The Statistical Mechanics of Financial Markets

Johannes Voit

Overview

- 1. Why statistical physicists care about financial markets
- 2. The standard model its achievements and failures
- 3. Option pricing
- 4. Crashes
- 5. Introduction to risk measurement

On August 12, 2011 at Academia Sinica "The Financial Crisis 2007-2009: How Did It Come? Will It Happen Again?"

What does business management achieve?

- Why do banks exist? (Definitions and theorems, cooperation and competition, etc.)
- The loan
- The deposit
- Regulation
- Financial reporting
- Bank management
- Accounting
- Organization of banks
- Open questions

And RISK MANAGEMENT???

What Is Risk?

- resecum (lat.), ριζικον (gr.) = cliff
- Something unpleasant happening?
- Hazard, a chance of bad consequence, loss or exposure to mischance (Oxford dictionary)
- Any event or action that may adversely affect an organization's ability to achieve its objectives and execute its strategies (McNeil, Frey, Embrechts)
- Deviation of a specified quantile of a (profit-and-) loss distribution from its expectation value (Ali Samad-Khan)
 - NB: this statement apparently defines risk through its measurement process!

Why Risk Measurement?

- "You only can manage what you measure"
- Determination of risk capital and capital adequacy
 - \rightarrow banking regulation
 - \rightarrow economic capital
 - The amount of capital shareholders should invest in a company in order to limit its probability of default to a certain confidence level
- Management tool
 - → Basis for limit setting
- Insurance premiums
 - \rightarrow compensate insurance for bearing the risk of claims

The Role of Capital As a Buffer against Risk

- Regulatory capital (\rightarrow banking regulation)
 - Is the amount of capital the supervisors require a bank to hold
- Economic capital (applies to both banks and non-bank corporates)
 - (theoretically) Is the amount of capital a bank's shareholders would choose to cover its risk / ensure continuous operation in the absence of external regulation
 - BIS: capital which a bank holds based on its own assessment of risk
 - Gives full benefit of risk diversification
- What is capital?
 - Capital needed \rightarrow risk measurement
 - Capital available
 - Regulatory: recognized capital constituents
 - Economic: value of all assets

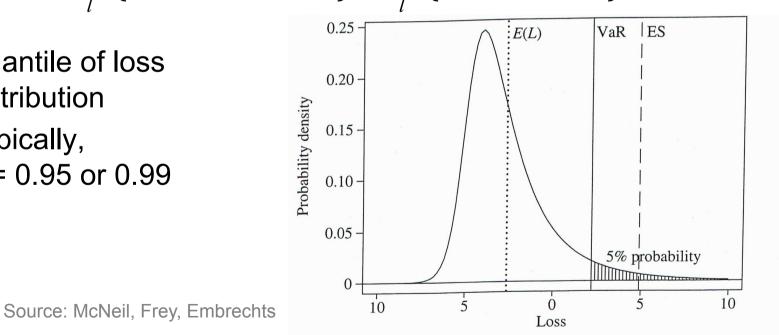
What Risks Faces a Bank? (And Any Other Corporation, And Any Other Individual)

© 2011 johannes.voit (at) ekit.com

Defining the essential risks

- Market risk is the risk of loss of a position in a security, portfolio, etc. due to changes in market conditions.
- Credit risk is the risk of loss due to a counterparty in a financial contract not satisfying her contractual obligations.
- Operational risk is the risk of loss resulting from inadequate or failed internal processes, people and systems or from external events. Includes legal risk. Excludes strategic and reputational risk.
- Liquidity risk is the risk that an asset cannot be traded fast enough to prevent a loss, resp. remain solvent (insolvency risk). Refunding risk ... increased cost of refunding due to market illiquidity.

How To Measure Risk?


- Notional amount
 - Sum of notional values of securities
 - When modified by "risk weights", often used by regulators, e.g. standardized approach in Basel framework for market and credit risk
 - Neglects effects of hedging
 - Neglects the effects of diversification
- Variance / standard deviation = volatility
 - Second moment must exist
 - Only symmetric distributions
 - Convergence properties under fat-tailed distributions

Value at risk is the most popular risk measure (I)

- $P(L \le I) \dots$ probability that a loss L is below a certain value I ullet
- Idea: maximum loss not exceeded with a given (high) ulletprobability

$$VaR_{\alpha} = \inf_{l} \left\{ P(L > l) \le 1 - \alpha \right\} = \inf_{l} \left\{ P(L \le l) \ge \alpha \right\}$$

- Quantile of loss ۲ distribution
- Typically, α = 0.95 or 0.99

On notation

- "The Statistical Mechanics of Financial Markets" uses log-returns over specified time scale $\boldsymbol{\tau}$
- (Spot) price of an asset at time t: S(t)
- Continuous compounding with rate μ : $S(t+\tau) = S(t) \exp(\mu \tau)$

