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A molecular theory of the coeflicients of shear and bulk viscosity of monatomic liquids is developed on
the basis of the general theory of transport processes presented in the first article of this series. With the
use of the Lennard-Jones potential and a reasonable analytic approximation to the experimental radial
distribution function, calculations of the coefficients of shear and bulk viscosity of liquid argon at 89°K have
been carried out. The theory leads explicitly to ratios of the coefficients to the friction constant of the theory
of Brownian motion. With a preliminary estimate of the friction constant, a value of the shear viscosity of
liquid argon in moderately good agreement with experiment is obtained.

I

HE general statistical mechanical theory of trans-
port processes, developed in the first article
(SMTI) of this series,! has as an objective the deter-
mination of the coefficients of viscosity, diffusion and
heat conductivity of fluids in terms of molecular vari-
ables. It is the purpose of the present article to present
a detailed theory of the coefficients of shear and bulk
viscosity of liquids based upon the general theory. The
starting point is provided by the differential equations
of the Chandrasekhar? type for the probability distribu-
tion functions in the phase space of sets of one, two,
and three molecules of the liquid, which were derived
from the molecular standpoint in SMTI. An alternative
approach is provided by the kinetic theory of liquids of
Born and Green.® While their theory parallels our own
and duplicates many of its general results, it differs in
the manner in which dissipative terms are introduced
into the equations satisfied by the distribution func-
tions. Although Born and Green have presented an
interesting qualitative discussion of the coefficient of
shear viscosity of liquids, they have not yet succeeded
in constructing solutions of their equations for the dis-
tribution functions in sufficiently explicit form to yield
concrete results.
The macroscopic hydrodynamics of viscous fluids is
described by the equations of continuity and motion,

V- (pu)+9p/8t=0,
p(du/d)=X+V-a,

where p is the density, u the particle velocity, X the
external body force, and o the stress tensor, supple-
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mented by the Newtonian expression for the stress

tensor,
o=—{p+[(21/3)]~¢)V-u}l+2ne,

where p is the equilibrium pressure of the fluid, ¢ the
rate of strain, and 7 and ¢ are the coefficients of shear
and bulk viscosity. The stress tensor is determined by
molecular distribution functions and intermolecular
forces in the manner described by Eq. (26) of SMTI.
There are two types of terms, one arising from momen-
tum transport and one from the direct transmission of
intermolecular forces, which is determined by the aver-
age density of molecular pairs. In thérmodynamic equi-
librium the stress reduces to a uniform normal pressure,
the first term of which is the ideal gas contribution. The
second term arising from intermolecular forces has no
shear components, since the pair density, proportional
to the radial distribution function of the theory of
liquids, possesses spherical symmetry. Departure from
equilibrium resulting from hydrodynamic flow leads to
perturbations in the molecular distribution functions
proportional to the components of the rate of strain. In
liquids the momentum transport contribution to these
terms is very small relative to the contribution from
intermolecular forces. The latter contribution arises
from the perturbation in the pair density. This perturba-
tion consists of two parts, one spherically symmetric,
which determines the bulk viscosity ¢, and one having
the symmetry of a surface harmonic of order two, which
determines the shear viscosity.

By means of the general equations of SMTI, the
perturbations in the pertinent molecular distribution
functions have been constructed and the ratios n/¢ and
¢/¢ of the two coefficients of viscosity to the Brownian
motion friction constant { have been expressed in terms
of definite integrals involving the potential of inter-
molecular force and the equilibrium radial distribution
function. Calculations have been carried out for liquid
argon at 89°K with the use of the Lennard-Jones poten-
tial of intermolecular force and the Eisenstein-Gingrich
radial distribution function. The result of the calcula-
tion is '

1/¢=2.63X 108 cm—t,
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Although the theory of the friction constant { was pre-
sented in SMTI, it has not yet been possible to calculate
it accurately. Our preliminary estimate, {=4.84X10—1
g sec.”!, leads to a shear viscosity 5 of 1.27X 10 poise,
in fair agreement with the experimental value, 2.39X 103
poise. Calculations relating to the bulk viscosity are
postponed for treatment in a subsequent article.

