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Abstract
The inherent complexity of cellular signaling networks and their importance to a wide range of
cellular functions necessitates the development of modeling methods that can be applied
toward making predictions and highlighting the appropriate experiments to test our
understanding of how these systems are designed and function. We use methods of statistical
mechanics to extract useful predictions for complex cellular signaling networks. A key
difficulty with signaling models is that, while significant effort is being made to
experimentally measure the rate constants for individual steps in these networks, many of the
parameters required to describe their behavior remain unknown or at best represent estimates.
To establish the usefulness of our approach, we have applied our methods toward modeling the
nerve growth factor (NGF)-induced differentiation of neuronal cells. In particular, we study
the actions of NGF and mitogenic epidermal growth factor (EGF) in rat pheochromocytoma
(PC12) cells. Through a network of intermediate signaling proteins, each of these growth
factors stimulates extracellular regulated kinase (Erk) phosphorylation with distinct dynamical
profiles. Using our modeling approach, we are able to predict the influence of specific
signaling modules in determining the integrated cellular response to the two growth factors.
Our methods also raise some interesting insights into the design and possible evolution of
cellular systems, highlighting an inherent property of these systems that we call ‘sloppiness.’
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1. Introduction

Recent experimental data point to the complexity underlying
eukaryotic signal transduction pathways. Pathways once
thought to be linear are now known to be highly branched, and
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modules formerly thought to operate independently participate
in a substantial degree of crosstalk (Schlessinger 2000, Hunter
2000). It is this complexity that has motivated attempts to
use quantitative mathematical models to better understand
the behavior of cellular signaling networks. Models using
nonlinear differential equations have often been used in the
attempt to understand biological regulation in eukaryotes and
have recently been applied to the cell cycle in yeast (Chen et al
2000), circadian rhythms (Goldbeter 1995), establishment
of segment polarity in flies (von Dassow et al 2000), and
transport dynamics of the small GTPase Ran (Smith et al
2002). Currently, a consortium called the Alliance for Cellular
Signaling is embarking on a vastly more ambitious project,
coupling experiment and computation, to understand signaling
in a model macrophage cell line (Principle investigators and
scientists of the Alliance for Cellular Signaling 2002).

Modeling of complex signaling modules presents three
key challenges. (1) Any model based on the equations
of chemical kinetics will likely contain a large number of
parameters whose values will not have been determined
experimentally (Bailey 2001). Even in cases where a
specific measurement has been made in vitro (i.e. a binding
constant or turnover rate), the value obtained may differ
substantially from what would have been measured in cells
if such a measurement were possible (Minton 2001). Recent
success has been achieved in facilitating the extraction of
transcriptional rates from experimental measurements of
promoter activity (Ronen et al 2002), but the problem remains
extremely difficult for complex cellular signaling systems
comprising large numbers of protein–protein interactions. (2)
Kinetic models tend to be incomplete because they often
ignore many protein interactions in the hopes of capturing
a few essential ones. Thus, one ends up dealing with a
‘renormalized’ model in which existing parameters absorb
the effects of all the neglected parameters in the ‘true’
model (Golikeri and Luss 1974). (3) Additional difficulties
arise from the fact that novel interacting proteins and new
interactions for well-known players continue to be discovered
(Vojtek and Der 1998), so one must have a flexible modeling
methodology that can easily incorporate new information and
data. These three challenges make the modeling of complex
cellular signaling networks inherently difficult.

We believe that modeling these important biological
systems cannot wait until all the rates are reliably measured,
or even until all the various players and interactions are
discovered. Indeed, the most important role of modeling
is to identify missing pieces of the puzzle. It is as
useful to falsify models—identifying which features of the
observed behavior cannot be explained by the experimentalists
current interaction network—as it is to successfully reproduce
known results. We choose the straightforward (but not
standard) approach of directly simulating the differential
equations given by the reactions in our network. There are
a variety of other approaches to modeling these networks.
Systems models (Tyson et al 2001) typically reduce the large
number of equations via a series of biologically-motivated
approximations to a few key reactions: implementing these
approximations demands deep insight that is often not

available for complex cellular signaling systems. Boolean
models are faster to simulate, but tend to be farther removed
from the biology, and can be misleading even in some
simple cases (Guet et al 2002). We also have chosen not
to incorporate stochastic effects due to number fluctuations
(Arkin et al 1998), nor are we exploring the validity of the
experimentally presumed Michaelis–Menten reactions. This
is not because we believe that stochastic effects are negligible
nor that Michaelis–Menten assumptions are free of limitations,
but rather we are testing the experimentalist’s assumptions
that stochastic effects are not central and that the traditional
saturable reaction forms are likely to be close to the real
behavior in our particular system.

Our choice of simulating the full set of rate equations,
and our desire to extract falsifiable predictions without prior
knowledge of a large number of rate constants and other
parameters, demand that we develop new modeling tools
(Bailey 2001). In this study we apply ideas from statistical
mechanics (Brown and Sethna 2003, Metropolis et al 1953,
Newman and Barkema 1999, Hastings 1970, Battogtokh et al
2002) to extract predictions from a model for a regulatory
signaling network important for the differentiation of a
neuronal cell line. We show that this approach can make
useful biological predictions even in the face of indeterminacy
of parameters and of network topology. An underlying feature
of the approach involves the use of Monte Carlo methods
in Bayesian sampling of model spaces (Robert and Casella
1999, Hastings 1970); such a sampling method was recently
applied to a small transcriptional network (Battogtokh et al
2002). Our implementation and notation is described in
the ‘experimental section’, together with a brief discussion
of its advantages and numerical details. We have chosen
a relatively well-studied system—Erk activation in PC12
cells—as a test case for our analysis in order to demonstrate
that our methods will have broad applicability for cellular
signaling problems. We show that our approach can make
useful predictions even in the face of underdetermined
parameters and uncertainty with regard to network topology.
However, perhaps most important, our methods highlight
some interesting and previously unappreciated features that
we believe are fundamentally inherent to complex cellular
signaling systems.

