itself subject to uncertainty; here we report the clas-
sification rate averaging over uncertainty in the model parameters.
See the discussion of auxiliary quantities of interest in section.
6 That is, these 1,007 roll calls all had slope coefficients (βj , the
equivalent of item discrimination parameters) whose 90% posterior
confidence intervals did not cover zero.

fail to discriminate with respect to the recovered dimen-
sion, only two roll calls were decided by margins closer
than 60%–40%. In short, a one-dimensional model ap-
pears to be a very good characterization of these roll call
data.

Figure 1 plots the three sets of ideal point esti-
mates against one another. This figure exemplifies a
pattern we have seen in many other roll call data
sets: When n and m are both reasonably large and a
low-dimensional model fits the data well, there is ex-
tremely little difference in the ideal point estimates
produced by W-NOMINATE and our Bayesian esti-
mator. In this specific example, n = 440, m= 1,073, and
a one-dimensional model gives an extremely good fit to
the data (as is typical of recent U.S. Congresses), and
the ideal point estimates correlate at .996. Nonethe-
less, by retaining more of the lop-sided votes than
W-NOMINATE, our Bayesian estimator can discrimi-
nate among extremist Democrat legislators (in the left
tail), effectively “stretching” the distribution of the
Democrats ideal points relative to W-NOMINATE’s
estimates. The comparison of both W-NOMINATE
and our Bayesian estimator with the principal com-
ponents estimator reveals the linearity of the factor
analytic model, with the two nonlinear models both
generating more discrimination among extremist legis-
lators.

ESTIMATION AND INFERENCE FOR
AUXILIARY QUANTITIES OF INTEREST

An advantage of the Bayesian approach is that it is
straightforward to estimate posterior distributions over
any auxiliary quantity of interest that is a function of
the model parameters. These quantities of interest can
be any function of the model parameters, as we now
demonstrate.

Example 2: Pivotal Senators in the 106th
U.S. Senate

The notion of pivotal legislators is critical to many
theories of legislative behavior. For instance, superma-
jorities are often needed for extraordinary legislative
action, such as the two-thirds majority required to over-
ride a presidential veto or the 60 votes needed to pass
cloture motions in the U.S. Senate. Order statistics of
ideal points play a prominent role in theories of leg-
islative politics: e.g., the “gridlock interval” is defined
as the region between the filibuster pivot and the veto
pivot, and in the case of a liberal president the gridlock
interval is bounded on the left by the veto pivot (the
33rd senator) and on the right by the filibuster pivot (the
60th senator) (e.g., see Krehbiel 1998, Fig. 2.2). Formal
theories of legislative politics make sharp and exact
predictions on the basis of these pivotal locations: e.g.,
proposals that attempt to change status quo policies
located in the gridlock interval will not succeed. To op-
erationalize these theoretical predictions, the gridlock
interval is usually computed using the estimated ideal
points of the corresponding legislators (e.g., Howell
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FIGURE 1. Comparison of W-NOMINATE, Bayesian, and Principal-Components Factor Analysis
Estimates of Ideal Points, One-Dimensional Model, 106th U.S. House

et al. 2000). Similarly, Schickler (2000) characterizes
the parties’ ideological positions with the ideal points of
the median legislator within each party. Given the im-
portance of individual legislators such as the chamber
median or the “filibuster pivot” (i.e., the 40th senator),
it is straightforward to generate posterior estimates for
both the identity and the spatial location for such leg-
islators in our Bayesian simulation approach.

Consider the task of uncovering the identity of the
“pivotal” senators in the 106th Senate (n = 102, m= 596
nonunanimous roll calls; there are 102 senators because
of the replacement of John Chafee (RI) by his son
Lincoln Chafee and the replacement of Paul Coverdell
(GA) by Zell Miller, although in assessing rank order
we ignore the “replacement senators”). We fit a unidi-
mensional model to these data, again with the identifi-

cation constraint that the ideal points have mean zero,
variance one across legislators. To determine which
senators are critical for invoking cloture or which are
the median senators requires recovering the posterior
distribution of the rank of each senator’s ideal point.
We compute this by repeating the following scheme an
arbitrarily large number of times: (1) sample the leg-
islators’ ideal points xi from their joint posterior den-
sity; (2) rank order the sampled ideal points; (3) note
which legislator’s occupies a particular pivot or order
statistic of interest. We then report the proportion of
times the ith legislator’s ideal point is the pivot or order
statistic of interest over these repeated samples from
the posterior of the ideal points. Since we are working
with an arbitrarily accurate approximation of the joint
posterior density for the ideal points, inferences as to
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the ranks and the identity of the legislators occupying
particular ranks are also arbitrarily accurate.7

Figure 2 summarizes the posterior densities over the
identities and locations of the senators at key pivot
points. We omit the “replacement senators” Chafee and
Miller from these calculation. There is almost no doubt
as to identity of the chamber median: Republican Sen-
ators Snowe and Collins are the only senators with pos-
itive probability of being the 50th senator, with Collins
overwhelmingly most likely to be the 50th (p= .98).
Twenty-two senators have discernible probability of
being the veto pivot (the 33rd senator), with 10 sen-
ators having probabilities greater than 5% of being the
veto pivot: Senators Baucus (p= .12), Biden (p= .11),
Johnson (p= .08), Graham (p= .08), Bayh (p= .08),
and Cleland (p= .08) account for roughly half of the
uncertainty as to the identity of the veto pivot, but
clearly no one senator is unambiguosly the veto pivot.
Thirteen Republican senators have positive probability
of being the filibuster pivot (the 60th Senator), five
of whom have p> .05, with Stevens the most likely
candidate for the filibuster pivot (p= .41), followed by
Warner (p= .26) and Campbell (p= .09).

