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Abstract

Expensive black box systems arise in many engineering applications but can be
difficult to optimize because their output functions may be complex, multi-modal,
and difficult to understand. The task becomes even more challenging when the opti-
mization is subject to multiple constraints and no derivative information is available.
In this paper, we combine response surface modeling and filter methods in order to
solve problems of this nature. In employing a filter algorithm for solving constrained
optimization problems, we establish a novel probabilistic metric for guiding the filter.
Overall, this hybridization of statistical modeling and nonlinear programming effi-
ciently utilizes both global and local search in order to quickly converge to a global
solution to the constrained optimization problem. To demonstrate the effectiveness
of the proposed methods, we perform numerical tests on a synthetic test problem, a
problem from the literature, and a real-world hydrology computer experiment opti-
mization problem. Supplementary materials for this article are available online.

Keywords: Black box function, multivariate Gaussian process, computer simulator, com-
puter experiment

∗The authors gratefully acknowledge Stefan Wild for first introducing them to filter methods and for
the many insightful conversations thereafter, as well as Samantha Crane for her proof of concept of the
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1 Introduction

The difficult problem of black box constrained gradient-free optimization problems has

driven research on an increasing number of model-based methods (Sasensa et al. (2002),

Lindberg and Lee (2015), Gramacy et al. (2016)). Primarily, model-based methods have

utilized Gaussian processes as a means of building surrogate models for computer sim-

ulators, with the surrogate used to guide optimization and heuristics used for handling

constraints (Santner et al. (2003), Letham et al. (2018)). A typical challenge here is that

the computer models are often expensive to evaluate and so efficient statistical models

are needed to serve as a fast approximation to the computer model. Furthermore, con-

strained optimization is usually difficult because at least one of the constraints operates in

opposition to the objective function, i.e., they are negatively correlated. It is due to these

problems that we develop a novel method for constrained optimization capable of reliably

modeling computer models quickly, with few function evaluations, and that is also able to

efficiently incorporate information about and predict negatively correlated outputs through

joint modeling techniques.

In this paper, we introduce a new methodology that combines statistical modeling with a

numerical optimization approach known as the filter method. Filter methods take a Pareto

frontier approach to optimizing the objective function and meeting all of the constraints.

The difference from a multi-objective optimization via exploration of a Pareto front is that

all of the constraints must be met for the solution to be valid, and so the filter method

treats the constraints differently from the objective function and uses several approaches

to improve the efficiency of this process. As a result, filter methods are more effective at

global optimization than a typical more local numerical optimization routine. However,

filter methods rely upon a good way of searching the input space, and it is that component

where the statistical model can make a major contribution, leading to an improved hybrid

algorithm that provides for efficient global optimization that outperforms our comparator

methods. Filter methods are described in more detail in Section 2.

In this paper, we address problems of the form

min
x
{f(x) : c(x) ≤ 0, x ∈ X} (1)
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where X ⊂ Rd is a known, bounded region such that f : X → R denotes a scalar-valued

objective function and c : X → Rm denotes a vector of m constraint functions. We assume

that a solution to (1) exists, however, in our problems of interest (1) is an expensive black

box optimization problem where both the objective, f , and constraint, c, may require black

box simulation (i.e., running a computer model revealing little about the functional form of

the objective and constraints). Furthermore, we focus on the derivative-free situation where

no information about the derivatives of the objective and constraint functions is available

(Conn et al., 2009). Herein we focus on the case of deterministic computer models where

running the computer model for the same input always yields the same output. A mo-

tivating real-world example, the pump-and-treat hydrology problem (Matott et al., 2011)

involves a groundwater contamination scenario based on the Lockwood Solvent Groundwa-

ter Plume Site located near Billings, Montana. Due to industrial practices in the area, two

plumes containing chlorinated contaminants have developed near the Yellowstone river.

The two plumes are slowly migrating towards the Yellowstone river and of primary con-

cern is keeping the chlorinated contaminants from leaking into the Yellowstone river. A

pump-and-treat remediation is proposed, in which six wells in total (two wells are placed in

one plume and four wells in the other plume) are placed to pump out contaminated water,

purify it, and then return the treated water, at six locations. A computer simulator was

built to model this physical process where the inputs to the simulator are the pumping

rates for the six pump-and-treat wells, x1, ..., x6 ∈ X , and the output of the simulator is

the cost of running the pump-and-treat wells (f) and whether or not the plumes have been

contained (c). Thus, the objective of the pump-and-treat hydrology problem is to minimize

the cost of running the pump-and-treat wells while containing both plumes.

