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National In8titute of Oceanography, Wormky

(Communicated by G. E. B. Deacon, F.R.S.Received 14 Aprü 1956)

This paper studies the statistical distribution of the maximum values of a random function
which is the sum of an infinite number of sine waves in random phase. The results are
applied to sea waves and to the pitching and rolling motion of a ship.

INTRODUCTION

Let f(t) denote a continuous, random function of the time t, representing, for
example, the height of the sea surface above a fix&j point. It is interesting to inqaire
into the statistical distribution of the heights of the maxima of f(t).

There are two distinct problems. On the one hand we may consider the total wave
height 2a, being defined as the difference in level between a crest (maximum) and
the preceding trough (minimum). The statistical distribution of a is difflcuU; to
determine in the general case, but whenf(t) has a narrow frequency spectrum it iay
be shown that a is distributed according to a Rayleigh distribution

2a
p(a) = - e /m0,

where m is the root-mean-square value off(t) (see Rayleigh i88o). This distribution
has been compared with the observed distribution of the heights of sea waves ar d it
has been shown that many theoretical relations, for example the ratios of the mean
wave height to the mean of the highest one-third waves or to the mean of the
highest of N consecutive waves, are in close agreement with observation (Longuet-
Higgins 1952). Application of the X2-thst to some histograms of wave heights has
also indicated, apparently, no significant departure from the Rayleigh distribution
(Watters 1953). It is certain, however, that for functions f(t) having a broad
frequency spectrum, the theoretical distribution of a must be different from the
Rayleigh distribution.

Alternatively, we may consider the difference in height between a crest and the
mean level of the function f(t). Although in practice may be less convenient to
measure than a (since the appropriate mean value is sometimes difficult to deter-
mine) the theoretical distribution of is easier to obtain, and has been found for
a wide class of random functions by Rice 1945) in connexion with the analysis
of electrical noise signals. Rice's solution, which is only one out of many resuith in
a long paper, has not been fully discussed, and it is the purpose of the present paper
to examine the solution and to calculate some of the statistical parameters associa ted
with it. We shall also apply the results to ocean waves and to the motion of slips
at sea.
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In § 1 we outline briefly Rice's derivation of the statistical distribution of the

maxima '. The discussion shows that the distribution depends, surprisingly, on only
two parameters: the root-mean-square value of f(t), which we denote by m, and
a parameter which, as we show in §2, represents the relative width of the frequency
spectrum of f(t). When e is small, the distribution of tends to a Rayleigh dis-
tribution, as we should expect, and when e approaches its maximum value 1 the
distribution of tends to a Gaussian distribution.

One of the main differences between the two variables and a is that may take
negative values (since some maxima may lie below the mean level) whereas a is
always positive. The proportion r of maxima that are negative can be readily
determined in practice, and in § 3 we show that this proportion depends only upon e.

Hence if r is measured, e can be estimated.
In § 4-6 we calculate the moments of the distribution, the mean values of the

highest 1/nth of all the crest heights and the expectation of the highest in a sample

of N crest heights, and we show how these quantities depend upon e.
The distribution of crest heights, as measured from records of ocean wave

phenomena, is compared with the theoretical distribution in § 7. No significant
difference is found. On the other hand, the crest-to-trough heights, examined in 8,

are found to depart significantly from the Rayleigh distribution.

1. THE DISTRIBUTION OF MAXIMA

The random function f(t) is represented as the sum of an infinite number of

sine-waves f(t) = ccos(crt+e), (11)

where the frequencies are distributed densely in the interval (0, ), the phases

are random and distributed uniformly between 0 and 21T, and the amplitudes c

are such that in any small interval of frequency do

o+ do'
= E(o)do, (1.2)

o_N

where E(o) is a continuous function of o which will be called the energy spectrum

of f(t) .The total energy per unit length of record is

m0 = 5 E(cr)dcr. (13)

More generally we shall find it convenient to write

m =5E(o.)cr'dcr (1-4)

for the nth moment of E(o) about the origin.
To find the distribution of maxima of f(t) we note that, iff(t) has a maximum in

the interval (t,t+dt), then in this intervalf'(t) must take values in a range of width

If'(t) dt very nearly; and the probabilityof this occurrence, andoffsimultaneowily

lying in the range + d1), is

5

0

{p(1,0,3)d1 I dtjd3, (15)
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where p(, 2' is the joint probability distribution of

IC t C lit',"
Si' 2' S3J J 'J 'J

The mean frequency of maxima in the range j <f< + d1 is therefore

0

F(,) d1
= $

[p(T1, 0, ) I 'I

and the probability distribution of maxima is found by dividing this distribution

by the total mean frequency of maxima, which is

= 50fcei 0,) I dd3.