A similar computation can be performed to recover
the estimated spatial location of pivotal legislators. The
right-hand panels in Figure 2 show the location of the
median, veto pivot, and filibuster pivot (with confi-
dence intervals), along with the estimated ideal points
(posterior means) and 95% confidence intervals of ad-
jacent senators. Again, it is apparent that there is little
uncertainty as to the median (Senator Collins). But an
interesting result arises for the veto pivot: Although
we are unsure as to the identity of the veto pivot, we
are quite sure as to the veto pivot’s location. A similar
result is also apparent for the filibuster pivot. While we
may be able to pin down the location of either pivot
with some precision, we do not know which legislators
will be the veto and filibuster pivots on any given vote.
This is a seldom noticed feature of contemporary U.S.
Congresses, but one with implications for lobbying and
legislative strategy; i.e., relatively precise knowledge of
where the pivots lie does not correspond to knowing the
identity of pivotal legislators, whose votes are necessary
to guarantee cloture or veto-proof majorities.

Example 3: Party Switchers and the “Party
Influence” Hypothesis

A major advantage of our modeling approach is the
ability to extend the model to encompass alterna-
tive models of legislative behavior. For instance, thus
far we assumed a Euclidean spatial voting model,
in which, conditional on legislators’ unobserved ideal
points (which are considered constant over the period

7 In principle, one could implement a similar procedure with
W-NOMINATE estimates, but two complications arise: (1) all
covariances among ideal points are implicitly set to zero since
W-NOMINATE only reports pointwise standard errors on each ideal
point and (2) an asymptotically valid normal approximation is as-
sumed to characterize ideal point uncertainty (less pressing when
working with large roll call data sets). Lewis and Poole (2003) use
parameteric bootstrapping.

spanned by the roll call data), voting is independent
across legislators and roll calls. In the next set of exam-
ples we consider alternatives to this basic setup, all of
which are easily accommodated in our approach.

A question of particular interest to congressional
scholars is the influence of political parties on the
voting records of legislators. Party switchers—that
is, legislators who change parties between elections,
while continuing to represent the same geographic
constituency—provide something akin to a natural ex-
periment: The switcher’s change in party affiliation
helps identify a “party effect,” since many other deter-
minants of roll call voting remain constant (e.g., char-
acteristics of the legislators’ constituency). The typical
investigation of party switchers (e.g., Nokken 2000)
uses a “pre/post” or “differences-in-differences” de-
sign, comparing changes in ideal point estimates for
the party switcher relative to the changes among the
switcher’s fellow legislators or a random selection of
nonswitchers (McCarty, Poole, and Rosenthal 2001).8
By definition, splitting the roll call data into “pre” and
“post” switching periods gives us fewer data than in the
entire legislative session, and, as a consequence, ideal
point estimates based on the pre and post sets of roll
calls will be less precise than those based on all roll calls.
Any comparison of change in the ideal points ought to
properly acknowledge the relative imprecision arising
from the smaller sets of roll calls available for anal-
ysis. A strength of our Bayesian simulation approach
is that we routinely obtain uncertainty assessments for
all model parameters, and all inferences will reflect the
drop in precision occasioned by slicing the roll call ma-
trix around the party switch.

The flexibility of our approach lets us formally embed
a model for change in ideal points in a statistical model
for roll call data, greatly facilitating investigation of
the party switching hypothesis. Let s ∈ {1, . . . , n} des-
ignate the party switcher and xi1 and xi0 be the ideal
points of legislator i in the postswitch and preswitch
periods, respectively. Then a weak form of the party
switcher hypothesis is that δs ≡ xs1 − xs0 �= 0 (i.e., the
party switcher’s ideal point changes, presumably in
a direction consistent with the change in parties). A
strict form of the party switcher hypothesis involves
the n − 1 additional restriction δi ≡ xi1 − xi0 = 0, if i �= s
(i.e., the party switcher is the only legislator whose
preswitch and postswitch ideal points differ). An in-
termediate version of the switching hypothesis main-
tains that legislative ideal points may “drift” but that
the party switcher’s δs is larger than the nonswitchers’
δi . In any event, we require estimates of each legisla-
tors’ δ, either by running two separate analyses (split-
ting the roll call data around the time of the party
switch) or by a more direct (but equivalent) approach

8 An obvious threat to this approach is self-selection into the “treat-
ment” of party switching, say, if party switching is motivating by
change in the personal preferences of the legislator; in this case we
could not distinguish any party effect from an effect due to the per-
sonal preferences of the legislator, but we do not pursue this issue
here. Other analyses of party switchers have also noted this problem:
See McCarty, Poole, and Rosenthal (2001, 686).
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FIGURE 2. Uncertainty Over Identity and Location of Pivots, 106th U.S. Senate

Note: Left panel, summarizes uncertainty as to the identity of each pivot, Indicating the posterior probability that a particular senator
occupies the pivot. Right panel summarizes the uncertainty in the location of the pivot, the point indicating the posterior mean and the
bars covering a 95% confidence interval.
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in which we parameterize the postswitch ideal points
as xi0 + δi , i = 1, . . . , n.

