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Abstract 

Understanding how host load changes over time is instrumental in predicting the execution time of 

tasks or jobs, such as in dynamic load balancing and distributed soft real-time systems. To improve 

this understanding, we collected week-long, 1 Hz resolution Unix load average traces on 38 differ- 

ent machines including production and research cluster machines, compute servers, and desktop 

workstations Separate sets of traces were collected at two different times of the year. The traces 

capture all of the dynamic load information available to user-level programs on these machines. 

We present a detailed statistical analysis of these traces here, including summary statistics, distri- 

butions, and time series analysis results. Two significant new results are that load is self-similar 

and that it displays epochal behavior. All of the traces exhibit a high degree of self similarity with 

Hurst parameters ranging from .63 to .97, strongly biased toward the top of that range. The traces 

also display epochal behavior in that the local frequency content of the load signal remains quite 

stable for long periods of time (150-450 seconds mean) and changes abruptly at epoch boundaries. 



1    Introduction 

The distributed computing environments to which most users have access consist of a collection 

of loosely interconnected hosts running vendor operating systems. Tasks are initiated indepen- 

dently by users and are scheduled locally by a vendor supplied operating system; there is no global 

scheduler that controls access to the hosts. As users run their jobs the computational load on the 

individual hosts changes over time. 

Deciding how to map computations to hosts in systems with such dynamically changing loads 

(what we will call the mapping problem) is a basic problem that arises in a number of important 

contexts, such as dynamically load-balancing the tasks in a parallel program [20, 1, 22], and 

scheduling tasks to meet deadlines in a distributed soft real-time system [12,18, 19]. 

Host load has a significant effect on running time. Indeed, the running time of a compute bound 

task is directly related to the average load it encounters during execution. Determining a good map- 

ping of a task requires a prediction, either implicit or explicit, of the load on the prospective remote 

hosts to which the task could be mapped. Making such predictions demands an understanding of 

the qualitative and quantitative properties of load on real systems. If the tasks to be mapped are 

short, this understanding of load should extend to correspondingly fine resolutions. Unfortunately, 

to date there has been little work on characterizing the properties of load at fine resolutions. The 

available studies concentrate on understanding functions of load, such as availability [17] or job 

durations [6, 14, 8]. Furthermore, they deal with the coarse grain behavior of load — how it 

changes over minutes, hours and days. 

This paper is a first step to a better understanding the properties of load on real systems at 

fine resolutions. We collected week-long, 1 Hz resolution traces of the Unix load average on 38 

different machines that we classify as production and research cluster machines, compute servers, 

or desktop workstations. We collected two sets of such traces at different times of the year. The 1 

Hz sample rate is sufficient to capture all of the dynamic load information that is available to user- 

level programs running on these machines. In this paper, we present a detailed statistical analysis 

of the first set of traces, taken in August, 1997. The results are similar for the second set, so we 

have omitted them to save space. We also contemplate the implications of those properties for the 

mapping problem. 

The basic question is whether load traces that might seem at first glance to be random and 

unpredictable might have structure that could be exploited by a mapping algorithm. Our results 

suggest that load traces do indeed have some structure in the form of clearly identifiable proper- 

ties. In essence, our results characterize how load varies, which should be of interest not only to 

developers of mapping and prediction algorithms, but also to those who need to generate realistic 

synthetic loads in simulators or to those doing analytic work. Here is a summary of our results and 

their implications: 

(1) The traces exhibit low means but very high standard deviations and maximums. Only four 

traces had mean loads near 1.0. The standard deviation is typically at least as large as the mean, 

while the maximums can be as much as two orders of magnitude larger. The implication is that 

these machines have plenty of cycles to spare to execute jobs, but the execution time of these jobs 

will vary drastically. 

(2) Standard deviation and maximum, which are absolute measures of variation, are positively 

correlated with the mean, so a machine with a high mean load will also tend to have a large standard 
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deviation and maximum. However, these measures do not grow as quickly as the mean, so their 

corresponding relative measures actually shrink as the mean increases. The implication is that if 

the mapping problem assumes a relative metric, it may not be unreasonable to use the host with 

higher mean load. 

