APRIL 1978

TECHNICAL REPORT AFFDL-TR-78-43
Final Report - June 1976 to May 1978

780731001

AIR FORCE FLIGHT DYNAMICS LABORATORY AIR FORCE WRIGHT AERONAUTICAL I ABORATORIES AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 43433

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the ald drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Information Office (0I) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

R.M. Baden

ROBERT M. BADER, ChE
Structural Integrity Br

FO: THE COMMANDER

RALPH L. KLSTER, JR., COL, USAF Chief, Structural Mechanics Division

[^0]

UNCLASSIFIED
se umitr clasgification op this paoermion Doto Entomed)
The generalized three-parameter gama distribution, and the generalized fourparameter gama distribution. From the experimental data, the diatribution of N as a function of crack length was beat represented by the three-parameter log-normal distribution.

Six growth rate calculation methods were investigated and the method which introduced the least amount of error into the growth rate data was found to be a modified secant method. Based on the distribution of da/dN, which varied moderately as a function of crack length, replicate a va. N data were predicted This predicted daca reproduced the mean behavior but not the variant behavior of the actual a vs. N data.

FOREWORD

This report describes an investigation of the variability in fatigue crack propagation under constant ampltiude loading sponsored by APOSR-78-3018, and performed under Air Porce Project 2307, Solid Mechanics, Task 2307\$110, Variability in Fatigue Crack Growth. Techaical monitor for the project was Dr. J.P. Gallagher, formerly of AFFDL/FBE. Ms. M.E. Artley (AFFDL/PBE) assumed responsibility for the project February 1978. The profect period was June 1976 to May 1978.

This program was conducted by the School of Mechanical Engineering Purdue University, W. Lafayette, Indiana. Principal Investigator was Professor B.M. Hillberry; the graduate research assistant was Mr. D.A. Virkler. Professor P.K. Goel vas the statistician. Materials for the test specimens were provided by the Aluminum Company of America.

This report was submitted by the authors April 1978.

TABLE OF CONTENTS

SECTION PAGE
I INTRODUCTION 1
II BACRGROUND 6
III OBJECTIVES OF INVESTIGATION 11
IV CRACK GROWTH RATE CAL JULATION METHODS 12
v STATISTICAL CONCEPTS 21
VI DETERMINATION OF THE DISTRIBUTION 55
VII GROWTH RATE AND GROWTH PREDICTION 59
VIII STATISTICAL ANALYSIS OF PREVISOULY GENERATED DATA 62
IX EXPPERIMENTAL INVESTIGATION 73
X data analysis and results 83
XI DISCUSSION 153
XII CONCLUSIONS 186
APPENDIX A: Derivacion of the da/dN Equation for the Linear Log-Log 7-Point Incremental Polynomial. Method 189
APPENDIX B: Derivation of the da/dN Equation for the Quadratic Log-Log 7-Point Ircremental Palynomial Method 191
APPENDIX C: Derivation of c^{2} 193
APPENDIX D: DNDDPG Documentation 195
APPENDIX E: CCDDP Ducumentation 197
APPENDIX P: CGRDDP Documentation 201
APPENDIX G: DNDDP Documentation 2.02
APPENDIX H: DELTCP Documentation 204
APPENDIX I: DADNCP Documentation 205

TABLE OF CONTENTS (Cont'd)

SECTION PAGE
APPENDIX J: AVNPRD Documentation 207
APPENDIX R: Random Order of Experimental Tests. 209
RRFERENCES 210

LIST OF TABLES

TABLE Page
I Distribution of $\Delta N / \Delta a$ 65
II Smoothing Effect of the Incremental Polynomial Method 68
II Life Prediction Based on the Mean 69
IV Effect of Increasing Δa 72
V Average Experimental Error 82
VI Average Goodness of Fit Criteria for the Distribution of Cycle Count Data 93
VII Distribution Rankings for the Distribution of Cycle Count Data 94
VIII da/dN Calculation Method Results 102
IX Average Goodness of Fit Criteria for the Distribution of da/dN Data 115
X Distribution Rankings for the Distribution of da/dN Data 116
XI Average Goodness of Fit Criteria for the Distribution of Cycle Count Data Predicted from the Distribution of da/dN. 123
XII Distribution Rankings for the Distribution of Cycle Count Data Predicted from the Dietribution of da/dN 124
XIII Comparison of the Distributions Between Actual Cycle Count Data and Cycle Count Data Predicted from the Distribution of da/dN 126
XIV Comparison of Actual Cycle Count Data with Eycle Count Data Predicted from Constant Variance da/dN Lines 128
XV Average Goodness of Fit Criteria for the Distribution of dN/da Data 138
XVI Distribution Rankings for the Distribution of dN/da Data 139

LIST OF TABLES

TABLE PAGE
I Distribution of $\Delta N / \Delta a$ 65
II Smoothing Effect of the Incremental Polynomsal Metinod 68
II Life Prediction Based on the Mean 69
IV Effect of Increasing Δa 72
V Average Experimental Error 82
VI Average Goodness of Fit Criteria for the Distribution of Cycle Count Data 93
VII Distribution Rankings for the Distribution of Cycle Count Data 94
VIII da/dN Calculation Method Results 102
IX Average Goodness of Fit Criteria for the Distribution of da/dN Data 115
X Distribution Rankings for the Distribution of da/dN Data 116
XI Average Goodness of Fit Criteria for the Distribution of Cycle Count Data Predicted from the Distribution of da/dN. 123
XII Distribution Rankings for the Distribution of Cycle Count Data Predicted from the Distribution of da/dN 124
XIII Comparison of the Distributions Between Actual Cycle Count Data and Cycle Count Data Predicted from the Distribution of da/dN 126
XIV Comparison of Actual Cycle Count Data with Cycle Count Data Predicted from Constant Variance da/dN Lines 128
XV Average Goodness of Fit Critezia for the Distribution of dN/da Data 138
XVI Distribution Rankings for the Distribution of dN/da Data 139

LIST OF TABLES (Cont'd)

TABLEPAGEXVII Average Goodness of Fit Criteria for the Distribution of Cycle Count Data Predicted from the Distribution of $\mathrm{dN} / \mathrm{da}$. 147
XVIII Distribution Rankings for the Distribution of Cycle Count Data Predicted from the Distribution of $\mathrm{dN} / \mathrm{da}$ 148
XIX Comparison of the Distributions Between Actual Cycle Count Data and Cycle Count Data Predicted from the Distrib:tion of $\mathrm{dN} / \mathrm{da}$ 150
XX Comparison of Actual Cycle Count Data with Cycle Count Data Predicted from Constant Variance $d N / d a$ Lines 153

LIST OF ILLUSTRATIONS

FIGURE PAGB
1 Typical Raw Fatigue Crack Propagation Data 3
2 Typical Log 10 da/dN ve. $\log _{10} \Delta K$ Data 4
3 Schematic Representation of the Distribution of N 8
4 Schematic Representation of the Distribution of da/dN 9
5 Secant Method 13
6 Modified Secant Method 15
7 Incremental Polynomial Method 18
8 Typical Relative Frequency Histogram 23
9 Typical Relative Cumulative Frequency Histogram 24
10 Golden Section Search Method 36
11 Typical 2-Parameter Normal Distribution Plut 44
12 Typical 2-Parameter Log Normal Distribution Plot 46
13 Typical 3-Parameter Log Normal Distribution Plot 47
14 Typical 3-Parameter Weibull Distribution Plot 48
15 Typicel 3-Parameter Gamma Distribution Plot 49
16 Typical 2-Parameter Gama Distribution Plot 50
17 Typical Data Chosen for Analysis from Overload/Underload Test Data 63
18 Fit of the $\Delta N / \Delta a$ Data to the 3-Parameter Lo8 Normal nistribution 66
19 Effect of Increasing Δa 71
20 Test Program 75

LIST OF ILLUSTRATIONS (Cont'd)

FIGURE PAGE
21 Test Specimen 77
22 Original Replicate a vs. N Data 84
23 Typical Replicate Cycle Count Data 85
24 2-Parameter Normal Distribution Parameters of Cycle Count Data as a Function of Crack Length 87
25 2-Parameter Log Normal Distribution Parameters of Cycle Count Data as a Function of Crack Length 88
26 3-Parameter Log Normal Distribution Parameters of Cycle Count Data as a Function of Crack Length 89
27 3-Parameter Weibull Distribution Parameters of Cycle Count Data as a Function of Crack Length 90
28 3-Parameter Gama Distribution Parameters of Cycle Count Data as a Function of Crack Length 91
29 Generalized 4-Parameter Gamma Distribution Parameters of Cycle Count Data as a Function of Crack Length 92
30 Typical $\log _{10}$ da/dN vs. $\log _{10} \Delta K$ Data Calculated by the Secant Method 96
31 Typical $\log _{10}$ da/dN vs. $\log _{10} \Delta K$ Data Calculated by the Modified Secan= Method 97
32 Typical $\log _{10} \mathrm{da} / \mathrm{dN}$ vs. $\log _{10} \Delta K$ Data Calculated by the Linear 7-Point Incremental Polynomilal Method 98
33 Typical $\log _{10}$ da/dN vs. $\log _{10} \Delta K$ Data Calculated by the Quadratic 7-Point Incremental Polynomial Method 99
34 Typical $\log _{10} \mathrm{da} / \mathrm{dN}$ vs. $\log _{10} \Delta K$ Data Calculated by the Linear Log-Log 7-Point Incremental Polynomial Method 100
35 Typical $\log _{10} \mathrm{da} / \mathrm{dN}$ vs. $\log _{10} \Delta K$ Data Calculated by the Quadratic Log-Log 7-Point Incremental Polynomial Method 101
36 Combined $\log _{10} \mathrm{da} / \mathrm{dN}$ vs. $\log _{10} \Delta \mathrm{~K}$ Data Calculated by the Secant Method 104
37 Combined $\log _{10}$ da/dN vs. $\log _{10} \Delta K$ Data Calculated by the Modified Secant Method 105
38 Combined $\log _{10} \mathrm{da} / \mathrm{dN}$ vs. $\log _{10} \Delta K$ Data Calculated by the Quadratic 7-Point Incremental Polynomial Method 106

LIST OF ILLUSTRATIONS (Cont.'d)

FICURE PAGE
39 Typical Replicate da/dN Data 107
40 2-Parameter Normal Distribution Parameters of da/dN Data as a Function of Crack Length 109
41 2-Parameter Log Normal Distribution Parameters of da/dN data as a Function of Crack Length 110
42 3-Parameter Log Normal Distribution Parameters of da/dN data as a Function of Crack Length 111
43 3-Parameter Weibull Distribution Parameters of da/dN Data as a Function of Crack Length 112
44 3-Paramcter Gamma Distribution Parameters of da/dN Data as a Function of Crack Length 113
45 Generalized 4-Parameter Gamm Distribution Parameters of da/dN Data as a Function of Crack Length 114
46 Replicate a vs. N Data Predicted from the Distribution of $\mathrm{da} / \mathrm{dN}$ 118
47 2-Parameter Normal Distribution Parameters as a Function of Crack Length for Cycle Count Data Predicted from the Distribution of da/dN 119
48 2-Parameter Log Normal Distribution Parameters as a Function of Crack Length for Cycle Count Data Predicted from the Distribution of da/dN 120
49 3-Parameter Log Normal Distribution Parameters as a Function of Crack Length for Cycle Count Data Predicted from the Distribution of da/dN 121
50 3-Parameter Weibull Distribution Parameters as a Function of Crack Length for Cycle Cuunt Data Predicted from the Distribution of da/dN 122
51 a va. N Data Predicted from the Mean and $\pm 1,2$, and 3 Sigma da/dN Linea 127
52 Typical Replicate dN/da Data 130
53 2-Parameter Normal Distribution Parameters of dN/da Data as a Function of Crack Length 132
54 2-Parameter Log Normal Diatribution Parameters of dN/da Data as a Function of Crack Length 133

LIST OF ILLUSTRATIONS (Cont'd)

FIGURE
PAGE
55 3-Parameter Log Normal Distribution Parameters of dN/da Data as a Function of Crack Length 134
56 3-Parameter Weibull Distribution Parameters of dN/da Data as a Function of Crack Length 135
S7 2-Parameter Gamma Distribution Parameters of dN/da Data as a Function of Crack Length 136
58 Generalized 3-Parameter Gamma Distribution jarameters of dN/da Data as a Function of Crack Length 137
59 Replicate vs. N Data Predicted from the Distribution of dN/da 141
60 2-Parameter Normal Distribution Parameters as a Punction of Crack Length for Cycle Count Data Predirted from the Distribution of $\mathrm{dN} / \mathrm{da}$ 142
61 2-Parameter Log Normal Distribution Parameters as a Function of Crack Length for Cycle Count Data Predicted from the Distribution of $\mathrm{dN} / \mathrm{da}$ 143
62 3-Parameter Log Normal Distribution Parameters as a Function of Crack Length for Cycle Count Data Predicted from the Distribution of $\mathrm{dN} / \mathrm{da}$ 144
63 3-Parameter Weibull Distribution Parameters as a Function of Crack Length for Cycle Count Data Predicted from the Distribution of $d N / d a$ 145
64 3-Farameter Gamma Distribution Parameters as a Function of Crack Length for Cycle Count Data Predicted from the Distribution of $\mathrm{dN} / \mathrm{da}$ 146
65 a vs. N Data Predicted from the Mean and $\pm 1,2$, and 3 Sigma dN/da Lines 151
66 a vo. N Data Showing Abrupt Growth Rate Changes 154
67 Estimate of the Location Parameter of the 3-Parameter Log Normal Distribution as a Function of Crack length 157
68 Typical Fit of the Cycle Count Data to the 2-Parameter Normal Distribution 159
69 Typical Fit of the Cycle Count Data to the 2-Parameter Log Normal Distribution 160

LIST OF ILLUSTRATIONS (Cont'd)

FIGURE
PAGE
70 Typical Fit of the Cycle Count Data to the 3-Parameter Log Normal Distribution 161
71 Typical Fit of the Cycle Count Data to the 3-Parameter Weibull Distribution 162
72 Typical Fit of the Cycle Count Data to the 3-Paramete: Gamma Distribution 163
73 Typical Skewed Left da/dN Data 166
74 Typical Symmetric da/dN Data 167
75 Typical Skewed Right da/dN Data 168
76 Typical Fit of Skewed Left da/dN Data to the 2-Parameter Normal Distribution 169
77 Typical Fit of Symmetric da/dN Data to the 2-Parameter Normal Distribution 170
78 Typical Fit of Skewed Right da/dN Data to the 2-Parameter Log Noimal Distribution 171
79 Typical Fit of Skewed Right da/dN Data to the 3-Parameter Log Normal Distribution 172
80 Typical Fit of Skewed Right da/dN Data to the 3-Paramater Weibull Distribution 173
81 Typical Fit of Skewed Right da/dN Data to the 3-Parameter Gamma Distribution 174
82 Typical Symmetric dN/da Data 179
83 Typical Fit of Symmetric dN/da Data to the 2-Parameter Normal Distribution 180
84 Typical Fit of Symetric dN/da Dita to the 2-Parameter Log Normal Distribution 181
85 Typical Fit of Symetric dN/da Data to the 3-Parameter Log Normal Distribution 182
86 Typical Fit of Symetric dN/da Data to the 3-Parameter Weibull Distribution 183
87 Typical Fit of Symetric dN/da Data to the 2-Parameter Gama Distribution 184

A	chi-square tall area
a	half crack length (in. or mm.).
a_{f}	final half crack length (in. or mm.).
a_{1}	any discrete half crack length (in. or mm.).
$\overline{a_{i}}$	average half crack length used by the secant method (in. or man.).
${ }_{0}$	Initial half crack length (in. or mm.).
B	Weibull slope.
B_{2}	curvature used in the Golden Section search method.
b	ecale parameter for the MLE 3-parameter Weibull distribution.
b_{0}	leat squares Y intercept.
b_{1}	least squares slope.
b_{2}	least squares curvature.
c^{2}	closeness.
c_{1}	scaling constant used by the incremental polynomial methods for the mean of the atrip data.
c_{2}	scaling constant used by the incremental polynomial mathods for the range of the otrip data.
C_{+}	constant approaching positive infinity.
c_{V}	constant in the covariance matrix.
c	shape parameter for the MLE 3-parameter Weibull distribution.
D	maximam deviation in the Kolmogorov-8mirnov teet.
d	convergence constant for the interior point penalty function algorithm.

$\mathrm{da} / \mathrm{dN}$	fatigue crack growth rate (in./cycle).
$d a / d N_{1}$	any discrete value of fatigue crack growth rate (in./cycle).
$\mathrm{da} / \mathrm{dN}_{\max }$	maximum fatigue crack growth rate (in./cycle).
$\mathrm{da} / \mathrm{dN}_{\mathrm{min}}$	minimum failgue crack growth rate (in./cycle).
dN/da	Inverse fatigue crack growth rate (cycles/in.).
e	Napierian base (2.718281828) .
$\exp (x)$	e raised to the x power.
e_{i}	expected frequencies in the chi-square test.
$F\left(X_{c}\right)$	cumulative density function of corrected data.
$\mathrm{F}_{\hat{\mathbf{g}}}{ }^{-1}$	inverse cumblative density function for the generalized 4-parameter gama distribution.
$f(x)$	density function of a random variable.
G(x)	standard normal probsbility function.
8	shape/power parameter for the gamma distributions.
H	Golden Section search constant (0.618033989).
$H(z)$	gama probability fur tion.
I	vairable used in veriving c^{2}.
J	variable ueed in deriving c^{2}.
1	iteracion counter for the interior point pemalty function algorithm.
k	variable used in deriving C^{2}.
k	number of equiprobable interyale for the chi-square teat.
L	maximum likelihood estimator function.
ln	natural logarithm (base e).
$\log _{10}$	logarithm (base 10).
m	clope.
N	cumiative load cycle count.

N_{f}	final cumulative load cycle count.
N_{1}	any discrete cumulative load cycle count.
N_{1}	average cumulative load cycle count used by the secant method.
$\mathrm{N}_{\text {LS }}$	108 (base 10) scaled cycle count data used by the log-log incremental polynomial methods.
N_{S}	scaled cycle count data used by the incremental polynomial methods.
n	number of data points in a data set.
${ }^{\text {H }} \mathrm{HS}$	number of data points lost at each end of the data by the incremental polynomial methods.
${ }^{n}$	number of distribution parametèts.
${ }^{n_{S T R I P}}$	number of data points in the incremented strip in the incremental polynomial methode.
0_{1}	observed frequencies in the chi-square test.
P	objective function used by the interior point penalty function algorithm.
$\mathbf{P}_{\text {max }}$	maximum applied load during the load cycle (lbs.).
$P_{\min }$	minimum applied load during the load cycle (lbs.).
q_{1}	chi-square test class end points.
R	R ratio.
R^{2}	coefficient of multiple determination.
\boldsymbol{r}	iteration variable in the interior point penalty function algorithm.
$\mathbf{S}_{\mathbf{E}}$	standard deviation of the errors.
8_{8}	etandard deviation of the etandard deviations.
S.E.	atandard error.
SSRES	residual sum of squares.
T	location parameter in the Golden section search method.
TCs8	total corrected sum of aquares.

Γ gama function.
$\Delta P \quad$ change in applied load during the load cycle (lbu.).
e convergence criterion constant.
${ }_{+}$positive constant approaching zero.
θ
μ
v
π
σ
T
x
x^{2}
x_{c}
x_{1}
$x_{m i n}$
$X_{0} \quad$ expected minimam value of the 3 -parameter Weibull distribution. \downarrow
\dagger^{\prime} trigamma function.

- hat (symbolizes an estimated variable).

SECTION I

INTRODUCTION

Throughout the course of history, it has always been desirable to be able to predict the life of a given deaign under expected service conditions. Life prediction in matal atructures has necessitated a need for knowledge about the metal fatigue phenomenon. The matal fatigue procesa, as It is known today, is complex and 18 etill not fully understood. There are many variablas which influence the life of a metal structure, such as the material, loading, and geometric charscteristics of the particular etructure. This invastigation involves only the determination of the effect of material properties on life prediction.

One of the primary mechanisms by which metal fatigue occurs is the propagation of microscopic cracks [1j. The study of fatigue crack propagation behavior has been widely conducted for some time in an effort to understand metal fatigue more fully. The information obtained from crack propagation atudies is then usad in estimating the fatigue life of structures and componente. Ideally, it is desirable that chis estimated life will exactly predict the actual life. Unfortunately, there are many variablas which influence this prediction and some are not well understood. One of the most important of these variables is how well the empirical erack growth relationshipa obtained from experimental data actually represent the observed crack propagation behavior.

The rav data from a fatigua crack propagation tast are the half crack longth, a, and the number of cumalative load cycles, N, needed to
grow the crack to that length from some reference initial crack length for slightly increasing stress intensity level load conditions, called constant amplitude loading. A plot of typical raw fatigue crack propagation data is shown in Figure 1. The current interpretation of this raw data focuses upon the fatigue crack growth rate as a Function of an applied stress intensity parameter, usually ΔK, the change of the stress intensity during the load cycle. The fatigue crack growth rate is defined as the rate of extension of the crack with respect to the number of applied load cycles [2]. Actual determination of the crack growth rate requires an evaluation of the slope of the raw a vs. N data at various discrete points, which results in the derivative of a with respect to N, normally called da/dN. A plot of typical da/dN vs. $\Delta \mathrm{K}$ data is shown in Figure 2.

The importance of the fatigue crack growth rate as a variable of interest is born out in the fact that the fatigue crack growth rate is nearly Independent of the geometry for the same strass intensity level of loading [3]. This allows crack growth behavior prediction based only on the knowledge of the crack growth rate vs. the stress intensity level of loading for given material for any geometry chosen. Obviously, this would be an important design tool if the crack growth behavior predictions were accurate and reliable. These crack growth behavior predictions can be used to predict the number of load cycles needed to grow a crack from an initial crack length, a_{0}, to some new crack length, a_{1}, and the distance a crack propagates, Δa, during a specified number of applied load cycles. In addition, using various prediction techniques, the constant amplitude loading crack growth rate behavior is used to predict variable amplitude loading crack growth rate behavior [4].