This paper further advances the literature on the use of statistical surrogate model-

ing for constrained optimization. Some relevant earlier work also uses Pareto frontiers,

although in less sophisticated ways than filter methods do. Wilson et al. (2001) proposed

exploring the Pareto frontier using surrogate approximations in order to solve a biobjective

optimization problem, and following the same suit, Parr et al. (2012) took it a step fur-

ther by incorporating constrained expected improvement into building the Pareto frontier.

Following the earlier works of Jones et al. (1998), Svenson and Santner (2012) extended
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the idea of expected improvement to the multiobjective optimization case by exploring

Gaussian process surrogate modeling and Pareto frontiers as well. Filter methods improve

upon these earlier works by providing an optimization approach that is provably conver-

gent (Fletcher et al. (1998), Fletcher et al. (2002), Audet and Dennis (2006), Ribiero et al.

(2008)) and that converges in practice with fewer functional evaluations.

We note that Pareto front approaches are just one way to address the problem, and

a variety of other approaches exist. Sasensa et al. (2002) used surrogate models based

on Gaussian processes and handled the constraints by transforming the problem into an

unconstrained problem by use of a penalty function. Similarly, Gramacy et al. (2016) used

a penalty function approach based on augmented Lagrangians to handle the constraints and

searched the objective space using Gaussian process methods with expected improvement

techniques. Lee et al. (2011) and Lindberg and Lee (2015) solved black box optimization

problems using constrained expected improvement; the former made use of calculations of

the probability of satisfying the constraint and the latter used asymmetric entropy as a

guiding measure of satisfying the constraints.

Toy problem. To illustrate the kind of constrained optimization problems we seek to

solve, we present the following toy test problem that was introduced in Gramacy et al.

(2016), and is a problem of the form (1). The problem consists of a linear objective,

f(x) = x1 + x2, with domain X ∈ [0, 1]2, and two nonlinear constraints given by

c1(x) =
3

2
− x1 − 2x2 −

1

2
sin
(
2π(x21 − 2x2)

)
c2(x) = x21 + x22 −

3

2
.

Figure 1 shows the feasible region for the toy problem and the three local optima,

with xB being the global solution to the problem. And although a toy problem, Gramacy

et al. (2016) chose this problem since it shared many characteristics with the real-world

hydrology computer experiment presented in Section 5.3, in particular, both problems have

a linear objective function and two constraint functions which may be highly nonlinear and

nonconvex.
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xA ≈ (0.7197, 0.1411)

f(xA) ≈ 0.8609

xB ≈ (0.1954, 0.4044)

f(xB) ≈ 0.5998

xC = (0, 0.75)

f(xC) = 0.75

Figure 1: The toy problem introduced in Gramacy et al. (2016). xB is the global solution to

the problem, while xA and xC are local minimizers.

The remainder of this paper is organized as follows. We first introduce the mathematical

work horse, filter methods, used for solving constrained optimization problems, and then

give a brief introduction to surrogate modeling and our choice of statistical model to use.

After that, we introduce our new algorithm, the statistical filter, for solving problems of

the form (1) and evaluate the performance of the new method on a synthetic test problem,

a welded beam problem from the literature, and the real-world hydrology computer exper-

iment. Lastly, we finish with some potential extensions to the new methodology and end

with concluding remarks.

2 Filter Methods

Filter methods were introduced by Fletcher and Leyffer (2002) as a means of solving

nonlinear programming problems without the use of a penalty function. For example,

a linear combination of the objective function and a constraint violation function, say

h(x) = ||max{0, c(x)}|| for some norm, can define the penalty function

p(x; π) = f(x) + πh(x), (2)

where π > 0 is the penalty parameter. The new penalized objective function (2) transforms

the constrained problem in (1) into an unconstrained optimization problem. Penalty
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functions suffer from the drawback of having to specify a suitable penalty parameter

that balances the often-competing aims of minimizing f and h. Instead of combining

the objective and constraint violation into a single function (2), filter methods take a

biobjective optimization approach and try to minimize both f and h simultaneously.