2. Experimental section

2.1. Data fitting

A cost function such as that in (9) allows us to use automated
parameter determination with the algorithm of our choice.
Multiple metastable states are the norm rather than the
exception in high-dimensional nonlinear systems such as those
found in models of eukaryotic signal transduction. We use
a simple procedure to discover different minima. Fixed-
temperature annealing (Kirkpatrick et al 1983) is used to cross
barriers between local minima, and selected parameter sets
obtained via this process are quenched using a local method
such as Levenberg–Marquardt (Marquardt 1963) or conjugate
gradient (Fletcher 1987). For the PC12 cell network, we found
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a few shallow minima separated by large flat regions. The
minima showed qualitatively similar behavior but differed
slightly in the quality of fit. All inferences from best fit
parameters were performed using the best minimum found.

We note here that while cost minimization, Hessian
matrix computation and our Monte Carlo (see below) all
require many cost evaluations, the methods we employ are
easily parallelizable, leading to great gains in computational
efficiency. In addition, two of us show elsewhere
(Brown and Sethna 2003) that if one is concerned primarily
with the identity of the stiffest few eigenvectors, an
approximate Hessian whose computational requirements scale
only linearly (rather than quadratically) with the number of
parameters is equally suitable.

The best fit parameters, Hessian (equation (4)), and
Jacobian matrix (equation (8)) are all available online9.

2.2. Robustness calculations

The calculations whose results are displayed in figure 3 were
obtained as follows. Assuming a quadratic cost space, we can
write the expected change in cost given a change in the log of
one parameter

C(� log pi) = C0 + 1
2Hii(� log pi)

2, (1)

where Hii is a diagonal element of the Hessian defined in (4)
and C0 is the value of the cost at the best fit parameter values.
Here and elsewhere in this paper, all logarithms are to the base
e. We therefore define Hii/2 as the inverse of the robustness
of the model to a change in the ith parameter. Implicit in
this definition is the set of network functions/outputs in which
one is interested, since these form the constraining data set
and exert their effect in Hii . For example, the robustness
values calculated in figure 3(a) used our full experimental data
set, containing 68 data points (time series for multiple protein
activities in response to both growth factors), and those of
figure 3(b) used only ten data points (the time series of Erk1/2
activation in response to both EGF and NGF). Also necessary
is a scale on which to calibrate the robustness result; we deem
a parameter robust if moving it by a factor of 2 causes the
model probability (given by exp(−C)) to decrease less than
1/e. In figure 3, this scale is indicated by a horizontal dashed
line.

2.3. Ensembles

We associate the cost in (10) with the energy of a statistical
mechanical system. The temperature T = 1 is set by
comparing the form of the Boltzmann distribution to the
probability of generating the data given the model (which in
this case means providing a network diagram, a set of equations
that govern the protein dynamics, and a set of values for all the
parameters) if the errors in the data are normally distributed.
Additionally, we use information about the shape of the cost
basins near the minima via the second derivative matrix of the
cost (the Hessian) to generate the moves in parameter space.
At finite temperature, the Bk give an entropic contribution
to the cost which can be determined analytically, and it is

9 See the website http://www.lassp.cornell.edu/sethna/GeneDynamics/.

this free energy—cost plus entropy from the Bk—that we use
in all thermal contexts (Brown and Sethna 2003). From the
ensemble, a mean 〈[c(t)]〉 and standard deviation σ(t) as a
function of time are generated for each chemical concentration,
given for the ith chemical species by

〈[ci(t)]〉 = 1

NE

NE∑
j=1

[ci(pj , t)], (2)

σi(t) = (〈[ci(pj , t)]
2〉 − 〈[ci(pj , t)]〉2

) 1
2 , (3)

where NE is the number of samples in the ensemble.
We start all Monte Carlo runs at the best fit parameters,

though it is not absolutely necessary to do so. We selected
704 independent parameter sets from over 15 000 sets initially
generated by the Monte Carlo. We chose independent
states by first calculating the correlation time τ which we
can obtain from the lagged cost–cost correlation (A(n) =
〈C(pi )C(pi+n)〉) function from a given Monte Carlo run. τ

was defined as the number of Monte Carlo steps required for
the autocorrelator to drop to 1/e of its initial value. The initial
τ steps of a Monte Carlo run were discarded, and subsequent
parameter sets separated by τ samples were kept for analysis.
The ground state Hessian matrix H has elements given by

Hij = ∂2C(p)

∂ log pi∂ log pj

∣∣∣∣
p=p∗

. (4)

We compute the ground state Hessian by finite differences,
centered at the best fit parameters p∗. We use a stepsize for
finite differencing chosen to minimize the sum of truncation
and roundoff errors (Press et al 1996). We diagonalize this
matrix to obtain V, the matrix of eigenvectors of H. The
eigenparameters αj , which are simply the coordinates of the
ensemble bare parameter sets along the eigendirections of
the ground state Hessian, are given by

αj =
Np∑
i=1

Vji log(pi/p
∗
i ), (5)

where Vji are the elements of V, p∗
i is the ground state (best

fit) parameter value and Np is the number of parameters (48 for
the PC12 cell model). Explicitly, according to our formula in
(5), the eigenparameters are linear combinations of the natural
logarithms of shifts in rate constants, or equivalently, ratios
of rate constants raised to powers, which we can show by
rewriting (5) as

eαj =
Np∏
i=1

p
Vji

i . (6)

In either eigenparameter representation (equation (5) or
equation (6), changing the combination of bare rate constants
described by αj has a cost proportional to the j th eigenvalue
of the Hessian matrix, at least in the harmonic approximation.
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2.4. Mapping eigenvectors to data points

To determine which data points are most perturbed by motion
in an eigendirection, we Taylor expand the deviation of the
model from the data

ri = y (xi, p) − Yi (7)

about the minimum, which involves the Jacobian matrix of the
deviations with respect to the model’s (log) parameters. The
Jacobian’s elements are given by

Jij = ∂ri

∂ log pj

. (8)

The product of this Jacobian and the matrix of eigenvectors

dik = JijVkj (9)

tells us exactly where the model/data agreement becomes
poor as we move in any eigendirection. If dik is large, then
agreement with data point i will be changed by movement in
direction vk . If dik is near zero, the ability of the model to fit
data point i will show no sensitivity to motions in parameter
direction vk . As expected, if index k corresponds to a very soft
mode, dik tends to be small for all i.