Figure 1. Typical Raw Patigue Crack Propagation Data

Figure 2. Typical $\log _{10} \mathrm{da} / \mathrm{dN}$ va. $\log _{10} \Delta \mathrm{~K}$ Data

Figure 2. Typical $\log _{10}$ da/dN ve. $\log _{10} \Delta K$ Daca

There are several methods of numerically determining the crack growth rate from the raw a va. N data. It has been suspected that the crack growth rate calculation method has a very significant effect on the variance of the resulting growth rate vs. stress intensity parameter data $[2,5,6,7]$.

During the prediction of crack growth behavior, the crack growth rate va. stress intensity parameter data is integrated back to obtain predicted a vs. N behavior. Considerable variation in this predicted crack growth behavior has been experienced, thus hindering accurate life estimates $[2,5,6,7]$. This variation is a result of variation in the raw crack growth data, variation due to the crack growth rate calculation method, and material variations.

This investigation will compare several numerical growth rate calculation methods and attempt to find the method which introduces the least amount of error into the growth rate vs. stress intensity parameter data. It will also attempt to describe crack growth behavior in a statistical manner with the expectation that this statistical description of crack growth behavior will reduce the large amount of error currently present in life prediction.

SECTION II

BACKGROUND

Metal fatigue has long been recognized as a random phenomenon [8], but until recently, little effort was devoted to applying atatistical tools to fatigue crack propagation behavior. By fitting different equations to the crack growth rate $v s$. stress intensity parameter data, numerous equations of fatigue crack growth have been suggested [9]. However, due to scatter in the data, it has been impossible to select which equation is the most appropriate. Also, when the original crack growth data are predicted from these equations, the correlation with the original data is generally very poor [8]. Due to the large amount of scatter in the crack growth rate vs. stress intensity parameter data, investigators have startad using statistical methods to characterize fatigue crack propagation behavior $[5,6,7,8]$. It can be easily shown that the amount of data acatter is generally considerably greater than can be accounted for by experimental inaccuracies [8]. It has been poinced out that the remaining acatter is due to the essentially random nature of fatigue crack growth which is a result of the relative nonhomogneity of the material $[8,10]$.

From a macroscopic viewpoint, it is often convenient to regard a metallic material as a homogeneous continum, and basing engineering calculations on this assumption does not generally lead to serious error. However, the acatter observed in fatigue testing of a metalife material arises precisely because it is not a homgeneous continuum, when
considered on microscopic scale [8]. Consequently, it is important to examine fatigue crack growth from a statistical viewpoint. In order to include fatigue crack prupagation scatter in the general overall characterization of fatigue crack propagation behavior, this investigation Will apply atatistical concepts to fatigue crack growth behavior.

In considering the crack growth from some initial crack length, a_{0}, to a new crack length, a_{i}, there is a certain mean and variance associated with the number of load cycles required for this amount of crack growth which characterizes the statistical distribution of N at a_{i}. A schematic representation of this distribution of N is shown in Figure 3. In order to statistically characterize the crack growth behavior, it is necessary to determine the diatribution of N from experimental tests.

The variance in N illustrated above can be due to random errors in the measurement of a, N, and ΔK, to systematic errors in these measurements, and to the statistical variation in the material's growth rate properties. Through the use of accurate equipment, the random errors in the measurement of a, N, and $\dot{j} K$ can be reduced to an acceptable level and measured by a separate test. Through a careful experimental set up and procedure, the systematic measurement error can be reduced. From this, the desired statistical behavior of the material's crack growth properties can be determined.

In considering the crack growth rate vs. stress intensity parameter data, there is some statistical distribution associated with the crack growth rate, da/dN, at some stress intensity level, ΔK_{1}. A schematic representation of chis distribution of $d a / d N$ is shown in Figure 4 . In order to statistically characterize the crack growth rate behavior, it

Figure 3. Schematic Representation of the Distribution of N

Pigure 4. Schematic Representation of the Distribution of de/dN
is also necessary to determine the distribution of the crack growth rate from experimental tests.

The variance of ds/dN illustrated above originates in the variance present in the original a ve. N data. The density of the raw data (assentially, the distance between 2 consecutive data points, Δa) and the crack growth rate calculation method both contribute to the overall variance of da/dN. In order to determine the variance of da/dN due to the variance in the original a ve. N data, it is neceseary to determine the effect of both data density and the crack growth rate calculation method on the variance of $\mathrm{da} / \mathrm{dN}$.

Once the crack growth rate vo. stress intensity parameter dete has been obtained, the next step is to be able to predict the change in crack length for a given number of applied load cycles or, inversely, the number of applied load cyclea for a given change in crack langth. The variance of this prediction is directly related to the variance of the cracix growth race. In order to evaluate the effectiveness of this prediction, it is nacessary to predict the original ve. N date from the crack growth rate dats and then compare the predicted ve. N data with the original a ve. N data.

This a vs. N prediction can be accomplished by either of two mathode. The currently popular method is to numerically integrate the mean de/dN ve. $\Delta \mathbb{R}$ curva to obtain predicted a vs. N data $[2,4,5,6,7,9]$. Hovever, no adequate method for decermining the resulting ecatter in a or N exists [5]. An alternate method uses the knowledge of the diatribution of de/dn and the fact that da/dN is an indepandent random variable to obtain a ve. N etep by etep. This method in discuseed in detail in Bection 7.3. Using this thod, the variances of both and N can be readily obtained.

OBJECTIVES OF INVESTIGATION

The main purpose of this investigation wes to apply statiatical concepts and theory to the atudy of fatigue crack propagation behavior. In doing this, there werefour main objectives to be met. They were:

1) Determine the statistical distribution of N (cumulative load cycle count) as function of a (crack length).
2) Determine which crack growth rate calculation method yielde the least amount of error when the crack growth rate curve is integrated back to the original a ve. N data.
3) Determine the atatistical distribution of da/dN (crack growth rate) at function of ΔK (atreae intengity parameter.
4) Determine the variance of a set of a ve. N data predictea from the da/dN dietribution parametere.

SBCTION IV

CRACX GROWTH RATE CALCULATION METHODS

Numarous mothods of calculating the crack growth rate from the raw a va. N data have been used by various investigators $[2,5,6]$. None of these seem to be universally accepted, but rather each investigator scemed to favor a differant mathod. Since it was virtually impossible to investigate all of these methods, six of the more important methode ware ealected for axaminetion. These methods are:

1) The secant method,
2) The modified secant mathod,
3) The inear 7-point incremental polynomial method,
4) The quadratic 7-point incramental polynomial method,
5) The Inear $\log -108$ Tepoint incremental polynomial mathod, and
6) The quadratic log-log 7-point incramental polynomial wethod.

4.1 Secunt M.thod

The eecant mothod is Einite difference mothod and perhaps the simpleat of the mathode considered $[2,5,6 \%$. Basically, the secant method calculater the lope of atraight line between 2 adjecont a ve. N data points. It then appcoximates this slope as the lope of the tangent line of the a v. N curve at an avage crack length, \bar{a}_{1}, and average cycle count, $\overline{N_{1}}$. A schemetic representation of the secant wothod is show in Pigura 5.

Pigure 5. Secant Mathod

The average crack length, $\overline{a_{1}}$, is given by

$$
\begin{equation*}
\overline{a_{1}}=\frac{a_{i}+a_{i+1}}{2} \tag{1}
\end{equation*}
$$

Sioilarly, the average cycle count, $\overline{N_{1}}$, is given by

$$
\begin{equation*}
N_{1}=\frac{N_{1}+N_{i+1}}{2} \tag{2}
\end{equation*}
$$

The slope of the 11 ne connecting the 2 adjacent data points, which is used to approximate the growth rate, is given by

$$
\begin{equation*}
\frac{d a}{d N_{i}}=\frac{\left(a_{i+1}-a_{i}\right)}{\left(N_{i+1}-N_{i}\right)} \tag{3}
\end{equation*}
$$

at $\overline{a_{1}}$ and $\overline{N_{1}}$.

4.2 Modified Secant Yathod

The modified secant method is really an extension of the secant method. Bacically, this method averages the growth rates obtained by the secant method so that the da/dN data coincides with the origiad a vs. N data. The beginning and end points are assumed to be equal to the first and last growth rates, respectively. A schematic representation of the modified secant method is shown in Figure 6.

The growth rate is given by

$$
\begin{equation*}
\frac{d a}{d N_{1}}=\frac{\left[\frac{a_{1}-a_{1-1}}{N_{1}-N_{1-1}}\right]+\left[\frac{a_{1+1}-a_{1}}{N_{1+1}-N_{1}}\right]}{2} \tag{4}
\end{equation*}
$$

at a_{1} and N_{1} for $1=2$ to $(n-1)$ where n is the number of data points in the data set.

The first growth rate date point is given by
at a_{1} and N_{1}.

$$
\begin{equation*}
\frac{d a}{d N_{1}}=\frac{\left(a_{2}-a_{1}\right)}{\left(N_{2}-N_{1}\right)} \tag{5}
\end{equation*}
$$

Pigure 6. Modified Secant Method

The last growth rate data point is given by

$$
\begin{equation*}
\frac{d a}{d N_{n}}=\frac{\left(a_{n}-a_{n-1}\right)}{\left(N_{n}-N_{n-1}\right)} \tag{6}
\end{equation*}
$$

at a_{n} and N_{n}.

4.3 Linear 7-Point Incremental Polynomial Method

The linear 7-point incremental polynomial method is the simplast of the four incremental polynomial methods. In each of the incremental polynomial methods, a polynomial is fit by the method of least squares to a series of data pointe, called a scrip, and the derivative of the polynomial is evaluated at the middle point $[2,5,6]$. This atrip is then incremented by one data point and the curve fitting and evaluation process is repeated. The strip incrementation process is repeated until All of the data points have been used. Any odd number of data points can be used for the incremented strip, although 7 points are usually used. The incremental polynomial methods differ basically in the polynomial which is fit to the data.

Initially the strip data points are scaled in the following manner. Two constants, C_{1} and C_{2}, are calculated as follows $[5,6]$:

$$
\begin{align*}
& C_{1}=\frac{N_{1+n_{H S}}+N_{1-n_{H S}}}{2} \tag{7}\\
& C_{2}=\frac{N_{1+n_{H S}}-N_{1-n_{H S}}}{2} \tag{8}
\end{align*}
$$

where

$$
\begin{equation*}
n_{H S}=\frac{n_{\operatorname{strip}}-1}{2} \tag{9}
\end{equation*}
$$

where $n^{n t r i p}$ is the number of data points in the strip. Note that C_{1} is the center of the strip cycle count data and C_{2} is the range of the strip
cycle count data. The data scaling is then performed as follows:

$$
\begin{equation*}
N_{S}=\frac{N-C_{1}}{C_{2}} \tag{10}
\end{equation*}
$$

where N_{S} is the scaled cycle count data. As a result of this scaling, the strip cycle count data runs from -1 to +1 . This insures that when least squares curve fitting occurs, the scale of the data will not influence the curve fitting, whici is a constant danger when using least squares as a curve fitting technique.

After the curve fitting has been performed, the derivative of the resulting poiynomial is then evaluated at the midpoint of the strip, N_{i}. This evalustion takes into account the acaling that was performed prior to the curve ficting. A schematic representation of the incremental polynomial method is shown in Figure 7.

In the innar 7-point incremental polynomial method, the fitted polynomial is a first order linear straight line. After fitting by Inear least squares, the fitted polynowial takes the following form:

$$
\begin{equation*}
a=b_{0}+b_{1} N_{s} \tag{11}
\end{equation*}
$$

Substituting the scaling equation,

$$
\begin{equation*}
a=\left[b_{0}-\frac{b_{1} c_{1}}{c_{2}}\right]+\left[\frac{b_{1}}{c_{2}}\right] N \tag{12}
\end{equation*}
$$

Taking the derivative of with respect to N,

$$
\begin{equation*}
\frac{d a}{d M}=\frac{b_{1}}{C_{2}} \tag{13}
\end{equation*}
$$

Obviously, for a straight line, the alope is Independent of where the derivative is evaluated at.

Pigure 7. Incremental Polynomial Method

Pigure 7. Incremental Polynomial Method

4.4 Quadzatic 7-Point Incremental Polynomial Method

The quadratic 7-point incramental polynomial mothod has gained wide acceptance as a valid crack growth rate calculation method [5,6]. In this method, the fitted polynomial is a second order curve. After fitting by aecond order least quares, the fitted polynomsal takes the following form:

$$
\begin{equation*}
a=b_{0}+b_{1} N_{s}+b_{2} N_{S}^{2} \tag{14}
\end{equation*}
$$

Substituting the scaling equation,

$$
\begin{equation*}
a=\left[b_{0}-\frac{b_{1} c_{1}}{c_{2}}+\frac{b_{2} c_{1}^{2}}{c_{2}^{2}}\right]+\left[\frac{b_{1}}{c_{2}}-\frac{2 b_{2} c_{1}}{c_{2}{ }^{2}}\right] N+\left[\frac{b_{2}}{c_{2}}\right] N^{2} \tag{15}
\end{equation*}
$$

Taking the derivative of a with roupect to N and avaluating at the mide point, N_{i},

$$
\begin{equation*}
\frac{d A_{1}}{d N_{1}}\left[\frac{b_{1}}{c_{2}}-\frac{2 b_{2} c_{1}}{c_{2}^{2}}\right]+\left[\frac{2 b_{2}}{c_{2}^{2}}\right] N_{1} \tag{16}
\end{equation*}
$$

4.3 Linaer Log-Log 7-goint Incremantal Polynomial Mehod
 The innear log-log 7 -point incremantal polynomial method was used

 to determine if the datn could be innariead by a $\log _{10}$ transformetion on both the crack langth and cycle count date. This method le esenentially the same as the linaar incramencal polynomlal method excopt for the los transformations of the input data just prior to the data ecaling.The ifted polynomisl is linear and takes the following formi

$$
\begin{equation*}
\log a=b_{0}+b_{1} N_{L 8} \tag{17}
\end{equation*}
$$

whore $N_{L 8}$ is the $10 g$ eciad cycio count data.

4.4 Quadratic 7-PoInt Incremental Polynomial Method

The quadratic 7-point incremental polynomial method has gained wide acceptance as a valid crack growth rate calculation method [5,6]. In this method, the fitted polynomial is a second order curve. After fitting by second order least squares, the fitted polynomial takes the following form:

$$
\begin{equation*}
a=b_{0}+b_{1} N_{S}+b_{2} N_{S}^{2} \tag{14}
\end{equation*}
$$

Substituting the scaling equation,

$$
\begin{equation*}
a=\left[b_{0}-\frac{b_{1} c_{1}}{c_{2}}+\frac{b_{2} c_{1}^{2}}{c_{2}^{2}}\right]+\left[\frac{b_{1}}{c_{2}}-\frac{2 b_{2} c_{1}}{c_{2}^{2}}\right] N+\left[\frac{b_{2}}{c_{2}^{2}}\right] N^{2} \tag{15}
\end{equation*}
$$

Taking the derivative of a with respect to N and eyaluating at the midpoint, N_{1},

$$
\begin{equation*}
\frac{d a}{d N_{1}}=\left[\frac{b_{1}}{c_{2}} \cdot \frac{2 b_{2} c_{1}}{c_{2}^{2}}\right]+\left[\frac{2 b_{2}}{c_{2}^{2}}\right]_{1} \tag{16}
\end{equation*}
$$

4.5 Lipear Log-Log 7-Point Incremantal Polynomial Mathod

The inear log-log 7 -point incremental polynomial method was used to determine if the data could be linearized by a $\log _{10}$ transformation on both the crack length and cycle count data. This method is essentialiy the ame ae the IInear incremental polynomial method except for the log transformations of the input data just prior to the data scaing.

The fitted polynomial is linear and takes the following form:

$$
\begin{equation*}
\log a \cdot b_{0}+b_{1} N_{1 S} \tag{17}
\end{equation*}
$$

where Ns is the log acaled cycle count data.

$$
\begin{equation*}
\frac{d e}{d N_{1}}=10^{\left[\frac{b_{0}-b_{1} c_{1}}{c_{2}}\right]} \frac{b_{1} N_{1}}{c_{2}}\left[\frac{b_{1}}{c_{2}}-1\right] \tag{18}
\end{equation*}
$$

The derivation of this equation is shown in Appendix A.

4.6 Quadratic Log-Log 7-Point Incremental Polymomial Method

The quadratic log-log 7 -point incremental polynonial method was used to determine if a second order curve fit could improve the performance of the linear log-log 7-point incremental polynomial method. This method is essentially the same as the linear log-log 7-point incremental polynomial method except that the fitted polynomial is second order instead of firct order.

The fitted polynomial takes the following form:

$$
\begin{equation*}
\log a=b_{0}+b_{1} N_{L S}+b_{2} N S^{2} \tag{19}
\end{equation*}
$$

The growth rate, da/dN, for this we thod, evaluated at the midpoint, N_{1}, 1s given by

The derivation of this equation is show in Appendix B.

SECTION V

STATISTICAL CONCEPTS

When used properly, statiatics is extremely useful in quantifying the results of many engineering experiments. In many applications, however, statistics is used as a quick substitute for a thorough experimental analysis and of ten times it is used without checking the underlying assumptions or else the results are misinterpreted. In an attempt to alleviate these problems, the statistical concepts used in this investigation and their use as tools in analyzing fatigue crack growth behavior will be presented and discussed.

5.1 Histograms

The first step in statistically analyzing any set of data is to see what the data looks like. Histograms are statistically derived pictures of a data set. They give a rough idea of the shape of the density function of the data. They also give a rough estimate of the average value and the amount of variability present in the data.

The most common histogram used is a frequency histogram. The data is divided into averal classes and the frequency of the data in each class is ploted against the limits of the classes [11]. This type of histogram frequently takes the form of s bar chart. A slight modification of this involves calculating the relative frequencias in each class by dividing the frequency in each class by the total number of data points. The relative frequencies are then plotted against the limits of the classes.

This is called a relative frequency histogram [12]. An example of a relative frequency histogram is shown in Figure 8.

Another convenient form of the histogram is called a cumulative frequency histogram. This histogram shows the frequency of data less than or equal to a apecified value. It is calculated by cumulatively adding successive class frequencies of the frequency histogram from the smallest class value to the largest class value. It frequently takes the form of a step chart. Again, the relative cumulative frequencies can be calculated by dividing the cumulative frequencies by the total number of data points so that the last value of the relative cumulative frequency is equal to one. When the relative cumulative frequencies are plotted against the limits of the classes, the resulting plot is called a relative cumulative frequency histogram [12]. An example of a relative cumulative frequency histogram is shown in Figure 9.

5.2 Distributions

Once a rough idea of what the density function of the data looks like based on the histograms, the next step is to try tofit the data to several likely distributions. Eighi different distributions were selected as likely candidates for the diatribution of fatigue crack propagation variables.

5.2.a Two-Parameter Normal Distribution

The most widely used distribution in statiatics is the two-parameter normal distribution [12]. This distribution was selected as a candidate for the distribution of fatigue crack propagation variables mainly for this reason and for the sake of completeness.

Figure 8. Typicel Relative Frequency Histogram

Pigure 9. Typical Relative Cumulative Prequancy Histogrem

The two parameters of the two-parameter normal distribution are the mean, deaignated by μ, which is the scale parameter, and the standard deviation, designated by $\sigma_{\text {, }}$ which is the shape parameter. The density function, $f(X)$, for the twonparameter normal distribution 18 given by [11,12].

$$
f(x)=\frac{1}{0 \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{x-\mu}{0}\right)^{2}\right], \quad \begin{array}{ll}
-\infty<x<\infty \tag{21}\\
& 0<0<\infty
\end{array}
$$

The cotimates for the mean and etandard deviation are computed by [11,12]

$$
\begin{gather*}
\hat{\mu}=\frac{\sum_{1}^{n} x_{1} x_{1}}{n} \tag{22}\\
\hat{\sigma}=\sqrt{\frac{\Sigma_{1}\left(x_{1}-\hat{\mu}\right)^{2}}{n}} \tag{23}
\end{gather*}
$$

Where n is the number of data polnts and the aybol" smbolizes an estimated value.

The atandard errors of the estimates provide a mesure of how good these estimates axe. The etandard errors of the astiantad moan and standard deviation are given by [13]

$$
\begin{gather*}
\text { 8.E. } \hat{\mu}=\sqrt{\frac{\hat{q}^{2}}{n}} \tag{24}\\
\text { 8. E. } \hat{o}=\sqrt{\frac{\sigma^{2}}{n}\left[(n-1)-2 \cdot\left\{\frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)}\right\}^{2}\right]} \tag{25}
\end{gather*}
$$

where represents the gama function. The covariance of $\hat{\mu}$ with $\hat{\sigma}$ io alvaye equal to sero, due to thalr orthogonality [13].

5.2.b Two-Paramater Log Normal Distribution

The two-paramoter log normal dietribution has bean suspected of being - likely casdidate for the dietribution of fatigue crack propagation
variables [5,6]. Easentially, the two-parameter log normal distribution atates that the $\log _{10}$ of the random variable X, f.e., $\log _{10} x$, ia normally dietributed.

The two parameters of the two-parameter log normal distribution are μ, the scale parameter, and β, the shape paramater. Tho density function for the two-parameter \log normai diatribution is given by $[14,15]$

$$
f(x)=\frac{1}{\sqrt{2} \pi} ; \exp \left[-\frac{1}{2 \beta}\left\{\log _{10} x-\mu\right\}^{2}\right],-\infty<\begin{gather*}
x>0 \tag{26}\\
0<\beta<\infty
\end{gather*}
$$

The estimates for μ and β are computed by using the following equat1ons [14]

$$
\begin{gather*}
\hat{\mu}=\frac{\sum_{i=1}^{n} \log _{10} x_{1}}{n} \tag{27}\\
\hat{\beta}=\sum_{i=1}^{n}\left(\log _{10} x_{1}-\hat{\mu}\right)^{2} \tag{28}\\
n
\end{gather*}
$$

The standard errors of these etimates are given by the following equations $[13,14]$.

$$
\begin{array}{r}
\text { S.E. } \hat{\mu}=\sqrt{\frac{\beta}{n}} \\
\text { S. E. } \hat{\theta}=\sqrt{\frac{2(n-1) \hat{\beta}^{2}}{n^{2}}} \tag{30}
\end{array}
$$

The covariance of $\hat{\mu}$ with $\hat{\beta}$ is again alvaye equal to zero, due to their orthogonality [13].