However, priority is placed on minimizing h since a feasible solution only exists when

h(x) = 0. Borrowing concepts from multiobjective optimization, filter methods solve the

constrained optimization problem in (1) by locating the set of all nondominated inputs

x ∈ X . A point xi ∈ X dominates a point xj ∈ X if and only if f(xi) ≤ f(xj) and

h(xi) ≤ h(xj) with (h(xi), f(xi)) 6= (h(xj), f(xj)). Geometrically, xi dominates xj if the

point (h(xi), f(xi)) is below and to the left of (h(xj), f(xj)) (Figure 2). Fletcher and

Leyffer (2002) defined a filter (similar to the Pareto front in the multiobjective literature),

denoted by F , by first determining a set of points xi ∈ X , for i = 1, . . . , n, such that no

point in the set dominates another point in the set, and then finding the corresponding

pairs (h(xi), f(xi)), and defining F as the set of all pairs (h(xi), f(xi)). Figure 2, shows

a filter defined by the four indicated points (as well as some additional aspects to be

described shortly). A particular filter may not necessarily provide a good solution to

the optimization problem, so the goal of the filter method is to successively improve the

filter until it converges to the optimal solution. Given the definition of the filter F , we

summarize the generic filter method as follows:

Initialize the filter F ;

while not terminated do

Solve a subproblem to obtain a candidate point x∗;

Evaluate f(x∗) and c(x∗);

if (h(x∗), f(x∗)) is acceptable to F then

Add (h(x∗), f(x∗)) to F ;

Remove any entries in F dominated by (h(x∗), f(x∗));

end

Check for termination;

end

Algorithm 1: Generic filter method
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In its basic form, (h(x∗), f(x∗)) is acceptable to F if f(x∗) ≤ f(xj) and h(x∗) ≤ h(xj) with

(h(x∗), f(x∗)) 6= (h(xj), f(xj)) for some (h(xj), f(xj)) ∈ F . Typically termination of the

algorithm requires that some tolerance, with respect to the solution, has been achieved or

that all budgetary resources, for example time or money, have been exhausted. As simple

as Algorithm 1 may look, extra care must be taken to avoid convergence to infeasible

points (h(x) > 0) or to feasible points that are not stationary points of (1) (Fletcher et al.,

2006). One proposed way to avoid these pitfalls is an envelope, which is added around the

current filter to avoid convergence to infeasible points. A candidate point x∗ generates an

(h(x∗), f(x∗)) that is acceptable to the filter if

h(x∗) ≤ βh(xi) or f(x∗) ≤ f(xi)− γh(x∗) ∀(h(xi), f(xi)) ∈ F , (3)

where β, γ ∈ (0, 1) are constants. The envelope in (3) has stronger convergence properties

(Chin and Fletcher, 2003) due to its sloping nature although an axis aligned envelope could

be used if γ is allowed to equal zero. However, the true strength of the filter method is

that provable convergence can be almost guaranteed near a feasible nonstationary point,

when the reduction of the objective function is “large” (Ribiero et al., 2008). Additionally,

an upper bound U may be placed on the constraint function in order to ensure a practical

limit to the largest allowable constraint violation to the filter. An illustration of a filter

with sloping envelope is given in Figure 2. Note that the dark grey shaded area in Figure

2, defined by U , is an upper bound on the acceptable constraint violation.

The success of Algortihm 1 depends on understanding the three different spaces we are

working in. The most important space we denote the “design space”, which is the domain of

the inputs, x, of the computer experiment (Figure 3). Being able to understand, and obtain

a representative sample of, the design space is imperative for a good robust optimization

algorithm. The second space, denoted the constraint space, is built from the outputs of

the computer simulator, namely the constraint function, c(x), and the objective function,

f(x) (Figure 3). The constraint space is always at minimum two dimensions, i.e., p ≥ 2,

but can have dimension as high as the number of constraints plus one, i.e., p ≥ m+ 1, and

can thus be extremely high dimensional. Lastly, the third space, denoted the filter space,
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Figure 2: A typical filter, this one generated by the four marked points. All pairs (h(x), f(x))

that are below and to the left of the envelope (dashed line), and to the left of U , are acceptable

to the filter. In this example, β = 0.95 and γ = 0.05.
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Figure 3: An example of a 2-D design space (left) where eight points were sampled using a

Latin hypercube design. Also, an example of the constraint space (c(x), f(x)) (center) and the

mapping to the filter space (h(x), f(x)) (right). Points in the constraint space such that c(x) ≤ 0

get mapped to h(x) = 0 in the filter space.
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is built from the objective function, f(x), and the measure of feasibility

h(x) = ||max{0, c(x)}||1 =

p−1∑
i=1

max{0, ci(x)} (4)

The filter space is always two dimensional since the measure of feasibility, h(x), is an

aggregate measure of the constraint functions (Figure 3). Important to note that points

will be distinct in the design space, but may not be so in the other two spaces, i.e., x1 6= x2

with c(x1) = c(x2) and/or f(x1) = f(x2).