2.5. Cell culture and protein detection

Rat pheochromocytoma (PC12) cells were maintained in
RPMI 1640 (Cellgro, Herndon, VA) supplemented with
10% horse serum, 5% calf serum (both from GibcoBRL,
Gaithersburg, MD) and antibiotics/antimycotics at 1:1000.
Sixteen hours prior to treatment with either EGF or NGF
(both Gibco), cells were resuspended in serum-free RPMI. If
LY294002 (Calbiochem, La Jolla, CA) was used, it was added
to the medium 2 h prior to growth factor treatment. Cells
were lysed and samples analysed by SDS-PAGE. Proteins
were transferred to nitrocellulose membranes (NEN, Boston,
MA) and probed with anti-active Erk1/2 and anti-Erk1/2
(both antibodies from Cell Signaling Technologies, Beverly,
MA). Detection was via chemiluminescence (ECL reagent,
Amersham Life Sciences, Buckinghamshire, England).

3. Results and discussion

3.1. The system and model

We have chosen nerve growth factor (NGF) versus epidermal
growth factor (EGF) stimulated signaling activities in rat
pheochromocytoma (PC12) cells as an initial experimental
system to test our modeling approach. Pheochromocytoma
cells have proven to be an invaluable model system
in neuroscience (Greene and Tischler 1976), because they
express both EGF receptors (EGFR) and NGF receptors
(NGFR) (specifically the high-affinity TrkA receptor) and
will proliferate in response to EGF treatment and differentiate
into sympathetic neurons in response to prolonged treatment
with NGF. It was previously reported that the activation
state of extracellular regulated kinases (Erks) 1 and 2 is
correlated with the cellular growth state of PC12 cells
(Traverse et al 1992). A transient activation of Erk1/2 has

mSos

Ras

Raf1

Mek1/2

Erk1/2

p90/RSK

C3G

Rap1

B-Raf

PI3K

Akt/PKB

Cytosol

Extracellular

Nucleus

EGFR NGFR

Figure 1. Model of Erk1/2 activation by EGF and NGF in PC12
cells. EGF and NGF both activate Erk via Ras. EGF can also use
the left branch involving PI3K to modulate Erk activity through
Raf1 downregulation, and NGF can upregulate Mek using the right
branch containing Rap1. Double arrows indicate binding/unbinding
reactions. Single arrows indicate stimulatory effects and lines
capped with open circles represent negative regulation, which in this
model are all of the Michaelis–Menten type (Stryer 1995). Small
purple boxes are unregulated phosphatases and small stop signs are
unregulated GTPase activating proteins (GAPs). A solid border
around a chemical indicates data for that molecule’s activity was
used to constrain the model, and a dotted border indicates none was
available. Red crosses indicate links that were cut to make
predictions (see the text). Additional details can be found elsewhere
(see online supplementary material).

been associated with EGF treatment and cell proliferation,
while a sustained activity has been linked to NGF stimulation
and differentiation. Sustained Erk1/2 phosphorylation has
been suggested to be sufficient for PC12 cell differentiation
(Robinson et al 1998). It has since been recognized that
while both EGF and NGF receptors activate the GTP-binding
protein Ras, the distinct cellular outcomes triggered by
these growth factors must lie in the differential activation
of other pathways that modulate Erk1/2 activity, and several
hypotheses have been proposed to account for this signaling
specificity (chu Kao et al 2001, York et al 1998, Yasui et al
2001, Wixler et al 1996, Brightman and Fell 2000). Figure 1
shows the topology of a model for this process (additional
details are provided in the online supplementary material). The
model not only includes a common pathway to Erk through
Ras shared by both the EGFR and NGFR, but also includes
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two side branches that we hypothesized were important in
modulating signaling. One, through phosphatidylinositol
3-OH kinase (PI3K), can serve to downregulate Erk via the
negative regulation of Raf1 (Zimmermann and Moelling 1999,
Rommel et al 1999), and a second, putatively through the
small GTP-binding protein Rap1 and the kinase B-Raf, can
upregulate Erk by boosting Mek activation (Ohtsuka et al
1996, York et al 1998, Bos et al 2001). The model presented
in figure 1 is described by a set of 28 nonlinear differential
equations (of which 15 are linearly independent) and has 48
rate parameters (supplementary material)10 for which precise
measurements are largely unavailable.

The growth factor-stimulated dimerization of EGFRs and
NGFRs is not explicitly depicted in the model, but because it
is directly linked to the triggering of the downstream signaling
pathways, it is an implicit component of the receptor activation
steps in our analysis. The same is true for the adaptors
(e.g., Grb2 for growth factor receptor-binding protein 2) that
interface the EGFRs and NGFRs with mSos (for mammalian
Son-of-sevenless). While there are several points in the model
where the signaling activities are subject to negative regulation,
for example through the actions of GTPase-activating proteins
for Ras and Rap1 and phosphatases for Raf1, B-Raf, Mek1/2
and Erk1/2, we recognize that there are other points in the
network where negative regulation can also occur (e.g., at the
level of Akt/PKB or p90/RSK). These are not specifically
depicted in the model shown in figure 1, because we assumed
that these additional negative regulatory steps would not
influence our interpretation of the time series of EGF- and
NGF-stimulated ERK1/2 activation. The same is true for
EGFR downregulation which occurs on a slower time scale
than the time course for the EGF-dependent stimulation of the
Ras–Raf–Mek–Erk pathway. However, it is relatively easy
to incorporate these or other steps that might be identified
in the future as being potentially important. Moreover, as
alluded to above, we firmly believe that the most important
goals of our analyses are to establish if useful predictions
for complex signaling networks can be extracted using the
methodology described here, as well as determine just how
well a particular network explains available experimental data,
or if in fact additional interactions and signaling participants
are necessary.