II

In SMTI, the macroscopic observables of a system
of N molecules were put into correspondence with
average values determined by probability densities
f™(p, q;#) in the phase space (p,q) of subsets of #
molecules

7™, q;0)= f f F™(p, 4, P, Q; /)dPdQ,
)
) 1 p
¥, q, P,Q;t)=:f F™(p, q, P, Q; t+s)ds,

where (P, Q) is the phase space of the residual set of
N—n molecules and /™ (p, q, P, Q; ?) is the probability
density in the complete phase space of an example of the
appropriate statistical ensemble, from which a system
is sampled in the process of preparation at time ¢ with
specified values of the molar variables determining its
macroscopic state. The interval 7 is determined by the
time resolution of the instruments employed in the
measurement of the macroscopic observables. If the
shortest period macroscopically resolved is long relative
to the Brownian motion correlation time, it was made
plausible that in liquids, the macroscopic description
would not sensibly depend upon the smoothing time r,
provided 7 is long relative to the correlation time. For
the representation of average values of functions of the
configuration coordinates of small sets of # molecules,
it is convenient to define number densities p!™(g; £) by
the relation,

p™(gq; t)=

N

o Jireann @
n

The mass density p of hydrodynamic theory at a point
R in a fluid and the particle velocity u are then deter-
mined by the relation,

p(R)=mp®(R),

. (3)
pu=N f pf® (R, p)dp,

where m is the mass of a molecule. The distribution
functions f™ were shown to satisfy partial differential
equations, SMTI, Eq. (60), of the type derived by
Chandrasekhar? on the basis of the phenomenological
theory of Brownian motion. The use of these equations
to determine the molecular distribution functions of a
fluid in a state of stationary viscous flow will be pre-
sented in Section III.

989

In a system of molecules for which the potential of
intermolecular force Vy can be represented in the form,

N
Va= Y. V(Ru), 4)

i<k=1

where V(R.) is a function, say of the Lennard-Jones
type, of the distance R;; between the pair of molecules
(tk), the stress tensor o is given by SMTI, Eq. (26). In
the notation of Egs. (2) and (3), this equation becomes,

(PP)a
o=—p® -

m

R12R12 ‘ dV
+ o® (R, Ruddons, (5)
Rz dRq:

O (ppn=N f pp7(p, R)dp,

where p®(R, Ry») is the number density of pairs, one
member of which is situated at point R and the other
at point Ry relative to the position of the first. The
integration in the second term of Eq. (5), the contribu-
tion of intermolecular forces to the stress tensor, extends
over the relative configuration space Ris of the repre-
sentative pair. The first term represents the momentum
transfer contribution, important in gases, but almost
negligible in liquids.

In a liquid in a state of stationary viscous flow, the
distribution functions are pérturbed in such a manner
that the stress tensor takes on the extended Newtonian
form. In Section III, it will be shown that with neglect
of non-linear terms in the rate of strain, &,

(PP kT
—~pWm —muu [p® = — pWETl4- p—¢,
m $ ©)
¢=kT/D, &=SymVu,

where { is the Brownian motion friction constant and
D is the coefficient of self-diffusion of the liquid. The
pair density, p®, determining the contribution of inter-
molecular forces to the stress tensor is conveniently
written in the form,

PP R, Riz)=p@(R)p® (R+R12)g® (R, Rez),  (7)

a relation defining the pair correlation function g@(R,
R;2). In Section III, it will be shown that g® can be
expanded in the components of the rate of strain as,

¢ [Re-e- Ry
g(2)=go(2)(R12){ 1+~~—[—”—E
2kTL Ry

—3v. u]‘/’E(Rlz)
+_S~.(V ‘u)o(R12) } , (8)
6kT

where go@(Rys) is the radial distribution function of
the fluid in thermodynamic equilibrium and ¥o(Ryz)
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990 KIRKWOOD,
and ¥2(Ry,) satisfy certain ordinary differential equa-
tions, presently to be derived from the general theory
of the probability densities, f.

Substitution of the momentum contribution of Eq.
(6) and the perturbed pair density of Egs. (7) and (8)
into Eq. (5) yields the stress tensor,

o=—[p+(2/37—¢)V-ul4+29¢,
NET 2xN?

-

(9)

® 4V
[ *gomur,
0 dR

where p is the equilibrium pressure of the liquid at the
given temperature and uniform number density p®,
equal to the ratio of Avogadro’s number N and the
molal volume V. The coefficients of shear viscosity »
and bulk viscosity ¢ are then given by the expressions

ET  w¢ N2 po 4V
n=p—t——— | B—ys(Rps®(R)dR,
2% 1SET V2 R
(10)
kT w¢ N? av .
b=t | R Re® (R,
3¢ OkT V2 R

where, as subsequent calculations will show, the initial
terms arising from momentum transport are of minor
importance in liquids.