(3) The traces have complex, rough, and often multimodal distributions that are not well fitted 

by analytic distributions such as the normal or exponential distributions. Even for the traces which 

exhibit unimodally distributed load, the normal distribution's tail is too short while the exponen- 

tial distribution's tail is too long. The implication is that modeling and simulation that assumes 

convenient analytical load distributions may be flawed. 

(4) Time series analysis of the traces shows that load is strongly correlated over time. The au- 

tocorrelation function typically decays very slowly while the periodogram shows a broad, almost 

noise-like combination of all frequency components. An important implication is that history- 

based load prediction schemes seem very feasible. However, the complex frequency domain be- 

havior suggests that linear modeling schemes may have difficulty. From a modeling point of view, 

it is clearly important that these dependencies between successive load measurements are captured. 

(5) The traces are self-similar. Their Hurst parameters range from .63 to .97, with a strong bias 

toward the top of that range. This tells us that load varies in complex ways on all time scales and is 

long term dependent. This has several important implications. First, smoothing load by averaging 

over an interval results in much smaller decreases in variance than if load were not long range 

dependent. Variance decays with increasing interval length m and Hurst parameter H as m2H~2. 
This is m~10 for signals without long range dependence and m~0-74 to m-006 for the range of 

H we measured. This suggests that task migration in the face of adverse load conditions may 

be preferable to waiting for the adversity to be ameliorated over the long term. The self-similarity 

result also suggests certain modeling approaches, such as fractional ARIMA models [9,7, 3] which 

can capture this property. 

(6) The traces display epochal behavior. The local frequency content of the load signal re- 

mains quite stable for long periods of time (150-450 seconds mean) and changes abruptly at the 

boundaries of such epochs. This suggests that the problem of predicting load may be able to be 

decomposed into a sequence of smaller subproblems. 

2   Measurement methodology 

The load on a Unix system at any given instant is the number of processes that are running or 

are ready to run, which is the length of the ready queue maintained by the scheduler. The kernel 

samples the length of the the ready queue at some rate and exponentially averages some number 

of previous samples to produce a load average which can be accessed from a user program. 

We developed a small tool to sample the Digital Unix (DUX) one minute load average at 

one second intervals and log the resulting time series to a data file. The 1 Hz sample rate was 

arrived at by subjecting DUX systems to varying loads and sampling at progressively higher rates 

to determine the rate at which DUX actually updated the value. DUX updates the value at a rate 

of 1/2 Hz, thus we chose a 1 Hz sample rate by the Nyquist criterion. This choice of sample rate 

means we capture all of the dynamic load information the operating system makes available to user 

programs. We ran this trace collection tool on 38 hosts belonging to the Computing, Media, and 
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Figure 1: Correlation coefficients (CCs) between all of the discussed statistical properties. 

Communication Laboratory (CMCL) at CMU and the Pittsburgh Supercomputing Center (PSC) for 

slightly more than one week in late August, 1997. A second set of week-long traces was acquired 

on almost exactly the same set of machines in late February and early March, 1998. The results of 

the statistical analysis were similar for the two sets of traces. In this paper, we concentrate on the 

August 1997 set. 

All of the hosts in the August 1997 set were DEC Alpha DUX machines, and they form four 

classes: 

• Production Cluster: 13 hosts of the PSC's "Supercluster", including two front-end machines 

(axpfea, axpfeb), four interactive machines (axpO through axp3), and seven batch machines 

scheduled by a DQS [13] variant (axp4 through axplO.) 

• Research Cluster: eight machines in an experimental cluster in the CMCL 

(manchester-1 through manchester-8.) 

• Compute servers: two high performance large memory machines used by the CMCL group 

as compute servers for simulations and the like (mojave and sahara.) 

• Desktops: 15 desktop workstations owned by members of the CMCL (aphrodite through 

zeno.) 

3    Statistical analysis 

We analyzed the individual load traces using summary statistics, histograms, fitting of analytic 

distributions, and time series analysis. The picture that emerges is that load varies over a wide 

range in very complex ways. Load distributions are rough and frequently multimodal. Even traces 

with unimodal histograms are not well fitted by common analytic distributions, which have tails 

that are either too short or too long. Time series analysis shows that load is strongly correlated 

over time, but also has complex, almost noise-like frequency domain behavior. 