3.2. The ensemble approach to modeling complex
signaling networks

In the analysis presented here, we primarily use the ensemble
method to match the model to time courses of the activities
of signaling molecules, although the method can easily
incorporate agreement with parameter measurements as well.
Time series have two major benefits: one, they are often
more plentiful than measurements of kinetic parameters, and
two, they are independent of the mathematical form of the
model (for example, particular kinetic schemes). Because
of the significant degree of indeterminacy in the model, a
single set of parameters forms an incomplete description.
Thus, a thermal Monte Carlo (Metropolis et al 1953,

10 We include the saturation Kms with the rate constants.
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Figure 2. Behavior of the PC12 cell model. (a) Ensemble of
acceptable solutions for the model with topology given in figure 1.
Means and sample standard deviations are calculated as described in
the text from a 704–member ensemble of independent samples.
Together with the data shown (Traverse et al 1994), fourteen data
sets from seven experiments performed in four laboratories were
used in ensemble generation (see online supplementary material).
The error bars here and in subsequent figures represent one standard
deviation, or the 66% confidence level (in contrast to the four
standard deviation ranges in Battogtokh et al (2002)). Notice that
EGF stimulates a transient Erk response (leading to proliferation)
and NGF stimulates a sustained response (leading to differentiation).
(b) Scatterplot of the eigenparameters (defined in (5)) for the
704-member ensemble. We begin our Monte Carlo runs at the best
fit, so these plots show the amount of drift around the best fit
parameters in each eigendirection. The eigenparameters from the
ensemble densely populate the area covered by the colored bars,
which extend from the minimum value in the ensemble to the
maximum value. The scale for the y axis is the natural logarithm
(base e). Stiff eigenparameters exhibit small fluctuations (short
bars) and soft eigenparameters exhibit large fluctuations (tall bars).
Notice that while the eigenparameters vary over several orders of
magnitude, the variation in Erk1/2 activity shown in (a) is small.
The variation of the softest eigenvalues in complete equilibrium is
likely even larger.

Newman and Barkema 1999, Hastings 1970, Battogtokh et al
2002, Brown and Sethna 2003) is used to generate an ensemble
of parameters weighted by cost, from which we can compute
a mean and standard deviation for the activity of each protein
(see ‘experimental section’ as well as the discussion of
figure 2(a)). Of particular importance is the standard deviation
of the activity, because it is a direct measure of how
perturbations of the parameters affect predictions of the model.
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Figure 3. Plot showing the logarithm of the robustness (equation (1)) for each parameter of the PC12 model. In both (a) and (b), bars that
fall below the dotted line correspond to robust parameters and bars above the dotted line are nonrobust parameters (see ‘experimental
section’ for more details). Note the different scales in (a) and (b). White bars in the bar graphs correspond to diagonal elements Hnn that
have (small) negative values; in these cases the plot displays the log of the absolute value. Color coding (see online version) of the networks
indicates experimental data sets that were present for Hessian computation; proteins for which EGF-response data were used are colored in
magenta and those for which NGF-response data were used are colored in green. (a) In the case where we have constraining data available
for many proteins in the network, we are probing the sensitivity of a multifunctional object to parameter variations and find a very nonrobust
system; 37 out of the 48 parameters lie above our line of significance. (b) When we view the network as an input/output transducer with
Erk1/2 activation as the output, we find a very robust result; 39 of the 48 parameters can be varied by a factor of 2 with no significant effect
on the network output. These diagonal elements are calculated using finite differences at the optimal stepsize, and are dependent on the
numerical integration scheme, stepsize and quality of the minimum.

The ensemble method simultaneously makes the model more
useful and falsifiable. If the variation in a particular chemical
activity is large across the ensemble, then predictions based
on that outcome are unreliable— the model is not sufficiently
constrained to make a useful statement about such a situation.
Conversely, when a single parameter set is used to characterize
the model, it might accommodate new data simply by wiggling
some of the parameter combinations, and thereby provide an
unreliable description of the system. When using the ensemble
approach, new data that fall far outside the ensemble prediction
illustrate a feature of the system that the model is incapable of
representing11.

Figure 2(a) shows the results of the ensemble approach
applied to the PC12 cell system. The figure illustrates the
active Erk1/2 response to EGF and NGF. In all, fourteen

11 These methods identify typical members of the ensemble, however, not
all members of the ensemble. New data outside the original error bars may
in principle be consistent with the model but restrict the parameters to a
previously insignificant subregion.

chemical times series from seven experiments performed
in four laboratories were used for ensemble generation
(see supplemental material). As discussed above, rather than
displaying a single fit, an average over many fits is presented,
for which the details are as follows. To quantitatively compare
the model’s output to data, a least-squares cost function is used

C(p) = 1

2

Ns∑
k=1

Nk∑
i=1

(
Bkyk (ti , p) − Yik

σik

)2

, (10)

where Yik, σik are the value and error of the ith data point
in the kth time series, yk(ti , p) is the model output for the
kth time series evaluated with parameter set p at time ti .
The total number of experimental data points NR is given
by NR = ∑Ns

k=1 Nk , where Ns is the total number of chemical
time series and Nk is the number of data points in the kth

series. In particular, a typical pi might be a binding constant
for a receptor-ligand interaction or a Michaelis constant for
an enzymatic step, while a data point Yik might be the
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concentration of a phosphorylated protein at ti = 30 min
(see figure 2(a)) with error bar σik , and yk(ti , p) would be
the theory curve for that same phosphorylated protein at the
same time. We introduce the factor Bk for the kth chemical
time series12, which is an overall scaling factor for the theory
curve, in order to accommodate experimental data sets with a
variety of units. It is worth emphasizing that while time series
measurements are the focus of this study, virtually any type of
data (for example, dose–response information or experimental
measurements of parameter values) can easily be incorporated
into such a framework, though the notation for equation (10)
might need to be modified.