Since the pre- and post-switch roll calls do not refer
to identical proposal and status quo positions, some
normalization is required to compare the resulting
ideal point estimates. Our solution is to focus on rel-
ative changes, since without further assumptions, any
“global” or “uniform” shift in the legislative agenda
or preferences around the party switch is unidentified.
That is, the average postswitch legislative proposal may
be more liberal than the average preswitch proposal
by distance ω, or (observationally equivalent) all leg-
islators may move ω to the right (put simply, there is
no guarantee that the pre and post ideal point esti-
mates are comparable). Solutions to this scaling prob-
lem abound: One could try to find bills with iden-
tical “Yea” and “Nay” locations in both periods, or
assert that particular legislators do not move across
the party switch. The identifying restriction we adopt
is to estimate subject to the constraint that the legis-
lators’ ideal points have mean zero and unit variance
in each period and that we interpret the δi as relative
changes.

We illustrate our method with the 107th U.S. Senate.
On May 24, 2001, Senator James M. Jeffords (VT)
announced that he would leave the Republican party
and become an independent. The switch was partic-
ularly consequential, giving the Democrats control
of the Senate: The postswitch partisan composition
was 50 Democrats, 49 Republicans, and 1 Indepen-
dent (Jeffords). One hundred forty-eight nonunani-
mous votes were recorded in the 107th Senate prior
to Jeffords’s switch, and 349 were recorded post-
switch.

Figure 3 summarizes the preswitch and postswitch
ideal point estimates (top panels) and rank orderings
(lower panels). We find that the ideal points underly-
ing Jeffords’ voting behavior differ across the switch:
The estimate of Jeffords’s postswitch ideal point is
statistically distinguishable and more liberal than the
preswitch estimate, indicating that a shift in Jeffords’s
preferred policy position accompanied his switch in
party affiliation.

But of course, there are numerous other senators
who do not switch parties but whose ideal points do
move markedly. Points above (below) the 45◦ lines in
the left-hand panels in Figure 3 indicate senators mov-
ing in a conservative (liberal) direction. The 10 largest
changers in terms of ideal points are presented in the
top-right panel; the 10 largest changers in terms of rank
order appear in the lower-right panel (horizontal bars
indicate 95% confidence intervals). The largest changer
in terms of spatial location is Wellstone (D, MN), with a
jump to the left estimated to be about .75 on the recov-
ered scale. Since Wellstone is a preference outlier, his
ideal points (and hence change in ideal point) are esti-
mated with considerable imprecision. Jeffords’s change
is almost as large, but estimated with considerably more
precision. However, even after taking into account un-
certainty in the magnitude of the changes, there is no
disputing that Wellstone’s change is larger: The prob-
ability that Wellstone’s change is the largest change is

.284, while the probability that Jefford’s change is the
largest is only .068.9

Intriguingly, other large changers in terms of spatial
location are the two party leaders, Daschle (D, SD)
and Lott (R, MS). With Jeffords leaving the Republi-
cans, Daschle becomes majority leader while Lott be-
comes minority leader. Both Daschle and Lott move
in a conservative direction, and are the third and fifth
largest changers, respectively. When we trun to a con-
sideration of ranks (lower panels in Figure 3; Daschle is
the largest switcher, moving 31 places to the right and
becoming markedly more moderate relative to other
senators. Daschle changes from about the 10th senator
(95% bound: 2nd–21st) to the 41st (35th–45th) sena-
tor (arraying senators from left to right, or liberal to
conservative), jumping from being unambiguously on
one side of the Democratic senate median to the other.
Lott is the fourth largest changer in terms of ranks (20
places), jumping from the 77th senator (68th–87th) to
the 97th (95th–100th). Jeffords, the party switcher, is
only the seventh largest switcher in terms of ranks and
is the largest switcher with probability .01. Daschle is
the largest switcher in terms of rank, with probability
.786. We would reject any hypothesis that the party
switcher’s change was the largest change we observe,
in terms of either spatial location or ranks.

These results are based on a unidimensional fit to
a single congress, and, fortuitously, a party switch that
brought about a change in party control of the Senate,
and so we are cautious about reaching for any broad
conclusion. Nonetheless, these results are consistent
with policy moderation by majority leaders, perhaps in
order to more effectively represent and articulate party
policy positions, or even so as to secure the majority
leadership in the first instance.