Now from (1.6) we have

=f(t) =

2 f(t) =
n

=f"(t) =

3
are therefore each the sum of an infinite number of variables rf zero

expectation and random phase. Therefore, by the central limit theorem in three

dimensions, the joint probability distribution of (, 2' is normal (under general

conditions assumed to be satisfied by the amplitudes c; see Rice 1945). The

matrix of correlations or statistical averages q = is seen to be

/ m0 0 _m2\

() = (
0 m2 0 ).

(1.10)

\_m2 0 m4/

Hence
1

p(1,2,3) = ex
(2ir)1 (zm2)

F {/m2 + (m4 + 2m21 3 + mo)Iz1},

(1.11)

where = m0m4 m. (1.12)

Substituting in (1.7) we have

= (21 exp { (m4 + 2m213 + m)/} d3. (113)

On evaluating the integral and writing

= 7/, = (1.14)
we obtain

1 M
e+v' [e_ihio + (ii/8)f e_1dx]. (115)

(21T)im0n4 -!/8

The last integral can be expressed in terms of the known function

'2 "
erfx = () I e+x2dz. (1.16)

\7T/ J0

(1.7)

I

(1.8)

(1.9)
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FIGUaE 1. Graphfi of p(), the probability distribution of the heights of maxima ( = /rn) for different, values
of the width c of the energy spectrum.



The functionf(t) is statistically symmetrical about the mean level t = 0. For, in

equation (1.1) each phase angle e might be increased or diminished by iT without

affecting the random character of the phases; and this would merely reverse the

sign of f(t). It follows that the statistical distribution of the minima is simply the

refiexion of (1.20) in the mean level = 0.

2. DiscussioN

In equation (1.19) i denotes the ratio of the surface height to the r.m.s. height
n4. We see that the distribution of i depends only on the single parameter e. A simple

interpretation of 6 is as follows. From (1.12) we have

= m0rn4 m
= f J

E(o-1)E(o2)(o ojol) dc1 dcr2. (2.1)

On interchanging o and c2, and adding, we have

2 =ffE(ci)E(c2)(c1_cr)2do-ido-2. (2.2)

Since E(cr) is essentially positive, it follows that 0 and so

0<e<1. (2.3)

For a very narrow spectrum, with the energy grouped around c = o, say, E(c1) and

E(o-2) are small except when o and are both near to o; but then the factor
(o----oj)2 in (2-2) is small and so

(2.4)

In general eis a measure of the r.m.s. width of the energy spectrum E.
Clearly may take values indefinitely near 0. For a low-pass filter (E = E0 when

c<o0, and E = 0 when cr> o) we find

6=1. (2.5)

may also take values indefinitely near 1., For suppose a proportion w of the energy
is at frequency o = o-1, and (1 w) at c = o-2; we have

m2 = m0{woj+(1w)cr},

m = m{woj+(1w)c4}.
(2-6)
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The probability distribution of is n4 times the distribution of

= mp() = n4F(1)/N3. (1.17)

From(18)wefind

and so finally

N1=--('-,2r\m2j
ll8)

p(?1) =
1 e2dx,/_i (1-19)(1 _e2)1/e_b1j

(2)
[ee.4h'e'+

62 mmrn2
where 2= 0 4 2 (120)=

1+62 m0 m4 m0 m4
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When o2/o1 - we see that m/m0m4 1 - w and so

w
I /e: I- (2.7)

(2.8)

or r = 1!(1N/N1). (3.4)

which can be as near to unity as we please.
The first limiting case (e-*O) gives the distribution for an infinitely narrow

spectrum. From equation (1.19) we have then

=
Jiiehs (o)

0 (0),
which is the Rayleigh distribution, or the distribution of the envelope of the waves

(see Rice x94, 1945; Barber 1950; Longuet-Higgins 1952).