In order to evaluate the integrals of Egs. (10), as
well as to solve the differential equations determining
the perturbation functions ¥o(R) and ¥»(R), it is neces-
sary to know the equilibrium radial distribution func-
tion go®(R) and the potential of intermolécular force
V(R). The potential V(R) is conveniently approximated
by the Lennard-Jones expression,

ne()

x=R/a,.

(11)

In applications of the theory presently to be made to
liquid argon, we shall use parameters, #, ¢, and ao,
determined by Rushbrooke!* and Corner.’ The values
are: n=11.4; e=6.82X 107" erg; ao=3.43A.

The radial distribution function go®(R) is of course
determined by the potential of intermolecular force
V(R) and the thermodynamic variables.® It is also ac-
cessible to experimental measurement, since it deter-
mines the intensity of x-rays scattered by a liquid as a
function of scattering angle. In the applications to
follow, we shall make use of the radial distribution
function data for argon of Eisenstein and Gingrich.?
This function possesses a series of peaks with amplitude
rapidly diminishing as R increases. Since it is found that

* G. S. Rushbrooke, Proc. Roy. Soc. (Edm) 60 182 (1940).

5 J. Corner, Trans. Faraday Soc. 35, 711 (19 )

sJ. G. Kirkwood and E. Boggs, J. Chem. Phys. 10, 394

(1942).
7 A. Eisenstein and N, S. Gingrich, Phys. Rev. 62, 261 (1942),
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the integrals of Eq. (10) are in the main determined by
the first peak of the radial distribution function, the
other factor being of very short range, we have con-
structed the following analytical approximation to

8@ (R),

wontnre](2) ()

OSRS a1,
_—'1, R< ai,
which represents quite well the first peaks of the
Eisenstein-Gingrich curves. It has the important ad-
vantage of allowing the integration of the differential
equations satisfied by the perturbation function ¥, and
Y2, in terms of confluent hypergeometric functions. Two
of the parameters ¢;=4.5A and f=14 are determined
from the Eisenstein-Gingrich data to be relatively in-
sensitive to temperature. For liquid argon at 89°K and
1.2 atmos., the remaining parameters were determined
with the use of the Lennard-Jones potential, Eq. (11),
the theoretical equation of state, given by the second
of Eq. (9), and the energy of vaporization,

= ®(R)dR. (13)

They were found to have the values, ¢,=3.55A and
s=7.01. This calibration was found to be necessary,
since the Eisenstein-Gingrich functions fail to satisfy
the equation of state, due to the extreme sensitivity of
the cohesive pressure, arising from intermolecular forces,
to the relative position of the first peak of go®(R) and
the position of the minimum of the Lennard-Jones po-
tential. With the adjusted parameters, the peak of the
empirical function, Eq. (12), lies at 3.73A and corre-

‘sponds to a coordination number of 8.1, both in good

agreement with the experimental results of Eisenstein
and Gingrich.

I

The determination of the perturbations from equi-
librium of the distribution functions f®(p, R) and
p@®(R, Ryy) in a liquid in a state of stationary viscous
flow is based upon the use of the Chandrasekhar equa-
tions, SMTI, Eq. (59) and Eq. (60), derived from the
standpoint of molecular dynamics in the first paper of
this series. In order to determine the momentum contri-
bution to the stress tensor, we employ the equation
[SMTI (59)]

o™ p
__+__ VRf® 4 vy FOfO

={Vp- { (—'—ll)f(l)—i—kTfo(l) }, (14)
m
F(D =0 <F>Av0+ (1)F+,
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where { is the friction constant of the theory of Brown-
ian motion, (F),0 is the average in the equilibrium
ensemble of the total intermolecular force acting on a
molecule situated at point R, and F* is the perturba-
tion arising from the departure of p® from equilibrium.

Upon multiplication of both sides of Eq. (14) by

(p/m—u)(p/m—u) and integration over momentum
space, we find with the use of Green’s theorem that

(XD y— mkTl= ~% (T4~ V- (IT- VulD)s

A{IIIT ),
+ll- V(HH>N+ at s

II=p—mu,

(15)

with the neglect of non-linear terms in all perturbations
from equilibrium. In the stationary case, Eq. (15) leads
at once to Eq. (6), in the linear approximation, and the
momentum transfer contribution to the stress tensor
is evaluated.