Lastly, it is important to note that Algorithm 1 is a general outline of the filter method

with no explicit explanation of how to obtain a candidate x∗. Evaluating (f(x∗), h(x∗))

and updating the filter are relatively simple tasks, however, the main difficulty of Algo-

rithm 1 is in specifying and solving the subproblem. Many different subproblems have

been proposed within the filter method framework, however, we prefer to think of the sub-

problem as a challenge in statistical modeling. In particular, our preferred approach relies

on surrogate modeling via the particle learning multivariate Gaussian process (PLMGP)

model of Pourmohamad and Lee (2016), as explained in the next section.

3 Fast Surrogate Modeling of Computer Experiments

Traditionally, the canonical choice for modeling computer experiments has been the Gaus-

sian process (GP) (Sacks et al., 1989; Santner et al., 2003). Gaussian processes are dis-

tributions over functions such that the joint distribution at any finite set of points is

a multivariate Gaussian distribution. Gaussian processes make for convenient surrogate

models because they are conceptually straightforward (a form of nonparametric regres-

sion). Gaussian processes have a number of desirable properties such as being flexible,

being able to closely approximate most functions, and often being much cheaper/faster to

evaluate than the actual computer model. More importantly, using Gaussian processes for

surrogate modeling allows for uncertainty quantification of computer outputs at untried

(or unobserved) inputs, and also provides a statistical framework for efficient design and

analysis of computer experiments (Santner et al., 2003; Kleijnen, 2015). It is for these rea-

sons that all of the work done in this paper will be built upon the foundations of Gaussian

process modeling.
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We thus seek an efficient statistical model to serve as a fast approximation to the true ob-

jective function and constraints, which in our applications are computer simulation experi-

ments. Typically in computer simulation experiments, constrained optimization is challeng-

ing because the outputs of the simulators arise from highly nonlinear functions. This lack

of linearity is what makes nonparametric methods so desirable. However, fully Bayesian in-

ference for GP models can be slow due to the need for repeated matrix inverse calculations

in Markov chain Monte Carlo algorithms. Bayesian inference is needed for good uncer-

tainty estimates, which feed into criteria in our search algorithms. Computations can get

even more complicated with multivariate outputs, as we have with our objective function

and one or more constraints. Furthermore, the constraints tend to be negatively correlated

with the objective function, and in that part of the space most improving the objective

function tends not to meet the constraints; this tradeoff between the objective function and

the constraints is what makes constrained optimization problems difficult. Because we are

repeatedly refitting the model after adding additional simulation runs, a sequential fitting

algorithm such as particle learning makes a lot of sense, as each update is generally only a

small change from the previous round with the addition of one new observation. Thus we

use the particle learning multivariate Gaussian process (PLMGP) model of Pourmohamad

and Lee (2016) since the particle learning approach provides efficient sequential inference

and it is capable of handling p ≥ 2 correlated outputs.

4 The Statistical Filter

We combine the filter methods of Section 2 with Gaussian process surrogate modeling in

order to solve constrained optimization problems of the form (1). More formally, consider

an expensive black box computer model with a d-dimensional input x ∈ X ⊂ Rd that

produces a p-dimensional vector of outputs y ∈ Rp where the output y contains the values

of the objective function f and constraint function c at input x. We follow the traditional

statistical modeling techniques from the computer modeling literature (Sacks et al., 1989;

Santner et al., 2003; Conti and O’Hagan, 2010) and build surrogate models based on joint

multivariate Gaussian processes for the objective and constraint functions. Due to the

expense of evaluating our black box model, we use the particle learning methods developed
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in Pourmohamad and Lee (2016) to sequentially update our joint multivariate Gaussian

processes. As a general guideline, we follow the rule of thumb put forth by Loeppky et al.

(2009), and require that the number of initial runs (or samples) of the computer model to be

about ten times the input dimension, i.e., n = 10d, in order to achieve reasonable surrogate

model fits. Likewise, we sample inputs for our initial n = 10d runs of the computer model

using a Latin Hypercube Design (LHD) (McKay et al., 1979; Santner et al., 2003; Fang

et al., 2005). In our experience, we found LHD to be an adequate space-filling design

for sampling our initial inputs and possible future candidate inputs under our PLMGP

framework.