We summarized each of our load traces in terms of our statistical measures and computed their 

correlations to determine how the measures are related. Figure 1 contains the results. Each cell 

of the table is the correlation coefficient (CC) between the row measure and the column measure, 

computed over the 38 load traces. We will refer back to the highlighted cells throughout the paper. 
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Figure 2: Mean load +/- one standard deviation. 

It is important to note that these cross correlations can serve as a basis for clustering load traces 

into rough equivalence classes. 

Summary statistics: 

Summarizing each load trace in terms of its mean, standard deviation, and maximum and minimum 

illustrates the extent to which load varies. Figure 2 shows the mean load and the +/- one standard 

deviation points for each of the traces. As we might expect, the mean load on desktop machines is 

significantly lower than on other machines. However, we can also see a lack of uniformity within 

each class, despite the long duration of the traces. This is most clear among the Production Cluster 

machines, where four machines seem to be doing most of the work. This lack of uniformity even 

over long time scales shows clear opportunity for load balancing or resource management systems. 

From Figure 2 we can also see that desktop machines have smaller standard deviations than the 

other machines. Indeed, the standard deviation, which shows how much load varies in absolute 

terms, grows with increasing mean load (CC=0.53 from Figure 1.) However, in relative terms, 

variance shrinks with increasing mean load. This can be seen in Figure 3, which plots the coef- 

ficient of variation (the standard deviation divided by the mean, abbreviated as the COV) and the 

mean load for each of the load traces. Here we can see that desktop machines, with their smaller 

mean loads, have large COVs compared to the other classes of machines. The CC between mean 

load and the COV of load is -0.49. It is clear that as load increases, it varies less in relative terms 

and more in absolute terms. 

This difference between absolute and relative behavior also holds true for the maximum load. 
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Figure 3: COV of load and mean load. 

Figure 4 shows the minimum, maximum, and mean load for each of the traces. The minimum load 

is, not surprisingly, zero in every case. The maximum load is positively correlated with the mean 

load (CC=0.60 in Figure 1.) Figure 5 plots the ratio max/mean and the mean load for each of the 

traces. It is clear that this relative measure is inversely related to mean load, and Figure 1 shows 

that the CC is -0.36. It is also important to notice that while the differences in maximum load 

between the hosts are rather small (Figure 4), the differences in the max/mean ratio can be quite 

large (Figure 5.) Desktops are clearly more surprising machines in relative terms. 

With respect to the mapping problem, the implication of the differences between relative and 

absolute measures of variability is that lightly loaded (low mean load) hosts are not always prefer- 

able over heavily loaded hosts. For example, if the performance metric is itself a relative one (that 

the execution time not vary much relative to the mean execution time, say), then a more heavily 

loaded host may be preferable. 

Distributions: 

We next treated each trace as a realization of an independent, identically distributed (IID) stochastic 

process. Such a process is completely described by its probability distribution function (pdf), 

which does not change over time. Since we have a vast number of data points for each trace, 

histograms closely approximate this underlying pdf. We examined the histograms of each of our 

load traces and fitted normal and exponential distributions to them. To illustrate the following 

discussion, Figure 6 shows the histograms of load measurements on (a) axpO and (b) axp7 on 

August 19, 1997 (86400 samples each.) AxpO has a high mean load, while axp7 is much more 

lightly loaded. 

Some of the traces, especially those with high mean loads, have multimodal histograms. Fig- 
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Figure 4: Minimum, maximum, and mean load. 

ure 6(a) is an example of such a multimodal distribution while Figure 6(b) shows a unimodal 

distribution. Typically, the modes are integer multiples of 1.0 (and occasionally 0.5.) One explana- 

tion for this behavior is that jobs on these machines are for the most part compute bound and thus 

the ready queue length corresponds to the number of jobs. This seems plausible for the cluster ma- 

chines, which run scientific workloads for the most part. However, such multimodal distributions 

were also noticed on the some of the other machines. 

The rough appearance of the histograms (consider Figure 6(b)) is due to the fact that the under- 

lying quantity being measured (ready queue length) is discrete. Load typically takes on 600-3000 

unique values in these traces. Shannon's entropy measure [21] indicates that the load traces can 

be encoded in 1.4 to 8.48 bits per value, depending on the trace. These observations and the 

histograms suggest that load spends most of its time in one of a small number of levels. 