This example models change in ideal points around
a recent, vivid instance of party switching. But other
models of change in ideal points can be easily fit into
this framework. Party switchers perhaps provide the
most direct evidence of party effects, but the method-
ology can be used to examine changes elsewhere (e.g.,
across congressional sessions, congresses, or politically
consequential “shocks” in American political history).

Example 4: A Two-Cutpoint, “Party
Influence” Model

Our final example again examines the question of party
pressure in legislative behavior. The standard model
assumes that conditional on a legislator’s ideal point xi
and the vote parameters βj , vote yi j is independent of
yi ′j ′ , for all i �= i ′, j �= j ′: e.g., shocks making legislator
i more likely to vote Yea do not make legislator i ′ any

9 The probability that Senator X is the biggest changer is computed
as the proportion of times a particular senator’s change is the largest
change, over many draws from the posterior density of the preswitch
and postswitch ideal points (i.e., we induce a posterior density on
the identity of the largest switcher. This example again highlights the
flexibility and ease of the Bayesian simulation approach to estimation
and inference for roll call analysis. See also the earlier example where
we induce posterior densities over the identity of critical pivots.
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FIGURE 3. Comparison of Ideal Point Estimates and Ranks, 107th U.S. Senate, Pre and Post
Jeffords Switch

Note: For the panels on the left, the preswitch estimates (posterior means) are plotted against the horizontal axis, and the postswitch
quantities are plotted against the vertical axis; squares indicate significant change and the diagonal line is a 45◦ line (i.e., if there was
no relative change, then all the data points would lie on the line).

more or less likely to vote Yea. Accordingly, the re-
covered ideal points need to be interpreted with some
caution. Party influence or “whipping” is one way that
conditional independence can be breached: e.g., legisla-
tors whose preferences might lead them to vote Yea are
persuaded to vote Nay, and vice versa. Modeling roll
call data without considering these possibilities leads to
ideal point estimates that absorb a shock common to
members of a given party (or, say, a whipped subset of
a party’s members); to the extent that party influence
is an unmodeled common shock, then the recovered xi
display greater partisan polarization than exists in the

“true” xi . Note that while party influence is a plau-
sible mechanism for generating party-specific utility
shocks, we are wary of inferring the presence of party
pressure given evidence of party-specific utility shocks;
we acknowledge that other mechanisms may generate
party-specific utility shocks (e.g., lobbying by activists
or interest groups that targets legislators from one party
more than the other) and so we refer to “party-specific
inducements” rather than “party-pressure.”

It is straightforward to augment the standard vot-
ing model to allow for party-specific inducements. For
instance, suppose that in addition to the standard
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quadratic spatial utilities, legislator i receives δ
Pi
j , a

net incentive to vote Yea vis-à-vis Nay on vote j , but
where the net incentive is specific to i ’s party affilia-
tion, Pi = D if i is a Democrat and Pi = R if i is a Re-
publican. If there are only two parties, then α j and δ

Pi
j

are unidentified. At best we can estimate a net differ-
ence in party-specific inducements, δ j = δD

j − δR
j (see

also Krehbiel 2003): i.e., we estimate y∗
i j ≡ Ui j (“Yea”)

−Ui j (“Nay”) = xiβ j − α j + δ j Di + εi j , where Di is a
binary indicator coded one if legislator i is a Democrat
and zero otherwise, and for this example we assume
that the εi j are iid logistic (logit rather than probit).10

Since the standard model nests as a special case of
the two-cutpoint model, it is straightforward to assess
whether the restrictions implicit in the standard model
are valid, by testing the joint null hypothesis H0: δ j = 0,
for all j .

In addition, we also need to define a set of votes in
which the net party-specific inducements are not rele-
vant (or can be reasonably assumed to be zero), since
if every roll call was assumed to be potentially subject
to party influence, then there is no way to compare the
recovered ideal points of Democrats and Republicans.
By way of analogy, consider standardized test items
that (say, due to cultural biases) are suspected to be
easier for group A than for group B: a phenomenon
known as differential item functioning (DIF); e.g., see
Holland and Wainer (1993). Does better test perfor-
mance by group A reflect higher ability than group
B, or DIF? Unless we can identify a set of test items
that are known to be DIF-free and use these items to
pin down ability, then there is no way to distinguish
apparent differences in ability from DIF.

Several implementations of party influence models
appear in the literature. Snyder and Groseclose (2000)
use a two-stage procedure: First, using lop-sided votes
(those decided by more than 65/35 margins), estimate xi
via the standard model using the linear factor-analysis
model due to Heckman and Snyder (1997); second,
on non-lop-sided votes, estimate the linear regression
of votes on xi and a dummy variable for Democratic
legislators, with the coefficient on the dummy variable
interpreted as a coefficient of party influence. Aside
from (1) equating net party-specific inducements with
party influence and (2) assuming no net party-specific
inducements for lop-sided votes, this approach makes
some strong additional assumptions: (3) the use of the
Heckman–Snyder factor-analytic estimator in the first
stage; (4) the use of a linear regression model with the
binary dependent variables (Yeas and Nays) in the sec-
ond stage (Synder and Groseclose use a Huber–White
robust variance–covariance estimator to correct for
the resulting heteroskedasticity); and (5) the fact that
the xi result from a measurement procedure (the first
stage) and generate an “errors-in-variables” problem,

