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The theory stemming from the statistical representation of turbulent flames is pre- 
sented and developed, the major aim being to describe the basic processes in relatively 
simple flames. 

Starting from conservation equations, with the assumption of low Mach number and 
high Reynolds number, it is shown that the properties at any point in the flame can be 
determined from the transport equations for the velocity U and a set of scalars 4:  4 rep-
resents the species mass fractions and enthalpy. However, the solution of these equations 
with initial conditions and boundary conditions appropriate to turbulent flames is pro- 
hibitively difficult. Statistical theories attempt to describe the behaviour of averaged 
quantities in terms of averaged quantities. This requires the introduction of closure 
approximations, but renders a more readily soluble set of equations. A closure of 
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the Reynolds-stress equations and the equation for the joint probability density 
function of 4 is considered. The use of the joint probability density function (p.d.f.) 
equation removes the difficulties that are otherwise encountered due to non-linear 
functions of the scalars (such as reaction rates). While the transport equation for the 
joint p.d.f. provides a useful description of the physics, its solution is feasible only for 
simple cases. As a practical alternative, a general method is presented for estimating the 
joint p.d.f. from its first and second moments: transport equations for these quantities 
are also considered therefore. 

Modelled transport equations for the Reynolds stresses, the dissipation rate, scalar 
moments and scalar fluxes are discussed, including the effects of reaction and density 
variations. A physical interpretation of the joint p.d.f. equation is given and the 
modelling of the unknown terms is considered. A general method for estimating the 
joint p.d.f. is presented. I t  assumes that the joint p.d.f. is the statistically most likely 
distribution with the same first and second moments. This distribution is determined for 
any number of reactive or non-reactive scalars. 

1.  Introduction and outline 

Recently, research into turbulent flames has increased owing to a greater need for understanding 

and an enhanced hope of its attainment. The need stems from rising fuel costs and stricter 

regulation of atmospheric pollution from combustion products: the hope of gaining a better 

understanding of flames is mainly attributable to the qualified success of turbulence modelling, 

a practice that enables the velocity field and other mean properties of inert flows to be calculated. 

As well as causing an increase in the established literature, this research boom has resulted in 

several collective works (Murthy 1975; Bracco 1976; Brodkey 1975) which reflect the diversity 

of approaches to the subject. Workers from many fields have made their contributions and yet the 

ability to calculate local flame properties such as temperature is extremely limited. Many 

models have been proposed and many calculations performed but, with the possible exception of 

one special case (the idealized diffusion flame), no physically realistic and quantitatively accurate 

model has been demonstrated. The development of sound theories has been hindered by the 

paucity of relevant experimental data which has also allowed unsound theories to go without 

direct refutation: this in turn has led, in some quarters, to an overestimation of present abilities. 

The aim of this work is to re-examine the problem of modelling turbulent flames, and to 

present and develop an appropriate statistical theory. In  view of the unsatisfactory state of 

current abilities, the emphasis throughout is on determination of the basic properties of rela- 

tively simple flames. Minor species pollutant formation is not considered nor are complicating 

factors such as droplet fuels or soot formation. 

Theoretical and experimental studies of turbulent flames have centred on idealizations of 

practically occurring situations. The three archetypal configurations are the jet diffusion flame 

corresponding to a furnace flame, the homogeneously premixed flame corresponding to a reheat 

system and the jet premixed flame: these are illustrated in figure 1. A tractable theory for such 

flames can be obtained with the assumption of a single phase, high Reynolds number, low Mach 

number flow. The consideration of single phase flow eliminates complications caused by fuel 

droplets and particles on the one hand and soot formation on the other; and, for gaseous fuels and 

their combustion products, the Prandtl and Schmidt numbers are not far from unity. At the high 

Reynolds number considered, the aerodynamics of the flow are dominated by inertial processes 

and, except in the immediate vicinity of solid surfaces, viscosity plays a subordinate r61e. No 
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specific assumption is made about the reaction mechanism although, on the ground of practi- 

cality, a simple scheme is required. The assumption of low Mach number ensures that turbulent 

pressure fluctuations are not large enough to affect the rate of chemical reaction. 