In order to determine the pair density p®, from which
the intermolecular force contribution to the stress tensor
is to be calculated, we employ Eq. (60) of SMTT in the
form appropriate to f@(pi, Ry, ps, Re; #) in the phase
space of molecular pairs,

of® p_ _ pe .
+—- Vo f @ —. VR @
oF m n

+ V- FL@fO L ¥y, . F,@fO

=Vp1- 4@ { (p__. ul)f‘2)+kTVp1f"(2’ } (16)

m

+Vpy- @ l (B_._ uz)j(2)_|_ kT Voo f® , :

m

F,@=@OF )+ OFF; F,@0=@(F,),°+ OF;*

where @(F;)x? is the mean force acting on the first
molecule of the pair in the unperturbed equilibrium
ensemble, subject to the condition that the configura-
tion (Ry, Ry) of the pair is fixed, and @F;+ is the per-
turbation arising from the departure of p®, the density
- in triplet configuration space from equilibrium. The
friction tensor {® is a second rank tensor in the six-
dimensional configuration space of the pair, related to
intermolecular forces in the manner prescribed in
SMTI. The vectors u; and u, are the particle velocities
of three-dimensional hydrodynamics, defined by Eq.
(3), at the respective positions R; and R, of the pair.
Integration of both sides of Eq. (16) over the momentum
space of both molecules leads to the equation of con-
tinuity in pair configuration space,
9p®

+VR1 §1@+ VR, 3P =0,
(17)

N -
f f «f @ (p1, P2, Ry, Ro; £)dpidp,,

991

with j,® the number current density in pair space
projected on the 3-space of molecule «. Multiplication
of both sides of Eq. (16) by p: and p: respectively,
followed by integration over momentum space yields
the equations,

031 @
m = —kTVRp®+F,®p®
ot
— 0O [0 —u,p®],
(18)
3@
" = —kTVRyp@+F,®p®
ot

— 0@ 29 —up®],

with the neglect of non-linear terms in u; and u, and
of terms of the order of 1/{ in the departure of the non-
diagonal terms in (p.pajs®/m from their vanishing
equilibrium values. Similar equations are obtained by
the same procedure from Eq. (14),

3ja®
w = —kTVRp®(R)+F.Vp®(R.),
ot
3o R.)
H——_+VRa'ja(l)=0; (1=1, 2: (19)
ot
ia(l) =p® (Ra)u(Ra)
We now introduce the simplifications,
LO=0®=¢]
F,®—F,0=kTVR, logge®(Re); a=1,2, (20)

where ¢ is the singlet friction constant of Eq. (14) and
go® is the equilibrium radial distribution function. The
first of Egs. (20) implies the neglect of the dependence
of the friction tensor {@ on the relative configuration
of the pair, and the second approximates the mean
intermolecular force difference by its equilibrium value.?
Thus it is a well known result of equilibrium statistical
mechanics that,

g0(2) = exp(— (W(2) — Wl(l) —_ W2(1))/kT),
OFIn®@=— VR O(Rp), a=1,2,
OF Y = — VRV O (Ra),

21

where W® and W® are the potentials of mean force
in singlet space and pair space, respectively.
Introduction of Eq. (7) into Egs. (17) and (18) and
elimination of p®(R;) and p®(R,) by means of Egs.
(19) leads, with neglect of the inertial terms, to the

#See J. G. Kirkwood, J. Chem. Phys. 3, 300 (1935).
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992
following equation for the correlation function,
VR {VRg® —~ (VR logge®)g®}

r 9 2 ¢
_—__.—_:g__..,*wR 8 VRg(z)’
2T ot T

s o 2kT§ @ — (VR loggo®)g®}
Jr2¥=— Vrg®~— (VR logg,™)g“y,
¢ (22)

PO RDpP(R2)j12® = 2@~ p®Pu,]
~[§:®~ p®u,],
@R, R=g?®R); R=R.—Ry;
w—w=R-Vu,

where j;2® is the excess probability current density in
relative pair space, vanishing at R—sc by definition
and is conditioned by the absence of sources or sinks in
the pair density distribution.