In order to combine the filter methodology with the surrogate modeling, we must recall

that each space serves its own unique purpose. The design space is responsible for the

sampling of inputs and dictates where the optimization algorithm is able to explore. Bad

representative sampling of the inputs in the design space can lead to poor performance of

the optimization algorithm, as the surrogate model may be less accurate. The constraint

space is used solely for the fitting of the surrogate models, but is critical for obtaining

good fits, as each constraint can be modeled separately and on a continuous space. The

filter involves combining all of the constraints into a single non-negative function that

is difficult to model with a statistical surrogate model. The objective function, f(x),

and the constraint functions, c(x), are modeled in the constraint space and mapped

deterministically into the filter space based on the fitted surrogate models. Once in the

filter space, the actual filter methods of Section 2 are applied and new candidate points

are searched for until a minimum has been declared. Updating our generic filter Algorithm

1, we have the following new algorithm:
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Sample initial inputs from a LHD;

Initialize the filter F ;

while not terminated do

Fit surrogate models for f(x) and c(x) using the joint PLMGP model;

Map the surrogate model in the constraint space to the filter space;

Solve a subproblem to obtain a candidate point x∗;

Evaluate f(x∗) and c(x∗);

if (h(x∗), f(x∗)) is acceptable to F then

Add (h(x∗), f(x∗)) to F ;

Remove any entries in F dominated by (h(x∗), f(x∗));

end

Check for termination;

end

Algorithm 2: Statistical filter method
Although we have an updated statistical filter method, we still need to solve a subproblem

in order to obtain a new better candidate point x∗. In the following section we provide our

solution for the subproblem of selecting candidate points and in subsequent sections test

its performance on test problems and a real-world hydrology computer experiment.

4.1 Probability Acceptable to the Filter

The subproblem, dubbed “probability acceptable to the filter” (PAF), selects a new can-

didate point, x∗, by maximizing the probability that the candidate point falls beyond the

current filter (i.e., the candidate point dominates a point in the current filter). Stated more

formally, we wish to find an x∗ such that

x∗ = max
x∈X

Pr{(h(x), f(x)) is acceptable to the filter F}. (5)

At each iteration of the statistical filter algorithm we choose a Latin hypercube sample from

the input space X to take as potential solution to the PAF subproblem. Having fit a joint

surrogate model to f(x) and c(x), using the joint PLMGP model of Pourmohamad and Lee

(2016), the joint predictive distribution of (f(x), c(x)) is a multivariate T process. Given

this fact, we can obtain a prediction for (f(x), c(x)) based on the mean of the multivariate
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T process (Gupta and Nagar, 2000), and quantify the uncertainty around that prediction

with a probability ellipse based on the covariance matrix of the multivariate T process. For

example, Figure 4 shows a typical filter, with envelope, and two candidate points A and B

and their respective 95% probability contours based on their multivariate T process. Thus,

finding a candidate point x∗ satisfying (5) is equivalent to finding a candidate point with

the largest area of its contour falling outside (to the left and below) of the filter’s envelope.

Although calculating this area of the contour is a well posed problem, solving for the area

analytically is not a trivial task, and so we use Monte Carlo integration to estimate the

probability of being acceptable to the filter instead. Of note, we also considered another

subproblem to solve, based on a similar hypervolume metric as described in Keane (2006),

Emmerich et al. (2011), and Binois and Picheny (2016), where new candidate points would

be chosen conditional on maximizing the expected area (MEA) between the the current

filter and a hypothesized new filter arising from potential new candidate points. Although

constrained optimization performance was good under this subproblem, we found the PAF

subproblem to generally work as well as the MEA subproblem (Pourmohamad, 2016).

4.2 Joint Modeling of the Objective and Constraints

Constrained optimization is typically difficult because at least one of the constraint viola-

tions operates in opposition to the objective function, i.e., they are negatively correlated.

We model the objective and constraint functions jointly because we want to be able to

capture this negative dependency assumption, however, we could also forgo this assump-

tion and model the objective and constraint functions independently using independent

particle learning Gaussian process (PLGP) models (Gramacy and Polson, 2011) instead.

There is an increase in the time and computational burden of joint modeling as compared

to independent modeling of the objective and constraint functions, however, as seen in

Pourmohamad and Lee (2016), there are significant gains in predictive accuracy and cov-

erage by use of joint modeling when the objective and constraint functions are correlated.

Given that the solution of the subproblem in Sections 4.1 relies heavily on the accuracy of

the prediction of new candidate points, it is imperative that we do a good job in modeling

the objective and constraint functions. Furthermore, modeling the objective and constraint
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functions independently implicitly assumes that the objective function and constraint func-

tions are not correlated. Clearly the independence assumption can be violated in real-world

applications and typically, a rational assumption would be to assume that the objective and

constraint function are negatively correlated. Moreover, the benefits of using the PLMGP

model in the statistical filter rather than the independent PLGP model are twofold. First,

the PLMGP model in the statistical filter can improve our PAF calculations immensely

when the objective function and constraint functions are correlated. Under the indepen-

dence assumption the contours in our probability calculations will be always axis aligned

which could lead to an under (or over) statement in our probability calculation. Allowing

the objective and constraint functions to be modeled jointly allows for the contours to be

angled and non-axis aligned (Figure 4) resulting in more accurate probability calculations

when correlations are present.