The histograms share very few common characteristics and did not conform well to the analytic 

distributions we fit to them. Quantile-quantile plots are a powerful way to assess how a distribution 

fits data (cf. [11], pp. 196-200.) The quantiles (the a quantile of a pdf (or histogram) is the value x 
at which 100a % of the probability (or data) falls to the left of x) of the data set are plotted against 

the quantiles of the hypothetical analytic distribution. Regardless of the choice of parameters, the 

plot will be linear if the data fits the distribution. 

We fitted normal and exponential distributions to each of the load traces. The fits are atrocious 

for the multimodal traces, and we do not discuss them here. For the unimodal traces, the fits are 

slightly better. Figure 7 shows quantile-quantile plots for (a) normal and (b) exponential distri- 

butions fitted to the unimodal axp7 load trace of Figure 6(b). Neither the normal or exponential 

distribution correctly captures the tails of the load traces. This can be seen in the figure.  The 
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Figure 6: Histograms for load on axpO and axp7 on August 19,1997. 

quantiles of the data grow faster than those of the normal distribution toward the right sides of 

Figures 7(a). This indicates that the data has a longer or heavier tail than the normal distribution. 

Conversely, the quantiles of the data grow more slowly than those of the exponential distribution, 

as can be seen in Figures 7(b). This indicates that the data has a shorter tail than the exponential 

distribution. Notice that the exponential distribution goes as e~x while the normal distribution goes 
-X2 

as e 
x . 

There are two implications of these complex distributions. First, simulation studies and analytic 
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Figure 8: Time series analysis of axp7 load trace collected on August 19, 1997. 

results predicated on simple, analytic distributions may produce erroneous results. Clearly, trace- 

driven simulation studies are to be preferred. The second implication is that prediction algorithms 

should not only reduce the overall variance of the load signal, but also produce errors that are better 

fit an analytic distribution. One reason for this is to make confidence intervals easier to compute. 
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Time series analysis: 

We examined the autocorrelation function, partial autocorrelation function, and periodogram of 

each of the load traces. These time series analysis tools show that past load values have a strong 

influence on future load values. For illustration, Figure 8 shows (a) the axp7 load trace collected 

on August 19, 1997, (b) its autocorrelation function to a lag of 600, and (c) its periodogram. The 

autocorrelation function, which ranges from -1 to 1, shows how well a load value at time t is 

linearly correlated with its corresponding load value at time t + A — in effect, how well the value 

at time t predicts the value at time t + A. Autocorrelation is a function of A, and in the figure we 

show the results for 0 < A < 600. Notice that even at A = 600 seconds, values are still strongly 

correlated. This very strong, long range correlation is common to each of the load traces. For space 

reasons, we do not discuss the partial autocorrelation results here. However, it is important to note 

that the behavior of the autocorrelation and partial autocorrelation functions is instrumental to the 

Box-Jenkins linear time series model identification process [4]. 

The periodogram of a load trace is the magnitude of the Fourier transform of the load data, 

which we plot on a log scale (Figure 8(c).) The periodogram shows the contribution of different 

frequencies (horizontal axis) to the signal. What is clear in the figure, and is true of all of the load 

traces, is that there are significant contributions from all frequencies — the signal looks much like 

noise. We believe the two noticeable peaks to be artifacts of the kernel sample rate — the kernel 

is not sampling the length of the ready queue frequently enough to avoid aliasing. Only a few of 

the other traces exhibit the smaller peaks, but they all share the broad noise-like appearance of this 

trace. 

There are several implications of this time series analysis. First, the existence of such strong 

autocorrelation implies that load prediction based on past load values is feasible. It also suggests 

that simulation models and analytical work that eschews this very clear dependence may be in 

error. Finally, the almost noise-like periodograms suggest that quite complex, possibly nonlinear 

models will be necessary to produce or predict load. 

4    Self-similarity 

The key observation of this section is that each of the load traces exhibits a high degree of self- 

similarity. This is significant for two reasons. First, it means that load varies significantly across 

all time-scales — it is not the case that increasing smoothing of the load quickly tames its variance. 

A job will have a great deal of variance in its running time regardless of how long it is. Second, it 

suggests that load is difficult to model and predict well. In particular, self-similarity is indicative of 

long memory, possibly non-stationary stochastic processes such as fractional ARIMA models [9, 

7, 3], and fitting such models to data and evaluating them can be quite expensive. 