5.2.c Three-Farameter Log Normal Distribution

With the expectation of a better fit of the dats, the three-parameter \log normal dietribution was coniddared ae a candidate for the dietribution of fatigue crack propagation variables. The main difforence betwaen
the two-parameter and the three-parameter log normal distributions is the Inclusion of the location parameter in the three-parameter \log normal distribution.

The three parameters of the three-parameter log normal distribution ara μ, the scale parameter, B, the shape parameter, and the terminus, T, with is the location parameter. The density function for the chree-paraaster \log normal distribution in given by $[14,15]$

$$
f(x)=\frac{1}{(x-\tau) \sqrt{2 \pi} \beta^{1}} \exp \left[-\frac{1}{2 \beta}\left\{\log _{10}(x-\tau)-\mu\right\}^{2}\right], \quad \begin{align*}
& -\infty<\mu<\infty \tag{31}\\
& 0<\infty<\infty<x<x
\end{align*}
$$

The difficulty in using distributions containing a location parameter 10 the estimation of that location parameter. The parameter estimation methods used to obtain the value of the location parameter are presented in Section 5.3.

Once the location parament, τ, has been estimated, μ and p are astirated using the following equation e [15].

$$
\begin{gather*}
\hat{\mu}=\frac{\sum_{1=1}^{n} \log _{10}\left(x_{1}-T\right)}{n} \tag{32}\\
\hat{\hat{n}}=\sum_{1=1}^{n}\left[\log _{10}\left(x_{1}-T\right)-\hat{\mu}\right]^{2} \\
n
\end{gather*}
$$

To obtain the standard errors of the estimates and the covariance values, the covariance matrix for the three-parameter log normal distribucion is computed. The covariance matrix is a gametic matrix and io given by [16]

where

$$
\begin{equation*}
c_{v}=\frac{\hat{\theta}}{[(\hat{B}+1) \exp (\hat{B})-2 \hat{B}-1]} \tag{35}
\end{equation*}
$$

The atandard errore of the estimates are given by the diagonal terms and the covariances between the estimates are given by the off-diagonal terms of the 3 by 3 covariance matrix.

5.2.d Three-Parameter Weibull Distribution

The three-parameter Weibull distribution has lons been considered in representing fatigue data [17]. For this reason, the three-paramater Weibuli distribution wan considered as a candidate for the distribution of fatigue crack propagation variables. This distribution also includae the locstion parameter ase of its three paramatars and thus the difficulty of its estimation arises. Two basic metinods were ueed to estimate the parameter: (Section 5.3) and each method required different parameters. Thus, two sets of Weibull parameters and their associated equations will be presented.

The first set of the three paramaters of the three-parameter Weibull distribution include the characterietic value, θ, shich is the ocale parameter, the Weibull olope, B, which is the shape yarameter, and the expected minimu value of $X_{0} X_{0}$, which is the location paramoter. The density function for these parameters is given by [18]

$$
\left.f(x)=\left[\frac{B}{\theta-x_{0}}\left(\frac{x-x_{0}}{\theta-x_{0}}\right)^{B-1}\right] \text { exp}-\left(\frac{x-x_{0}}{\theta-x_{0}}\right)\right\}, \begin{align*}
& 0<\theta<\infty \tag{36}\\
& 0<B<\infty \\
& -\infty<x_{0}<x
\end{align*}
$$

In the method of estimating the location parameter used with this set of parameters, all three parameters are estimated simultaneously.

The second set of three parameters of the three-parameter Weibull distribution include b, the scale parameter, c, the shape parameter, and the terminus, T, which is the location parameter. The two sets of parameters are related as follows.

$$
\begin{align*}
& b=\theta-x_{0} \tag{37}\\
& c=B \tag{38}\\
& \tau=x_{0} \tag{39}
\end{align*}
$$

The density function for the second set of parsmeters is given by [19]

$$
f(x)=c(x-\tau)^{c-1} \cdot b^{-c} \cdot \exp \left\{-\left[\frac{(x-\tau)}{b}\right]\right\}, \quad \begin{align*}
& 0<b<\infty \tag{40}\\
& 0<c<\infty \\
& -\infty<\tau<x
\end{align*}
$$

As with the previous set of parameters, all three parameters are estimated simultaneously when the location parameter is estimated. To obtain the atandard errors of the estimates obtained by the method referred to above and the covariance values, the covariance matrix for the three-parameter Waibuli distribution is computed. The covariance matrix 1: a symatric matrix and is given by [13]

$$
\begin{equation*}
v=v^{-1} \tag{41}
\end{equation*}
$$

where

$$
v=\left[\begin{array}{ccc}
\frac{\pi^{2}}{\hat{b}} \cdot(1-\gamma\rangle^{2} & \hat{c} & \hat{c} \tag{42}\\
\hat{c}^{2} & \frac{\gamma-1}{\hat{b}} & \frac{1}{\hat{b}} \frac{1}{\hat{c}} \Gamma\left(1-\frac{1}{\hat{c}}\right)-\left(2-\frac{1}{\hat{c}}\right)
\end{array}\right]
$$

where Y is Eulers Constant (0.577215) and \downarrow represents the digamma funciion.

Once the covariance matrix is obtained, the standard errors of the estimates and the covariances between the estimates are obtained from the same terms in the covariance matrix as outlined above for the three-parameter \log normal distribution.

5.2.e Gama Distribution

Due to the nature of the fatigue crack propagation process, two important assumptions can be made. The first assumption, called the increasing fallure rate assumption, states that $\mathrm{ra}^{-q u s e}$ the crack growth rate increases as the crack grows (under const plitude conditions), the rate, or probability, of failure increases we crack grows. The second assumption states that the dietribution of a fatigue crack propagation variable is independent of the crack length and is a function of the initial crack length only. If these two assumptions are mede, then it can be proven that a generalized gama distribution is a valid distribution for any fatigue crack propagation variable $[13,20]$.

Generalized Four-Parameter Gama Distribution. The four parameters of the generalized four-parameter gamma distribution are the location parameter, T, the power parameter, α, the scale parameter, b, and the shape/ power parameter, 8. The shape parameter, c, is given simply by [21]

$$
\begin{equation*}
c=8 \alpha \tag{43}
\end{equation*}
$$

The density function for the generalized four-parameter gama distribution is given by [21]

$$
f(x)=\frac{q(x-\tau)^{g \alpha-1}}{b^{g \alpha} \Gamma(g)} \exp \left[-\left\{\frac{x-\tau}{u}\right\}^{\alpha}\right], \begin{array}{lll}
x & 2 & \tau \tag{44}\\
\alpha \geq & 1 \\
b & 2 & 0 \\
g & 2 & 1
\end{array}
$$

All four parameters are estimated simultaneous il using the parameter estimation methods presented in Section 5.3. To obtain the standard erros of the estimates and the covariances between the estimates the covariance matrix for the generalized four-parameter gama distribution is compuled. The covariance matrix is a symmetric matrix and is given by $[13,21,22]$

$$
\begin{equation*}
v=\frac{1}{n} v^{-1} \tag{45}
\end{equation*}
$$

where

(46)

$$
\begin{aligned}
& \frac{r\left(\hat{B}-\frac{1}{d}\right)}{b \Gamma(\hat{B})}\left[\frac{1}{\alpha} \cdot\left(\hat{B}-\frac{1}{d}\right) \cdot\left(\hat{\dot{x}}+1-\frac{1}{8}\right)\right] \\
& \frac{\Gamma(a-2)}{b^{2} r(a)}[(\hat{a r a}-2 \hat{a}+1]]
\end{aligned}
$$

where ' represents the trigama function.

The standard errors of the estimates are given by the diagonal terms and the covariances between the estimates are given by the off-diagonal terms of the 4 by 4 covariance matrix.

Three-Parameter Gama Distributicn. If the power parameter, α, is assumed to be equal to one, the generalized four-parameter gama distribution reduces to the three-parameter gama distribution. The density function for the three-parameter gama distribution is given by [21,23]

$$
f(x)=\frac{(x-1)^{g^{-1}}}{b^{g} \Gamma(g)}\left[-\frac{(x-\tau)}{b}\right] \quad, \begin{align*}
& x \geq \tau \tag{47}\\
& b \geq 0 \\
& g \geq 1
\end{align*}
$$

The three parameters are estimated using the same method used for the generalized four-parameter gamm distribution. The standard errors and covariances are found by using the covariance matrix for the generalized four-parameter gama distribution (equations 45 and 46) and setting a equal to one.

Generalized Three-Parameter Gamas Distribution. If the fatigue crack propagation variable of interest is $\Delta N / \Delta E$, then considering the fatigue crack propagation process it would be expected that ΔN would be zero for Δ^{a} zero [24]. From this, it is assumed that the location parametar, Y, is equal to zero which reduces the generalized four-paramater gama distribution to the generalized three-parameter gama diatribution. The density function for the generalized threemparameter gama dietribution is thus [23]

$$
f(x)=\frac{a(x)^{8 \alpha-1}}{b^{8 a} r(g)} \exp \left[-\left(\frac{x}{b}\right)^{\alpha}\right], \begin{align*}
& x \geq 0 \tag{49}\\
& a \geq 1 \\
& b \geq 0 \\
& g \geq 1
\end{align*}
$$

The standard errors of the estimates are given by the diagonal tarma and the covariances between the estimates are given by the off-diagonal tertas of the 4 by 4 covariance matrix.

Three-Parameter Gama Dlatribution. If the power parameter, α, is assumed to be equal to one, the generalized four-parameter gama distribution reducea to the three-parameter gamma distribution. The density function for the chree-parameter gama distribution is given by [21,23]

$$
f(x)=\frac{(x-)^{g-1}}{b^{g} \Gamma(g)}\left[-\frac{(x-)}{b}\right], \begin{align*}
& x \geq \tau \tag{47}\\
& b \geq 0 \\
& g \geq 1
\end{align*}
$$

The three parameters are estimated using the aame method used for the generalized four-paramater gama diatribution. The atandard errors and Covariances are found by using the covariance matrix for the generslized four-parameter gamma distribution (equations 45 and 46) and setting a equal to one.

Generalized Three-Parameter Gama Distribution. If the fatigue crack propagation variable of interest is $\Delta N / \Delta a$, then considering the fatigue crack propagation process it would be expected that ΔN would be zero for Δa zero [24]. From this, it is ussumed that the location parameter, Y, 1s equal to zero which reduceo the zeneralized four-parameter gadma distribution to the generalized three-parameter gamma distribution. The density function for the generalized three-parameter gama dietribution is thus [23]

$$
f(x)=\frac{a(x)^{8 a-1}}{b^{8 a} r(g)} \operatorname{axp}\left[-\left(\frac{x}{b}\right)^{a}\right] \quad, \begin{align*}
& x \geq 0 \tag{49}\\
& a \geq 1 \\
& b \geq 0 \\
& g \geq 1
\end{align*}
$$

The three parameters are estimated using the same method used for the generalized four-parameter gama diatribution. The atandard errors and covariances are found by using the 3 by 3 submatrix for \hat{b}, \hat{g}, and $\hat{\alpha}$ from the 4 by 4 covariance matrix for the generalized four-parameter gama distribution (equations 45 and 46).

Two-Parameter Gamma Distribution. If the power parameter, α, is again essumed to be equal to one, the generalized three-parametor gama distribution reduces to the two-parameter gama dietribution. The dansity function for the two-parameter gama distribution is given by $[11,12,23]$

$$
f(x)=\frac{x^{g-1}}{b^{g} \Gamma(g)} \exp \left[-\left(\frac{x}{b}\right)\right], \begin{align*}
& x \geq 0 \tag{50}\\
& b \geq 2 \\
& b
\end{align*}
$$

The two parameters are estimated using the same method usec for the generalized four-parameter gaman distribution. The standard errors and covariances are found by using the 3 by 3 submatrix used for the generalized three-parameter gama distribution and setting α equal to one.

5.3 Parameter Estimation Mathode

Since the determination of the eotimates of the parameters is critical to a proper fitting of the data to the two, three, and four-paramater distributions, two different parameter estimation methods were used [14, 25]. The first method, graphical method, was selected for its simplicity $[17,18,26,27]$. The second method, the method of maximum likelihood estimators (MLE), was selected because of its reliability, accuracy, and widespread acceptance $[14,15,19,21-23,28-32]$.

5.3.a Graphical Mathod

This method was the first of the two methods artemptad, due mainly to ita simplicity in use $[17,18]$. This mathod was tried with both tha

 characteristtes and shen goiestins the valuo of the doention nafamier
 Once the oflmaty of tho sosation purameter is hawn, the ebtimiter of the othor swe parametera are made grapheally, flase ehly chroa parae megeri call be ostimat gramically, this limity the was of this mothot 80 two of thrac paramptor desigbutima [37).

 diactitubion [14] whore

$$
\begin{align*}
& y=\theta(8) \tag{11}\\
& x=\log _{10}\left(x_{6}\right) \tag{D}
\end{align*}
$$

 to given by [11]

$$
\begin{equation*}
O(n) \cdot \int_{0 \infty}^{\infty} \frac{1}{n} \operatorname{anp}\left(x^{2}\right) d m \tag{11}
\end{equation*}
$$

Wore

$$
\bullet \nabla\left(x_{4}\right)
$$

 by the Collawing mquation.

$$
x_{0} \cdot x \cdot x_{0}
$$

three-parameter 108 normal distribution and the three-parameter Weibull distribistion. The graphical method involves ploting the data on special probability paper whose axis scales correspond to special distribution charactaristics and then selecting the value of the location parameter such that the resulting plot of data follows a straight line $[17,187$. Once the estimate of the location parameter is known, the estimates of the other two parameters are made graphically. Since only three paraweters can be estimated graphically, this limits the use of this method to two or three parameter distributions [27].

For the three-parameter log normal distribution, a plot of Y vs. X yielde a straight line for data that follows a three-parameter 108 normal distribution [14] where

$$
\begin{align*}
& Y=G(z) \tag{51}\\
& X=\log _{10}\left(x_{c}\right) \tag{52}
\end{align*}
$$

where $G(2)$ is the equation for the standard normal probability scale which 1a given by [ld]

$$
\begin{equation*}
G(z)=\int_{-\infty}^{2} \frac{1}{2 \pi} \exp \left(\frac{-x^{2}}{2}\right) d x \tag{53}
\end{equation*}
$$

where

$$
\begin{equation*}
z=P\left(x_{c}\right) \tag{54}
\end{equation*}
$$

where $F\left(X_{c}\right)$ is the cumblative density function of the corrected daca. X_{c} is the value of the data corrected for the value of the location parameter by the following equation.

$$
\begin{equation*}
x_{c}=x-x_{0} \tag{55}
\end{equation*}
$$

For the three-parameter Weibull distribution, a plot of Y vs. X where

$$
\begin{gather*}
Y=\ln \ln \left(\frac{1}{1-F\left(x_{c}\right)}\right) \tag{56}\\
X=\ln \left(x_{c}\right) \tag{57}
\end{gather*}
$$

yields a straight line for data that follows the three-parameter Weibull distribution $[17,18]$.

For both of these plots, $F\left(X_{c}\right)$ corresponds to the median ranks which are calculated by [18]

$$
\begin{equation*}
F\left(x_{c}\right)=\frac{x_{c}}{n+1}, 1 \leq x_{c} \leq n \tag{58}
\end{equation*}
$$

To determine the value of the location parameter such that the resulting plot yields a straight line, an iterative process which minimizes some variable must be used. For the graphical method, the variable to be minimized is the curvature of a second order curve fit using least squares, thereby assuring a straight line. One of the fastest and most efficient of the many minimization methods available is the Golden Section search method [26].

In the Golden Section search method, the value of the curvature (the variable to be minimized) is calculated at two optimal locations and, based on these values, e certain area where the curvature minimum is known not to exist is excluded from the rest of the search. This process is repeated until the area remaining to be searched is less than some tolerance level. The value of the location parameter in this area is then taken as the estimated value of the location parameter. A schamatic representation of the Golden Section sarch method is shown in Figure 10.

$$
\begin{aligned}
& \text { IF } B_{2}\left(X_{1}\right)<B_{2}\left(X_{2}\right) \\
& \text { THEN } X_{2} \text { BECOMES } X_{\text {MAX }} \\
& \text { IF } B_{2}\left(X_{1}\right)>B_{2}\left(X_{2}\right) \\
& \text { THEN } X_{1} \text { BECOMES } X_{\text {MIN }} \\
& \text { IF } B_{2}\left(X_{1}\right)=B_{2}\left(X_{2}\right) \\
& \text { THEN } X_{2} \text { BECOMES } X_{\text {MAX }} \text { AND } X_{1} \text { BECOMES } X_{\text {MIN }} 0.618033989
\end{aligned}
$$

Figure 10. Golden Section Seerch Method

5.3.b Maximum Likelihood Estimators Method

After the griphical mathod was perfected and usind, the need for a more statistical approach to the estimation of the rameters of the two, three, and four-parameter distributions became evident (Section 8.1). This led to the use of the Maximum Likelihood Estimators method to statisticaliy estimate the distribution perameters.

The Maximum Likelihood Estimators (MLE) method involves solving maximum likelihood equations through the use of a nonlinear programing algorIthm $[14,15,19,21,22,23,28,30,31,32]$. Many forms of the maximum likelihood equations have been determined by investigators for the three-parameter log normal distribution, the three-parameter Weibull distribution, and the two, three, and four-parameter gamma distributions [14, 15, 19, 28-32].

Three-Parameter Log Normal Distiribution. The maximum likelihood equation used in this investigation for the three-parameter log normal distribution is [15]
where

$$
\begin{gather*}
\ln L(T)=-\left[\left[\hat{\mu}(T)+\frac{1}{2} \ln \hat{B}(T)\right]\right. \tag{59}\\
\hat{H}(\tau)=\frac{\sum_{i=1}^{n} \ln \left(X_{i}-T\right)}{n} \tag{60}
\end{gather*}
$$

and

$$
\begin{equation*}
\hat{\theta}(\tau)=\frac{\sum_{1}^{n}\left[\ln \left(X_{1}-\tau\right)-\hat{\mu}(\tau)\right]^{2}}{n} \tag{61}
\end{equation*}
$$

Three-Paramater Helbull Pistribution. The maximum likelihood equation used in this investigation for the three-paramuter Weibull distribution is [19]

$$
\begin{equation*}
L(b, c, T)=n(\ln c-c \ln b)+(c-1) \sum_{1=1}^{n} \ln \left(x_{1}-T\right) \cdot b^{-c} \sum_{i=1}^{n}\left(x_{1}-T\right)^{c} \tag{62}
\end{equation*}
$$

Note that the maximu likalihood equation ia a function of all three paremeters whereas for the three-parameter $10 g$ normal dietribution, the maximum
likelihood equation is a function of just the location parameter. However, the scale parameter, b, ran be factored out of this equation and eatiaated separately. The resulit n_{ℓ} : ’n parameter maximum likelihood equation for the three-parameter Weibu!] iistribution is [13]

$$
\begin{equation*}
L(c, T)=\ln c-\ln \left[\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\tau\right)^{c}\right]+\frac{(c-1)}{n}\left[\sum_{i=1}^{n} \ln \left(x_{i}-\tau\right)\right] \tag{63}
\end{equation*}
$$

where the estimation of the scale parameter is given by [13]

$$
\begin{equation*}
\hat{b}=\left[\frac{1}{n} \sum_{i=1}^{n}\left(x_{1}-\tau\right)^{c}\right]^{1 / c} \tag{64}
\end{equation*}
$$

The effect of reducing the number of parameters in the maximum likelihood equation is to reduce the computing time, and thus the cost, of the maximization of the maximum likelihood equation.