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

h(x)

f(x
) U

B

A

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

h(x)

f(x
) U

B

A

Figure 4: The probability acceptable to the filter subproblem. Selecting between candidate

points A and B is determined by finding the area of their respective contours to the left of

the filter envelope. Modeling the objective and constraint functions jointly (right) can lead to

probability contours that are non-axis aligned as compared to independently (left) which are

always axis aligned.

Second, when the objective and constraint function are correlated, the shared information
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in modeling the functions jointly can lead to better model fits, which ultimately leads

to far fewer function evaluations of the computer model (see supplementary materials for

an example). Being able to obtain good surrogate models with few function evaluations

is especially important when modeling expensive black box functions where the time to

evaluate function calls is a limiting factor. Thus, we implement the PLMGP model for

solving the filter subproblem.

5 Illustrative Examples

We demonstrate the effectiveness of our statistical filter method on a synthetic test problem,

a welded beam problem from the literature, as well as the real world pump-and-treat

hydrology problem of Section 5.3. As a benchmark, we choose to compare the results of

our method to the results of the methods used in Hedar (2004) and Gramacy et al. (2016).

The approach used in Hedar (2004) was very different from the statistical approach we take

and so we focus less on replicating the exact conditions of their experiment, and concentrate

more on arriving at the same solution but in fewer objective function evaluations. However,

in order to make a fair comparison of our methodology with Gramacy et al. (2016) we try

to follow and mimic their initial conditions as closely as possible. For the toy problem, we

initialize the PLMGP model with 10 random input-output pairs from X before starting our

optimization algorithm. Likewise, we use our surrogate model to predict outputs based on

a random set of 1000 candidate x locations in X . Finer details for the initialization steps of

the real-world hydrology computer experiment were not present in Gramacy et al. (2016)

and so we chose to initialize the PLMGP model with 60 random input-output pairs from X .

Of note, our statistical filter method was designed to treat both the objective and constraint

functions as outputs from a black box computer models, however, in Gramacy et al. (2016)

they treat the objective function as being known. Therefore, to further facilitate a fair

comparison of methods, we chose to also treat the objective functions as known and to

only treat the constraint functions as black box outputs. This decision does not interfere

with our statistical filter methodology as we may still treat the objective function as a black

box output during the modeling and prediction stages, but then we shall deterministically

predict the value of the objective function given that we now know the true form of it
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but still use our PLMGP model to predict the values of the constraint functions. In the

welded beam problem (Hedar (2004)), we treat both the objective and constraint functions

as unknown functions, i.e., arising from a black box computer model.

5.1 Results for the Toy Problem

Table 1 summarizes the results of a Monte Carlo experiment for the toy problem described

in Section 1. Following the conditions of Gramacy et al. (2016), we conduct 100 repetitions

of the Monte Carlo experiment and, on-average, arrive at the approximate solution to the

constrained optimization problem after 100 input-output updates to the statistical filter

algorithm.

n 25 50 100

95% 0.769 0.616 0.604

Average 0.710 0.606 0.600

5% 0.606 0.600 0.599

Table 1: After 100 updates: The progress in minimization for 100 Monte Carlo repetitions with

random initial conditions using the statistical filter algorithm for the toy problem. The table

shows the average best feasible minimum over the 100 runs, as well as 5th and 95th percentiles for

the best feasible minima found.

Benchmarking our results to the analysis done in Gramacy et al. (2016) we compare the

two plots in Figure 5. The left plot shows the results of the analysis done by Gramacy et al.

(2016) while the right plot shows the results of the statistical filter method superimposed

over the left plot for comparison. As shown by both the mean and the 95% credible

intervals, the statistical filter method reliably finds the global minimum faster than any of

the other methods in Gramacy et al. (2016).
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Figure 5: Results from running the statistical filter method (right side) against the comparative

methods (left side) in Gramacy et al. (2016). The results are from running 100 Monte Carlo

repetitions with random starting inputs. The plots show the best valid value found of the objective

function over the 100 black box iterations.

5.2 Welded Beam Problem

The welded beam problem (Coello and Montes (2002); Hedar (2004)) has four inputs

x1, x2, x3, and x4, and six constraints c1(x), . . . , c6(x). The objective function, f , is the

cost associated to construct a welded beam subject to constraints on sheer stress (c1(x), t),

bending stress in the beam (c2(x), s), buckling load on the bar (c6(x), Pc), end deflection of

the beam (c5(x), d), and side constraints (c3(x), c4(x)). Here, Here, x1 corresponds to the

thickness of the welds, x2 is the length of the welds, x3 is the height of the beam, and x4 is

the width of the beam. We would like to minimize the objective, f , while simultaneously
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satisfying the constraints, c1, . . . , c6, i.e.,

min
x

f(x) = 1.10471x21x2 + 0.04811x3x4(14.0 + x2)

s.t.