Figure 9 visually demonstrates the self similarity of the axp7 load trace. The top graph in the 

figure plots the load on this machine versus time for 10 days. Each subsequent graph "zooms in" on 

the highlighted central 25% of the previous graph, until we reach the bottom graph, which shows 

the central 60 seconds of the trace. The plots are scaled to make the behavior on each time scale 

obvious. In particular, over longer time scales, wider scales are necessary. Intuitively, a self-similar 

signal is one that looks similar on different time scales given this rescaling. Although the behavior 

on the different graphs is not identical, we can clearly see that there is significant variation on all 
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Figure 10: Meaning of the Hurst parameter in frequency domain. 

time scales. 

An important point is that as we smooth the signal (as we do visually as we "zoom out" toward 

the top of the page in Figure 9), the load signal strongly resists becoming uniform. This suggests 

that low frequency components are significant in the overall mix of the signal, or, equivalently, 

that there is significant long range dependence. It is this property of self-similar signals that most 

strongly differentiates them and causes significant modeling difficulty. 

Self-similarity is more than intuition — it is a well defined mathematical statement about the 

relationship of the autocorrelation functions of increasingly smoothed versions of certain kinds of 

long-memory stochastic processes. These stochastic processes model the sort of the mechanisms 

that give rise to self-similar signals. We shall avoid a mathematical treatment here, but interested 

readers may want to consult [15] or [16] for a treatment in the context of networking or [2] for its 

connection to fractal geometry, or [3] for a treatment from a linear time series point of view. 

The degree and nature of the self-similarity of a sequence is summarized by the Hurst param- 

eter, H [10]. Intuitively, H describes the relative contribution of low and high frequency compo- 

nents to the signal. Consider Figure 10, which plots the periodogram (the magnitude of the Fourier 

transform) of the axp7 load trace of August 19,1997 on a log-log scale. In this transformed form, 

we can describe the trend with a line of slope —ß (meaning that the periodogram decays hyperbol- 

ically with frequency u> as uj~ß. The Hurst parameter H is then defined as H = (1 + ß)/2. As we 

can see in Figure 10, H = 0.5 corresponds to a fine of zero slope. This is the uncorrelated noise 

case, where all frequencies make a roughly equal contribution. As H increases beyond 0.5, we see 

that low frequencies make more of a contribution. Similarly, as H decreases below 0.5, low fre- 

quencies make less of a contribution. H > 0.5 indicates self-similarity with positive near neighbor 

correlation, while H < 0.5 indicates self-similarity with negative near neighbor correlation. 

We examined each of the 38 load traces for self-similarity and estimated each one's Hurst pa- 

rameter. There are many different estimators for the Hurst parameter [23], but there is no consensus 
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Figure 11: Mean Hurst parameter estimates for traces +/- one standard deviation. 

on how to best estimate the Hurst parameter of a measured series. The most common technique is 

to use several Hurst parameter estimators and try to find agreement among them. The four Hurst 

parameter estimators we used were R/S analysis, the variance-time method, dispersional analy- 

sis, and power spectral analysis. A description of these estimators as well as several others may be 

found in [2]. The advantage of these estimators is that they make no assumptions about the stochas- 

tic process that generated the sequence. However, they also cannot provide confidence intervals 

for their estimates. Estimators such as the Whittle estimator [3] can provide confidence intervals, 

but a stochastic process model must be assumed over which an H can be found that maximizes its 

likelihood. 

We implemented R/S analysis and the variance-time method using Matlab and performed dis- 

persional analysis and power spectral analysis by hand on graphs prepared via Matlab. We val- 

idated each method by examining degenerate series with known H and series with specific H 

generated using the random midpoint displacement method. The dispersional analysis method was 

found to be rather weak for H values less than about 0.8 and the power spectral analysis method 

gave the most consistent results. 

Figure 11 presents our estimates of the Hurst parameters of each of the 38 load traces. In the 

graph, each central point is the mean of the four estimates, while the outlying points are at +/- 

one standard deviation. Notice that for small H values, the standard deviation is high due to the 

inaccuracy of dispersional analysis. The important point is that the mean Hurst estimates are all 

significantly above the H = 0.5 line and except for three traces with low H values, their +/- one 

standard deviation points are also above the fine. 
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The traces exhibit self-similarity with Hurst parameters ranging from 0.63 to 0.97, with a strong 

bias toward the top of that range. On examination of the correlation coefficients (CCs) of Figure 1, 

we can see that the Hurst parameter has some correlation with mean load (CC=0.45), standard 

deviation of load (CC=0.58), and is inversely correlated with the max/mean load ratio (CC=-0.49). 