The theory curves in figure 2 are given by the continuous
solid and dotted curves; in this and subsequent figures showing
ensemble activation curves, the central curve is the ensemble
mean and the curves surrounding it show one standard
deviation. It is clear from figure 2(a) that the model reproduces
the expected activation of Erk1/2 by EGF and NGF.

3.3. Implications for modeling complex signaling networks:
inherent sloppiness of signal transduction

Our analysis, within the context of the PC12 cell system,
yields a number of interesting implications regarding the
complex networks used to propagate cellular signals. One
such implication becomes evident when considering to what
degree particular combinations of rate constants (rather than
single rate constants) can be shifted in our model and still yield
a good description for the Erk activity profiles. We refer to
this property as ‘sloppiness’.

A simple example is as follows. A standard first-order
protein binding reaction may be characterized by two rate
constants: kon and koff . However, in many contexts it is
not these individual rate constants that are most relevant but
instead the equilibrium constant Kd = kon/koff , a measure of
the affinity of the interaction. If indeed only the ratio of the on
and off rates matters, then their product will be irrelevant: both
rates can be increased by the same factor (a twofold increase
in both, for example) and Kd will not change. For such a case,
we would call Kd ‘stiff,’ because it cannot be changed without
noticeable biological effects, while the product konkoff will be
‘soft,’ since it can be changed freely.

Rather than arbitrary ratios and products of rate constants,
we analyse the fluctuations in a particular set of rate constant
combinations: the eigenvectors of the Hessian matrix of the
cost, expressed in terms of the logs of the rate constants
(see ‘experimental section’). These particular vectors in
parameter space and the degrees to which they can change
while still preserving the appropriate biological response give
us information about key degrees of freedom in the model. A
paramount feature of the eigenvectors is that they are a unique
set of alternate model parameters that show no covariance;
they are independent in a way that single rate constants and
other noneigenvector combinations are not. Unlike in the
simple example given above, the eigenvectors are typically

12 While the word ‘chemicals’ could denote proteins, RNA, small molecules,
etc, for purposes of this study all the chemicals are proteins, sometimes
separated into different phosphorylation or GTP-binding states.

combinations of more than two rates (see ‘experimental
section’), but one can interpret them in a similar light: the
eigenvectors are particular combinations (ratios and products)
of rate constants that may be individually varied. Changes
in the stiff directions cause large perturbations in the system’s
behavior while changes in the soft directions are imperceptible.

We note here that analysis of a system in terms of
eigenparameters is standard practice in physics, and we
feel it is especially useful when analysing models of signal
transduction for a number of reasons. First and perhaps most
importantly, the character of the eigenparameter fluctuations
(figure 2(b)) is what allows us to make predictions. While
individual rate parameters flop around hopelessly, we see
in the stiff eigenparameters that some degrees of freedom
are reasonably well constrained by the data. Our ability to
determine these few stiff eigenvectors well is what allows us to
make any predictions at all, even in the face of many unknowns
(also, see the ‘robustness’ section and figure 4 for more
discussion on this point). Second, and as will be considered
further below (see the next section) the eigenparameters can
have a physical interpretation that can decompose the system
into dynamical modules (this kind of interpretation is similar
to the meaning given to the dissociation constant above).
Third, analysis of the eigenparameters and their corresponding
eigenvalues allows us to see similarities among seemingly
unrelated models (Brown and Sethna, in preparation).

An eigenvector analysis is shown in figure 2(b) which
plots linear combinations of the natural logarithms of shifts
in rate constants (see ‘experimental section’ for a full
description). The relatively large size of the vertical bars
for the majority of the eigenparameters in figure 2(b) (note the
natural log scale of the vertical axis) indicates that only a small
fraction of parameter combinations are well constrained by the
data (these are the aforementioned ‘stiff modes’—also, see the
next section). The majority of the eigenparameters (around
80%) are ‘soft’ and vary over more than an order of magnitude
and sometimes many orders of magnitude. We emphasize
that this softness is not tied to an obvious underdetermination
of parameters, as (i) 59 parameters (rate constants plus Bk

in (10) were fit to 68 data points in figure 2 and (ii) while
there are many protein activities for which we have no direct
data, the eigenvalue spectrum still spans orders of magnitude
even when we construct an artificial situation by generating,
from the model itself, an abundance of ‘perfect data’ for every
chemical species (Brown and Sethna 2003). The ‘perfect data’
exercise also reveals the quantity and quality (both high) of
data necessary to accurately determine even a fraction of
the individual rate constants, which is why we confine our
predictions to chemical activities and not rate constant values.
Figure 2(b) provides a strong argument for the ensemble
approach, as the huge variation in eigenparameters makes
description of a complex cellular signaling network with a
single set of ‘best’ parameters perilous.

3.4. Implications for modeling complex signaling networks:
only a few parameter combinations are ‘stiff’

Another important implication for complex cellular signaling
networks that emerges from our analysis is that only a
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Figure 4. Schematic illustrating the difference between robustness
range, parameter error bars and stiff and soft eigendirections, all of
which are forms of parameter variation discussed in the text. The
black ellipses represent lines of equal cost for a simple quadratic
cost function with only two parameters, k1 and k2. The best fit
(minimum cost) is positioned where the green and blue axes cross.
The blue axes (whose tips are labeled r1 and r2) show the robustness
range of the two parameters, for a quantitative robustness definition
similar to the one described in the text. The red dotted lines and
arrows (labeled s1 and s2) give the error bars for the parameters.
Notice that the parameter error bars are larger than the robustness
range: unless the rate constants show no covariance (the axes of the
ellipse coincide with the black axes labeled log k1 and log k2) this
will be the case. The green axes show the range of the two
eigenparameters; notice that one eigenparameter (v1) has a much
smaller range of variation than the error bar or robustness range of
either parameter, and one eigenparameter (v2) has a much larger
range of variation. We would call v1 stiff and v2 soft. This
schematic differs from the actual behavior of our model near the
cost minimum in three significant ways. First, the schematic shows
only two dimensions, rather than 48 for the PC12 model. Second,
the model shows perfect ellipses, ignoring the nonlinearities that
make stochastic sampling a necessity. Third, typical elliptical
contours in the PC12 model are vastly more eccentric (needle-like):
the robustness range (blue) is typically less than a factor of 2, while
the error bars (red) are all larger than a factor of 1000.