P = 6000, L = 14, E = 30× 106, G = 12× 106

tmax = 13600, smax = 30000, xmax = 10, dmax = 0.25

M = P (L+ x2/2), R =
√

0.25(x22 + (x1 + x3)2)

J =
√

2x1x2(x
2
2/12 + 0.25(x1 + x3)

2)

Pc =
4.013E

6L2
x3x

3
4

(
1− 0.25x3

√
E/G

L

)
t1 = P/(

√
2x1x2), t2 = MR/J

t =
√
t21 + t1t2x2/R + t22

s = 6PL/(x4x
2
3)

d = 4PL3/(Ex4x
3
3)

c1(x) = (t− tmax)/tmax ≤ 0

c2(x) = (s− smax)/smax ≤ 0

c3(x) = (x1 − x4)/xmax ≤ 0

c4(x) = (0.10471x21 + 0.04811x3x4(14.0 + x2)− 5.0)/5.0 ≤ 0

c5(x) = (d− dmax)/dmax ≤ 0

c6(x) = (P − Pc)/P ≤ 0

0.125 ≤ x1 ≤ 10, 0.1 ≤ xi ≤ 10 for i = 2, 3, 4

The optimal solution to the welded beam problem, as reported by Hedar (2004), is f(x) =

1.7250022, which occurs at x = (0.2056, 3.4726, 9.0366, 0.2057).

One of the toughest challenges of the welded beam problem is that the set of possible feasible

points is very small as compared to the entire input space. Taking a Latin hypercube sample

of size 1,000,000 yields only 972 feasible points, or rather, only 0.0972% of the design points

in a latin hypercube design (LHD) will be feasible for the problem. Having fewer than 1%

of the initial set of inputs be feasible means that our PLMGP model needs to do a good job
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at prediction and uncertainty quantification of the objective and constraint functions so

that the filter method can direct the search towards areas where the chance of encountering

feasible points is high.

To solve the welded beam problem, we start with an initial sample of 40 inputs from a LHD

over the input space and sequentially sample 960 more inputs. Using a LHD to predict new

outputs is an inefficient space filling design in the context of the welded beam problem, and

so, because our LHD provides us with so few feasible inputs, we decided to resample our

40 initial inputs over and over again until we obtained at least one feasible input. Once we

obtain our initial sample, we follow the strategy of Taddy et al. (2009) and select the new

candidate set of inputs to predict at from a LHD of size 500 times the input dimension aug-

mented by an additional 10% of the candidate locations taken from a smaller LHD bounded

to within 5% of the domain range of the current best feasible point. Using the approach of

Taddy et al. (2009) better ensures that our search should continue to predict at some fea-

sible inputs once we have found at least one feasible input. Note that these candidates are

evaluated by the statistical surrogate model, and only the single most promising candidate

is actually evaluated by the real model. Under these conditions, we ran our statistical filter

algorithm and progressed the search for new inputs. Solving the PAF subproblem led to

an optimal input configuration of x = (0.2057357, 3.4715605, 9.0349330, 0.2058335), which

yields a feasible value of 1.725504. The solution we found was better than that of the best

solution found in Coello and Montes (2002) and was comparable to the optimal solution

reported in Hedar (2004) of 1.7250022. However, the average number of objective func-

tion evaluations for Coello and Montes (2002) and Hedar (2004) were 80,000 and 58,238,

respectively, while our statistical filter algorithm only required 1000 function evaluations,

and thus, was far superior in terms of number of evaluations it took to converge to an op-

timal solution of the problem. This is an important distinction to make since the number

of function evaluations plays a critical role when the true computer model is expensive to

evaluate and so a method that requires too many function evaluations to adequately solve

the constrained optimization problem becomes infeasible. Of course if the computer model

is not an expensive one (in this paper we assume it is) then methods that require a higher

number of function evaluations may be preferable to our method if the actual computation
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time of those methods is minimal.