Generalized Four-Parameter Gama Distribution. The maximam likelihood equation for the generalized four-parameter gamm distribution is [21,30, 32]

$$
\begin{align*}
L(b, g, \alpha, \tau)= & n \ln \alpha+(g \alpha-1)\left[\sum_{i=1}^{n} \ln \left(x_{1}-\tau\right)\right]-g n \ln \left(b^{\alpha}\right) \\
& -\sum_{i=1}^{n}\left[\frac{\left(x_{1}-\tau\right)}{b}\right]-n \ln \Gamma(g) \tag{65}
\end{align*}
$$

The number of parameters in this equation can also be reduced by factoring out the acale parameter, b. The resulting three parameter maximu likelihood equation for the generalized four-parameter gama distribution is [13]
$L(g, \alpha, T)=n \ln \alpha+(g \alpha-\lambda)\left[\sum_{i=1}^{n} \ln \left(x_{1}-\tau\right)\right]-\operatorname{gn}\left[1+\ln \left\{\sum_{i=1}^{n}\left(x_{1}-\tau\right)^{\alpha}\right\}-\operatorname{lngn}\right]$

- $n \ln \Gamma(8)$
where the estimation of the scale parameter is given by [13]

$$
\begin{equation*}
\hat{\mathrm{b}}=\left[\frac{\sum_{i=1}^{\mathrm{n}}\left(x_{i}-\tau\right)^{\alpha}}{\mathrm{ng}}\right]^{1 / \alpha} \tag{67}
\end{equation*}
$$

Three-Paramater Gema Distribution. The maximum 1ikelihood equation for the three-parameter gama distribution reduced to eliminate the scale parameter is [13]

$$
\begin{equation*}
L(g, \tau)=(g-1)\left[{\underset{i}{n},}_{n}^{n} \ln \left(x_{1}-\tau\right)\right]-g n\left[1+\ln \left\{\sum_{i=1}^{n}\left(x_{i}-T\right)\right\}-\ln (g n)\right] \tag{68}
\end{equation*}
$$

$-n \ln \Gamma(8)$
where the estimation of the scale parameter is given by [13]

$$
\begin{equation*}
\hat{b}=\frac{1}{n g}\left[\sum_{i=1}^{n}\left(x_{i}-T\right)\right] \tag{69}
\end{equation*}
$$

Generalized Three-Paramater Gama Distribution. The maximum 1ikelihood equation for the generalized three-paramater gama distribution is $[21,30,32]$

$$
\begin{gather*}
L(b, g, \alpha)=n \ln \alpha+(g \alpha-1)\left[\sum_{i=1}^{n} \ln \left(x_{1}\right)\right]-g n \ln \left(b^{\alpha}\right) \tag{70}\\
\cdot \sum_{i=1}^{n}\left[\frac{x_{1}}{b}\right]^{\alpha}=n \ln \Gamma(g)
\end{gather*}
$$

This equation can also be reduced to eliminate the sale parameter, b. The resulting two parameter maximum likelihood equation for the gener alized three-parameter gama distribution is [13]
$L(g, \alpha)=n \ln \alpha+(g \alpha-1)\left[\sum_{i=1}^{n} \ln \left(x_{1}\right)\right]-g n\left[1+\ln \left\{\sum_{i=1}^{n}\left(x_{i}\right)^{\alpha}\right\}-\ln (g n)\right]$

$$
\begin{equation*}
-n \ln \Gamma(g) \tag{71}
\end{equation*}
$$

where the estimation of the scale parameter is given by [13]

$$
\begin{equation*}
\hat{b}=\left[\frac{1}{n g}\left\{\sum_{i=1}^{n}\left(x_{i}\right)^{\alpha}\right\}^{1 / \alpha}\right. \tag{72}
\end{equation*}
$$

Two-Parameter Geman Distribution. The maximum likelihood equation for the two-parameter gamma diatribution reduced to eliminate tha sale parameter is [13]

$$
L(g)=(g-1)\left[\sum_{i=1}^{n} \ln \left(x_{1}\right)\right]-g n\left[1+\ln \left\{\sum_{i=1}^{n}\left(x_{1}\right)\right\}-\ln (g n)\right]
$$

$$
\begin{equation*}
-n \ln \Gamma(8) \tag{73}
\end{equation*}
$$

where the estimation of the scale parameter is given by [13]

$$
\begin{equation*}
\hat{b}=\frac{1}{n g}\left[\sum_{i=1}^{n}\left(x_{1}\right)\right] \tag{74}
\end{equation*}
$$

Interior Point Penalty Function. After some experience using the Graphical method to estimate the location parameter of the three-parameter Weibull diatribution, it was found that the iteration tended to go to minus infinity in some cases. Since this was the global (overall) maximum of the function to be maximized, it became necessary to use a method that converged on the local maximum, and not the global maximum. The method used to achieve this requires the use of an interior point penalty function which prevents the value of each of the parameters from reaching eisher of its global 11mite [157.

The interior point penalty function, better known ae the objective function in nonilnear programing terme, for the thres-paramater log nomal distribution using the maximum likalihood equation is [15]

$$
\begin{equation*}
P(T, r)=\ln L(T)-T\left[\left(T+c_{+} \cdot c_{t}\right)^{-1}+\left(x_{\min }-T-c_{t}\right)^{-1}\right] \tag{75}
\end{equation*}
$$

where c_{+}is a large positive number $\left(-10^{25}\right)$,
r ia an iteration variable, and c_{+}is a small positive number $\left(-10^{-8}\right)$.

The objective function for the three-parameter Weibull distribution using the two parameter maximum likslihood equation is [15]

$$
\begin{gather*}
P(T, c, r)=L(T, c)=\left[\left(T+c_{+}-c_{+}\right)^{-1}+\left(X_{\min }-T-\epsilon_{+}\right)^{-1}\right. \\
\left.+\left(c-c_{+}\right)^{-1}+\left(10-c-c_{+}\right)^{-1}\right] \tag{76}
\end{gather*}
$$

The objective function for the generalized four-parameter gamma distribution uaing the three parameter maximum likelihood equation is [15]

$$
\begin{align*}
P(8, \alpha, \tau, r)= & L(8, \alpha, T)-\left\{\left[\left(8-1-e_{t}\right)^{-1}+\left(100-g-e_{t}\right)^{-1}\right.\right. \\
& +\left(\alpha-1-e_{+}\right)^{-1}+\left(100-\alpha-e_{t}\right)^{-1} \tag{77}\\
& \left.+\left(\tau+c_{t}-e_{+}\right)^{-1}+\left(X_{\min }-T-e_{+}\right)^{-1}\right]
\end{align*}
$$

The objective function for the three-parameter gamma distribution using the two parameter maximum likelihood equation is [15]

$$
\begin{align*}
P(g, T, r) & =L(g, T)-T\left(8-1-c_{+}\right)^{-1}+\left(100-g-c_{+}\right)^{-1} \tag{78}\\
& \left.+\left(\tau+c_{+}-c_{+}\right)^{-1}+\left(x_{\min }-T-c_{+}\right)^{-1}\right]
\end{align*}
$$

The objective function for the generslised three-parameter geme destribution ueing the two parameter maximum likelihood equation is [15]

$$
\begin{align*}
P(g, \alpha, r) & =L(8, \alpha)-I\left[\left(\beta-1-c_{+}\right)^{-1}+\left(100-g-e_{+}\right)^{-1}\right. \tag{79}\\
& \left.+\left(\alpha-1-c_{+}\right)^{-1}+\left(100-\alpha-c_{+}\right)^{-1}\right]
\end{align*}
$$

The objective function for the two-paremeter gama distribution using the one parameter maximum likelihood equation is [15]

$$
\begin{equation*}
P(g, r)=L(g)-\left[\left(8-1-c_{+}\right)^{-1}+\left(100-g-c_{+}\right)^{-1}\right] \tag{80}
\end{equation*}
$$

The algorithm used to converge the objective function towards the local maximum likelihood is as follows [15].

1. Maximize the objective function, $P(\tau, r)$.
2. Check for convergence to the optimum i.e. when

$$
\begin{equation*}
\left|T\left(x_{j}\right)-T\left(r_{j-1}\right)\right|<\varepsilon \tag{81}
\end{equation*}
$$

where is the convergence criterion constant.
3. If the convergence criterion is not satisfied, reduce r_{j} by setting

$$
\begin{equation*}
r_{j+1}=d r_{j}, 0<d<1 \tag{82}
\end{equation*}
$$

where d is a convergence constant.
4. Increment \mathfrak{j} and repeat.

The maximiaation of the objective function has been done by many nonInear routines [197, However, the Hooke-Jeeves pattern search method [33] has enjoyed particularly good success in maximizing MLS objective functions and was therefore utilized in maximizing the objective functions for the three-parameter log normal distribution, the three-parameter Woibull dietribution and the two, three, and four-parameter gama diatributions [15].

5.4 Gopdnose of Fit Criteris

Once the statistical parameters for each of the candidate distributione heve been eatimated, the distribution which the data followe the closest must be selected from the candidate distributions. A statiatical
method which is used many times to find out how well data fite a certain distribution is the goodness of fit test. Several goodness of fit tests have been proposed [121, but three of the more reliable and widely used goodness of fit tests have been selected as criteria for the selection of the "best" distribution. These three goodness of fit tests are regression, the chi-square test, and the Kolmogorov-Smirnov test.

5.4.a Regression

Regression in its simplest form involves fitting a polynomial to a set of given data plotted on certain axes [347. In the case of fitting data to a statietical distribution, the data can be plotted on a plot whose axes correspond to certain characteristics of that particular statistical distribution (Section 5.3.a). It is known that if data follows that particular distribution, then the data will follow a straight line fit when plotted on these special axes. If a linear regression is performed on this plotted data, it can be determined how close the data does fit a straight line. This then provides a measure of the goodness of fit of the data to that particular distribution.

If a get of data follows the two-paramater normal distribution, a plot of the data with the X axis as a linear ocsle and the Y axis as a normal probability scale will follow a acraight line [18]. The normel probability sale is described in detail in section 5.3.a. A typical plot for the two-paramater normal dietribution is shown in Figure 11.

If a set of data follows the two-parameter log normal distribution, a plot of the data with the X axis as $\log _{10}$ acale and the Y axis as a normal probability scale (Section 5.3.a) will follow a atraight line [18]. In this plot, the location parameter is not estimated and is assumed to be

Figure 11. Typical 2-Parameter Rormal Distribution Plot
zero. A typical plot for the two-paramatar log normal distribution is shown in Figure 12.

Both the plots for the three-parameter \log normal distribution and the three-parameter Weibull distribution have been discussed in Section 5.3.a. A typical plot for the three-parameter log normal distribution is shown in Pigure 13 and a typical plot for the three-parameter Waibull distribution is shown in Pigure 14. The three-parameter gauma distribution plot requires the data to be plotted on a plot where the X axis is a linear scale and the Y axis is a gama probability acale. The equation for calculating the gama probability scale, $H(z)$, is [27]

$$
\begin{equation*}
F\left(x_{c}\right) \Gamma(s)=\int_{0}^{H(2)} t^{-1} e^{-t} d t \tag{83}
\end{equation*}
$$

where

$$
\begin{equation*}
z=P\left(x_{c}\right) \tag{84}
\end{equation*}
$$

where $F\left(X_{c}\right)$ is the cumslative density function of the corrected data which 1s given by equation (58). Equation (83) was solved iteratively for $H(2)$ using the interval halving method [277. A typical three-parameter gama distribution plot in shown in Figure 15. The two-paramater gama distribution plot also requires the X axis to be a linear acale and the Y axis to be garma probability scale. A typical two-parameter gama dietribution plot it shown in Pigure 16. In each of the sbove plots, the data are plotted on the X axis against the corresponding median ranks on the Y axis.

Linear regrossion uses linear least squaces which uses the matrix apgroach to linear regression to fit a best fit atraight line to the data [34]. Ae a result of this matrix approach to linar regreseion, a goodmes

Pigure 12. Typical 2-parameter Log Normal Distribution Plot

Pigure 12. Tyoical 2-Parameter Log Normal Dietribution Plot

Figure 13. Typical 3-Parameter Log Normal Dietribution Plot

Figure 14. Typical 3-Paramater Weibull Distribution Plot

Pigure 15. Typical 3-Paramater Gama Diatribution Plot

Pigura 16. Typical 2-Parasater Gauma Distribution Plot

of fit statistic, called the coefficient of multiple determination, R^{2}, can be calculated. The value of R^{2} is always between zero and one. The closer the value of R^{2} is to one, the closer the fit of the data is to a straight line. Therefore, by comparing the values of R^{2} for each of the distributions, the distribution with the highest value of R^{2} is the distribution which the data follows the closest.

This value of R^{2} can be corrected for the slope of the laast squares Ine in an atcempt to achieve a more precise measure of the closeness of the data to the atraight line. This corrected value of R^{2} is called the closeness and is given the symbol C^{2}. The derivation of C^{2} is given in Appendix C.

5.4.b Chi-Square Test

The chi-square goodness of fit test is a statistical method fer determining how close given data follow a cartain distribution. Basically, it

1) divides the data into an optimum number of equiprobable intervala,
2) counts the number of data points in each interval (called the observed frequencies),
3) calculates the number of data pointe that should be in each interval based on the estimated distribution parameters (called the expected frequencies), and
4) compares the observed frequencies with the expected frequencies $[11,12]$.

The test statistic, X^{2}, is a measure of how close the observed frequencies are to the expected frequancies, and t us how close the data follows the given dietribution. x^{2} is given by

$$
\begin{equation*}
x^{2}=\sum_{i=1}^{k} \frac{\left(0_{i}-e_{i}\right)^{2}}{e_{i}} \tag{85}
\end{equation*}
$$

where k is the number of equiprobable intervals,
o_{i} are the observed frequencies, and
e_{i} are the expected frequencies.

The lower the value of the chi-square statistic, the closer the observed frequencies match the expected frequencies and thus the closer the data follows the given distribution. However, the chi-square statistic can not be compared between distributions that do not have the same number of distribution parameters, n_{p} because the degrees of freedom for the chisquare statistic for distributions not having the same number of distribution parameters is not constant [13]. Therefore, the tail area of the chi-square distribution to the right of the chi-square statistic, called A, is computed for each distribution by [13]

$$
\begin{equation*}
A=\frac{\int_{x^{2} / 2}^{\infty} \exp (-u) \cdot u^{\left(\frac{v}{2}-1\right)} d u}{\Gamma\left(\frac{v}{2}\right)} \tag{86}
\end{equation*}
$$

whare v is the number of degrees of freednc and u is a variable of integration. The alue of A is always telween zero and one, with A aqual to :exiug a perfect fit. The lower the value of the chi-square statiotic, the higher the value of the tail area, all other thin:-. ant. Therefore, the diatribution to be chuscn as the diatribution whil the data follows the closest is the one which has the highest value of A.

The chi-square etatistic may be cerporgd with a critical value which follown the chi-square dectribution at an acceptance level of α_{a} with v degrees of freedom, $x^{2} \alpha_{a}, \nu[12]$, where

$$
\begin{equation*}
v=k-n_{p}-1 \tag{87}
\end{equation*}
$$

Acceptance of the froposed distribution as the diatribution which the data follows should occur when [12]

$$
\begin{equation*}
x^{2} \leq x^{2} \alpha_{a, v} \tag{88}
\end{equation*}
$$

The tail area, A, may be compared with the acceptance level to test acceptance of the proposed distribution. Accaptance should occur when [13]

$$
\begin{equation*}
A \geq \alpha_{a} \tag{89}
\end{equation*}
$$

The end points for the classes for the two and three-parameter normal distributions were found by diviaing a standard normal curve into different numbers of equiprobable intervals [35]. The end points for the equiprobable intervals for the three-parameter Weibull diatribution were given by [19]

$$
\begin{equation*}
q_{1}=\hat{\tau}+\hat{b}\left[-\ln \left\{1-\left(\frac{1}{k}\right)\right\}^{1 / \hat{c}}\right] \tag{90}
\end{equation*}
$$

The end points for the equiprobable intervals for the two, three, and four-parameter gama distribution were given by [21]

$$
\begin{equation*}
q_{1}=\hat{q}+\hat{b}\left[\left\{F_{\hat{g}}^{-1}\left(\frac{1}{k}\right)\right\}^{1 / \hat{\alpha}}\right] \tag{91}
\end{equation*}
$$

where $\mathrm{F}_{\hat{\mathbf{g}}}^{-1}$ is the inverse cumulative density function for tine generalized four-parameter gama distribution.

5.4.c Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov test is another statistical goodnese of fit test imilar to the chi-square goodness of fit test. Baaically, it caiculates the sample cumulative denaity function and compares it with the theoreticel cumslative density function of the given distribution by calculating the maximum deviation, D, between the two cumulative density
functions [11]. The test statistic, Z, is a masure of how close the two cumblative density functions are and thus how close the data follows the given distribution and is actually equal to D.

The lower the value of the Kolmogorov-Smirnov statistic, the closer the ample cumulative density function lies to the theoretical cumulative density function, and thus the closer the data follows the given distribution. Therefore, the distribution to be chosen as the distribution which the data follows the closest is the one which has the lowest value of the 2 statistic. The Rolmogorov-Smirnov statistic may be compared with a cable of critical values to determine if the proposed distributiorshould be accepted as the distribution which the data follows [36].

SRCTION VI

DETERMINATION OF THE DISTRIBUTION

Abstract

Several computer programs were written to determine the distribution of the desired fatigue crack propagation variables using the previously mentioned statistical concepts. The four programs written to determine statistical distributions of fatigue crack propagation variables are:

1) Delta N Distribution Determination Program (Golden), or DNDDPG,
2) Cycle Count Distribution Determination Program, or CCDDP,
3) Crack Growth Rate Distribution Determination Program, or CGRDDP, and
4) Deita N Diatribution Determination Program (MR), or DNDDP.

6.1 Delta N Distribution Determination Program (Golden)

This program, called DNDDPG, was written to determine the distribution of the $\Delta N / \Delta a$ variable computed from the input a va. N data which is supplied by program DELYCP (Section 7.1). Basically, it fita the data to four distributions and computes a goodness of fit statistic for the comparison of the distributione. The four distributions fitted are:

1) the two-paramater normal distribution,
2) the two-parameter 108 norms distribution,
3) the three-parameter \log normal distribution, and
4) the three-parameter Weibull distribution,

It uses the graphical method, including the Golden Section search method, to estimate the location parameter for both the three-paramater log normal distribution and the three-parameter Weibull distribution. The goodness of fit criterion used is C^{2} (Section 5.4.a).

This program produces output which includes the input as. N data, the computed a va. N data, some of the test conditions, some of the internal program parameters; the frequency distribution array, the $\Delta N / \Delta a$ data, and the distribution parameters and a partial analysis of variance table for each distribution. The plots generated by this program are a relative frequency histogram, a relative cumulative frequency histogram, and a distribution plot for esch of the distributions. Further documentation of this program is shown in Appendix D.

6.2 Cycle Count Distribution Determination Prosram

This program, called CCDDP, was written to determine the distribution of the N (cycle count) variable from a set of replicate cycle count data at one crack length level. Identical load and test conditiona are required for the replicate data. This program fits the data to $s i x$ distributions. These distributions are:

1) the two-parameter normal distribution,
2) the two-parameter \log normal distribution,
3) the three-parameter log normal dietribution,
4) the three-parameter Weibull distribution,
5) the three-parameter gama distribution, and
6) the generalized four-parameter gama dietribution.

It usee the Kaximum Likelihood Eetimators method to eetimate the parameter* of each of the above distributions except the two-parameter normai
distribution and the two-parameter 108 normal distribution. Three goodness of fit criteria are calculated for the comparison of the distributions. They are:

1) the chi-square tail area,
2) the Kolmogorov-Smirnov statistic, and
3) R^{2} from regression.

This program produces output which includes the input replicate cycle count data, the test conditions, some of the internal program parameters, the frequency distribution array, and 1) the estimated distribution paramaters, 2) a partial analysis of variance table, and 3) the goodness of fit criteria for each distribution except the generalised four-parameter gama distribution, for which only the estimated distribution parameters and the goodness of fit criteria are printed. It also prints a comparison of the distributions and the resulting "best" distribution based on the goodness of fit criteria. The plots generated by this program are the originel cycle count data plot, a relative frequency histogram, a relative cumulative frequency histogram, and a distribution plot for each of the distributions exceft the generalized four-parameter gama distribution. Further documentation of this program is shown in Appandix E.

6.3 Crack Growth Rate Distribution Determination Program

This program, called CGRDDP, was written to determine the distribution of the crack growth rate (da/dN) variable from aet of raplicate da/dN daca at one crack length level. This da/dN data is calculated by the DADNCP program (Section 7.2). Identical load and test conditions are required for the replicate data.

This program is nearly identical to the CCDDP program (Section 6.2), using the same distributions, the same parameter estimation method, the same goodness of fit criteria, and having nearly the same output. The main difference is the variable of interest being da/dN instead of cycle count. Thus the required input is different and some of the output is different in this respect. Further documentation of this program is shown in Appendix F.

6.4 Delta N Distribution Determination Program (ME)

This program, called DNDDP, was written to determine the distribution of the $\Delta N / \Delta$ variable from a $s e t$ of replicate da/dN data et one crack length level. The da/dN data used is the same as that used by the CGRDDP program (Saction 6.3).

This program is based on the CGRDDP program. One main difference between them is that the inpur da/dN data is inverted to create the variable $\Delta N / \Delta a$. The second main difference is the assumption that $\hat{\tau}$ for the gamma distributions is equal to zero, thus reducing the 3-parameter gama dietribution and the generaliced 4-paramater gamma distribution by one paramater (Section 5.2.3). Along with the change in variable, there are appropriate changes in the output. Further documeutation of this program 10 shown in Appendix G.

Since this investigation was not just interested in the discribution of fatigue crack propagation variables alone, it became necessary to write several other programs to aid in the analysis of the experimental data. These supporting programs inclued 1) Delta N Calculation Program, or DELTCP, 2) da/dN Calculation Program, or DADNCP, and 3) a ve. N Prediction Program, or AVNPRD. Several others not mentioned here were used tc. In the analysis and manipulation of the experimental data.

7.1 Delta N Calculation Program

This program, called DEITCP, sas witten to calculate intermediate Δ a vs. ΔN data to be used by program DNDDPG (Section 6.1). Basically, it calculatea Δ a v. ΔN data from a set of conatant amplitude a va. N data by one of five different methods. These methods are;

1) the secant method,
2) reject certain selectable data points and use the secant method, thereby increasing Δa,
3) the quadratic 7-point incremental polynomial method,
4) reject certain selectable data points, recreate now a ve. N data, and then use the quadratic 7 -point incramantal polynomial method, and
5) use the quadratic 7 -point incramental polynomial method, recreate new a vo. N deta, reject certain salectable data pointe, and then use the gacant method.

Further documentation of this program is shown in Appendix H.

7.2 da/dN Calculation Program

This program, called DADNCP, was written to calculate the crack growth rate, da/dN, by the six different methods presented in Section 4. These methode are;

1) the secant method,
2) the modified secant method,
3) the IInear 7-point incremental polynomial method,
4) the quadratic 7 -point incremental polynomial method,
5) the inear log-log 7-point incremental polynomial method, and
6) the quadratic log-log 7-point incremental polynomial method. For each of these methods, the calculated da/dN data is integrated back into estimated a vs. N data, which ia compared with tha original a ve. N data, resulting in an average incremental error. By comparing these errors, the da/dN calculation method which results in the lowest arror can be selected.

The required input for this program is a set of constant da a ve. N data. This program produces output which includes the input a ve. N data, the test conditions, da/dN vs. $\Delta \mathrm{K}$ and actual cycle count data vs. estimated cycle count data for ach da/dN calculation method, and a ammary of the errors from each method with the resulting "best" da/dN calculation method. Furthar documentation of this program is shown in Appendix I.