small fraction of parameter combinations are important in
determining the behavior of the signaling system that we are
studying. It is this property—that only a few eigendirections
capture most of the dynamical behavior—that we take as the
definition of ‘sloppy.’ One may go one step further and
naturally ask: what are these combinations? Which rate
constants appear in the ‘stiff degrees of freedom’? The
stiffest mode corresponds approximately to the parameter
combination (kGAPkdRaf/kSoskRasKmSos), which is a ratio of
rate constants that antagonize Ras and Raf functions (e.g.,
the rate for GAP-catalyzed deactivation of Ras and the
deactivation rate for Raf) to those that promote it (activation of
Ras by Sos, activation of Raf by Ras and the Km for RasGAP-
catalyzed GTP hydrolysis). This points to Ras and Raf as

the critical nexus for generating the appropriate signaling
behavior. Perhaps not surprisingly, the proteins which emerge
as the key control points in our model are indeed those, when
mutated, that are most likely to cause disease. We emphasize
that we have arrived at this conclusion—that Ras and Raf
are key in the network—solely through the coupling of the
model to time series data for a variety of proteins, not just
Ras and Raf. This points to the power of stiff mode analysis
in highlighting key proteins and interactions, which would
be particularly valuable in cases where such key regulators
are not yet known experimentally. The second stiffest mode
predominantly involves rates that localize to the feedback loop
from Erk to p90/RSK to mSos (figure 1); it is the ratio of the
Kms for p90/RSK activation and Sos deactivation to the same
activation/deactivation rates (k2s). This highlights negative
feedback from Erk to Sos as a second key point for regulation
in the network.

We can go beyond simply identifying those parameter
combinations that need to be tightly constrained to asking the
question: if we move in a stiff direction, where does the model
begin to miss the data most significantly? We investigate this
by Taylor expansion of the deviation of the model from the
data (see ‘experimental section’). We find that the stiffest
mode—the one localizing to Ras and Raf—is most important
in achieving the correct fast response, on the scale of a few
minutes, for many proteins under the regulation of both growth
factors. The second stiffest mode when perturbed, on the other
hand, has a dramatic effect on Ras activity on longer timescales
(30 min) and also regulates Rap1 activity (i.e. the second
stiffest mode mixes rates from the Rap1 loop with those in
the feedback loop from Erk to mSos). Thus, the identity of the
stiff eigenvectors points to key control points in the signaling
network. Moreover, because the dominant rate constants in the
stiffest eigenvectors do not have to appear close to each other in
the network, the stiffest eigenvectors can identify ‘dynamical
modules’ that mix multiple static protein modules. Finally and
perhaps most importantly, mapping eigenvector perturbations
back to the data shows what aspects of the temporal profile are
affected by disruption of these critical regulatory groups and
can suggest manipulations that would ‘tune’ the system to a
particular response.

3.5. Implications for modeling complex signaling
networks: robustness

Using the ensemble approach to analyse the PC12 cell
signaling model also allows us to ask questions about the
sensitivity of the network’s activity to changes in single (rate)
parameters. Since its introduction (Barkai and Leibler 1997),
the term ‘robustness’ has acquired a number of definitions;
here we follow others (von Dassow et al 2000, Smith et al
2002, Laub and Loomis 1998) in defining robustness as the
sensitivity of a network’s behavior to changes in single
parameters. We note the difference between this property and
sloppiness—sloppiness is concerned with fluctuations along
eigendirections, which are particular parameter combinations.
Figure 3(a) shows our results for the robustness of the PC12
cell network, with details for the calculation presented in the
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figure legend and in ‘experimental section.’ The dotted line in
the figure sets the value of a calibration scale; every bar falling
below the dotted line corresponds to a robust parameter, and
those falling above are nonrobust. In addition, the relative
robustness or nonrobustness of a parameter is given by the
height of its corresponding vertical bar—a bar that is half
as high as another indicates the former parameter is twice
as robust as the latter. We can see that when we take into
account the activities of all the proteins included in our full
experimental data set, the model is quite nonrobust, since
changes in 80% of the parameters result in significantly worse
agreement with data (figure 3(a)).

The fact that our model is not very robust is both
because we have a quantitative measure of model agreement
(equation (10)) rather than ‘fit by eye’) and because we
consider more than a single output or behavior of the model,
since we have data for the active forms of six of the proteins of
the PC12 cell model, some for both EGF and NGF treatments.
Thus, we have a rather stringent criterion for model success.
However, this picture changes dramatically if we consider the
system in terms of a simple ‘input/output’ relationship. For
example, if we consider only Erk activation by EGF and NGF
as the pertinent outputs, we see a much more robust response,
finding in this case only 9 nonrobust parameters rather than 37
(see figure 3(b)). While in some cases viewing biochemical
systems as input/output transducers is justified, in others it is
not a realistic description. For example, the Ras protein has a
myriad of cellular targets (Vojtek and Der 1998) and in many
cases, the physiological roles of Ras in the cell may require
its stimulation of multiple targets/effectors as well as complex
‘cross-talk’ between these different effectors.

Overall, we feel that our simple definition of robustness
offered in (1) (‘experimental section’) and the subsequent
discussion gives a quantitative measure of what one means
by robustness at any level of detail, whether one is interested
in input/output characteristics (figure 3(b)), the behavior of
several internal network components (figure 3(a)), or a level
of description somewhere in between (two outputs rather than
one, for example). However, it is important to appreciate
the differences between the robustness of a parameter, a
parameter’s error bar (as obtained from the formal covariance
matrix of the fit (Press et al 1996)), and the ranges of the
eigenparameters (as shown in figure 2(b)). When we examine
the error bars on the fitted parameters for the PC12 cell model,
we find them to be huge: the most well-defined rate constant
has an error bar of 103. The schematic in figure 4 provides
an example of the differences that can occur with regard to
the relative robustness versus the size of the error bars for a
simple two-parameter case, where in this example the range
for the error bars (schematically indicated by the red dotted
lines and arrows labeled ‘s1’ and ‘s2’) is much larger than the
typical ‘robustness range’ (illustrated by the blue axes with tips
labeled ‘r1’ and ‘r2’). This example, described in more detail
in the legend to figure 4, immediately begs two questions:
(1) How do we understand the enormous error bars on the
rate constants? (2) How can we hope to generate any useful
predictions from models of cellular signaling systems, given
the large ranges on parameter values that can and do occur?