The second limiting case (e-* 1) can occur, as we have shown, when one wave of

high frequency and small amplitude is superposed on another disturbance of lower

frequency. The high-frequency wave forms a 'ripple' on the remaining waves, and

the distribution of maxima tends to the distribution of the surface elevation

(1/m) itself. On letting e tend to 1 in (1.19) we obtain

1 e+, (2.9)
(2i

which, as we should expect, is a Gaussian distribution.
The distribution p(i) has been plotted in figure 1 for c = 00, O2, ..., 10. The

transition from the Rayleigh distribution to the Gaussian distribution can be clearly

seen.

3. THE PROPORTION OF NEGATIVE MAXIMA

This may be found by a simple geometrical argument as follows. Suppose that in

a certain interval of time, say (0, t), there are n zero up-crossings, atwhichfpsses

from negative to positive values, and similarly suppose that there are n zero down-

crossings. Also let there be nj positive maxima, nj negative maxima, n poEitive

minima and n negative minima. Between a zero up-crossing and the next zero

down-crossing the function is always positive, and so the number of maxima exceeds

the number of minima by one. In other words, when n increases by 1,so also does

(n -n). Similarly, when n increases by 1, so does (n nj-). Therefore, if N,
N, Nj, Nj-, N, N denote the average densities of zero up-crossings, etc., over

a long interval we have + ± +N0 - N1 N2

,}
(3.1)

N = N Nj-.

Now sincef(t) is statistically symmetrical about the mean level it follows that

N=Nj=rN,, (3.2)

N =Nj =(1r)N1,

where N1 denotes the total density of maxima, and r denotes the proportion of

negative maxima.) So from (3.1)

WI -. ' N = N,(1-2r), (3.3)
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But from Rice (,H' 1945) and equation (1.18) we have

N=
2ir m0j

1

2ir \m21

So equation (34) can be written

r_E'
rn2 1- -

- (rn0rn4)d =
[ (1 _2)4] (3.6)

Hence the proportion of negative maxima increases steadily with the relative width
of the spectrum. Conversely, we have

2_ 1(1-2r)2. (3.7)

This relation provides us with a ready means of estimating e by simply counting the
numbers of positive and negative maxima in a length of record.

4. THE MOMENTS OF p()

The nth moment of the probability distribution p(i) taken about the origin,
is defined by

/L,'

=5
p()ifzdii. (4.1)

The even moments (n = 2r) may be calculated by means of the moment-generating
function

t4e4)'p(ij) di1 /L - +
22.2!-

On substituting from (1.19) and evaluating the integral we find

I'

I e-')p(?j)d71 = (1 +e2t2) (1 +t2)', (4.3)

and so on, comparing coefficients of t in these two equations, we have

I 2
1.1 1.1.3...(2r-3) 2,.'

P2r = 2?r! ll - 22.2! c - ... - 2?. r!
6 (4.4)

The odd moments (n = 2r +1) may be found in a similar way by means of the
moment-generating function

(3.5)

(4.2)

Ji$eI<0'p(i1)d
t,i4

2.1!-
From (118) we have

5
i$e4")'p(i) di1 = (.1T)* (1

andhenoe

t6
(4.5)+

22. 2!hhL5

- e2)* 1(1 + t2)4, (4.6)

.....(2r+1) (47)(r!)2
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In particular we have /4 = 1,

= (4ir)(1_e2),

/4 = 2,
/4 = (41r)I(1_e2)4.3.

We see that the mean p4 is a steadily decreasing function of e, the width of he
spectrum. A non-dimensional quantity depending on e is the ratio

/L'2 1_2
=

=

The width of the spectrum is given in terms of p by the relation

I 2

I0

06

ot;

04

02

-

02 04 06 08 I 0

Fioua 2. Graphs of the mean , variance p, skewness fi, proportion r of
negative, maxima, and p( ='/4u) as functions of c.

On the other hand, we have the following two quantities which are independent of e:
I , - /47/4 = 3 (4 11)

The moments about the mean, which are defined by

= (4.12)

may be deduced immediately from the moments about the origin. In particular

we have from (4.8)

/'0'
P2 1(7T-1)(1e'),
Pa = (41T)I(1r_3)(1_e2)I.