7.3 a vs. N Prediction Program

This program, called AVNPRD, predicts a vs. N data from the distribution of da/dN (or dN/da) as a function of crack length and compares it

With the original a vs. N data. The required input to the knowledge of the diestibution of de/dM (or dW/de) as alunction of erack length as decermined by the CORDDP (or DKDDP) program, This pregram aniests a growth rate at each cynck longth waing a random mumber gemerater and the distribucion parametort. This growth rate la tien uend to caloulese al as a function of crack langeh, wich to used to predsfe faplicate fate of a ve, N data. These predicted eats of a va, M daca arg then uamparad with the original a va, N date suts.

This proseam produsea output which inciudes the tast condstons, she predicted a va. M data, and a plot of alf of the predietied a vi, M dabe,

with the original a vs. N data. The required input is the knowledge of the distribution of da/dN (or $d N / d a$) as a function of crack length as determined by the CGRDDP (or DNDDP) program. This program selects a growth rate at each crack length using a random number generator and the distribution parameters. This growth rate is then used to calculate ΔN as a function of crack length, which is used to predict replicate sets of a ve. N data. These predicted sets of a vs. N data are then sompared with the original a vs. N data sets.

This program produces output which includes the test conditions, the predicted a va. N data, and a plot of all of the predicted a vs. N data. Purther documentation of this program is shown in Appendix J.

STATISTICAL ANALYSIS OF PREVIOUSLY GENERATED DATA

A considerable amount of crack propagation data in the form of a va . N data have recently been generated at Purdue University for center crack specimens of 2024-T3 aluminum alloy [37]. From this set of data, there were 30 different overload/underload tests which were conducted under constant stress intensity conditions and at constant Δa. From each of these tests, approximately 19 to 155 data points, for a total of 2076 data points, were collected after the crack had grown through the region influenced by the overload/underload sequence. The data typically chosen for analysis is shown in Pigure 17. This large amount of data was collected following the overload affected region to establish a final steady state growth rate as well as establishing the steady state growth rate for the next test $[37,38,39]$. From this set of test results, there are 2 to 7 sets of data at each of five different loading conditions.

The value of these data for statistical evaluation centers on the accuracy with which the original a va. N data were collected. In these tasts, the crack length was monitored and measured with a 100 X microscope mounted on a digital measurement traverse. The traverse has a resolution of $0.001 \mathrm{~mm}(0.00004 \mathrm{in}$.$) with a direct digital read-out. A$ printer activated by a push buttor was connected to the cycle counter and the digital traverse. In collecting the data, the microscope was advanced an increment of $0.01 \mathrm{~mm}, 0.02 \mathrm{~mm}$, or 0.05 mm (depending on the

Figure 17. Typical Data Chosen for Alalyais from Overload/Underload Test Data
growth rate). When the crack had grown this increment as observed with the cross hair in the microscope, the printer was activated with the push tutton and the crack length and number of cycles were printed. The resultirf data are very dense and appear to be fairly accurate. This large amount of data was used to make a preliminary statistical analysis to aid in the direction and scope of this inv, reztion [40].

8.1 Distribution of $A N / \Delta a$

The first step of the analysis was t determine the distribution of the variable $\Delta N / \Delta s$ which was calculated by the secant method. This was done by writing a pair of programs using many of the statistical concepts presented in Section 5. These programs, called Delta N Calculation Program, or DELTCP (8ection 7.1), and Delta N. Distribution Decermination Program (Golden), or DNDDPG (Section 6.1), were run on each of the data sets. The distributions were ranked from 1 to 4 (1 being the best) based on the goodnese of fit criterion, c^{2} (Section 5.4.a). The rankinge vere averaged over all of the tests and the results are shown in Table I. The best diatribution was the three-parameter log normal distribution followed closely by the two-parameter log normal distribution. A plot ef the fit of the $\Delta N / \Delta$ a data to the three-paramater log normal distribution In shown in Pigure 18.

Baced on these results and the use of the DELTCP and DNDDPG program, the following conclusions vere made.

1) The e -parameter weibull diatribution was trled and re-
frected fin all further analysie because of its poor per-
forman.: : providiag a fit for the $\Delta B / \Delta a$ data duo to it's
aeck of , location parameter.

Table I
Distribution of $\Delta r / \Delta a$

DISTRIBUTION	$\overline{c^{2}}$	$\mathrm{Sc}_{c^{2}}$	AVE. RANK
2-PARGMETER NGRMAL	0.9668	0.0190	3.95
2-PARAMETER LOG NGRMAL	0.9969	0.0025	1.87
3-PARAMETER LOG NGRMAL	0.9984	0.0014	1.31
3-Parameter WEIBULL.	0.9932	0.0055	2.67

Pigure 18. Fit of the Δ^{M} / Δ^{2} Data to the 3-Paremeter Log Normal Distribution
2) Include the other four dist-ibutions in the analysis of other fatigue crack propagation variables.
3) Using the constant amplitude portion of overload/underload data does not lead to a sacisfactory statistical analysia. Therefore, a statistically designed test program was needad.
4) The graphical method of paramater eatimation teaded to be unstable and unreilable for the data used. Therefore, the Maximum Likelihood Estimais.rs method of parameter estimation was tried and used.
5) The use of C^{2} as a goodness of fit eriterion was poor because it failed to distinguish betwee: the distribucions very well. Therefore, the chi-squere an. Rolmogorov-Smirnov goodness of fit tests were tried and used.

8.2 Effect of Quadratic 7-Point Incremental Polynomial Yethod

The second step of the analysis vas to examine the effec using the quadratic 7 -point incremental polynomial method ve. :using t zecant method in calculating the variable $\Delta N / \Delta a$. This was done by runn,wt the DELTCP program and changing the ΔR calcuiation method for each of the data sets. Once the $\Delta N / \Delta a$ data was calculated for each data set, it was run on the DADDPG program to determine the effect of the ΔN calculk on mathod on the distribution parameters. The most noticaable effect vas the decrease in the variance using the quadratic 7 -point increanatal polynomial method as shown in Table II. From this, it is evident that the quadratic $7-p o i n t$ incremental polyoomial method introduces quite a amooching effect in reducing the anount of data ecater and thus the data veriance.

Table II
Smoothing Effect of the Incremental Polynomial Method

DISTRIEUTION		$\text { STD. OEV, } \sigma \frac{\text { VFR. (I.P.) }}{\text { VRR. (SECANT) }}$
2-PARAMETER NGRMAL	0.419	0.0820
2-PARAMETER LOG NORMAL	0.444	0.1273
3-PARAMETER LOG NOFMAL	0.647	0.2817
3-PARAMETER WEIBULL	0.871	0.4185

8.3 Life Prediction Using Estimated Distribution Parameters

The next step in the analysis was to see if the estimated distribution parameters could be used for life prediction. Using the man of the $\Delta N / \Delta a$ data (for the two-parameter normal diatribution) and the overall change in crack leagth $\left(a_{f}-a_{0}\right)$, the final cycle count, N_{f}, was predicted and compared with the observed value of N_{f} for each set of data and then averaged over all the data sets. The results are shown in Table III. From the :alatively low amount of error, it is evident that etatistical methods using estimated distribution parameters could prove invaluable for life prediction.

Table III
Life Prediction Based on the Mean

8.4 Effect of Ae

The final etep in the analyais of tae previously genarated cata was to deternine the affect of the tse of Δa. This was done by using the DELTCP prosem to generate ΔN data with differant valuee of Δa. By
rejecting certain successive data points (i.e. every 1 out of 2 , every 2 out of 3, etc.), data with increasing valuas of Δa were generated. The DNDDPG program was then run on each different Δ a set of data for each of the data sets. Also, several tests at the same load conditions were combined to give a large amount of data and then Δ a was increased as described above. The results are shown in Figure 19 and Table IV. From these resulta, it is obvious that the larger Δ a is, the smaller the resulting variance of the data will be.

Pigure 19. Effect of Increasing Δ a

Table IV
Effect of Increasing Δa

2-PARAMETER NORMAL	0.617	0.513
2-PARAMETER LOG NORMAL	0.660	0.539
3-PARAMETER LOG NORMAL	0.851	0.412
3-PARAMETER WEIBULL	0.883	0.761

SECTION IX

EXPERIMENTAL INVESTIGATION

In an effort to answer the investigation objectives, it became necessary to conduct an experimental inveetigation to provide adequate data for subsequent analysis. Through the ure of previously collected data (Section 8), it became increasingly clear that any experimantal investigation that would be expected to provide meaningful resulte would have to be statistically designed. Through the use of some preliminary theoretical and experimental testing, a test program was designed.

9.1 Experimantal Test Program

Given the objectives of the investigation (Section 3), it was evident that replicate teats under identical load and anvironmental conditions had to be conducted. It was also obvious that constant amplitude loading should be used rather than constant ΔK (load shed) loading since it would be wuch easier to control and replicate and also give a range of ΔK levels. To be able to find the diatributions of N and da/dN, the data from each test had to be taken at consiatent discrete levele.

To determine the actual land levels to be used, several preliminary teste ueing the same lot of the same material ware conducted. To obtain the desired growth rates (da/dN $\min \geq 1 \times 10^{-6} \mathrm{In} . /$ cycla and da/dN $=5 \times 10^{-5}$ in./cycle) and keep the teeting time within reacon, It was found that ΔP ahould be 4200 lbs. It vas also determined to use an R ratio of 0.2 to etay well ouc of the compression region.

A preliminary theoretical investigation was conducted to determine where the data was to be taken. It was found that to get the desired range of growth rates, the data would have to be taken over at least 40.0 mm. It was determined that steady state conditions would not exist until 9.0 man due the crack initiation load shedding process. In an effort to reduce data error as much as possible and atill obtain a reasonable amount of data, the initial Δa was chosen to be 0.20 mom besed on the atatistical analysis of previous data (Section 8.4). Since the growth rate would be too fast to oparate the optical system and the printer at the end of the test for the load levels chosen, da would be increased to 0.40 mm and finally to 0.80 mm . The number of data points taken at $\Delta a=0.40 \mathrm{~mm}$ and $\Delta a=0.80$ min were arranged so that when uccessive data points were rejected (to find the effect of increasing Δa), there would be no large gaps in the data. A schematic representation of the test program is shown in Figure 20.

In order to obtain enough data to conduct a meaningful statistical analysis, it was determined that there should be at least 50 replicate tests [13]. However, since more opecimans were available, a total of 68 tests were conducted, thereby increasing the confidence of the statistical analysis results. The test conditions are listed below.

$$
\begin{aligned}
& { }^{3}=9.00 \mathrm{~mm} . \\
& { }_{f}=49.80 \text { mane } \\
& R \quad 0.20 \\
& P_{\min }=1050 \text { 1bs. } \\
& P_{\text {max }}=5250 \text { 2bs. } \\
& \Delta P=4200 \text { 1bs. }
\end{aligned}
$$

Vimine VO, fast Mrayrem

Pigure 20. Tant Program

9.2 Test Specimen

The test apecimans used in this investigation were 0.100 inch thick center crack panels of 2024-T3 aluminum alloy. The apeciman gaomatry is shown in Pigure 21.

Test specimens ware obtained with a cill finish and polished to a mirror finish in the vicialty of the crack path to facilitate optical observation of the crack tip during crack growth measurement. The lot of apecimans was numbered in ordar as thay ware taken out of the shipping crate so that true randomisation of the samples could be accomplished. The fixture plate holes were drilled and reamed to the desired dimensions. The stress raiser shown in decail in Figure 21 was machinad with an electro-discharge machine.

Befare loading each specimen, the centerline of the speciman was scribed at the strese raiser and a silica gel desiccant was appliad at the stress raiser. The entire expected crack path was then bealed with clear polyethylene to insure desiccated air at the crack tip. Joading was then applied farallel to the direction of rolling of the material.

9.3 Test Bquipment

The cest machine was a 20 Kip alectro-hydraulic closed-loop syetem operated in load control. A function generator was used to generate a einusoidal voltage signal which, when superiaposed on a d.c. set point voltage, constituted the desixed input to the syetem. During testing, in oscilloacope vas used co mualtor the feedback algnal (lasd) and the output of the amplituly innastamer. ayatam of the teating machine to ingure correct load levels and ainusoidel loading. A digital cycle counter was used to count the number of applied load cyclee. Crack growth was monitored with a zoom eteren microacope oparated at a magnification of $150 x$

Figure 21. Teat Specimen
rigidly mounted on a horizontal and vertical digital traversing system. A crosshair mounted in the microscope was used as a reference line during data acquisition. A digital resolver system on the horizontal traverse produced a digital output with a resolution of 0.001 wn (. 00004 in.$)$. The direction of travel of the optical syatem prior to data acquisition was never changed during a test to eliminate any hysteresis effects in the traverse system. Both the digital traverse and cycle counter outputs (crack length and number of cycles) were connected to a mechanical printer. The printer printed both the crack length and the cumalative cycle count by the operation of a push button. A strobe light aynchronized with the feedback signal was triggered at the point in the load cycle when the crack was mosi fully open to illuminate the crack tip. More detailed discussions of the test equipaent can be found in references $[37,38,39]$.

9.4 Test Procedure

Since the scope of this investigation strictly involved the determination of the effect of material proparties on fatigue crack propagation, care was taken to control as many other variables as possible. All tests were subject to nearly identical environmental conditions of room temperature $\left(24^{\circ} \mathrm{C}\right)$ and desiccated air. Loads were controlled to within 0.2% of the desired load using the test machine's amplitude measuremant system. To prevent any effects from the order in which the specimans were run, the specimens were randomized usiog a computar prograt wich utilized a random number generator. The teats were run in the randon order determined by this progran. The order of tests is shown in Appendix K.

Crack initiation starting at the stress raiser was performed starting at $\Delta P=15000$ lhs. and shedding the load 10% no sooner than every 0.5 m (12.5 times the change in plastic zone radius due to the load shed) to the desired test load level. Fatigue cycling was done Initially at 10 hz up to 5.4 mm (due to reduced frequency response of the testing machine at high loads) and then at 20 hz . To make certain that no luad effects were present in the data, the test load level was reached 1.0 mm before data acquisition (58 times the change in plastic zone radius due to the last load shed). The load level was held constant throughout the test (thus increasing ΔK with increasing crack length). All tests were started at the same init'al crack length (ca $=18.00 \mathrm{~mm}$). The location of the centerilne of the specimen was noted as a reference to insure consistent crack length messurements throughout the test. Cycling was continuous throughout the test to eliminate any time or underload effects on subsequent fatigue crack growth.

The crack length and number of cycles were monitored continuously for each test and discrete data points were taken as determined by the Lest program. Data ware actually taken by advancing the optical system iy the specificd increment and pressing the printer push button when the crack tip had grown to the incremented position as determined by the crosshait in the stereo microscope. The amount of error in the data acquisition process is given in Section 3.5.

9.5 Mesturapent Accuracy

In an attempt to isolate the data variance due to the material propertien, a measure of the experimental error was needed. This experimental error reaulte from the random error in measuring the cycle count and the crack length.

By ueing the test machine's anplitude measuremant system which compares a known input aignal with the feedback signal (applied load), the loads can be controlled to within 0.2%.

Error in the crack length measurement is due to two sources. If the spatial relationship between the microscopo crosshair and the scribed reference line on the specimen is not constant, then an undetermined amount of measurement error is present. This usually occurs when the aicroscope is accidentally moved with respect to the specimen and can be avoided by a careful experimental procedure.

The second source of crack length measurement error is the alignment of the crack tip with the microocope crosshair. This alignment process consists of 1) defining the crack tip location, 2) defining the crosshair location, and 3) comparison of the two locations to see if they are identical. If they are, then the printer button is pushed and a data point is taken.

To determine how well the observer's eye performs this alignment procasa, the following test was devised. A crack was initiated and the cycling was stopped when the observer determined that the crack had reached 9.00 mm . He then took 10 repeat measurements of the crack length, being careful to alwaye approach the crack tip from the same direction to prevent any hysteresis effects. This series of 10 repeat measurements was repeated at 9 other predetermined crach lengths. The mean and standard deviation of each set of 10 repeat measurements wes computed and the error of the original data point was then calculatad in terta of the standard deviation. The resulta of the 10 tets of rapaat macuramants are follows.

$$
\begin{aligned}
& \overline{X_{B}}=0.001414 \\
& S_{E}=0.001390
\end{aligned}
$$

where

$$
\begin{aligned}
& \overline{X_{E}} \text { is the mean of the errors, } \\
& S_{E} \text { is the standard deviation of the errora. }
\end{aligned}
$$

Therefore, the average experimental error for each data point is 0.001414 am. The average experimental error as a function of the crack length measurement interval, Δa, is shown in Table V. It should be noted here that the larger Δa is, the omaller the average experimental error is.

Table V
Avarage Experimental Brror
$\triangle A$ INCREMENT (MM) AVERAGE ERRGR (PERCENT)

0.20	0.71
0.40	0.35
0.80	0.17

SECTION X

DATA ANALYSIS AND RESULTS

As a result of the experimental investigation conducted as described in Section 9, 68 replicate a vs. N data sets were obtained. These data are shown in Figure 22. Using these data, an analysis was performed to meet the objectives of the investigation (Section 3).

10.1 Distribution of N

The first objective to be met was to determine the distribution of N as a function of crack length. The replicate N data used was radily obtained from the original replicate a va. Nata. Typical replicate cycle count data are shown in Figure 23. The distribution of the replicate cycle count data was determined at each crack length level through the use of the CCDDP program (Section 6.2). At each crack length level, this program calculated the distribution parameters and goodness of fit criteria for the six dietributions and then compared the goodness of fit criteria between five of the distribucions in order to establish the distribution rankings. The generalized 4 -parameter gamas diatribution was not considered for the diatribution rankinge because it was axpacted to have an excellent fit to the cycle count data dua to it's power parameter (Section 5.2.e). The distribution parameters, goodness of fit criteria, and the dietribution rankinge were then combined over all of the crack length levela.

Figure 22. Original Raplicate a ve. N Deta

Pigure 23. Typical Replicate Cycie Count Data

The distribution parameters of the cycle count data as a function of crack length were plotted for each of the six distributions and are shown in Figures 24 through 29. The distribution parameters are normalized so that their minimum and maximum values are equal to zero and one, respectively. As a result of this normalization, these figures do not show the actual values of the distribution parameters but are intended to reflect trends present in these parameters.

The goodness of fit criteria for each distribution wers averaged over all of the crack length levels. These results are shown in Table VI. For these goodness of fit criteria, the best fit of the data to a distribution occurs when the chi-square tail area is a maximum, the Kolmogorov-Smirnov statistic is a minimum, and the closeness, R^{2}, is a maximum. Using these relationships, an understanding of which distributions provide the best fit for the cycle count data can be obtained.

The distribution rankings at each crack length level were combined over all of the crack length levels. By convention, the lower the value of the diatribution ranking, the better the fit of the data to the given distribution. The mean rank and it's standard deviation for each of the distributions and the number of times each distribution was selected as the best distribution were calculated during this combining process. These results are shown in Table VII.

The 3 -parameter \log normal distribution provided the best fit for the cycle count data by a wide margin, es evidenced by the low distribution ranking value, the low Kolmogorov-Smirnov test atatistic value, and the very large number of times it was selected as the best distribution. The 3-paramater gaman distribution provided the next best fit, while the 2parameter log normal distribution and the 3-parameter Weibuli distribution

Figure 24. 2-Parameter Normal Distribution Parsmeters of Cycle Count Data as a Function of Crack Length

Pigure 25. 2-Parameter Log Normal Disti-ibution Parameters of Cycle Count Data as a Function of Crack Length

Figure 26. 3-Parameter Log Normal Distribution Parameters of Cycle Count Data as a Function of Crack Length

Figure 27. 3-Parameter Weibull Distribution Parameters of Cycle Count Data as a Function of Crack length

Figure 28. 3-Parameter Gamma Dietribution Parameters of Cycle Count Data as a Function of Crack Length

Figure 29. Generalized 4-Parameter Gama Distribution Parameters of Cycle Count Data as Punction of Crack Length

Table VI
Average Goodness of Fit Criteria for the Distribueion of Cycle Count Data

DISTRIBUTION	CHI-SQUARE tail rrea	KOLMOGOROVSMIRNOV TEST	Closeness (R SDUARED)
2-PARAMETER NORMAL	0.8365	0.0995	0.93310
2-PARAMETER LOG NORMAL	0.8842	0.0857	0.95799
3-PARAMETER LOG NORMAL	0.8594	0.0699	0.98223
3-PARAMETER WEIBULL	0.8340	0.0882	0.93658
3-PARAMETER GAMMA	0.8602	0.0722	0.97160
$\begin{aligned} & \text { GENERALIZED } \\ & \text { 4-PRRRMETER } \\ & \text { GRMMA } \end{aligned}$	0.8075	0.0722	

Table VII
Distribution Rankiugs for the Diatribution of Cycle Count Data

DISTRIBUTION	MEAN	STANDARD DEVIATION	NUMEE GOF IIMES BEST DISTRIBUTIUN
2-PARAMETER NORMAL	4.982	0.1348	0
2-PARRMETER LOG NORMAL	3.147	0.6780	7
3-PARAMETER LOG NORMAL	1.221	0.5882	137
3-PARAMETER WEIBULL	3.650	0.6338	3
3-PARAMETER GAMMF	2.000	0.4969	16

tied for the third beat fit for the data. The 2-parameter normal distribution finished last in the distribution ranking as it provided a very poor fit for the data.

10.2 Crack Growth Rate Calculation Mathods

The second objective to be wet was to determine which crack growth rate calculation method introduced the least amount of error into the da/dN data. This was to be done by integrating the da/dN data calculated by each crack growth rate calculation method back into a vs. N data and then calculating the error between the new a vs. N data and the original a ve. N data.

The DADNCP program (Section 7.2) was run on each of the 68 original a ve. N data sets. This program calculatas the da/dN ve. ΔK date, integrates the da/dN data back into ve. N data using Simpaon' one-third rule and the trapezoldal rule, and then calculates a tep by atep average incremantal error, as outlined by Frank and Fisher [2], for each of the six da/dN calculation methods. The da/dN calculation mathod which results in the lowest average incremental error is then aelected as the beat da/dN calculation method for that data set. The $\log _{10}$ da/dN ve. $\log _{10} \Delta K$ data are plotted for each of the de/dN calculation mathode and typical plots of these data are shown in Figures 30 through 35.