Introduction of Eq. (8) into Eq. (22) and linearization
with respect to the components of the rate of strain £
leads, in the stationary case to the following ordinary
differential equation for the functions ¥.(R) and
1[10(13), .

d R? o b ® Rad ®
—( Rego " ) =654
ATy A R G

(23)
dg0(2)

d
(R2g0(2)_~__.) = R3
dR

In coordinate representation y¥»(R) is the coefficient of
surface harmonics of order two, arising from the shear
component of the rate of strain, and yo(R) is the coeffi-
cient of the surface harmonic of order zero, arising from
the dilatational component. The excess probability cur-
rent density in the relative pair space is given by

R 's-R

jr2®@ = — gn<2>{vg{ iv. u]%(R

+%<v-u>¢o<k>}. (24)

The requirement that ji,® vanish at R= = and that
there be no sources or sinks in pair space leads to the

o D{ay+#)T{artn)-
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boundary conditions,

lim ¢(R)=0, (25a)
R w»
dya(R
lim Rige® . ):0, (25b)
R0
d¥o(R)
lim S : (25¢)
Row
)
lim Rng‘Z’MEL~0, (254)
R0 R .

subject to which Egs. (23) are to be solved. In addition,
Yo, ds/dR, and dy/dR must be continuous for all
0<R< =, a condition which must be applied at the
cut-off point, R=a;, of the approximate radial distribu-
tion function, Eq. (12), in order to ensure continuity of
the pair current at this point.

v

The solution of the ¥, Eq. (232} is based on use of the
approximate representation of g,® given in Eq. (12).
Since R2/2 is a particular solution, we only have to
investigate the homogeneous equation

4y dlogge®) dy
xﬁ-——j+{2+x : }x—-j--ﬁybg:O;
dx? x dx ao

X=-—

(26)

For ,<x, Eq. (26) reduces to Euler’s equation so
that the solution satisfying the boundary condition at
infinity, Eq. (25a), is given by

;1/2=K2/x3~; (27)

x1<az.

Substitution of the first peak approximation in Eq.
(26) leads to the following differential equation for
0<aL

mﬁ—}-(Zk z)z-—+<k+m-« Die—m—a=0,

(28)
s—1 17 /75—1y2 H Zp )
G )
1 } 2 x

Two linearly independent solutions of this equation
are found to be 227 "Wy, () and e*%*W_; (—3),
where Wy m(z) is the Whittaker confluent hypergeo-
metric function.’ We note that the generalized hyper-
geometric function is given by

»Taptm)T(p)T{(p2) - - T'(pg)2"

PF‘I(O‘I) G2, © ' Ops P1, P2, *° 'pq;Z)=

n=0 I‘(a,)f’(ag} ‘

. (29)
‘T{(ap)(p1+n)T(patn) - - - T(p+m)n!

* For discussion of this function, see Whittaker and Watson, Modern Analysis (The Macmillan. Company, New York, 1943).
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In order to satisfy the boundary condition at the
origin, Eq. (25b), it is seen from the asymptotic expan-
sion of Wi, m(2)

Wi m(z)~e %k JFo(3—m—Fk, 3+m—k; —z71)
|argz| <3w/2

(30)

that e#2g*W_; .,(—z) is not an admissible solution.
Thus for 0<x <%y, with

y1(2) =2 W, m(2),
Ya=(a0**/2)+ K1y:1(2). 31)
The derivative of yi(z) is readily obtained from the

Mellin-Barnes type contour integral representation of
Wk,,,.(z)

e e/ sz
Wi m(z)=

21

f“"“‘i T@) P (—v—k+m+ 3T (—v—k—m+5)zvdv
[(—k—m+3T(—k+m+3)

(32)
with the result
dyi(z) 6

=—g %2 W _1 nl2).
dx tx

(33)

The constants K; and K, are determined by the require-
ment that ¥» and dys/dx be continuous at x;. With use
of Eq. (33) we find after some elementary calcula-
tions that

ag2x12(5/2)z1%¢

K= —ao®x*K;=— y

6
3w, m(zl)—l-;Wl;_x,m(Zl)

993

Ko=—a¢*x:°K,
(34)

3
aolef‘{ Wk. m(Z1) —;Wk——l, m(zl)

Im\ '
5= (—‘—') .
X1
Since in our numerical example z,=3.67X 1072 Wy, .(z1)
is easily computed by means of the relation
I'(—2m)
TG —m—k)
X1F1(3+m—k; 142m; 2)
T'(2m)
I(G+m—k)
XKiF1(E—m—Fk; 1-2m; 2), (35)
only a few terms in the power series being required.
Substitution of ¥, given by Eqgs. (27) and (31) into
Eq. (10) and use of the potential V(x), Eq. (11), leads

to the following result for the coefficient of shear
viscosity,

caN%ag[l o dV(x)
= [_ f x5, (x) dx+ K8V (1)
15T L2 J, d

b

6
3I/Vk, m(21)+‘t"W1.-—1. m(zl)