(48)

(4.13)

(4.9)

(41O)



FIGURE 3. Graph8 of the cumulative probability q(ij), for different values of .
I
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The coefficient of skewness is given by

1_62 it
ft = = (i (iT 3)

[1 - (41T - 1)(1 - 62)]
P2

We see that the standard deviation pj steadily increases as e increases. fi, on the

other hand, steadily decreases.
The mean the variance /12, the skewness ft and the ratios r and p are shown

graphically as functions of e in figure 2.
In some practical cases we may know the distribution of the maxima j (= rn i)

experimentally and wish to make an estimate of the mean energy m. Let v and

v, denote the nth moments, about the origin and about the mean, of the variate .

Then (fl..)1j1', p = 'an, (415)

and so from (4.11)

I/3 1' - = 3ni. (8..16)

By forming either of these quantities, therefore, we may estimate m0.

& THE CUMULATIVE PROBABILITY

The cumulative probability q(i/) may be defined as the probability of i exceeding

a given value:
q(i)

=5
p(i1)dij. (5.1)

Substituting from (119) we find

q(i) =
(2iT) L'

1 r r
I e1n'dx+ (1 _62)+e_F71j e_2dx].

When c-O,
(i°)
(DO),

(4.14)

(5.2)

(5.3)

1

and when 1, q(i)-* e-1dx. (5.4)

(21T)4.J

Graphs of q(i) for these and intermediate values of are shown in figure 3. The

proportion r of negative maxima is given by

"0
r = p(ii)dij = 1q(0), (5.5)

J -

which from (5.2) is r = [1 (1 _2)I], (5.6)

in agreement with (3.6).
In some geophysical applications it is found convenient to consideronly the higher

waves, say the highest l/nth of the total number in a sample. The 1/nth highest

maxima correspond to those values of i greater than ii', say, where

= p(i,)di,i = 1/n. (57)
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The average value of ij for these maxima will be denoted by 71Wn), so that

iflin) = nfp(ii)iidii. (5.8)

Clearly if') is the same as the mean 4 if"') has been computed numerically for
n = 1,2,3,5 and 10, and for different values of e. The results are shown in figure 4.
fh1i) is apparently a decreasing function of e. For small values of e, say < 05, the
dependence of iflln) on c is slight, but each curve gradually steepens, and it can be
shown that as 6 approaches 1 the gradient aif")/e tends to - cc. Near e = 1 the
curves are all exactly similar in shape, being independent of n.

25

2-0

10

0-5

n-10

FIGURE 4. Graphs of M), the mean height of the 1/nth highest maxima,
as a function of e, for n = 1, 2, 3, 5 and 10.

6. THE HIGHEST MAXrMUM IN A SAMPLE OF N

Suppose that a sample of N maxima is chosen at random; we wish to know the
average value of the highest of these, imax. The problem has been considered in the

case = 0 (Longuet-Higgins 1952) and the expectation i/max has been computed for
values of N up to 20. For values of N greater than 50 (in which we are usually
interested) it has been shown that the asymptotic formula

(in N) + y(In N) (6.1)

is accurate to within 3 %. (Here y denotes Euler's constant, 05772 ....)
The formula (6.1) may be generalized to values of 6 between 0 and 1 as follows.

The probability distribution of i' is given by*

= d
d [1_q(i)]N, (62)

We follow here the same method as in the paper just quoted. But a general study of
the limiting form of the distribution of the largest member of a sample has been made by
Fisher & Tipp.ett (1928). For a more recent discussion see Gumbel (1954).

02 0-4 0-6 08
C

I0
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where q(ij) is given by (5.1). Therefore we have

( di= 1_[1_q(i)]Ndi1. (6.3)
J-' L21

On separating the integral into two parts, from - co to 0 and from 0 to , and
integrating by parts we find

ro
/max. = I

[1 _q()]Ndi,+ {1 [1 _q(ij)]N}dij. (6.4)
Jo

When N is large [1 _q(i/)]TV is very small unless q is of order 1/N. Now as x tends
to infinity we have

1 15 e-dx = e_2[+O()], (6.5)

and so from (5.2)

q(i) = (1 _e2)e_h2+O(e_FIhI62) (6.6)

for large values of i and when 0 e< 1. If q is of order 1/N, is of order (in N).
Therefore neglecting terms of order (In N)-i we have

(1 _62)*e_F72 (1q(ij) = = _e2)le_0, (67)

with relative errors of order 1/N only. It may be shown (Longuet-}Jiggins 1952)
that when 00 is large the above integral equals

(13)

7/max. = 23{[ln (1 - c2) N] + ky[ln (1 - e2) NJ), (6.14)

which can also be written
.[1n(1_e2)N]i+jy[ln(1_e2)N]4

1msx.I(/'2) 2
(

When e-*O this equation reduces to (6.1). The expression on the right-hand side of

(6.15) is an increasing function of e, when N is large. It follows that as the spectrum

broadens, the ratio of the greatest in a sample to the root-mean-square will tend

to increase.