The avarage incremental arror from each da/dN calculation mathod was averagad ovar all of the data sets and the number of timas each da/dN calculation method wae selected as the bet method was computed. These rasulte are shown in Table VIII. Tha modified aecant method had the lowest everage Incremantal error, followed closely by the secant method. The modified secant method and the eecant method were both selectad an bett

Pigure 30. Typlcal $\log _{10}$ da/dN ve. $\log _{10}$ aK Data

Pigure 31. Typical $\log _{10}$ da/dN vs. $\log _{10} \Delta K$ Data Calculated by the Kodified 8ocant Method

[^1]

[^2]

Figure 34. Typical $\log _{10}$ da/iN va. $\log _{10} \Delta R$ Data Calculated by the Linear Log-Log 7-Point Incremantal Polynomial Mathod

Teble VIII
de/dN Celculation Method Results

$\begin{aligned} & \text { DA/ON } \\ & \text { CALCULATION } \\ & \text { METHOD } \end{aligned}$	GVERALL AVERAGE INCREMENTAL ERROR (PER CENT)	NUMBER OF TIMES BEST METHOD
SECANT METHOD	2.70	17
MODIFIED SECANT METHOD	2.58	51
LINEAR 7-POINT INCREMENTRL POLYNGMJAL METHOD	6.96	0
QUADRATIC 7-POINT INCREMENTAL PGLYNOMIAL METHOD	6.83	0
LINEAR LOG-LOG 7-POINT INCREMENTAL POLYNGMIAL METHOD	9.41	0
OUADRATIC LOG-LOG 7-POINT INCREMENTAL POLYNGMIAL METHOD	6.65	0

methods, with the modified secant method selected three times as often as the secant mathod. From these results, it can be stated that the modified secant method introduces the lowest amount of error into the da/dN data of the $s 1 x$ da/dN calculation methods aelected.

10.3 Distribution of da/dN

The third objective to be met was to determine the distribution of da/dN as function of ΔK. The first set of da/dN data selected for analysis was da/dN data calculated by the secant method, with the anticipation of also finding the distribution of da/dN data calculated by the modified secant method and the quadratic 7 -point incremental polynomial method. Data were selected from the first two da/dN calculation methods because of their abllity to re-create the originsl a vs. N data and the quadratic 7 -point incremental polynomial method because of its widespread use. The combined data from each of these three methods are shown in Figures 36, 37, and 38.

The steps of analysis for the distribution of da/dN are very similar to the steps of analysis used for the distribution of N. First, the replicate da/dN data used was obtained from the da/dN vo. $\Delta \mathbb{R}$ data generated by the DADNCP program (Section 7.2) using the secant method. Typical replicate da/dN data are shown in Figure 39. The distribution of the replicate da/dN data was determined at each ΔK level through the use of the CGRDDP program (Sectio 6.3). At each ΔK level, this program calculated the distribution parametars and goodness of fit crit -ia for the aix distributions and then compared the goodne 3 of fit crite. . between the different distributions to give the distribution rankings. Again, the generalized 4 -parameter gamma distribution was not included in the

Figure 36. Combined $\log _{10} \mathrm{da} / \mathrm{dN}$ vs. $\log _{10} \Delta K$ Data Calculated by the Sscant Mathod

Pigure 37. Combined $\log _{10}$ da/dN ve. $\log _{10} \Delta K$ Data Calculated by the Modified Secant Mathod

Figure 39. Typical Replicate da/dN Data
distribution rankings. The distribution parameters, goodness of fit criteria, and the distribution rankings were then combined over all of the ΔK levelo.

The distribution parsmeters of the da/dN data as a function of crack length (essentially ΔK) were plotted for each of the six distributions and are shown in Figures 40 through 45. The distribution parameters are again normalized to show the trends present in the parameters.

The goodness of fit criteria for each distribution were averaged over all of the ΔK levels. These results are shown in Table IX. From these results, an understanding of which distributions provide the best fit for the da/dN data can be obtained.

The distribution rankings at each ΔK level were combined over all of the ΔK levels and again the mean rank and its standard deviation for each of the distributions and the number of times each distribution was selected as the best diatribution were calculated. These results are shown in Table X.

Each of the distributions gives a fair but not outstanding performance in providing a fit for the da/dN data. There ware no significant differences between the mans of any of the five distributione, especially considering the high values of atandard deviation about the man. The 3parameter gama distribution did have a slightly lowar man than the other dietributions and it also had the lowest value of the KolmogorovSmirnov atatistic. However, the 2 -parameter log normal distribution was the best distribution slightly more often than the other four distributione, but again there were no aignificant differencea betwaen the five distributions. These resulte lead to the conclusion that the 3-parametar gama distribution providee e better Eit for the de/did data than the other

Figure 42. 3-Parameter Log Normal Diecribution Parameters of da/dN Data as a Function of Crack Langth

Pigure 43. 3-Parameter Weibull Distribution Parameters of de/dK Data ae Punction of Crack Length

Table IX
Avarage Goodnese of Fit Criteria for the Distribution of da/dN Data

DISTRIBUTION	Chi-square TAIL AREA	KOLMGGORGV- CLOSENESSSMIRNOV TEST (R SOURRED)	
2-PARAMETER NORMAL	0.8494	0.0915	0.94997
2-PARRMETER LOG NORMAL	0.9011	0.0779	0.97647
3-PARAMETER LOG NORMAL	0.8442	0.0834	0.96966
3-PARAMETER WEIBULL	0.8474	0.0777	0.95942
$\begin{aligned} & \text { 3-PARAMETER } \\ & \text { GAMMA } \end{aligned}$	0.8389	0.0737	0.96662
$\begin{aligned} & \text { GENERALIZED } \\ & \text { 4-PRRAMETER } \\ & \text { GAMMA } \end{aligned}$	0.7946	0.0726	

Table X
Distribution Rankings for the Distribution of da/dN Data

OISTRIBUTION	MEAN	STANDARD DEVIATION	NUMBER OF TIMES BEST
2-PARTRIBUTION NGRMETER	3.684	1.6497	27
2-PARAMETER LOG NORMAL	2.603	1.1943	37
3-PARAMETER LOG NORMAL	3.360	1.5524	26
3-PARAMETER WEIBULL	2.985	1.1925	19
3-PRRFMETER GAMMA	2.368	0.9646	27

four distributions, but its performance relative to the other distributions is not atrong at all. Due to this poor performance by the da/dN data in fitting a distributinn, no analyois of da/dN data calculated by either the modified secant mathod or the quadratic 7-point incremental polynomial method was conducted.

10.4 Prediction of a va. N Data from the Distribution of da/dN

The fourth objective to be wet was to determine the variance of a set of a va. N data predicted from the da/dN distribution parameters. The da/dN distribution parameters were estimated by the CGRDDP progiam (Section 6.3) as described in Section 10.3. The AVNPRD program (Section 7.3) was run on the da/dN distribution parameters and 68 replicate a vs. N data sets were predicted. These data sets are shown in Figure 46.

To obtain the variance of this predicted data, the CCDDP program (Section 6.2) was run at 14 crack length levels of the predicted data. The distribution parameters, goodiness of fit criteria, and the distribution rankings were then combined over all of the crack length levels run.

For this predicted data, neither the 3 -parameter gama distribution nor the generalized 4-parameter gama distribution would converge on parameter estimates, impiying that neither disiribution would provide a fit for the data. The distribution parameters as a function of crack length obtained for the other four distributions are shown in Pigures 47 through 50. The average goodness of fit criteria for the four distributions for the predicted data are shown in Table XI. The dietrioution rankings results for the four distributions for this data are shown in Table XII.

Pigure 46. Replicate a vs. N Data Predicted
from the Distribution of da/dN

[^3]

$\begin{aligned} & \text { Figure 48. } \text { 2-Parameter Log Normal Distribution Parameters } \\ & \text { as a Punction of Crack Leagth for Cycla Count }\end{aligned}$

Tigure 49. 3-Fagmater Log Mormi Digtribution Parametors
as a Function r,f Crack length for Cyole Count Date Predictal from the Distribution of da/du

Tigure 50. 3-Paramatar Weibull Distribution Parametere as a Function of Crack length for Cyole Count Date Predicted from the Distribution of da/dN

Table XI
Average Goodness of Fit Criteria for the Distribution of Cycle Count Data Predicted from the Diutribution of de/ds

2-PARAMETER NORMAL	0.9087	0.0735	0.98515
2-PARAMETER LOG NORMAL	0.9128	0.0722	0.98497
3-PARAMETER LOG NORMAL	0.8828	0.0730	0.98515
3-PARAMETER WEIBULL	0.8919	0.0818	0.96884

Table XII
Distribution Rankinge for the Distribution of Cycie Count Date Predicted from the Distribution of da/ds

DISTRIBUTION	MEPN	STANDARD DEVIATION	NUMBER GF TIMES BEST oistribution
2-PARAMETER NGRMAL	2.643	0.7449	2
2-PARAMETER LOG NORMAL	1.214	0.5789	12
3-PARAMETER LOG NORMAL	2.286	0.6112	0
3-PARAMETER WEIBULL	3.857	0.5345	0

The 2 -parameter 108 normal distribution provided the best fit for the predicted replicate cycle count data, followed by the 3 -parameter $10 g$ normal distribution and then the 2 -parameter normal distribution. The 3parameter Weibull diatribution provided the worst fit for the data of the four dietributions wich the data fit.

The next step in the analysis was the comparison of the distributions of N between the actual cycle count data and the cycle count data predicted from the distribution of da/dN. The mean and standard deviation of both distributions at the crack length levels used above were computed and the resultc are shown in Table iIII. At every crack length level, there was no significant difference between the means but there was a very ignificant difference between the standard deviations of the two distributions. In evary case, the gtandard deviation of the predicted cycle count data is much amaller than the standard deviation of the actual cycle count data.

As a check on the analysis above, a vs. N data were predicted from the distribution of da/dN in a sligintly different manner than for the predicted replicate cycle count data. The man and $\pm 1,2$, and 3 sigma values of da/dN at each crack length level were obtained from the distribution of da/dN. Using these 7 ilnes of da/dN data, a vs. N deta was predicted. The results are shown in Pigure 51. A comparison between the actual cycle count mean and $\pm 1,2$, and 3 sigma values and the cycle count valuas predicted from the mean and $\pm 1,2$, and 3 igma da/dN lines at aingle crack length level is shown in Table XIV.

From the above analyais, it can be concluded that predicting a vs. N date from the distribution of da/dN using the mathod described in section 7.2 yielde 10 error in predicting maan crack propagation behavior, but

Table XIII
Comparison of the Diatributione Between Actual Cycle Count Data and Cycle Count Data predicted from the Distribution of da/dN

MEAN
CNGK LEMETH (MI)

11.000	5881	55735
13.000	s0183	91202
\$5.000	117486	118700
87.000	130359	135071
18.000	158380	150315
21.000	170786	171379
23.000	182188	283570
20000	192078	154504
27.000	202383	204083
E8.000	211030	21ES12
31.000	21808	230393
33.000	E064ss	287180
35.000	231416	233249
36.200	234573	233533

STARMARD DEUIATIUN
ACTUAL PREDICTED

PREDICTED A VS. N DATA

Figure 51. a vi, M Dete Predicted from the Mean and $\pm 1,2$, and 3 8igm da/dis lines

Table XIV

Comparison of Actual Cyole Count Data vith Cycle Count Data Predicted from Constant Variance de/dN Lines

-3 SIETA	187889	117430
-2 sicin	153689	141841
-1 SITMA	205302	173199
HEAM	217801	213818
+1 SIEAA	8330]	204088
+2 8IENA	20nees	300341
+3 S1GA	378043	484650

yields high error in predicting crack propagation behavior at the axtremes of the diatribution of N.

10.5 Inverse Grouth Rate

Due to the failure of che da/dN data to fit any of the given diatributions satisfactorily, it was decided that the growth rate variable warranted a further investigation. Looking back at the original experimental investigation (Section 9), it can be seen that the depandent variable of the data was N while the independent variable was a (i.e. N was measured as a was varied). Since the dependent variable, N, provided a very nice fit to the 3-parameter log normal distribution, it was atrongly suspected that changes in the dependent variable, ΔN, would also provide a good fit to one of the given distributions. Since Δ a was constant it was decided to use $\Delta N / \Delta a$, or in differential terms, $d N / d a$, as variable of interest for further analysis.

The analysis conducted using $d N / d a$ as the variable of interest was the cam analysis used for da/dN. The first part of this analysia wan to determine the distribution of $d N / d a$. Replicate dN/da data were obtained by invarting the replicate da/dN data calculated by the secant mathod using the DADACP program (Section 7.2). Typical replicate dN/da data are shown in Figure 52. The distribution of the replicate dN/da data wes determined at each ΔK level through the use of the DNDDP program (Section 6.4). At each ΔK level, this progran calculated the distribution parametere and goodnes of fit criteria for six dietributions and then compared the goodness of fit criteria betwean the different dietributione to give the diatribution rankinge. The location parameter for the 3parameter gama distribution and the goneralized 4-parameter gamma

Figure 52. Typicel Roplicate dis/da Data
distribution was assumed to be sero by this program, thus reducing these two distributions to the 2-parameter gamma distribution and the generalized 3 -parameter gama distribution, respectively. As before, the generalized 3-parameter gama distribution was not included in the distribution rankings. The distribution parameters, goodnese of fit criteria, and the distribution rankings were then combined over all of the ΔK levels.

The distribution parameters of the dN/da data as a function of crack length were plotted for each of the six distributions and are shown in Figures 53 through 58. The distributionts parameters are again normalized to show the trends present in the parameters.

The goodness of fit criteria for each distribution were averaged over all of the ΔK levels. These results are shown in Table XV. From these results, an understanding of which distributions provide the best fit for the dN/da data can be obtained.

The distribution rankings at each ΔK level were combined over all of the ΔK levels and the mean rank and ite standard deviation for each of the distributions and the number of times each distribution was selected as the best distribution were calculated. These results are show in Table XVI.

The 3-parameter 108 normal distribution provided the best fit for tha dN/da data, as evidenced by the low diatribution ranking, the low Kolmogorov-Smirnov test statistic value, and the large number of times it vas selected as the best distribution. The 2 -parameter 108 normal and the 3-paramater Weibull distribution tied for the second best fit for the dN/da data, both having roughly the gam diatribution ranking and Kolmogorov-Stifnov tast statiatic value and the same number of timos it was

Figure 53. 2-Parameter Normal Dietribution Parameters of dy/da Data as a Yunction of Crack Length

Figure 54. 2-Parameter Log Normel Distribution Parametere of $\mathrm{dN} / \mathrm{da}$ Data as a Punction of Crack Length

Figure 36. 3-Parameter Weibull Dietribution Parametera of dy/da Deta as a Function of Crack Length

Figure 57. 2-Parameter Gama Distribution Paramaters of dN/da Data es a Yunction of Crack Longth

F1gure 58. Generm1ised 3-Parameter Gamm Distribution Paranetare of div/da Data as a Function of Crack Longth

Table IT

Average Goodnese of Fit Criteria for the Dietribution of dN/da Date

DISTRIBUTIUN	CHI-SQURRE thil area	KOLMOGGROYshlirnev tegt	CLUSENESS (R SOURRED)
2-PARAMETER NORMAL.	0.8383	0.0992	0.94912
2-PARAMETER LOG NGRMAL	0.9011	0.0779	0.97647
3-PARAMETER LOG NORMAL	0.8877	0.0695	0.97622
3-PARAMETER WEIBULL	0.8409	0.0790	0.95477
2-PARAMETER GAMMA	0.7640	0.0813	0.93431
generalized 3-PARAMETER GAMMA	0.7507	0.0800	

Table XVI
Distribution Rankinge for the Diatribution of dN/da Date

DISTRIBUTION	MEPN	STRNDARD deviation	NUMGER OF TIMES BEST OISTRIBUTIUN
2-PARAMETER NORMAL	4.338	1.1815	10
2-PARAMETER LOG NORMAL	2.610	1.2363	28
3-PARAMETER LOG NORMAL	1.860	0.8621	56
3-PARAMETER WEIBULL	2.882	1.2594	27
2-PARAMETER GAMMA	3.309	1.2019	15

selected as the best distribution. The 2-parameter gama distribution provided the fourth bayt fit and the 2-parameter normal distribution provided the worst fit for the dN/da daca.

The next step of the analysis was to see if the improved fit of the
 from the distribution of dN/de. The ANNPRD program (Section 7.3) was elightly modified for the dN/da variable and run on the dN/da distribution parametars, reaulting in 68 predicted replicate a vs. N dats sets. These data sete are shown in Figure 59.

The CCDDP program (Section 6.2) wat run at a few crack length levela of the predicted data. The diatribution parameters, goodness of fit criteria, and the distribution rankiugs were then combined over all of the crack length levels run.

For this set of predicted data, the genoralized 4-parameter gama distribution would not converge on parameter estimetes, implying that it could not provide a flt for the dN/da data. The distribution parameters $2 s$ a function of crack length obtained for the other five distributions ere hown in Pigures 60 through 64. The average goodnesa of fit criteria for the five distributions for the predicted data are shown in Table XVII. The distribution rankings results for the five dietributions for shis data are shown in Table XVIII.

The 3-parameter log normal diakxibution provided the beat fit for the pradicted replicate cycle-count date, followad in order by che 2 -parameter log normal distribution, the 3-paramater Weibull distribution, the 2-parameter normal distribution, and the 3-paramater gama distribution.

The naxt atep in the analysis was the comparison of the dictributions of N between the actual cycle count data and the cycie count data predicted

Figure 59. Replicate a va. N Data predicted from the Dietribution of dida

[^4]

Fipure 61. 2-Paremotor Los Mormel Distrimution Paremeters An Truction of Creck Lexith for Oycle Count Duta predioted from the Diotribution of dilda

Figure 62. 3-Parmeter Lot normal Eletribution Paranetert ce Pumetion of Crack Iongth for Cycle rount pate predict en from the Blatribution of iW/ds

Table XVII
Average Goodness of Fit Criteria for the Distribution of Cycle Count Data Predicted from the Distribution of $\mathrm{dN} / \mathrm{da}$

DISTRIBUTION	CHI-SQUARE thil area	KOLMGGOROVSMIRNOV TEST	ClUSENESS (R SQURRED)
2-PARAMETER NORMAL	0.9816	0.0652	0.98765
2-PARAMETER LOG NORMAL	0.9640	$0.061 ' 4$	0.98990
3-PARAMETER LOG NORMAL	0.9319	0.0567	0.99169
3-PRRAMETER WEIBULL	0.9135	0.0617	0.98100
3-PARAMETER GAMMA	0.2040	2.4493	0.85993

Table XVIII
Distribution Rankings for the Distribution of Cycle Count Data Predicted from the Distribution of $\mathrm{dN} / \mathrm{da}$

DISTRIBUTION	MEAN	STANDARD deviation	$\begin{gathered} \text { NUMBER GF } \\ \text { TIMES BEST } \\ \text { DISTRIBUTION } \end{gathered}$
2-PARAMETER NORMAL	3.714	1.0690	1
2-PARAMETER LOG NORMAL	2.571	0.9376	2
3-PARRMETER LOG NORMAL	1.571	0.7559	8
3-PARAMETER WFIBULL	2.85?	1.0995	1
$\begin{aligned} & \text { 3-PARQMETER } \\ & \text { GAMMA } \end{aligned}$	2.857	1.4ic:	2

from the distribution of $\mathrm{dN} / \mathrm{da}$. The mean and atandard deviation of both distributions at the crack length levels used above were computed and the results are shown in Table XDX. At every crack length level, there was no significant difference between the means but there was a very significant difierence between the standard deviations of the two distributions. In every case, the standard deviation of the predicted cycle count data was much smaller thai. the standard deviation of the actual cycle count data.

Just as for the data predicted from the distribution of da/dN, a vs. N data were predicted from the mean and $\pm 1,2$, and 3 sigma dN/da lines. The results are shown in Figure 65. A comparison between the actual cycle count mean and $\pm 1,2$, and 3 sigma values and the cycle count values predicted from the mean and $\pm 1,2$, and 3 sigma $d N / d a$ ines at a single crack length level is shown in Table XX.

From the above analysis, it can be concluded again that predicting a vs. N data from the distribution of $d N / d a$ using the method describad in Section 7.3 yields low error in predicting mean crack propagation behavior, but yields high error in predicting crack propagation behavior at the extremes of the distribution of N.

Table XIX
Comparison of the Distributions Between Actual Cycle Count Data and Cycle Count Data Predicted from the Distribution of $\mathrm{dN} / \mathrm{ia}$

CRACK	LENGTH	(171)	HEPN		STANDARD actual	deviation PREDICTED
			ACTUPL	Predicted		
	11.000		53881	35987	6556	2000
	13.000		90:26	91067	5832	2560
	15.000		117486	118396	6719	4367
	17.000		139352	139578	10903	$497 ?$
	19.000		156382	1.56402	11843	4941
	21.000		170786	170694	12489	3289
	23.000		182198	182852	8204	3323
	25.000		192378	193730	8547	5219
	27.000		202538	203416	8944	3506
	29.000		211030	211809	. 9123	3465
	31.000		218688	219505	9325	3508
	33.000		225459	225408	9637	3633
	35.000		231416	232528	10037	3667
	36.200		234573	235717	10191	3641

PREDICTED A vs. N DATA

Pigure 65. a ve. N Data Predicted from the Mean and $\pm 1,2$, and 3 sigma ds/da Linee

Teble XX

Comparison of Actual Cycle Count Data with Cycle Count Data Predicted from Constant Veriance dN/da Lines

$A=31.000 \mathrm{~mm}$	ACTUAL	PREDICTED
-3 SIMA	187888	116635
-e stamp	19568	140299
-1 81GMA	205562	173118
MEAN	217991	213635
+1 SICHA	233627	264538
+2 SIGTA	253299	328255
+3 SICTA	278046	409051
		*

SECTION XI

DISCUSS ION

Throughout the course of this investigation, a few unique events to k place and many interesting observations were made. Some of these have rather simple explanations $f 1$ others require a quite detailed discussion. Hopefully, some important conclusions can be made as a result.