Figure 4 helps to provide answers to both of these
questions. First, we see that there is no contradiction in having
a parameter’s error bar be much larger than its robustness
range; as the ellipses in figure 4 become more stretched, the
error bars on the parameters grow while their robustness ranges
remain roughly the same. Secondly, and more importantly,
the eigenvectors illustrate how it is that we can make any
predictions at all. While the individual rate constants may
all have huge error bars, the same need not be true of the
eigenvectors. Some eigenvectors (v2 in figure 4) can be even
more poorly determined than the worst-constrained single
parameter, but some (like v1) can be much better determined
than even the most well-constrained parameter in the model.

Thus, in summary the parameter ranges obtained from
our robustness calculation assume that a parameter value
is changed singly while others remain fixed. In a formal
covariance calculation, the fact that other parameters may shift
to compensate for part of the change in a single parameter
leads to larger error ranges: for example, there may be
more variation because other parameters are able to offset
a change in a given rate constant. The eigenvector ranges also
assume more than one rate constant can be moved at once,
but eigenvectors are very particular combinations: motions
in one eigendirection cannot be offset or compensated by
motions in any other eigendirection. In practical terms, the
questions of most pressing biological interest are not rate
constant values but changes in cellular behavior upon different
interventions and mutations. We will see in the next section
that these biologically relevant quantities are well predicted by
our model, despite the fact that we have shown that we cannot
predict reaction rate constants with our time series data.

3.6. Predictions and experimental verification

An important goal is to use our model to make testable
predictions about biological or cellular experiments for which
we have no results. For the PC12 cell signaling network, we
have hypothesized that the left arm of the pathway (see figure 1)
is suppressing Erk1/2 activation by EGF. However, what do
we predict when PI3K is not activated? If PI3K activation
is critical to the transient activation of Erk1/2 by EGF,
then inhibition of PI3K might cause sustained Erk1/2
activation and give rise to cellular differentiation. If this
were true, then it should be possible to convert EGF to a
differentiating factor using the PI3K pathway. Figure 5(a)
shows an ensemble prediction for the time series of Erk1/2
in response to EGF, under conditions where PI3K activity has
been inhibited. We were quite surprised to find that the model
predicts the opposite of our initial expectation, namely that
PI3K inhibition will not lead to differentiation in response
to EGF. We emphasize that this is not a prediction of only a
single set of parameters: this approach examines a sampling of
all parameters consistent with available time-series data. It is
particularly noteworthy that precise predictions of biologically
relevant time series data can be reliably extracted from a model
whose rate constants are each varying over many orders of
magnitude.

Figure 6 shows the results obtained from experiments
using LY294002, a pharmacological inhibitor of PI3K. The
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Figure 5. Predictions of the PC12 cell model. (a) Prediction of the
effects of PI3K inhibition on Erk1/2 activity in response to EGF
(red curve) and NGF (blue curve) stimulation. The data have been
normalized so that all curves pass through the same point at 90 min;
this is because the units for the biological fitting data are relative
(like fold activity) rather than absolute (like molar). Regardless, the
transient nature of the signal is absolutely clear. These predicted
curves were generated from the same samples that generated
figure 2a. LY is LY294002, a chemical inhibitor of PI3K. Notice, in
sharp contrast to the ill-determined rate constants, our ensemble
makes rather definite predictions for the time series. Notice also that
the prediction is counter to our initial hypothesis, that PI3K was
important in downregulating Erk. (b) Prediction of the effects of
dominant-negative (DN) Ras and Rap1 on NGF-mediated Erk1/2
activity. The data have been normalized as in (a). Notice that at the
1σ level (shown), Rap1 inhibition causes a transient Erk profile, but
at the 2σ level the result is somewhat ambiguous. This observation
points to the importance of the ensemble in determining which
experimental manipulations are ‘close calls,’ i.e. model predictions
which are not conclusive. No such information is contained in a
single set of parameters. Panel (b) should be compared to data of
York et al (1998), where the authors show that DN Ras affects
early-time NGF-mediated Erk1/2 signaling but not its saturation
and DN Rap1 affects the sustained response of the signal without
disrupting early-time activation.

qualitative agreement between model and experiment is quite
good, and both clearly show that the inhibition of PI3K activity
neither produces a sustained Erk1/2 signal in response to
EGF nor does it switch the NGF-induced Erk1/2 activation
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Figure 6. Western blot of PC12 cells treated with 10 µM LY294002
and either 100 ng ml−1 EGF or 50 ng ml NGF. Note, as predicted in
figure 4(a) (and in contradiction to our intuition), the inhibition of
PI3K does not switch transient Erk1/2 phosphorylation to sustained
activity in response to EGF treatment, nor does it prevent sustained
Erk1/2 phosphorylation in response to NGF.

profile from a sustained to a transient response (although
it does provide some quantitative tuning of the signal at
short times). Also, the inhibition of PI3K activity does not
cause significant morphological differentiation in combination
with EGF treatment (supplemental material), as expected
from the relationship between sustained Erk1/2 activity and
differentiation.

In particular, these analyses suggest that the PI3K to Akt
loop in figure 1 (shown as grayed-out) is not necessary to
account for the differences in Erk1/2 activation in response
to EGF versus NGF. This is further supported by the cluster
of ‘irrelevant’ rate constants near rate constant number 30 in
figures 3(a) and (b), since they are all associated with this
loop. Indeed, such a reduced model, generated by removing
the PI3K to Akt loop, describes the Erk1/2 data (and the rest of
the data used in this study) only slightly worse than the larger
model, yielding an optimal cost that is about 30% higher, and
similar ensemble predictions.