Hence we have

where 0 =
second we have

The first integral in (6.4)

1

is negligible, and on substituting in the

7/max.
=

{l [1 (1 e2)e_6]N}0_dO (6.8)

Writing

and so

00 = log{(1_e2)N],

e -
0' = 0-00,

e

(6.9)

(6.10)
(1_c2)N'

we have
1 1

--p--]
1(O0+0')-d0 (6.11)f0(i

-L'
1 r

+ -jJ (1 - exp [ e']) (0 + 0')-I dO, (612)
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When e approaches 1 (so that in (1 2) N is not large compared with 1) the above

formula is no longer valid. The corresponding expression for the general cae is
complicated and probably not of practical importance. We shall simply give the

limiting form when 1, and p(ij) is normal (equation (2.9)). Fisher & Tippett
(1928) have shown that the average value of in this case is given by

1/max. = m+
1 +m2

(6.16)

approximately, where m is the mode of the distribution of 1/max' given by

(2ir)lrne' = N. (6.17)

From (6.17) we have m2 = ln()_lnm2, (6.18)

and so m [In () - In in
(_2)]4.

19)

The leading term in (6.16) is thus

1/max. = 2 [in
(21T)4]

(6.20)

However, Fisher & Tippett have shown (1928) that for the normal distribution the
limiting forms are approached exceptionally slowly. A table of the exact values of

1/max, computed for values of N up to 1000 is given by Tippett (1925).

7. APPLICATIONS

It is interesting to verify that the distribution just discussed is applicable to
records of sea waves and of associated phenomena. In this section we shall consider
five such examples: a record of wave pressure at a fixed point on the sea bed; two
continuous records of wave height made at sea by a shipborne instrument; one
record of the angle of pitch of the ship, and one of the angle of roll. The widths of the
corresponding Fourier spectra are fairly representative of the possible range 0< e < 1.

Typical sections of the records are shown in figure 5(a) to (e). Each complete
record lasted from 12 to 20mm and containedabout 100 maxima and 100 minima.
In order to increase the amount of data both maxima and minima were included in
the sample. The analysis was carried out as follows. The ordinates A of all the
stationary points in the record, measured from some common baseline, were
numbered consecutively from 1 to Nso that the maxima, say, corresponded to even
values of n and the minima to odd values of n. The zero of the record was taken to
bethemeanofA: 1 NA=yA. 7.1)

-'

The distribution of the variate

= (-1)(A-A) (7.2)

was then studied. The histogrms corresponding to the distribution of X are shown
in figure 6 (a) to (e).
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To obtain the parameters for the theoretical distribution a harmonic analysis of
the original record was made by means of the N.I.O. Fourier analyser (see Darby-
shire & Tucker 1953). The range of frequency was divided into a number of equal

a_a S S a a - - a p p p - pp - p p p - - - -
(a)

I mm

AAL AA&La.L kLAkA1J AàiAl&L j (b)

I nin

Sft.
wat?r

2Oft[

100 [

20° [

I

17

1mm

(c)

(d)

(e)

I mm

FIGtrRE 5. Typical short sections of the five records chosen for analysis. (a) pressure on the

sea bed off Pendeen, Cornwall, 08.00 to 08.20. 15 March 1945; (b) wave height in the Bay

of Biscay, 19.00 to 19.12, 11 November 1954; (c) wave-height in the Bay of Biscay,
02.00 to 02.12, 12 November 1954; (d) angle of pitch of R.R.S. Discovery II, in N3rth

Atlantic, 13.21 to 13.33, 25 May 1954; (e) angle of roll of R.R.S. Discovery II, in North

Atlantic, 14.0 to 14.17, 21 May 1954

narrow ranges each containing about 10 harmonics of the length of the record, and

the energy 4C1 was summed for each interval. The energy spectra are showii in

figure 7(a) to (e). The moments m0, m2 and m4 of the distribution were then calcuhted

by m,icitipiying the energy in each small range of frequency by 1, a-2 and a-'
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excess pressure above mean
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FIGURE 7. The statistical distribu-
tion of the maxima for the
five records shown in figure 5.
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no. of pitehes no. of rolls
per degree per degree

height above moan height above mean
lovel (ft.) level (ft.)