Wk, m(z) =gz (l/2)+me—zl2

+Z(l/2)—me—z/2

2 x
€x12+86" ﬂI,,_.s NmkT
+K3 { - [3 ] ]+ ’
bxp, e lx, 8 2u¢

36)
[a':la(w)_[(zl)’

I(z)=f y1(z)e ot /01,
Jo

The value of I,(w) is conveniently calculated with use
of Eq. (32) and Barnes lemma (reference 9, p. 289).

a+s
o F(v)F(—w—k—m-}—%—)I‘(—v—k—i—m—}-%)l‘(v—i————)dv
¢ ¢

—oci

t

D(—k—m+HT(—ktm+)

a+ts ats
I‘( —k——m-{—%)l‘(—————k—i—m—i—%)
t

ats
I‘(~—-+l—2k)
¢

Use of Eq. (35) and Kummer’s formula

e a1 F\(G+m—k; 14-2m; 2)

= F1(+m+k; 142m; —z), (38)

37)
;o i>n—2.
immediately leads to the result
L(z0)=I."(z0)+ 1 (1),
(39)
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where
I(-28) g, (atalO~FF1/2+8
L#)= B+,
IrG—B8—%k) sats
(—_t__ k+3+ ﬁ)

ats ots
T_k+ 5+8; 1426, '—-"—‘k‘i‘ 51865 —Zl)

We have carried out the numerical calculation of 5 for
liquid argon at 89°K

8.53X10718

7=2.63X105¢4 poise

the second term arising from momentum transport
being negligible in comparison with the first. It is of
interest to note that by defining an effective radius by
the relationship {=6wnRes, Reis=2.0A at 89°K, while
the actual radius, taken to be one half the distance
between nearest neighbors is 1.9A.

In order to check our theory with experiment it is
necessary to calculate the friction constant. As a pre-
liminary estimate we find that

4xmaep v 24V
= f (—+——~)go<2>dx (40)
0

dx? «x dx

which for liquid argon at 89°K, using Egs. (11) and (12)
leads to {=4.84X1071% g sec.”’. With this value of the
friction constant, the calculated coefficient of shear
viscosity for liquid argon at 89°K is 1.27X 10 poise
which is in moderately good agreement with the extra-
polated experimental determination of 2.39X1073
poise.!?

The solution of the ¥, Eq. (23b), subject to the
boundary condition at the origin, Eq. (25d), is given by

x Edg @)
Yo=ao’ f ———ﬂﬁdw-l—\po(oo),
£g®
(41)
¢
Yo~—+yo() for x large.
®

1 N. S. Rudenko and 1.. W. Schubnikow, Physik. Zeits. Sowjet-
union 6, 470 (1934).

BUFF, AND GREEN

In order to evaluate yo() we consider Eq. (22) for the
case of a periodic dilation of frequency w. For large «,

we obtain
d dll/o iw f 002
_._(x2___)_ x2¢0=0’
dx dx 2T

(42)

with the solution

el () )
P[5 ])

The boundary condition at infinity Eq. (25¢) requires
that B(w)=0. For the case of zero frequency of dilation

volim A(w) [ [ao(wj' )% (1+)]’ C )
o~ 11 eX | — )} X 1 =
w—0 X P 2 kT X

Comparison of (41) and (44) shows that ¥, vanishes at
infinity. We thus obtain the following expression for the
coethicient of bulk viscosity

NmkT §‘7r(zo5N2
b= f x3———go(2>dx

3v§ OrT
= gt E o dg,®
X f f P g, (43)
. 200y dw

Numerical calculations of the coefficient of bulk vis-
cosity are postponed for later treatment, since the result
appears to be extraordinarily sensitive to the equi-
librium radial distribution function and it is believed
that a better approximation than that of Eq. (12) is
required. For the same reason, our numerical estimate
of the shear viscosity is to be considered preliminary
and subject to revision. From recent ultrasonic absorp-
tion measurements of Galt,'! an upper bound to the
ratio ¢/1 is estimated to be § for liquid argon at 85°K.
However, in the absence of an experimental value of the
heat conductivity, the calculation of the absolute value
of ¢ is not possible.

1 J, G. Galt, J. Chem. Phys. 16, 505 (1948).
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