We also make predictions about manipulations that, unlike
inhibition of PI3K, do dramatically affect Erk activation.
Figure 5(b) shows the Erk response in PC12 cells to 50 ng ml−1

NGF and either dominant negative (DN) Ras (blue curve) or
Rap1 (red curve), a member of the Ras family of GTP-binding
proteins that like Ras is activated by the NGF receptor. These
predictions show good qualitative agreement with previous
experiments (York et al 1998), in which DNRas interferes with
early Erk activation but not its eventual sustained behavior and
DNRap1 affects the long-term value of Erk phosphorylation
but not its early activation. Thus, taken together, figures 5 and
6 show that our model agrees with, and can predict the results
of, experimental manipulations that disrupt each of the three
main pathways we have included in our model: PI3K, Rap1
and Ras.

4. Conclusion and outlook

In conclusion, motivated by ideas from physics, we have used
a formalism (part of which is termed elsewhere the ensemble
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method (Battogtokh et al 2002)) for modeling cellular
signaling networks that (1) provides biologically accurate
descriptions of the signal output, and (2) is falsifiable even in
the face of a high degree of uncertainty regarding the rates and
binding affinities for many of the steps comprising complex
biological systems. We have applied this methodology to
the signaling systems that underlie NGF-induced neurite
extension and differentiation of PC12 cells and have been
able to evaluate the importance of different regulatory loops in
generating the key signaling endpoint, the sustained activation
of Erk. However, what may be most important, our modeling
efforts have yielded some interesting and perhaps previously
unappreciated implications and lead us to emphasize some key
points regarding complex cellular signaling networks. First, it
is clear that only a small fraction of parameter combinations
(the eigenparameters) for such signaling systems are likely
to be well constrained, and most if not all individual rate
constants can vary over huge ranges. In fact, some of the
error bars for the individual rate constants can be enormous
even though the sensitivity of the system to a change in
these parameters is high (i.e. even when the parameters are
not robust) due to covariance of other rate constants that
can compensate. Second, the few well-constrained (stiff)
parameters reveal critical focal points in the signaling network
for ensuring the generation of an appropriate output; in the case
of the PC12 cell system, the stiffest mode encompasses the
regulation of Ras and Raf, two proteins which are well known
for playing crucial regulatory roles in mitogenic pathways, as
well as in cellular differentiation, and when mutated, stimulate
oncogenic transformation.

Overall, this now leads to our appreciation that complex
signaling systems are characterized by an inherent sloppiness
such that a limited number of parameter combinations (the
stiff eigenvectors) are sufficient to generate the observed
signaling behavior. As a corollary, there are many parameter
combinations that can undergo marked variation yet yield
similar signaling outputs and end results. This offers
some intriguing possibilities regarding the way in which
signaling systems with multiple interacting pathways can
evolve. Indeed, we believe our analysis yields insights into
one way in which properties like robustness and evolvability
can simultaneously coexist. Soft modes show a property
similar to that of robust rate parameters, as soft modes can
absorb large changes without altering cellular behavior. In
contrast, even small motions in the stiff modes can elicit large
effects in cellular signaling. Hence, when considering the
effects of multiple genetic mutations, perturbations in some
combinations (the stiff modes) allow the organism to adapt
to new conditions while fluctuation in others (the soft modes)
leaves critical signaling activities intact and unperturbed.
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Glossary

Cellular signaling. Chemical computations performed by
diverse proteins in the cell through a sequence of
post-translational modifications (i.e. phosphorylation),
protein–protein interactions and small molecule binding (i.e.
GTP binding) that couple changes in the transcriptional
program of a cell to environmental stimuli.

EGF. Epidermal growth factor. A ligand that, when
binding to its receptor on the cell surface, initiates a cascade
of molecular events resulting in cell proliferation.

Eigenvectors/eigenvalues. If for a matrix A and vector v

one has Av = λv, then v is an eigenvector of A with λ its
eigenvalue. Square N × N matrices will have N such
eigenvalues (not necessarily all real or distinct) and N
corresponding eigenvectors.

Erk1/2. Extracellular regulated Kinases 1 and 2. A mitogen
activated protein kinase (MAP Kinase) phosphorylated in
response to diverse growth factors and cellular stimuli.

Falsifying a model. Given a network topology and
mathematical model for its interactions, we say a model is
invalid if the parameter ensemble shows significant
deviations either from existing experimental data or new
experiments suggested by model predictions. This form of
model failure suggests that changing parameters is
insufficient to fix the model-data discrepancy, but it makes no
statement about the effects of changes in model topology or
form, which could correct the discrepancy.

NGF. Nerve growth factor: a ligand that, when binding to
its receptor on the cell surface, initiates a cascade of events
leading to growth arrest and subsequent differentiation into a
neuronal phenotype.

PC12 cells. Rat pheochromocytoma cells. A cell culture
line that responds to both EGF and NGF (as well as other
growth factors), and has often been utilized as a model
system to study neuronal differentiation.

Robustness. The lack of sensitivity of a signaling network’s
behavior to changes in individual reaction rate (or other such)
parameters.

Saturable reaction forms. The classical Michaelis–Menten
enzymatic reaction is an example of such a chemical
reaction: the reaction rate initially increases with the addition
of more substrate, but eventually reaches a finite value
(saturates) in which more substrate does not result in a
further increase in reaction rate.

Sloppiness. A term introduced by us in this paper. The
property that only a few (of very many) eigendirections
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capture almost all of the dynamical behavior of a signaling
network.

Stiff/soft directions/eigenvectors. Vector directions in
multidimensional parameter space; in the case of stiff
directions, small perturbations in those directions cause
dramatic perturbations to the network’s behavior. In the case
of soft directions, large perturbations can be tolerated with
little or no change in the network dynamical behavior.
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