• Log-return
$$\delta S_{\tau}(t) = \ln \frac{S(t)}{S(t-\tau)}$$

• Frequent proxy for forward-looking risk measures

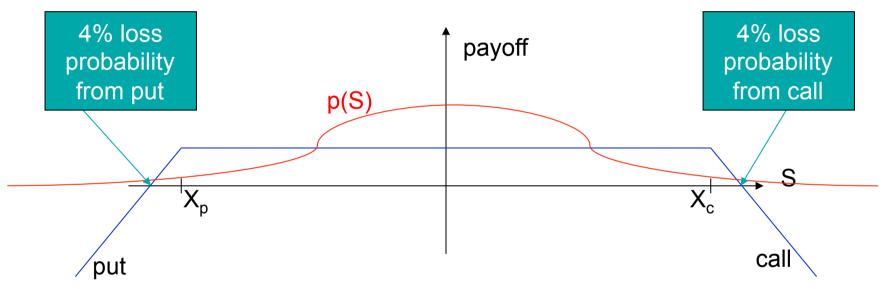
$$\delta S_{\tau}(t+\tau) = \ln \frac{S(t+\tau)}{S(t)} \approx \ln \frac{S(t)}{S(t-\tau)} = \delta S_{\tau}(t)$$

• Translational invariance in time assumed, "future ≈ past"

Value at risk is the most popular risk measure (II)

- $L = -\delta S_{\tau}(t+\tau) = -\delta S_{\tau}(t)$ [when $\delta S_{\tau}(t+\tau)$ negative, stationary] contains a time scale τ , dependent on scale of main business
 - $-\tau$ = 1 day for trading limits
 - $-\tau$ = 10 day for market risk management
 - $-\tau = 1$ year for credit and operational risk management
- Definition of VaR is a practical working definition, accurate mathematical definition can be given
- When VaR is calculated on bank level, α is related to default probability of bank, and therefore to its rating
- Conversely, a given target rating determines α
- $VaR_{\alpha} \langle L \rangle$ is a related risk measure
 - Sometimes called value at risk, mean-VaR, unexpected losses

Default probabilities determine rating scores


• De	Default probabilities (PD)		S&P	Moody 's	Implied PD
translate into confidence levels α for risk		AAA	Aaa	≤ 0.01%	
		AA+	Aa1	0.02%	
me	measurement: PD = 1 - α		AA	Aa2	0.03%
			А	A2	0.07%
	Investment grade		BBB+	Baa1	0.12%
			BBB	Baa2/Baa3	0.3%
	Junk bonds		BB+	(Ba1)	0.6% (0.9%)
		\mathbf{X}	BB	Ba2	1.3%
			В	B2	6.7%
			CCC		20%
			D		defaulted

Pros and cons of VaR as a risk measure

- + Implements managerial view: clear-cut separation of what can be managed (events below confidence level) and of what cannot be managed (events above confidence level)
- + Recognized by regulators (cf. below, Basel framework for market risk)
- VaR is not subadditive:
 - Assume a bank with two portfolios with loss variables L_1 and L_2 , and VaR₁ and VaR₂ at the same confidence level α
 - Loss of bank is $L = L_1 + L_2$
 - Then VaR₁₊₂ ≤ VaR₁ + VaR₂ (subadditivity property)
 IS NOT NECESSARILY SATISFIED

Examples for the failure of VaR

• Short position in far-out-of-the-money call and put options

- No risk at 95% confidence level in each separate position
- However, significant risk to combined position
- Failure of VaR observed in many other instances

Coherent Risk Measures

- A coherent risk measure ρ(X) satisfies the following four properties (X,Y ... values of positions, i.e. "risk" comes from negative X,Y)
- Subadditivity: $\rho(X+Y) \le \rho(X) + \rho(Y)$ [$\rho(X+Y) = \rho(X) + \rho(Y) \Leftrightarrow X$ and Y perfectly correlated]
- Translation invariance (risk-free condition): ρ(X+rn) = ρ(X) n
 r ... risk-free interest rate
- Positive homogeneity of degree 1: $\rho(\lambda X) = \lambda \rho(X)$
- Monotonicity: $\rho(X) \le \rho(Y)$ if $X \ge Y$

Expected shortfall is a coherent risk measure

- Expected shortfall $ES_{\alpha} = \frac{1}{1-\alpha} \int_{\operatorname{VaR}_{\alpha}}^{\infty} L p(L) dL \ (\geq VaR_{\alpha})$
- Simplified definition for integrable loss variables with continuous distributions, accurate definition can be given
- VaR just controls probability of bad event, not its consequences

There Is a Big Gap in Risk Measurement

- Aggregation of individual securities to portfolio risk
 measurement mainly by Monte Carlo simulation
 - Alternative 1: historical simulation
 - Alternative 2: variance-covariance model (Gaussian world, VaR ∝σ, prefactor dependent on confidence level)

$$VaR_{tot} = \sqrt{VaR_1^2 + 2\rho_{12} VaR_1 VaR_2 + VaR_2^2}$$

• Systematic aggregation from portfolio level to bank level almost not feasible (copulas)

References

- Johannes Voit, The Statistical Mechanics of Financial Markets, 3rd ed., Springer Verlag, 2005 and World Publishing Corporation, Beijing 2010
- Alexander J. McNeil, Rüdiger Frey, Paul Embrechts, *Quantitative Risk Management,* Princeton University Press, 2005