10 McCarty, Poole, and Rosenthal (2001) refer to this class of model
as a “two-cutpoint” model, since it implies separate points where
legislators of each party are indifferent between voting “Yea” and
voting “Nay.”

which Synder and Groseclose tackle via instrumental
variables.11

In contrast, our approach provides a direct way to
test for party influence; our modeling approach is eas-
ily extended to let us embed parameters tapping party
influence. That is, we fit one model to the data, with
the statistical specification following directly from aug-
menting the utility functions with inducements specific
to each vote, by party affiliation. In this way there is
no need to break the estimation into separate pieces
(one to recover ideal point estimates free of party ef-
fects, the other to recover estimates of effects, con-
ditional on the ideal points recovered from the first
stage): Uncertainty in the recovered ideal points esti-
mates propagates into uncertainty in the estimates of
the vote-specific parameters (β j , α j , and δ j ), and vice
versa. The two-stage approach has been criticized for
generating baised estimates of the ideal points of mod-
erate legislators in the first stage (e.g., McCarty, Poole,
and Rosenthal 2001, 675–77). But with our approach
we use all votes to learn about the legislators’ ideal
points—even those votes thought to be subject to party
pressure—and so we are less prone to this source of
bias.

Note that in our parameterization the δ j are net
utility shocks specific to Democratic senators and, so,
alternate sign depending on whether the net party-
specific inducement was for Democrats to vote Yea
(δ j > 0) or Nay (δ j < 0). In addition, for perfect party
line votes, the likelihood for the data attains a maxi-
mum at δ j = ± ∞ (i.e. votes with perfect separation by
party are consistent with an infinite amount of party
pressure!), causing classical estimation procedures to
break down. Party pressure may be large or small, but
certainty not infinite, and we express this belief via
proper prior densities on the δ j that assign infinitesi-
mal probability to infinite party pressure, and bound
the posterior densities for δ j away from ±∞.12

We estimate our expanded model with 534 nonunan-
imous roll calls from the 105th U.S. Senate (55 Re-
publicans, 45 Democrats). To identify the model we
constrain Senators Kennedy and Helms to have ideal
points of −1 and 1, respectively. The two-cutpoint
model requires the additional identifying constraint
δ j = 0 among roll calls decided with majorities of
65% or more (“lop-sided” votes), consistent with the
Snyder and Groseclose (2000) approach: 257 of the 534
nonunanimous roll calls meet this criteria. Vague nor-
mals prior distributions are used for the δ j parameters
(mean zero, variance 16) for the remaining 277 “close”
roll calls (decided by margins closer than 65–35). Of
these close roll calls, 93 (33.6%) have net party-specific
inducements that are significantly different from zero
(again, in the sense that the 95% confidence inter-
val on the corresponding δ j does not overlap zero).

11 Another implementation of the two-cutpoint approach appears in
McCarty, Poole, and Rosenthal (2001), using a nonparametric opti-
mal classification algorithm (Poole 2000): they compare the increase
in classification success in moving from one to two cutpoints.
12 Note that Snyder and Groseclose (2000) effectively sidestep this
issue by fitting the binary roll data by least-squares linear regression.
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FIGURE 4. Net Party-Specific Inducements, 105th U.S. Senate, by Roll Call Margin and Party
Cohesion

Note: Each point represents posterior means of the net party-specific inducements parameters (δ j ), plotted against roll call margin
and party cohesion (number of Democrats voting with majority of Democrats plus number of Republicans voting with majority of
Republicans, as a proportion of all votes cast). Solid points indicate parameters significantly different from zero at conventional 95%
levels. Unsurprisingly, the largest and most consistently significant net party-specific inducement estimates occur when the Senate splits
on (or close to) party lines (55 R–45 D).

Figure 4 plots the means of the posterior density of
each δ j parameter against the margin of victory (left
panel) and party cohesion (right panel) per “close” roll
call. Our analysis shows that net party-specific induce-
ments are at their largest for roll calls decided along
party lines and decline as the votes become more lop-
sided. Nonetheless, the extent of party line voting we
find here is smaller than those reported by Snyder
and Groseclose (2000) and closer to the proportions
found by Cox and Poole (2002), although the latter
analysis considered voting in the House of Represen-
tatives.

The actual magnitudes of the δ j warrant elaboration
as well. The smallest, statistically significant δ j we ob-
tain are roughly ±2.0. To assess the magnitude of this
effect, consider a moderate Republican and Democrat
who ex ante are indifferent between voting Yea and
voting Nay. A net party-specific inducement corre-
sponding to δ j = 2 makes the probability of the Demo-
crat voting Yea about .73 and the corresponding prob-
ability for the Republican .27. If the net party pressure
is all one-sided, say all Democratic, then the probabil-
ity of the Democrat voting Yea goes up to .88; con-
versely, if the party pressure is all Republican, then the
probability of the Republican voting Yea is .12. Note
that these are the smallest statistically significant esti-
mates of δ j we obtain, with estimates of ±4 being more
common. That is, although we find evidence consistent
with party pressure on just one-third of close votes, the
magnitude of that pressure seems large and politically
consequential.