228 D. E. Cartwright and II. S. Longuet-Higgins

respectively. From these three moments the paramet/6 defined by equation 1.20)

was calculated. The corresponding curves of probal3(lity p(i,), multiplied by the

total number N in each sample, are shown in figure 4(a) to (e).

In constructing the histograms the horizontal scale has been divided, not into
equal intervals, but into intervals such that the expected numbers of maxima in

each interval (according to the theoretical distribution) are equal. The purpose is

to avoid the small classes that must otherwise occur at the two ends of the dis-

tribution, and which make the application of the x2 significance test unsatisfactory
unless the classes are amalgamated in some arbitrary way. The vertical scale is so

chosen that, for each separate subclass, a rectangle whose height indicated the
expected frequency of maxima would enclose the same area as is enclosed by the
curve of theoretical frequency. The width of the two outermost rectangles is chosen

quite arbitrarily, but this does not affect in any way the application of the x2 test.
Some relevant data concerning the five records are given in table 1. The first record

is of wave pressure measured on the sea bed in a depth of 110 ft. of water by a power-

phone pressure recorder, in March 1945 (described by Barber & lJrsell, 1948). The
section of record in figure 5(a) indicates a long, regular swell with a fairly narrow
spectrum (e = 0.41). However, it contains a certain amount of energy outside the

main frequency band.

TABLE 1. DATA FOR THE RECORDS IN FIGURES 5 TO 7

6

(from energy e

example N 8pectrum) P() (from r) (from p)

164 041 060 031 037
220 057 062 058 066
270 067 055 068 069
180 048 067, 044 045
250 012 026

The second and third records are of waves in deep water (Bay of Biscay) measured

by the shipborne wave recorder installed in R.R.S. Discovery II. The instrument has
been described by Tucker (1952). The two records are somewhat more irregular than

the pressure record and have correspondingly broader spectra (6 = 0.57 and
6 = 067 respectively). This is due partly to the fact that the records of wave height
contain more energy of higher frequency than the record of pressure.

The last two records are of the pitching and rolling motion of R.R.S. Discovery II
in a seaway in the North Atlantic. The angles of pitch and roll were measured in the
conventional manner by gyroscopes. The roll, in particular, has a very narrow
spectrum (6 0.20) and the record is correspondingly regular. This is as we should
expect, since the rolling motion of a ship is only lightly damped, and is tuned sharply
to oscillations having a period close to its period of free motion.

For each of the above records the quantity x2 was calculated, and also the
probability of x2 exceeding this value. Since two parameters have been estimated
from the sample (the mean height and the total frequency) x2 has in each case
8 degrees of freedom. From table 1 it will be seen that for none of the records is the
probability of x2 significantly small.
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For each measured sample of X8 the quantities r (the proportion of negative
maxima) and p ( = 1i42/p4) have been found, and from the relations (37) and
(4 10) two independent estimates of e have been made. These are also given in table 1.
It will be seen that in examples (b), (c) and (d) the values of e are in good agreement
with that derived from the moments of the energy function E(o-). In examples
(a) and (e) the estimate derived from r is not in such good agreement, but this is
hardly surprising, since the number of negative maxima on which the estimate is
based is rather small. In example 5, the estimate derived from p gives a small
negative value for c2, which is of course impossible. In all the other cases the
alternative estimates of c are so close to the original estimate as to make no

significant difference to the probability of x2

8. CREST-TO-TROUGH WAVE HEIGHTS

In view of the agreement of the observed distributions of the heights of crests

with the theoretical distribution it is interesting to study also the distribution of the

crest-to-trough wave heights in the same records.
The local crest-to-trough wave amplitude a may be defined as half the absolute

difference in height between a crest and the preceding trough, or between a trough

and the preceding crest. Thus

= (X+X_1). (8.1)