The latter seems somewhat surprising. 

As we discussed above, self-similarity has implications for load modeling and for load smooth- 

ing. The long memory stochastic process models that can capture self-similarity tend to be expen- 

sive to fit to data and evaluate. Smoothing the load (by mapping large units of computations instead 

of small units, for example) may be misguided since variance may not decline with increasing 

smoothing intervals as quickly as quickly as expected. Consider smoothing load by averaging over 

an interval of length m. Without long range dependence (H — 0.5), variance would decay with 

m as m~
10

, while with long range dependence, as m2H~2 or m
-0,74

 and m~°-
06

 for the range of 

Hurst parameters we measured. 

5   Epochal behavior 

The key observation in this section is that while load changes in complex ways, the manner in 

which it changes remains relatively constant for relatively long periods of time. We refer to a 

period of time in which this stability holds true as an epoch. For example, the load signal could be 

a 0.25 Hz Sin wave for a minute and a 0.125 Hz sawtooth wave the next minute — each minute 

is an epoch. That these epochs exist and are long is significant because it suggests that modeling 

load can be simplified by modeling epochs separately from modeling the behavior within an epoch. 

Similarly, it suggests a two stage prediction process. 

The spectrogram representation of a load trace immediately highlights the epochal behavior we 

discuss in this section. A spectrogram combines the frequency domain and time domain represen- 

tations of a time series. It shows how the frequency domain changes locally (for a small segment 

of the signal) over time. For our purposes, this local frequency domain information is the "manner 

in which [the load] changes" to which we referred earlier. To form a spectrogram, we slide a win- 

dow of length w over the series, and at each offset k, we Fourier-transform the w elements in the 

window to give us w complex Fourier coefficients. Since our load series is real-valued, only the 

first w/ 2 of these coefficients are needed. We form a plot where the x coordinate is the offset k, 

the y coordinate is the coefficient number, 1,2,..., w/2 and the z coordinate is the magnitude of 

the coefficient. To simplify presentation, we collapse to two dimensions by mapping the logarithm 

of the z coordinate (the magnitude of the coefficient) to color. The spectrogram is basically a mid- 

point in the tradeoff between purely time-domain or frequency-domain representations. Along the 

x axis we see the effects of time and along the y axis we see the effects of frequency. 

Figure 12 shows a representative case, a 24 hour trace from the PSC host axp7, taken on August 

19, 1997. The top graph shows the time domain representation, while the bottom graph shows the 

corresponding spectrogram representation. What is important to note (and which occurs in all 

the spectrograms of all the traces) are the relatively wide vertical bands. These indicate that the 

frequency domain of the underlying signal stays relatively stable for long periods of time. We refer 

to the width of a band as the duration of that frequency epoch. 

That these epochs exist can be explained by programs executing different phases, programs 
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Figure 12: Time domain and spectrogram representations of load for host axp7 on August 19, 

1997. 

being started and shut down, and the like. The frequency content within an epoch contains energy 

at higher frequencies because of events that happen on smaller time-frames, such as user input, 

device driver execution, and daemon execution. 

We can algorithmically find the edges of these epochs by computing the difference in adja- 

cent spectra in the spectrogram and then looking for those offsets where the differences exceed 

a threshold. Specifically, we compute the sum of mean squared errors for each pair of adjacent 

spectra. The elements of this error vector are compared to an epsilon (5% here) times the mean of 

the vector. Where this threshold is exceeded, a new epoch is considered to begin. Having found 

the epochs, we can examine their statistics. Figure 13 shows the mean epoch length and the +/- one 

standard deviation levels for each of the load traces. The mean epoch length ranges from about 150 

seconds to over 450 seconds, depending on which trace. The standard deviations are also relatively 

high (80 seconds to over 600 seconds.) It is the Production Cluster class which is clearly different 

when it comes to epoch length. The machines in this class tend to have much higher means and 

standard deviations than the other machines. One explanation might be that most of the machines 

run batch-scheduled scientific jobs which may well have longer computation phases and running 

times. However, two of the interactive machines also exhibit high means and standard deviations. 