We can compare the ideal point estimates produced
by our augmented model with those from the stan-
dard model. A standard one-dimensional spatial voting
model finds absolutely no overlap between the ideal
points of Democrats and Republicans in the 105th U.S.
Senate. This complete separation between the parties
arises in part because any voting on close votes driven
by party-specific inducements is attributed wholly to
differences in the legislators’ ideal points. Once we ad-
mit the possibility of party-specific inducements, the
two partisan groupings actually overlap: Breaux, the
most conservative Democrat, has roughly the same
ideal point as the most liberal Republicans, Specter
and Jeffords. Even after estimating net party-specific
inducements specific to each roll call, we still find con-
siderable partisan polarization but substantially less
polarization than the levels recovered from a conven-
tional statistical analysis using the standard model.

CONCLUSION

Roll call analysis and the statistical operationalization
of the Euclidean spatial voting model is a critical com-
ponent of the scientific study of legislative politics. Al-
though existing methods for the statistical analysis of
roll call data have been employed in many settings and
produced important insights, the Bayesian simulation
approach we present builds upon and improves extant
methods in several ways. First, Bayesian methods per-
mit auxiliary information to be brought to bear on roll
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call analysis in a straightforward and theoretically con-
sistent way; this auxiliary information may include (but
is not restricted to) expert judgments about dimen-
sional structure, the location of extremist legislators,
legislator-specific covariates, or the evolution of the leg-
islative agenda. Second, the methodology we present is
sufficiently flexible so as to easily accommodate alter-
native models of legislative behavior. For example, it
is possible to permit ideal point estimates to change
over time by modeling the process associated with that
change (e.g., legislators switching affiliations between
political parties). Finally, Bayesian simulation exploits
tremendous increases in computing power available
to social scientists over the last decade or so: Estima-
tion and inference via simulation—long known to be
an attractive statistical methodology (e.g., Metropolis
and Ulam 1949)—is now a reality. Consequently, our
model works in any legislative setting, irrespective of
the size of the legislature or its agenda.

Thus Bayesian methods can make roll call analysis
less a mechanical scaling exercise in which scholars
simply feed roll call data to a “black box” algorithm
and more a way to test theoretically interesting models
of legislative behavior. In sum, the Bayesian simula-
tion methodology we present lets scholars (1) incorpo-
rate substantive information about the proposals being
voted upon or (2) about the prefenences that structure
the ideal points being estimated, (3) impose theoret-
ically implied constraints on the standard model, and
(4) easily estimate and test alternative and models of
legislator voting.

APPENDIX

Markov Chain Monte Carlo Algorithm

The difference between the utilities of the alternatives on
the jth roll call for the ith legislator is y∗

i j ≡ Ui (ζ j ) −
Ui (ψ j ) =β′

j xi − α j + εi j , where, for simplicity, we have set
σ j = 1. If βj and α j are given, then xi is a vector of “regres-
sion coefficients” that can be imputed from the regression of
y∗

i j + α j on βj using the m votes of legislator i . If xi is given,
then we use the votes of the n legislators on roll call j to
impute βj and α j . Then given xi , βj , and α j , the latent utility
differences y∗

i j are simulated by drawing errors from a normal
distribution subject to the constraints implied by the actual
votes (if yi j = 1, then y∗

i j > 0, and if yi j = 0, then y∗
i j < 0), and

the process repeats.
In our Bayesian approach, priors are required for all pa-

rameters: βj and α j , j = 1, . . . , m and xi , i = 1, . . . , n. For the
probit version of our model we have standard normal errors
εi j and normal priors for the ideal points and the βj and α j

parameters, leading to simple expressions for the conditional
densities that drive the MCMC algorithm. For βj and α j , we
denote the priors N(T0, T0); we generally choose vague pri-
ors by setting T0 = 0 and T0 =κ · Id+1, with κ a large positive
quantity (e.g., κ = 52). For the legislators’ ideal points, we
use the normal prior xi

iid∼ N(vi , Vi ), where usually vi = 0 and
Vi = Id (an identity matrix of order d), but for legislators we
are fixing to an set location (e.g., Kennedy and Helms, so as
to normalize the scale of the latent traits), we use the prior
N(xi , ν · Id), where ν is an arbitrarily small, positive quantity
(i.e., a “spike prior” at xi ).

The goal is to compute the joint posterior density for
all model parameters βj and α j , j = 1, . . . , m and xi , i =
1, . . . , n. A MCMC algorithm provides a computer-intensive
exploration or “random tour” of this joint density, by succes-
sively sampling from the conditional densities that together
characterize the joint density. The model here is isomorphic
with a two-parameter item–response theory model: Albert
(1992) showed how an MCMC algorithm can be used to ex-
plore the posterior density of this model; see also Patz and
Junker (1999) and Johnson and Albert (1999). Augmenting
the MCMC algorithm with the latent y∗

i j greatly simplifies
the computation of the probit version of the model, letting
us exploit standard results on the Bayesian analysis of linear
regression models as we show below; we obtain y∗

i j by sam-
pling from its predictive density given the current values of
the other parameters and the roll call data. Letting t index it-
erations of the MCMC algorithm, iteration t of the algorithm
comprises sampling from the following conditional densities.