5.3 Pump-and-treat Hydrology Problem

Our motivating example, the goal of the pump-and-treat hydrology problem is to minimize

the cost of running the pump-and-treat wells while containing both plumes. We reformulate

this problem in the framework of a constrained optimization problem as

min
x
{f(x) =

6∑
j=1

xj : c(x) ≤ 0, x ∈ [0, 20 · 104]6}, (6)

where the objective f we wish to minimize is (known) linear and describes the cost required

to operate the wells. The two plumes are contained when the constraint, c, is met, and

the input to the computer simulator are the six pumping rates x1, . . . , x6 (which can be set

between 0 and 20,000). The time it takes to run the computer simulator is nontrivial and

so it is not feasible to run the computer simulator at every possible combination of inputs

and find the one that optimizes the problem (6).

Table 2 summarizes the results of a Monte Carlo experiment for the real-world hydrology

problem. Following Gramacy et al. (2016), we conduct 30 repetitions of a Monte Carlo

experiment and, on-average, obtain a best value of 23,738 after 500 input-output updates

to the statistical filter algorithm. This best average value is noticeably better than the best

values found in Gramacy et al. (2016) and in the literature.

Comparing the two plots in Figure 6 we also see that the statistical filter method reliably

decreases the objective function faster than any of the other methods. While a few of the

comparator methods catch up around 100 to 200 iterations, the statistical filter method

continues to improve after that point, finding a better overall solution by 500 iterations.
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n 100 200 500

95% 34763 30220 24742

Average 28974 25604 23738

5% 27647 24464 23236

Table 2: After 500 updates: The progress in minimization for 30 Monte Carlo repetitions with

random initial conditions using the statistical filter algorithm for the pump-and-treat hydrology

problem. The table shows the average best feasible minimum over the 30 runs, as well as 5th and

95th percentiles for the best feasible minima found.
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Figure 6: Results from running the statistical filter method (right side) against the comparative

methods (left side) in Gramacy et al. (2016). The results are from running 30 Monte Carlo

repetitions with random starting inputs. The plots show the best valid value found of the objective

function over the 500 black box iterations.
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6 Potential Extensions

We briefly mention two possible directions for future work. First, we hypothesize that

we may be able to gain faster convergence to a global solution by incorporating a time

dependent upper bound Uk on the constraint function that shrinks (or slides) over time.

Currently within the statistical filter algorithms we use an upper bound U on the constraint

functions that is set arbitrarily large or by some real-word physical property of the problem.

In applications, setting the upper bound U this way works well, however, we think that by

allowing U to shrink over time towards h(x) = 0 we may be able to force the filter to find

feasible solutions more rapidly.

Second, we note that there is a substantial amount of information lost in compressing

the constraint values c(x) into a single nonnegative scalar h(x). Under our statistical

filter framework, we follow the accepted convention that we build our surrogate models

in the constraint space and that we build the filter F in the two dimensional filter space.

However, other than the fact that we saw little literature in the optimization community

on filter methods that built the filter F in the higher dimensional constraint space, we

see no apparent reason why this should not be explored. While it is beyond the scope of

this paper, it would be interesting to examine a multidimensional statistical filter. The

closest works in the literature are Gould et al. (2005a) and Gould et al. (2005b), who

investigate the use of a multidimensional filter for solving systems of linear equations of

the form c(x) = 0, and Shen et al. (2009), who built a three dimensional filter for solving

constrained optimization problems where one constraint is an equality constraint and the

other is an inequality constraint.

7 Discussion

Many complex phenomena in the world cannot be studied physically and so there is an ever

growing need for computer models to study these complicated systems. As science evolves

and questions become more complex and expensive, the need for efficient computer models,

and surrogate models, becomes even more abundant. An important topic, constrained

optimization of computer experiments is a very challenging problem. Computer models
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may be difficult to optimize because their output functions may be complex, multi-modal,

and difficult to understand. The novelty of the work presented in this paper is in proposing

a new methodology for solving constrained optimization problems by combining statistical

modeling and nonlinear programming. The marriage of stochastic process models with filter

methods is a powerful combination for understanding and optimizing black box computer

models.

In order to solve constrained optimization problems for expensive black box computer

experiments we embedded the joint stochastic process model of Pourmohamad and Lee

(2016) within a filter algorithm that outperformed the established comparators. By building

a joint surrogate model for the objective and constraint functions, we were able to establish

a novel statistical metric for guiding the filter efficiently. We demonstrated the success of

our new statistical filter algorithm on a suite of computer model optimization problems.

Accompanying code for the independent case is given as it is relatively quick to run (in

comparison to using joint modeling) and is easily extendable to other types of models.

8 Supplementary Materials

The Statistical Filter using Independent Gaussian Processes: The toy test prob-

lem is solved using independent Gaussian processes, rather than the PLMGP model,

in order to provide a comparison of the impact in speed (as measured by function

evaluations) and quality of the solution.
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