Interestingly, there is no correlation of the mean epoch length and standard deviation to the mean 

load or to the Hurst parameter, as can be seen in Figure 1. 

The standard deviations of epoch length in Figure 13 give us an absolute measure of the vari- 

ance of epoch length. Figure 14 shows the coefficient of variance (COV) of epoch length and 

mean epoch length for each trace. The COV is our relative measure of epoch length variance. Un- 

like with load (Section 3), these absolute and relative measures of epoch length variance are both 

positively correlated with the mean epoch length. In addition, the correlation is especially strong 

(CC=0.99 for standard deviation and CC=0.95 for COV). As epoch length increases, it varies more 

in both absolute and relative terms. The statistical properties of epoch lengths are independent of 
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Figure 13: Mean epoch length +/- one standard deviation. 

the statistical properties of load. 

The implication of long epoch lengths is that the problem of predicting load may be able to be 

decomposed into a segmentation problem (finding the epochs) and a sequence of smaller prediction 

subproblems (predicting load within each epoch.) 

Lack of seasonality: 

It is important to note that the epochal behavior of the load traces is not the same thing as season- 

ality in the time series analysis sense [5, 4]. Seasonality means that there are dominant (or at least 

visible) underlying periodic signals on top of which are layered other signals. It is not unreasonable 

to expect seasonality given that other studies [17] have found that availability of compute resources 

to change regularly over the hours of the working day and the days of the working week. However, 

examination of the power spectrums and autocorrelations of the load traces suggests that load does 

not exhibit seasonality. We feel this does not contradict the earlier results — the fluctuation of 

resources simply is not sufficiently periodic to qualify as seasonality in the strict time series sense. 

6    Conclusions and future work 

We collected long, fine grain load measurements on a wide variety of machines at two different 

times of the year. The results of an extensive statistical analysis of these traces and their implica- 

tions are the following: 
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Figure 14: COV of epoch length and mean epoch length. 

1. The traces exhibit low means but very high standard deviations and maximums. This implies 

that these machines have plenty of cycles to spare to execute jobs, but the execution time of 

these jobs will vary drastically. 

2. Absolute measures of variation are positively correlated with the mean while relative mea- 

sures are negatively correlated. This suggests that it may not be unreasonable to map tasks 

to heavily loaded machines under some performance metrics. 

3. The traces have complex, rough, and often multimodal distributions that are not well fitted by 

analytic distributions such as the normal or exponential distributions, which are particularly 

inept at capturing the tail of the distribution. This implies that modeling and simulation that 

assumes convenient analytical load distributions may be flawed. Trace-driven simulation 

may be preferable. 

4. Load is strongly correlated over time, but has a broad, almost noise-like frequency spectrum. 

This implies that history-based load prediction schemes are feasible, but that linear methods 

may have difficulty. Realistic load models should capture this dependence, or trace-driven 

simulation should be used. 

5. The traces are self-similar with relatively high Hurst parameters. This means that load 

smoothing will decrease variance much more slowly than expected. It may be preferable 

to migrate tasks in the face of adverse load conditions instead of waiting for the adversity to 

be ameliorated over the long term. Self-similarity also suggests certain modeling approaches 
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such as fractional ARIMA models [9, 7, 3] and non-linear models which can capture the self 

similarity property. 

6. The traces display epochal behavior in that the local frequency content of the load signal 

remains quite stable for long periods of time and changes abruptly at the boundaries of such 

epochs. This suggests that the problem of predicting load may be able to be decomposed 

into a sequence of smaller subproblems. 

We are currently exploring how well the hierarchy of linear time series models [4] perform for 

short term prediction of load. Part of this work involves quantifying the benefit of capturing the 

self-similarity of load using fractional ARIMA models [7, 9, 3]. Initial results show that fractional 

models provide as much as a 40% improvement in prediction error and rarely perform worse than 

their non-fractional counterparts. 

The context of our work is dynamically mapping real-time tasks to hosts in a distributed en- 

vironment. In this context, we are interested in load models for classifying environments and 

hosts, synthesizing realistic execution times in a simulator, and for predicting execution times on 

remote hosts. We will gladly share the load traces we have collected with members of the research 

community. 
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