1. g(y∗
i j | yi j , x∗

i ,βjα j ). At the start of iteration t , we have

β
(t−1)
j , α(t−1)

j and x(t−1)
i . We sample y∗(t)

i j from one of the two
following densities, depending on whether we observed a
Yea (yi j = 1) or a Nay (yi j = 0):

y∗
i j

∣∣ (yi j = 0, x(t−1)
i ,β

(t−1)
j , α

(t−1)
J

) ∼ N
(
µ

(t−1)
i j , 1

)
I(y∗

i j < 0)

(truncated normal),

y∗
i j

∣∣ (yi j = 1, x(t−1)
i ,β

(t−1)
j , α

(t−1)
J

) ∼ N
(
µ

(t−1)
i j , 1

)
I(y∗

i j ≥ 0)

(truncated normal),

where µ
(t−1)
i j = x(t−1)

i β
(t−1)
j − α

(t−1)
j and I(·) is an indica-

tor function. For abstentions and other missing roll calls
we sample y∗(t)

i j from the untruncated normal density
N(µ(t−1)

i j , 1), effectively generating multiple imputations
for these missing data over iterations of the MCMC al-
gorithm.

2. g(βj , α j | X, y∗
i j ). For j = 1, . . . , m, sample β(t)

j and α
(t)
j

from the multivariate normal density with mean vec-
tor [X∗′X∗ + T−1

0 ]−1 [X∗′y∗(t) + T−1
0 T0] and variance–

covariance matrix [X∗′X∗ + T−1
0 ]−1, where X∗ is an

n × (d + 1) matrix with typical row x∗
i = (x(t−1)

i , −1), y∗(t)
j is

an n × −1 vector of sampled latent utility differentials for
the jth roll call, and recalling that N(T0, T0) is the prior for
βj and α j . This amounts to running “Bayesian regression”
of y∗(t)

j on x(t−1)
i and a negative intercept and then sampling

from the posterior density for the coefficients βj and α j ,
for j = 1, . . . , m.

3. g(xi | y∗
i j ,β j , α j ). Rearranging the latent linear regres-

sion yields wi j = y∗
i j + α j = x′

iβj + εi j . Collapse these equa-
tions over the j subscript, to yield the n regressions
wi = Bxi + εi , where B is the m× d matrix with the
jth row given by β′

j . That is, we have n regressions,
with the ideal points xi as parameters to be updated.
Again exploiting conjugacy, the update is performed by
sampling each x(t)

i from the d-dimensional normal den-
sity with mean vector (B′B + V−1

i )−1(B′w j + V−1
i vi ) and

variance–covariance matrix (B′B + V−1
j )−1. After updat-

ing all xi (i = 1, . . . , n), we optionally renormalize the xi

to have zero mean and unit variance, say, when fitting
a unidimensional model without a Kennedy-Helms type
restriction.

Sampling from these distributions updates all the unknown
quantities in the probit model. At the end of iteration t ,
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denote the current values of the parameters of interest as
ξ(t) = (B(t), α(t), X(t)). Iterating the MCMC algorithm pro-
duces a sequenceξ(1),ξ(2), . . . that comprises a Markov chain,
with the joint posterior density for ξ as its limiting distribu-
tion. That is, after a large number of iterations of the algo-
rithm, successive samples of ξ are drawn from its posterior
density. These samples are saved and summarized for infer-
ence. Any function of these parameters can also be computed
and saved, such as rank orderings of the legislators, pairwise
comparisons of legislators, or the separating hyperplanes for
particular roll calls.

The MCMC algorithm is initialized as follows. For the
ideal points, we perform the eigen-decomposition described
in footnote 4. These initial values are the estimates we would
get from treating the ideal-point estimation problem as a
principal-components factor analysis problem, ignoring the
fact that the roll call data are not continuous variables (the
binary character of the roll call data becomes less problematic
as m→ ∞, and so for large roll call data sets from contem-
porary U.S. Congresses this procedure yields excellent start
values). We are grateful to Keith Poole for suggesting this
procedure, which is also used to generate start values for
NOMINATE. For the bill-specific parameters βj and α j we
obtain start values by running probits of the observed votes
y j on the start values for the ideal points, j = 1, . . . , m.

With any MCMC approach, diagnosing convergence of the
Markov chain is critical. Our experience is that the MCMC
algorithm performs reasonably well for the roll call problem,
moving away from start values to the neighborhood of a pos-
terior mode quite quickly. For simple unidimensional fits, we
usually let the sampler run for anywhere between 50,000 and
500,000 iterations and then thin the output (storing the output
of every 100th to every 1,000th iteration) so as to produce a
reasonable number of approximately independent samples
from the posterior for inference (say, between 250 and 1,000
samples).