11.1 Experimental Investigation

The behavior of fatigue crack propagation experienced during this investigation was much different than first anticipated. The most surprising event that took place in almost every test was the sudden changes An the magnitude of the crack growth rate. Both sudden increases in the growth rate, as if the crack had just come upon mome unusually weak aluminum, and sudden decreases in the growth rate, as if the crack was experiencing some unusually tough material, were observed repeatedly, many times one or two millimeters after a previous event of similar nature. One of the more outstanding examples of this type of behavior $1 s$ show in Figure 66.

It appears that the matcrial is made up mostly of a fairly homogeneous material with many smallex areas located in a random fashion which characteristically have vastly different crack propagation properties than the majority of the material. The size of the se small areas aume to vary considerably from as small as lese than 1 willimater in length to perhape as large as 5 or 10 millimeters in length. These small areas obviously have a vary large effect on the overall smothness of an a ve. N data set

Figure 66. a ve. N Data Showing Abrupt Grouth Rate Changes
and on the total amount of acatter, especially in the growth rate data.
The average growth rate also seemed to vary somewhat from teat to test, with some tests running slow throughout the whole test, while other tests ran fairly fast throughout the whole test. This phenomenon Is the cause of the outlying data sets in Figure 22. As also noted by other investigators $[5,6,7]$, the variation in growth rate at the beginning of the test during the slow growth rates leads to most of the variation in N at the final crack length.

As a result of these observations, the conclusion is made that this alloy is a very non-homogeneous material, especially considering the random nature of crack propagation behavior. It very rarely obeys the amooth growth rate equations often used to describe its behavior and does so only when it's behavior is considered at a very macroscopic level.

11.2 Distribution of N

The conclusion atacing that the cycle count data follows a 3-parameter log normal distribution can be considered very strong. The only occurrences where thjs was not 80 was at short crack lengths where the need for the location parameter used in the 3 -parameter log normal distribution was not near as atrong as at long crack lengthe.

From Figures 24 through 29, the distribution paramecere tend to vary quite a bit at short crack lengthe but ten' to follow smooth curves after $a=15 \mathrm{~mm}$. The scale paramoter in the first two distributions where no location parameter is estimated have very smooth curves, showing that mean crack propagation behavior does foilow swooth growth rate equations. The same mooth shape of the location pramater in the last four distribu-- tions also supports this statement. Essentially these location parameter
curves define aid area where crack propagation will never occur. In other words, the number of load cycles needed to reach a given crack length will never be less than the estimate of the location parameter at that crack length. This is shown in Figure 67. On this plot, crack propagation data will never occur to the left of the location parameter line. Note from Pigure 26 that the scale parameter, $\hat{\mu}$, tends to remain constant after $a=20 \mathrm{~mm}$, allowing the location parameter to completely account for the increase of N with increasing crack length. From Figure 24 , note the smooth increase of the shape parameter, $\hat{\sigma}$, as a function of crack length, thus supporting the expectation of higher variances at longer crack langths. Another interesting event is shown in Pigure 29. The power parameter, $\hat{\alpha}$, of the generalized 4 -parameter gama distribution was always estimated to be equal to one, chus reducing this distribution to the 3-parameter gama distribution. It ahould be noted here that over half of the computer time used to obtain all of the distribution parameters was used to estimate the parameters of the gerieralized 4-parameter gamma distribution. By eliminating this distribution from the CCDDP program, much time and money can be saved.

Another interesting occurrence which appeared very often is shown in Table VI. Many times the distribution rankings implied by one goodness of fit criterion could not be upported by another goodness of fit criterion and often three different distribution rankinge were implied by the three goodness of fit critaria. In other words, the goodnese of fit cri. teria were not conelstent between themselves. This pecessitated somaWhat subjective analysis of the goodnese of fit criteria. The closeness, R^{2}, tended to be very sensitive to the scales of the plot and the slope of the linear least squares line. Thus, the closeness was rarely used

Figure 67. Batimate of the Location Parameter of the 3-Parameter Log Normal Distribution as a Function of Craci Length
unless the slopes were approximately the same between the different distributions. The chi-squarc tail area tended to be undiscerning between distributions that provided fairly equal fits to the data. Thus, the chisquare goodness of fit criterion was used only when there ware fairly large differences between the distributions. The Rolmogorov-Smirnov goodness of fit test provided rairly reliable and sensitive test and was used heavily in establishing distribution rankings.

A typical fit provided by each of the five distributions for the cycle count data is shown in Figures 68 through 72. As state previously, the 3 -parameter log normal distribution provided a reliable tight fit for the cycle count data as shown in Figure 70. The 3-parameter gamma distribution did surprisingly well and although it was not selected as the best distribution very often, it consistently placed a close second to the 3-parameter \log normal distribution. The 2-parameter log normal distribution did not do well due to the lack of a location parsmeter. For the 3-parameter Weibull diatribution, the location parameter seemed to work alright, but the shape of the density function did not match the data very well as shown in Figure 71. The 2-parameter normal distribution provided a very poor fit for the cycle count data and should not be included in any further investigations of the dictribution of N.

11.3 Crack Growth Rate Calculation Mathods

Of the $81 x \mathrm{da} / \mathrm{dN}$ calculation mathods selected, both the secant mathod and the modified secant method contributed los amounts of error into the da/dN data as shown in Table VIII. The modified secant method calculated da/dN data which could be integrated back closer to the original a va. N data than the secant method could, perhaps because it calculates da/dN

Figure 68. Typisal Pit of the cycle Count Data to the 2-Parameter Mormal Distribution

Figure '. Iypica. Pit of the Cy=le Cuunt Data to
the 2-Parameter Log Normal Distrilution

Pigure 70. Typical Fit of the Cycle Count Data to the 3-Paramater Log Normal Diftribution

Pigure 71. Typical Pit of the Cycle Count Date to the 3-Parameter Weibull Diecribution

Figure 72. Typical Fit of the Cycle Count Data to the 3-Parameter Cerm Distribution
data at the original crack length levelo instead of between the original craci length levela.

None of the inctremental polynomial mothods calculated da/dN data which could be incegated bi"k even close to the original a va. N data. This ir. no doubt due to the 300 wilng effect of these methods which tends to reduce the sudden changes ingrowth rates. This is shown in Piguze 38 where the number of extreme da/dN data points for the quadratic 7-point incremental polynomial method is much less than the number of extreme da/dN data points for either the secant method of the modified secant method (Figures 36 and 37). This is slso shown in Figures 30 through 35 where the incremental polynomial method data iollow a narrow band line wille the recant method and modified secant method data follow are broad band line. Note also from Figures 32 through 35 chs wavinese of the data showing the large changes in growth rate noticed during data acquisition.

If crack propagation data verge always very smouth data, chen the iocremental polynomial mathods would introduce a very small amount of error Into the da/dN data. But as stated previously, the sudden changes in growth rate are laherent in the crack piopagation process, and any attempt at modifying thase changes will distort the rasulting data and prevent it from becoming a true representation of crack propagatijn behavior.

Of the four incremental polynomal mathode uend, botb the quadratic 7-poinc veraion and the quedratic 10g-10 7-point warsion do the best job, followa claeely by the linest 7-point version. The linear log-log 7point version does a vary poor job qe shown in Fisure 34 and Table Vill. The uee of the log-log transformetion falled to give any improvemant over she conventional incrementel polynomial methods in the ability to reproduce
the original a vs. N data. The use of the aecond order polynomial fit over a straight line polynorial fit improves the parformance of the incremental polynomial methods, expecially when using the log-log cransformation.

The emount of yariation in the verige ticrement plar cent error over
 indieating fairly consistent results over all of the experimental tests.

11.4 Distribution of da/dN

No outstanding positive results were achleved for the distrafition of da/dN. Each of the distributions provided roughly the same quality of fit for the data, with the 3 -parameter gama distribution doing a alightly better job than the other four distributions. ons.

The da/dN data varied quite a bit as, a function of ΔK as ghown in Figure 36. As a result, different distributions would provide la eit for the da/dN data at different ΔK levals, depending on the generalf fitife asd skewness of the data at a given $\mathbf{y k}$ level. Theze were several dccasions when the da/dN data was skewed left, as shown in Figure 73, sydnetric, as shown in Pigure 74, or akewed right, si shown in Pigure 75.

When the data was either skewed left or aymetric, the 2 -pparameter normal distribution providød the bast fit. for the de/dN data, shown in

 game distribution provided afit for the da/dN data. Typical fite of the skewed right da/dh fata to these fout distributious dft"gtibun in Pigures 78 through 81. Due to the large variations in the da/dN dati, each of the distributions is nesdud to provide fit for the wide range of density

7igure 73. Typical 8keved Loft da/dil mate

Pigure 74. Typical Bymetric da/dil Data

P1gure 75. Typical skowed Right da/din Data

Fifuse 76. Iyplonl Ift of themed laft h/ay Deta to

Pigure 77. Typioel Fit of 8ymotric de/ay Data to the 2-paremeter Mormal Distribution

Figure 78. Typicel Fit of Skeved Right de/di Date to the 2-Perameter Log llormsl Distribution

(lyure 79. Iypical Pit of 8kerad Right da/dN Data to the 3-Paramer LoE Mornl Distribution

Pigure 80. Typical fit of Skeved Right da/dN Data to the 3-Parameter Weibull Distribution

Figure 81. Typical Fit of Skeved Right da/dif Data to the 3-Parameter Gemma Dietribution
function shapes.
The large amount of variation in tha shape of the da/dN data as a function of ΔR is shown in the plots of the distribution parameters as a function of crack length (Pigures 40 through 45). Note that there is a lot of variation in the shape paramster (the pluses) and the location paramatar (the diamonds). The variation of the shape parameter raflects the changes in the amount of variance and the shape of the data. The variation of the location parameter reflects the changing skewness of the data. As the shewness goes from right to left, the estimate of the location parameter decrasses rapidly. Also, from Figure 45, it can se seen that there are many occurrences where the estimate of $\hat{\alpha}$ was not equal to one, thus 1mplying the necessity of the inclusion of the generalized 4 -parameter game distribution when analyging da/dN data 80 that aide range oí density function shapes can be accomodated for the da/dN data.

11.5 Pradiction of a vs. N Data from the Distribution of da/dN

The reaulta of the prediction of replicate a va. N data from the distribution of da/dN were less revealing than anticipated. When comparing Pigure 46 with Figure 22, it becomes apparent that the variance of the predicted a ve. N data 19 much less than the variance of the actual ve. N data. However, the mean of the predicted a va. N data is vary close to the mean of the actual a va. N data. The implication of this is that crack propagation behavior ie not being accurately modeled by a randomly selected value of da/dN from the distribution of da/dN. In crack propagation behavior, as digcussed in section 11.1 , the growth rate at given ΔK level 18 not indupendent of the growth rates at previous Δk levals, as evidenced by periode of up to 10 mm . of uncharacteristically fast or slow
growth rates. However, the independence of growth rates is assumed in the prediction of a. N data from the da/dN distribution parameters, resulting in very smooth a ve. N data. This mooth a ve. N.data lacke the areas of sudden fast and slow growth rates discussed in section 11.1 which occurs frequently in actual as. N data. Thus, the combination of many mooth a ve. N lines of the asm man behavior reaults in the reduction of variance noted above. To accurately predict crack propagation behavior, some mans of quantitatively describing the interdependence of adjacent growth rates mat be found.

When the distribution of the cycle count data predicted from the distribution of da/dN was analyzed, neither gamm distribution would converge on its parameters as the estimate of the shape/pomer parameter, $\hat{\mathbf{8}}$, tended to approach its upper global limit. The 2-parameter log normal distribution provided the best fit for this data because the location parameter of the 3 -parameter \log normal distribution maa estimated to be zero at most crack length lavels.

When the distribution of the predicted cycle count data is compared with the distribution of the actual cycle count data, as shown in Tabla XIII, it can again be seen how the man of the predicted cycle count data is very ciose to the man of the actual cycle count data while the atandard deviation of the predicted cycle count data is much lase than the atendard deviation of the actual cycle count data.

When a va. N data are predicted from constant variance da/dN lines, the spread of the predicted data is much wider than the spead of the actual dsta, as shown in Table XIV. This occurs because ather all very slow or very fact growth rate data is used at the ± 3 sigma da/dN lines, thus causing eithar a very long or very short number of cycles. The
actual data, however, rarely has any growth rates on the order of ± 3 sigma, and even more rarely has repeated growth rates on the order of ± 3 aigma. On the average, actual data tend to have repeated growth ratea within ± 1 signa.

From Figure 51, it can be seen that the constant variance lines tend to get furthar apart when going from left to right, indicating that the distribution of N is skeved right. Since the distribution of N has been determined as the 3-parameter 108 normal distribution which is a skewed right distribution, the prediction of a ve. N data from constant variance da/dN lines supports this conclusion.

11.6 Inverse Growth Rate

Ae anticipated, an improvement in the fit provided for the dN/da data over the fit provided for the da/dN data was obtainad. The 3-parawater \log normal distribution was able to provide the best fit for the dN/de data without serious competition from the other four distributions. This improveman is partially due to the inversion of the growth rate variable. Since N sas strongly \log normally distributed, it was anticipaced that ΔN would be \log normally distributed also. Anothar reason for this improvement was the exclusion of the location parameter from the gamea distributions, thereby severly decraseing their ability to provide an adequate fit for the dN/da date. The fit provided by those distribu. tione wheh entinated a location paramer wa algnificantly better than the fit provided by the gamm dietributions. Quite a larte range of values were eetimeted for the location parameter (from $=1.6 \times 10^{-11}$ to 4.9×10^{5}) and the aboolute value of the estimate of the location parametar wa almay greater than 900 , dadicating no tendeacy to appronch
zero as acsumed in equation 48 (Section 5.2.e). Thus, this assumption has not proven valid.

The value of the location parameter of the 3-parameter 108 normal distribution assumed negative values in many instances, indicating that akewed left and aymetric dN/da data was present as well as skawad right dN/da data. This was expected since the simple inversion of the da/dN variable does nothing to change the skewness of the density function of the data. The only effect of this inversion is to change the direction of the skewness and to alter the shape of the density function slightly. A histogram of typical symatric dN/da data is shown in Figure 82 and plots of the fit of the $d N / d a$ data to each of the distributions are shown in Figures 83 through 87. Note in Figure 85 the ability of the 3 -parameter \log normal distribution to hande symmetric as well as skewed right data. Again, due to the large variation in the dN/da data, each of the dietributions is needed in order to provide a fit for the data.

Thare is a large variation in the shape parameter and location parameter again for the dN/da data, as shown in the plots of the distribution parameters as a function of crack length (Figures 53 through 58). The we of $d N / d a$ does not remove these variations from the data, although it does reverse the basic trend of the man as ahown by comparing Pigure 40 with Pigure 53. The man value of da/dN increases as a function of crack length while the man value of $\mathrm{dN} / \mathrm{da}$ ducreases as a function of erack length, both being expected for constant amplituda laading.

The use of dN/da diatribution parametere in the prediction of replicate a ve. N data did not change che predictad data notioeably. As aggeated previously, the problem of predicting a ve. date accurntely lies

Figure 82. Typical symatric du/da Data

Figure 83. Typical Fit of 8ymotric di/da Date to the
2-parametar hornal Diatribution

Figuce 84. Typical Fit of Symotric dN/da Data to the 2-Parsanter Los monnel Dietribution

Figure 85. rypical Pit of Symatric da/da Data to the 3-Paremeter Log Noxmal Distribution

Pigure 86. Typical Pit of Symatric dif/da Data to the 3-Perameter Weibull Distribution

Figure 87. Typical Pit of Symetric ds/da Deta to the 2-Farameter Geme Distribution
not in which variable is used to predict the data but rather in the assuinption of independent adjacent growth rates.

When the cycle count data was predicted from the $\mathrm{dN} /$ da distribution parameters, the 3-parameter \log normal diatribution provided the best fit for the data as the estimates of the location parameter were all at anticipated values. This is an improvement over the prediction of cycle count data from the aistribution paramateri of da/dN, because the estimate of the location parameter was nearly always equal to zero. The use of this location parameter significantly improves the fit of the predicted cycle count data to the 3 -parameter log normal distribution. Again, the values of $\hat{\mathbf{g}}$ assumed maximum global values in both gama distributions. This is most likely due to a lack of significant variance in the predicted cycle count data. When the distribution of predicted cycle count data was compared again to the distribution of actual cycle count data, the mean data was almost exactly predicted while the predicted standard deviation was again much less than the actual standard deviation, which can be seen by comparing Figure 59 with Figure 22.

The a vs. N data predicted from constant variance dN/da lines almost exactly reproduced a similar plot made from constant variance da/dN lines, as seen by comparing Pigura 51 with Figure 65. Thus, the dN/da data seems to support the conclusion that the cycle count data fits the 3-paramater log normal distribution the best.

The most significant conclusions of this investigation are sumarired as follows:

1) The 2-parameter Weibull distribution was tried on previously generated facigue crack propagation data and, due to ita very poor performance, was dropped from the remainder of the statistrcal analysis (Section 8.1)
2) Actual replicate cycle count data followed a 3-parameter log normal dietribution, with especially good fita at louger crack lengths (Section 11.2).
3) The modified aecant method introduces the lowest amount of error into the da/dN data of the $s i x$ growth rate calculation methods selected (Section 11.3).
4) The large amount of variance present in the da/dN vs. ΔK data prevented a consistent fit of the replicate da/dN data to any of the candidace distributions (Section 11.4).
5) Replicate dN/da data followed a-parameter 108 normal diatribution (Section 11.6).
6) The method of predicting a ve. N data from the da/dN or dN/da distribution parameters was not completely succeseful due to the assumption of independent adjacent growth rates (8ections 11.5 and 11.6).

SECTION XIII

RECOMENDATIORS FOR FURTHER WORR

The use of statistical mathods in describing and predicting fatigue crack propagation behavior worked very well. However, accurate life prediction was not achieved because a total statistical description of the crack propagation process has not been determined. Only a minute percentage of the total possible experimental and anelytical work needed to achieve this total statistical description was conducted under this invastigation. Based on the observations, results, and conclusions of this investigation, the following topics need further investigation.

1) Experimental crack propagation data with N as the independent variable and as the dependent variable is needed. From this the distribution of as a function of N and the dietribution of da/dN as a function of N can be obtained.
2) A etudy of the interdependence of growth rate data vould be valuable for use in the prediction of as. N data from the discribution of growth rate data.
3) The effect of data doneity on the variance and distribution of growth rate data needs to be found to aid in more accurate dats acquisition and analyois.
4) A study of the sudden growth rate changes in the original as. N data mentioned in 8action 11.1 would add considerably in the understandiag of the crack propagation procese.
5) A more reliable and accurate mechod of establishing the distribution rankings is needed. The goodness of fit criteria used in this investigation did not totally fulfill this need.