The statistical distribution of a is more difficult to obtain theoretically than that

of X, for general values of e. However, when e 1 the functionf(t) is a regular sine-

wave with slowly varying phase and amplitude, so that a = X very nearly. So we

may expect a to be distributed according to the Rayleigh distribution (28'. By
considering a disturbance consisting of a small ripple superposed on a long wave

(e 1) it can be seen that the distribution of a must in general be different from the

Rayleigh distribution, though not necessarily by very much. The general distribu-

tion no doubt depends on other parameters besides e. Yet it is reasonable to expect

that for small values of e the observed distribution of a will be in better agreement

with the Rayleigh distribution than for larger values of e.

In figure 8 are shown the observed distributions of a in the five examples

discussed in § 7, together with the corresponding Rayleigh distributions

p(a) = - e'
a2

where is the root-mean-square wave amplitude. The values of x2 and P(2) are

given in table 2. (x2 again has 8 degrees of freedom, since two parametersin this

case the total number in the sample and the root-mean-square amplitudehave

been estimated.)
The table shows that the records with the smallest value of e (examples (a), (d)

and (e)) do not give sigriillcantly small values of P(2). On the other hand, those

with the two largest values of e give very significant values of P(). This vrifies

our expectation that the observed distribution departs more from the Rayleigh

distribution as the width of the energy spectrum increases.

'5
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From figure 8 it will be seen that the records with the two broad spectra deviate
especially from the Rayleigh distribution for low values of the wave amplitu le,
having relatively more waves in that range. It appears that the mode of the dis-
tribution has a tendency to move to the left in the broader spectra.
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FlotraE 8. The statistical distribution of the crest.to.trough amplitudes
for the five records shown in figure 5.
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Our conclusions may be compared with those of Watters (1953) who studied
histograms of wave heights of 109 records, and compared 38 of these with the
corresponding Rayleigh distributions (with variance chosen so as to give the best
fit). Although some of the values of P(2) were low (as small as 0.05) the values taken

as a whole did not show a significant departure from the Rayleigh distributions.

There are two possible explanations for this. First, the intervals of wave height

were equal, and so there were many classes containing only very few heights. In

applying the test these classes were arbitrarily pooled, and it can be shown that in

several cases pooling the classes in a different way would have resulted in much lower

values of x2. (The difficulty is avoided by our present method of making the

theoretical classes of uniform size.) Secondly, the widths of the energy spectra o4'the

records studied by Watters were probably less than in examples (b) and (c) of the

present paper, which were in fact chosen on account of their exceptional breadth.

TABLE 2. DATA FOR THE DISTRIBUTIONS OF FIGURE 8

9. CoNcLusioNs

If denotes the height of a maximum of the random functionf(t) above the mean

level, and if n is the r.m.s. value off (t),then the statistical distribution of (= ,/rn)

is a function only of i and one other parameter e, which defines the relative width

of the energy spectrum of f(t). c lies between 0 and 1. When e- 0, p(ij) tends to

a Rayleigh distribution; when e 1, p(i) tends to a Gaussian distribution. As

e increases from 0 to 1, the mean of p(ii) gradually decreases, the variance incrases

and the shewness decreases. The proportion of maxima that are negative steadily

increases. The mean height of the highest 1/i1th of the waves varies little for small

values of e, but tends always to decrease. The highest maximum in a sample of

N maxima tends to decrease relative to rn0 but to increase relative to the r,m.s.

height of the maxima.
The records of ocean waves and of ship motion which are discussed in the present

paper show good agreement with the theoretical distributions, for various values

of e ranging from 020 to 068.
The theoretical distribution of crest-to-trough heights is known only for a narrow

spectrum (e = 0), when it is a Rayleigh distribution. In three of the examples in

this paper, for which e < 05 and the total number in the sample was less than 300,

there was no significant departure from the Rayleigh distribution. On the other

hand, the examples with the broadest spectra (e = 057 and e = 0.67) did show

significant departures.

This indicates the need for a theoretical derivation of the crest-to-trough height

distribution when > 0. Meanwhile, for the purpose of practical prediction, it would

15.2

example e

(a) 041 O33

(b) 057 0001
(c) 067 0000
(ci) 048 055
(e) 020 051