Figure 5 shows trace plots of the MCMC algorithm for
single parameters (the ideal points of Kennedy, Collins, and
Helms, from a unidimensional model fit to 106th U.S. Sen-
ate) in the top three panels and for the joint density of se-
lected pairs of legislative ideal points in the lower panels.
The identifying restriction is that the ideal points have mean

TABLE 3. WinBUGS Code, Implementing Standard Euclidean
Spatial Voting Model Via Logit
model{

for(i in 1:N){ ## loop over legislators
for(j in 1:M){ ## loop over roll calls
## model for roll calls
logit(pi[i,j]) <− x[i]∗beta[j,1] − beta[j,2]
y[i,j] ∼ dbern(pi[i,j])

}
}
## priors over model parameters
for(i in 3:100){

x[i] ∼ dnorm(0, .01) ## vague normal priors
}
x[1] <− −1 ## Kennedy constrained to −1
x[2] <− 1 ## Helms constrained to 1
for(j in 1:M){

beta[j,1] ∼ dnorm(0,. 04) ## vague normal priors
beta[j,2] ∼ dnorm(0,. 04) ## mean zero, variance 25

}
}

Note: This code presumes that the roll call matrix has been sorted such that the voting
histories of Kennedy and Helms are in the first and second rows, respectively.

zero and variance one across legislators. In the upper pan-
els, the MCMC algorithm is approximately a random walk
without drift in the parameter space, consistent with the sam-
pler behaving well, randomly traversing the posterior den-
sity; the gray line indicates the posterior mean based on the
post “burn-in” samples, and the dotted lines indicate 95%
confidence intervals. The snaking solid lines are smoothed
or moving averages and a cumulative mean; note that after
sufficient iterations, the cumulative mean of the MCMC al-
gorithm becomes indistinguishable from the posterior mean,
and the running mean slowly undulates about the posterior
mean, indicating lack of drift (consistent with the sampler
having converged on the posterior density). Half a million
iterations were computed; so to as produce approximately
independent samples from the posterior density, only every
1,000th iteration is retained for making inferences and the
thinned iterations have AR(1) parameters averaging about
.06 (maximum AR[1] = .23, for Boxer). In the lower panels,
each joint posterior mean is indicated by an open circle,
and joint 95% confidence intervals are indicated by el-
lipses, the latter computed assuming that the joint poste-
rior densities can be approximated with bivariate normal
densities.

Computing

For small roll call data sets, the free, general-purpose MCMC
package WinBUGS (Spiegelhalter et al. 1997) can be used
to implement our approach: only a few lines of WinBUGS
commands are needed. For instance, the WinBUGS code
for a simple unidimensional model fitted via logit and the
Kennedy–Helms identification constraint is given in Table 3.
Elaborations on this basic setup are available at Jackman’s
Web site (http://jackman.stanford.edu/ideal). Given the com-
putational burden of analyzing larger roll call data sets, we use
a Cprogram, authored by Jackman, implementing the MCMC
algorithm for the probit model discussed above. In turn, this
program can be called directly from the (free) R statistical
program. We also use R for preparing roll call data sets for
analysis, inspecting the output of the MCMC algorithm, and
producing the graphs and tables in the body of the paper. All
code is available upon request.
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FIGURE 5. Iterative History of the MCMC Algorithm, 106th U.S. Senate

Note: For the top three panels, the light gray horizontal line is the posterior mean (based on the post-burn-in iterations), the dark solid line
undulating around the posterior mean is a moving average, and the dotted horizontal lines indicate the width of a 95% confidence interval
around the posterior mean; for the bottom three graphs, the open circle is the joint posterior mean and the grey ellipse approximates a
joint 95% confidence interval (both based on the post-burn-in iterations).

Computing time is clearly a relevant consideration for
simulation-based methods. Our experience is that computing
time increases in nmT, where n is the number of legislators
and m is the number of bills, and so nm is the number of
individual voting decisions being modeled (assuming no ab-
stentions or missing data), and T is the number of MCMC it-
erations desired. The computational cost of moving to higher

dimensions is surprisingly small. The unidimensional 106th
U.S. Senate example involved modeling n = 102 ideal points
and m= 596 pairs of bill (or item) parameters, with 58,156
nonmissing individual voting decisions. Half a million itera-
tions of the MCMC algorithm required just over three hours
on a Dell PC with a 3.0 GHz Intel processor, or about 2,650
iterations per minute. For a one-dimensional fit to the 106th
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House (n = 440, m= 1,073, with 444,326 nonmissing indi-
vidual voting decisions), a 150,000-iteration run took 6.4 h,
or about 391 iterations per minute, on the same hardware.
For a one-dimensional fit to the U.S. Supreme Court (n = 9,
m = 213, with 1,907 nonmissing individual voting decisions),
a 500,000-iteration run took 15 min, or about 33,250 iterations
per minute. These extremely long runs are usually not nec-
essary, but we were being especially cautious about ensuring
that the MCMC algorithm had converged on and thoroughly
explored the posterior density.
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