APPRNDIX A

DRRIVATION OF THE da/dN EQUATION POR THE LIREAR LOG-LOG 7-POIMT INCRERENTAL POLYNOATLAL METHOD

The fitted polynomial equation for the linear log-log 7-point incremental polynomial method is given by

$$
\begin{equation*}
\log _{10} a=b_{0}+b_{1} N_{1 s} \tag{A-1}
\end{equation*}
$$

whare $\mathrm{N}_{1 s}$ is given by

$$
\begin{equation*}
N_{L S}=\frac{\log _{10} N-C_{1}}{C_{2}} \tag{A-2}
\end{equation*}
$$

where C_{1} and C_{2} are given by the scaling equstions (equations 7 and 8 , 8ection 4.3). Subetituting into equation A-1 for NLs,

$$
\begin{equation*}
\log _{10} a=b_{0}+b_{1}\left[\frac{\log _{10} N-c_{1}}{c_{2}}\right. \tag{A-3}
\end{equation*}
$$

Solving for a,

$$
\begin{align*}
a & =10^{b_{0}+b_{1}: \frac{\log _{10} x-c_{1}}{c_{2}}} \\
& =10^{b_{0}-\frac{b_{1} c_{1}}{c_{2}}+\frac{b_{1} \log _{10}}{c_{2}}} \\
& =10^{b_{0}-\frac{b_{1} c_{1}}{c_{2}}} \cdot\left(\log _{10} N\right) \cdot \frac{b_{1}}{c_{2}} \\
& =10
\end{align*}
$$

Taking the derivative of a with respect to N and evaluating at the midpoint, N_{i},

$$
\begin{equation*}
\frac{d a}{d d_{1}}=10^{b_{0} \cdot \frac{b_{1} c_{1}}{c_{2}}} \cdot \frac{b_{1}}{c_{2}} N_{1}^{\frac{b_{1}}{c_{2}}}=1 \tag{A-5}
\end{equation*}
$$

APPRNDIX B

derivation of the da/ds equation for the quadratic Log-LOG 7-poini IACREYENTAL POLYMOHLAL RETHOD

The fitted polynomial equation for the quidratic log-log 7-point incramental polynomial method is given by

$$
\begin{equation*}
\log _{10} a=b_{0}+b_{1} N N_{L}+b_{2} N_{L S}^{2} \tag{B-1}
\end{equation*}
$$

where NLS is given by equation A-2. Substituting into Equation B-1 for N L "

$$
\begin{equation*}
\log _{10}=b_{0}+b_{1} \frac{\log _{10} N-c_{17}}{c_{2}}+b_{2} \frac{\log _{10} N-c_{1} 2}{c_{2}} \tag{B-2}
\end{equation*}
$$

Lettias

$$
\begin{align*}
u & =\frac{\log _{10} N-C_{1}}{C_{2}} \tag{B-3}\\
\frac{d U}{d N} & =\frac{1}{N \cdot \ln (10) \cdot C_{2}} \tag{B-4}
\end{align*}
$$

Then

$$
\begin{equation*}
\log _{10} a-b_{0}+b_{1} u+b_{2} v^{2} \tag{B-5}
\end{equation*}
$$

Solving for a,

$$
b_{0}+b_{1} v+b_{2} v^{2}
$$

$$
\begin{equation*}
a=10 \tag{8-6}
\end{equation*}
$$

Taking the derivative of with respect to U,

$$
\begin{equation*}
\frac{d a}{d U}=10^{b_{0}} \cdot \frac{d}{d U} L^{10^{b}}{ }^{b} \cdot 10^{b_{2} U^{2}} J \tag{B-7}
\end{equation*}
$$

where

$$
\begin{align*}
\left.\frac{d}{d U} 10^{b_{1} u} \cdot 10^{b_{2} v^{2}}\right] & =\left[10^{b_{1} u} \cdot 10^{b_{2} v^{2}} \cdot 2 b_{2} U \ln (10)\right. \\
& \left.+10^{b_{2} v^{2}} \cdot 10^{b_{1} u} \cdot b_{1} \ln (10)\right] \tag{B-8}
\end{align*}
$$

Then

$$
\frac{d a}{d v}=10^{b_{0}} \cdot 10^{b_{1} u} \cdot 10^{b_{2} v^{2}} \cdot \ln (10) \cdot 2^{2} b_{2} u+b_{1} \quad \text { (B-9) }
$$

Moist the chain rule,

$$
\begin{align*}
& \therefore 0^{\frac{d a}{d N}=\frac{d a}{d U} \cdot \frac{d U}{d N}} \tag{B-10}\\
& =10^{b_{0}} \cdot 10^{b_{1} U} \cdot 10^{b_{2} U^{2}} \cdot 1 a^{(B-10)} \cdot L^{2 b_{2} U+b_{2}} \cdot\left[\frac{1}{L N \cdot \ln (10) \cdot c_{2}}\right] \\
& =\frac{10^{b_{0}} \cdot 10^{b_{1} U} \cdot 10^{b_{2} U^{2}} \cdot\left(2 b_{2} U+b_{1}\right)}{C_{2} \cdot N} \tag{B-11}
\end{align*}
$$

Substituting for U and evaluating at the midpoint, n_{1},

$$
\begin{align*}
& \frac{d r_{1}}{d_{1}}=\frac{10^{b_{0}} \cdot 10^{\left[\frac{b_{1} \log n_{1}}{c_{2}}-\frac{b_{1} c_{1}}{c_{2}}\right]} \cdot 10^{L^{b_{2}\left(\log n_{1}\right)^{2}} \cdot 2 b_{2} c_{1} \log n_{1}+b_{2} c_{1}{ }^{2}}}{c_{2} m_{1}} \\
& \left.\frac{2 b_{2} \log m_{1}-2 b_{2} c}{c_{2}}+b_{1}\right] \tag{3-12}
\end{align*}
$$

APFENDIX C

DERIVATION OP c^{2}

From inear regression, the coefficient of multiple determination, R^{2}, is given by [34]

$$
\begin{equation*}
R^{2}=1-\frac{\text { SSRRS }}{T C S S} \tag{C-1}
\end{equation*}
$$

Where SSRES is the residual sum of squares and TCSS is the total corrected sum of equares. Since SSRES and TCSS are masured in the vertical direction, it was desirable to correct them so that their direction is normal to the slope, m. Let the slope be given by

$$
\begin{equation*}
m=J / K \tag{C-2}
\end{equation*}
$$

Where J is the side of a triangle along the least squares line and K is the side of the triangle perpendicular to the least squares line. From basic geometry,

$$
\begin{equation*}
I^{2}=J^{2}+x^{2} \tag{c-3}
\end{equation*}
$$

Whare I the third side of the triangle. I is alvays in a vertical direction. Substituting from equation C-2 into C-3 for J,

$$
\begin{align*}
I^{2} & =(\square \cdot R)^{2}+X^{2} \\
& =X^{2}\left(m^{2}+1\right) \tag{C-4}
\end{align*}
$$

Solving for $\mathrm{K}^{\mathbf{2}}$,

$$
\begin{equation*}
R^{2}=\frac{I^{2}}{m^{2}+1} \tag{C-5}
\end{equation*}
$$

Solving for the correction of the slope, $\mathrm{x}^{2} / \mathrm{I}^{2}$,

$$
\begin{equation*}
\frac{\mathrm{K}^{2}}{I^{2}}=\frac{1}{m^{2}+1} \tag{C-6}
\end{equation*}
$$

Plugging this into equation $C-1$ to obtain \mathbb{R}^{2} corrected for the slope, called C^{2},

$$
\begin{align*}
c^{2} & =R^{2} \cdot\left(R^{2} / I^{2}\right) \tag{C-7}\\
& =1-\frac{\operatorname{SSRES}}{T \operatorname{CSS}} \cdot \frac{1}{\mathrm{~m}^{2}+1} \tag{C-8}
\end{align*}
$$

APFENDIX D

DNDDPG DOCURERISATION

This program consiats of main piogram and 25 subroutines. The main program (DNDDPG) reada in the desired \triangle a vs. ΔN data and calls subroutine DRLTA to re-create the original a vs. N data. The progran flow is then transferred to aubroutine CLASS which dividee the data into constant Δ a data sets and thet calculates the histogram frequencies for ach constant Aa data set. The program flow is then transferred to aubroutine STPLOT which determines the distribution.

Subroutine STPLOT uses, directly or indirectly, the following aubroutines.

I. Parameter Betimation Subroutines

1. GOLDEN
2. CRVFIT

II. Scaling Subroutines

1. PRBPLT
2. WBLPRB
3. LESCAL
4. LPBCAL
5. IMLRSC
6. ODSCAL
III. Plotting subroutina
7. DOPLOR
8. NanPLT
9. LOBPLT
10. NBLPLT
11. 04×18
IV. Output Subroutime
12. RLFOAT
13. RITPAR
V. Gemeral Purpose Subroutimes
14. LSTSQR
15. BANT
16. OUTLIR
17. NRMAB
18. SIMPSN
19. MAXR
20. MAXI

A listing of this program can be obtained from:
Prof. B. M. Hillberry
School of Mechanical Engineering Purdue Univeraity Weat Lafayette, Indiana 47907
Fhone (317) 4s4-1600

APPRNDIX

CCDDP DOCURENTATION
This program consists of a main program, 53 subroutines, and 18 function subprograme. The main program (CCDDP) reads in the desired replicate cycle count data and writes it by calling subroutine RITDAT. The program flow is then transferred to subroutine CLASS which calculates the histogram frequencies for the data. The program flow is then passed to subroutine STPLOT which determines the distribution.

Subroutine STPLOT uses, directly or indirectly, the following subroutines and function subprograms.
I. Parameter Estimation Routines
A. Subroutines

1. MELN
2. MEWW
3. MLRG
4. MLEGG
5. HJ
B. Supporting Function Subprograms
6. FLN
7. FW
8. PG
9. FOC

II. Statistical Parameters Subroutinea

1. Restat
2. WBSTAT
3. GMstat
III. Goodness of Fit Routines
A. Subroutines
4. CHISQR
5. KOLSYR
6. nayss
7. WBLCS
8. GAMCS
B. Supporting Function Subprograus
9. FNRM
10. FWBL
11. PGAM
IV. Output Subroutines
12. RITPAR
13. RITBRS
14. PAROUT
V. Plotting Routines
A. Main Plotting Subroutines
15. AVMPLT
16. RISPLT
17. NRMPLT
18. LOGPLT
19. WBLPLI
20. GAMPLI
B. Supporting Plotting Subroutines
21. ODAXIS
22. LGAXIS
23. GMAXIS
24. SCINOT
VI. Scaling Subroutines
25. NRMSCL
26. WBLSCL
27. GAMSCL
28. LGSCAL
29. LNSCAL
30. INLNSC
31. ODSCAL
32. SCALEL
VII. Stress Intensity Calculation Routines
A. Subroutine
33. DELTAK
B. Function Subprogram
34. FAB
VIII. General Purpose Statistical Routines
A. Subroutines
35. Nrmeral
36. OUTIIR
B. Function Subprograms
37. FINORM
38. FGAYEA
39. PPSI
40. PTRIGK
41. FIMGAM
42. PGY
43. tainit
44. PGMEG
45. FSER
46. FFRAC
IX. General Purpose Subroutines
47. TABLRL
48. INTHAV
49. INTRRP
50. INV INT
51. LSTSQR
52. INVMAT
53. RANK
54. MANCHA
55. INITR
56. ITOR
57. LOG
58. MAXR
59. MAXI

A listing of this program can be obtained from frofessor B. M. Hillberry (Appendix D).

APr*RDE

CGRDDP DOCUYBFIATION

This program comists of amin program, 50 abroutines, and 17 function cubprograms. This program de nearly identical to the CCDDP program (Appendix E) and only the main program (CORDDP) and 3 subroutinea are changed. These 3 aubroutines are;

1. CLASS,
2. STPLOT, and
3. RITDAT.

This progras requires an input of replicate growih rate data and has the eam gutput as the CCDDP program. Subroutines DELTAK, ITOR, and MAXI and function subprogram $F A B$ need not be loaded for this program. A listing of this program can be obtained from Professor B. M. Hillberry (Appendix D).

APFENDIX G

DIUDD DOCUKENIATION

This program consiste of man prosram, 49 subroutines, and 17 function subprograms. This program is nexty identical to the Condop program (Appendix F) and only the main program (DiDDP), 9 subroutines, and 3 function subprograne are changad. The 9 subroutipes that are changed are;

1. CLASS,
2. STPLOI,
3. MEG,
4. MECC,
5. GMBTAT,
6. Gaycs,
7. RITDAT.
8. RITPAR, and
9. CARPLI.

The 3 function subprogram that are changed are;

1. TG,
2. POC, and
3. TaM.

This prograe raquiras an iaput of raplicata growth rate data and has the same output at the CORDDP program. fubroutine INWMI mad mot be loaded
for this program. A listing of this program can be obtained from Profeasor B. M. Hillberry (Appandix D).

APFBNDIX H

DELICP DOCUERTATION

This program consists of main program and 5 subroutinas. The main program (DELTCP) reads in the desired a ve. N data and calls the proper subroutine (s) to calculate the Δ ve. ΔN daca according to the desirad calculation method chosen. The Δa vs. ΔN calculation subroutines are;

1. ReYGVE,
2. STRIP, and
3. DELTA.

The main program then calls s:sbroucine RITDAT to write the Δ a ve, ΔN data. The only general purpose subroutine required is subroutine LSTSQR. A listing of this program can be obtained from Professor B. M. Hillberry (Appendix D).

APPRKDIX I

DADECP DOCUSETATION

This program consists of a min program, 22 oubroutines, and 1 function aubprogram. The main program (DADNCP) reade in the deaired a va. x data set and calls, diractly or indirectly, the following subroutimen and function subprogram,
I. Growth Rate Calculation Subroutines 412%

1. DADN
2. SECANT
3. MODSEC
4. STRIP
5. EVAL
II. Brror Determination Subroutines
6. DELTA
7. INIEGR
8. ERROR
III. Output Subroutines
9. RITDAT
10. RITRE8
11. pesult
IV. Plotting 8ubroutines
12. AVERLT
13. 10NTT
y. 8calias 8ubroution
14. Lescal
15. 8treas Intenalty Calcuiation Iouthues

人
A. Subroutipe

1. DLITM
B. Function Bubprogram
2. TA
VII. Cenersl Purpose Subroutinea
3. IMITR
4. IMITI

5. Criscx
6. ITOM
7. mara
8. 100
9. LSTSQR

A listing of this program can be obtained from Profeseor B. M. Hillberry (Appendix D).
APERNDIX J
AVNPRD DOCUmENTATIONThis program consists of a man program, 19 subroutines, and 8 fund-Lion subprograms. The main program (AVNPRD) reads in the desired distri-bution parameters and calle, directly or indirectly, the following sub-routines and function subprogram.
I. Random Number Generating Subroutine1. RNGEN
II. Inverse Dietrijution Subroutines

1. INNDIS
2. INNIRM
3. INN2IN
4. INN3LN
5. IWNABL
6. INVCAM
III. Prediction subroutines
7. MRD
8. 8RCAIT
9. MoDe
10. 8TRIP
IV. Output subroutine
11. RITDAT

V. Plotting Subroutine

1. AVNPLT

v1. General Purpose Statistical Routines
A. Subroutine

1. NRMAB
B. Function Subprograms
2. PMORM
3. FGAREA
4. PINGAM
5. FGM
6. FGMINT
7. FGMEG
8. FSER
9. PYRAC
VII. General Purpose Subroutinea
10. tablel
11. Inthav
12. INTERP
13. INVINT
14. MARR

A listing of this program can be obtelned from Profeseor B. M. Hillberry (Appendix D).

APFE NDIX K

RAOON ODMR OT EXPERINGNLAL TE8TS

The randonisea order of the 68 apecimens used during tenting is as

Rellome.

19. 141
37. 49
35. 127
2. 101
20. 60
38. 111
56. 6
-721.35
39. 102
57. 71
4. 77
22. 50
40. 64
58. 38

$$
=-66
$$

7F妾效33. 134
-
59. 78
3. 119
24. 55
42. 94
60. 106
F.7. 47
25. 14
$=43.138$
61. 129

26. 21
44. 130
62. 31
45. 143
63. 125
10. 40
27. 7
64. 32
11. 18
28. 2
46. 57
65. 116
12. 132
29. 70
47. 41
13. 118
30. 19
48. 9
66. 62
13. 118
31. 52
49. 74
67. 12
14. 1
32. 83
50. 33
68. 121
15. 35
33. 149
-31. 144
16. 123
34. 80
52. 81
17. 37
35. 97
53. 93
18. 139
36. 96
54. 99

REPRRENCES

L. Van Vlack, L. H., Elements of Matarials Science, 2nd edition, Addison-Wesley Pubilishing Co., 1964, Pp. 160-165.
2. Frank, K. H. and Fisher, J. W., "Amalysis of Error in Deteraining Fatigue Crack Growth Rates," Fritz Engineering Laboratory Report No. 3.58.10, Lehigh University, Bethlehem, Pa., March 1971.
3. Wilhem, D. P., "Yracture Mechanice Guidelines for Aircraft Structural Applications," AFFDL-IR-69-111, Air Force Flight Dyamics Laboratory, Wright-Patterson Air Force Bese, Ohio, Pebruary 1970.
4. Gallagher, J. P. and Stalnaker, H. D., "Developing Mathode for Tracking Crack Growth Damage in Aircraft, H AIMA/ASMR/SAE 17th Structures, Structural Dyomice and Materiale Conference, Valley Porge, Pa., May 1976.
5. Hudak, S. J. Jr., "The Analysis of Fatigue Crack Growth Rate Deta," E24.04 Comittee Meeting, ASTM, Philadelphia, Pa., 1975.
6. Clark, W. G. Jr. and Hudak, S. J. Jr., "Variability in Patigue Crack Growth Rate Testing," ASTM E24.04.01 Task Group Report, Westinghouse Research Laboratories: 1974.
7. Hudak, S. J. Jr., Sarema, A., Bucci, R. J., and Malcolm, R. C., "Development of Standard Methods of Testing and Analyzing Fatigue Crack Growth Rate Date (Third Semi-Annual Report)," Weatinghouse Rasearch Laboratories, 1977.
8. Pook, L. P., "Baeic Statistice of Fatigue Crack Growth," arL Report Bo. 595, Hational Buginaering Laboratory, 1975.
9. Gallagher, J. P., "Patigue Crack Growth Rate Lawe Accounting for 8trese Retio Effects," AsTM Tesk Poren E24.04.04 Report Ro. 1, Air loree Flight Dyamice Laborstory, Wright-Pateerson Air Force Base, Ohio, 1974.
10. Juvinall, R. C., Engiacering Coneideratione of serene, straine and Btrenth, McGrav-HIII Book Co., 1967.
 Iove 8tate Univaraity Prean, 1975.
12. Walpole, R. B. and Myers, R. H., Probability and Statiatics for Enpineere and Scientists, Macmilian Pubilohing Co., Inc., 1972.
13. Goel, P. R.. Stitiatics Departmant, Purduo Univaraity, W, Lafayette, Ind. 1977.
14. Aitchison, J. and Brown, J. A. C., The fopporen Distribution, Cabridge Daivereity Prese, 1957.
15. Wingo, D. R., "The Use of Interior Penalty Functions to overcome Lognormal Distribution Parameter Eatimation Anomalies," Journal of Statiatical Compucation and Simulation, Volume 4, 1975, Pp. 49-61.
16. Lambert, J. A. "Estimation of Parameters in the Three-Parmeter Lognormal Distribution," Austrailian Journal of Statistics, Volume 6, 1964, pp. 29-32.
17. Wirsching, P. H. and Yao, J. T. P., "Statistical Methods in Structural Fatigue," Journal of the Structural Division, American Society of Civil Engineers, Volume 96, No. ST6, 1970.
18. Lipson, C. and Sheth, N. J., Statistical Design and Analyais of Engineering Experimente, McGrav-Hill Book Co., 1973.
19. Zanakis, S. H., "Computatiomal Bxperience with Some Nonlinear Optimization Algorithms in Deriving Maximum Likelihood Batimates for the Three-Parameter Weibull Distribution," Special Iseue of Mangement Science on Computational Methods in Probebility Models, 1976.
20. Lienhard, J. H. and Meyer, P. L., "A Physical Basis for the Generalized Garma Distribution," Quarterly of Applied Mathematics, Volume 25, 1967, Pp. 330-334.
21. Harter, H. L., "Asymptotic Varisnces and Covariances $\cap f$ Maximum Likelihood Eatimators, from Censored Samples, of the Paramaters of a Pour-Parameter Generalized Gemm Population," Report 66-0158, Aerospace Research Laboratories, Office of Aerospece Research, U.S.A.F., Wright-Patereon Air Force Base, Ohio, 1966.
22. Parr, V. B. and Webster, J. T., "A Method for Diecrinineting Between Failure Density Functione used in Reliability Pradictione," Technometics, Volume 7, 1965, pp. 1-10.
23. Johnson, N. L. and Kotz, S., Continupue Univariato Distributions, Houghton MEEEIIn Co., 1970.
24. Hillberry, B. M., Machanical Bagineering Department, Purdue Oniversity, W. Lafeyette, Ind. 1977.
25. Stecy, B, W. and Mihrem, G. A., "Parameter Retimation for a Gennral1sed Geam Dietribution," Technometrics, Volume 7, 1965, pp. 349-358.
26. Mischke, C. R., An Introductige to Computer-Alded Deeing: PrenticeHall, Inc., 1968.
27. Wilk, M. B., Gnanadealkan, R., and Eeyatt, M. J., "Probebility Plote for the Gaman Diatribution," Technometrica, Volume 4, 1962, pp. 1-20.
28. Hertex, H. L. and Moore, A. H., "Locel Maximum Likelihood Eatimation of the Paramaters of Three-Parmeter Lognormal Populationa from complete and Censored Samplea," Journal of American Statistics Assoctation, Volume 61, 1961, pp. 842-851.
29. Cohen, A. C. Jr., "Ratimating Parametera of Logarithmic-Nomal Distributions by Maximum Likelihood," American Statistical Associaeion Journel, Volume 46, 1951, pp. 206-212.
30. Harter, H. L. and Moore, A. H., 'Maximum Likelihood Berimation of the Parameters of Garme and Weibull Populations from complate and from Censored Samples," Technometrics, Volume 7, 1965, pp. 639-643.
31. Mann, N. R., Schafer, R. E., and Singpurvalla, N. D., Methode for Statistical Analyais of Reliability and Life Data, John Wiley and Sons, Inc., 1 n74.
32. Harter, H. L., 'Maximum Likelihood Betimation of the Parametere of a Four-Paremeter Genaralized Gemma Population from Complete and Censored Saruples," Technometrica, Volume 9, 1967, pp. 159-165.
33. Hooke, R. and Jeeves, T. A., "Direct Search Solution of Mumerical and Statistical Problems," Journal of the Aesociation of Computing Machinery, Volume 8, 1961, Pp. 212-229.
34. Draper, N. R. and Smith, H., Applied Regreasion Abalyais, John Wiley and Sons, Inc., 1966.
35. Dahiya, R. C. and Garland, J., "Pearson Chi-Squared Taat of Pit with Rendom Intervals," Biometrike, Volume 59, 1972, pp. 147-153.
36. Masey, F. J. Jr.; "The Rolmogorov-Smirnov Test for Goodness of Fit," Jourdal of American Statietical Aesocietion, Volum 46, 1951, pp. 68-78.
37. Alsos, W. X., "The Bifects of Single Overload/Underload Cycles on Patigue Crack Propagation," M.S. Thea1a, Purduc Univeraity, 1975.
38. Hillberry, B. M., Alsos, W. X., and 8kat, A. C. Jr., "The Fatigue Creck Propagation Delay Bahavior in 2024-T3 Aluminum Alloy Due to Slagle overload/Onderload Sequences," AFFDL-TR-75-96, Air Porce Plight Dymice Laboratory, Wright-Pattarion Air Force Base, Ohio, 1976.
39. Skat, A. C. Jr., "Bvaluation of Extended Crack Closure ía Fatigue Crack Deley Prediction for Single Overload/iladeriond Sequencen," A.S. Thesis, Purdue University, 1975.
40. Virkler, D. A., Hillberry, B. M., and Goel, P. K., "An Investigation of the Statistical Distribution of Fatigue Crack Propagation Dete," ASTM Meeting on Frecture Mechanics, Norfolk, Va, , March 1977.

[^0]: "If your address hat changed, if you wish to be removed from our mailing list, or if the eddreneee is no longer alloyed by your organization please notify, AFFDL/FBE, W-PAFB, OH 45433 to help use maintain a current mailing lint".

 Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

[^1]: Pigure 32. Typical $\log _{10}$ da/dN ve. $\log _{10} \Delta X$ Data Calculated by the Linear 7-Point Incremental Polynomial Method

[^2]: Figure 33. Typical $\log _{10}$ da/du vi. $\log 10 \Delta R$ Data Calculated by the Quadratic 7-Point Incramental Rolynomial Mathod

[^3]: Figure 47. 2-Parameter Hormal Dietribution Parametere es a Punction of Crack Length for Cycle Count Data Predicted from the Distribution of da/dN

[^4]: Figure 60. 2-paramator mormal Dxatribution parameters ae a Punotion of Crack Leagth tor Gyole Count pata predioted from the Distribution of dillde