The type of theory sought is one whereby, given the physical properties of the fuel and oxidant 

together with appropriate boundary and initial conditions, the average velocity, temperature 

and species concentration fields can be determined. For laminar flows this can be accomplished 

by solution of the conservation equations for mass, momentum, energy and chemical species; for 

turbulent flows the same equations hold but, due to the widely differing length and time scales, 

air 

t 
fuel fuellair fuellair 

FIGURE1. Simple turbulent flames. 

their solution is impossible. If such a solution were obtained it would describe the detailed be- 

haviour of the flame at  every instant, including even the smallest scale of fluctuation due to 

turbulence. This is far more information than can be of use. The less detailed description provided 

by average quantities is all that is required, and it is the purpose of the theory considered to achieve 

this through a commensurately less complicated, soluble, set of equations. I n  other words, a 

statistical theory is sought to describe the behaviour of the flame in terms of statistical quantities. 

I n  the next section, the conservation equations for mass, momentum, energy and chemical 

species are presented and the assumptions implemented. This results in a closed set of equations 

for the velocity U(x, t) and scalar quantities +(x, t), species mass fractions and enthalpy. I n  8 3 the 

statistical approach is introduced with a discussion on methods of obtaining statistical averages: 

density-weighted ensemble averages (denoted by a tilde) are most appropriate in turbulent 

flames. Conservation equations for the average velocity and scalar fields, u(x ,  t) and $(x, t ) ,are 

not immediately soluble since they contain two types of unknown terms. First, correlations of 

fluctuating velocity, u",with itself or with fluctuations in the scalars +", appear in the equations, 

representing transport by the turbulent velocity field. Secondly, average values of density and 

reaction rates appear: these can be determined from the joint probability density function 

P(@; x, t) -
The remainder of the paper is concerned with methods of determining these unknowns- u: uj, 

u;#: 
/V 

andp($;  x, t) -and the strategy adopted is discussed in 5 4. Part B, $$5-9, is concerned with 
/4, 

turbulence models' which can be used to determine the Reynolds stresses, u:u;, the scalar fluxes, 
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uzcj:, and scalar variances, cj: 4;. The transport equations for these quantities are, and will 

remain, central to calculation methods for turbulent flames. 

In a laminar flame, a complete description of the chemical composition of the gases at any point 

is provided by a knowledge of the mass fractions 4(x,  t), say, of every species. Reaction and mixing 

cause the composition to vary from point to point. For a turbulent flame, a complete statistical 

description of the chemical composition is provided by the joint probability density function 

p(@;X, t) where 
P(@;x, t) d@ 

represents the probability of 4(x ,  t) being in the range 

@ is the set of independent variables corresponding to the dependent scalar variables, 4(x, t): a 

given value of @ corresponds to a gas mixture of a given composition, and hence @-space is 

termed the composition space. p(@; x, t) represents the statistical distribution of compositions, 

and phenomena that affect chemical composition (reaction and mixing) can be regarded as 

affecting this distribution in composition space. 

In  part C, $$lo-1 2, the properties and behaviour of the joint probability density function 

are studied. A consideration of the transport equation for p(@; x, t) throws light on his behaviour 

but, in all but the simplest of cases, the equation appears prohibitively difficult to solve. Conse- 

quently, an alternative method of determining P(@; x, t) is required. The method proposed 

is, simply, to assume that p(@; x, t) is the statistically most likely distribution. I n  $ 12 this 

distribution is determined as a function of the reaction rates and of the first and second moments, -
6, and 4: 4;. Thus, rather than solving the transport equation for p(@; x, t), its most likely value -
can be deduced from the solution of the far simpler transport equations for 6, and 9; cj8. 

2. Formulation 

The chemical and thermodynamic properties of a reacting system can be characterised by the 

mass fraction of each chemical species, m,, the enthalpy, h, and the pressure p;  an equation of 

state relates these quantities to the density. The velocity, U, completes the description of the 

system. These quantities obey the following conservation equations: 

conservation of mass 

apu.  apui u, ari, ap
conservation of momentum ---2 + ---- = -4--

at axi axi ax, +pi?j)  

conservation of chemical species  

aph i3pU.h aJt
conservation of enthalpy -+- = --at axi axi +PS,, 

where g, is the component of gravitational acceleration in thej-direction, rij,Jz and Jf are the 

mass fluxes of the quantities involved owing to moIecular transport, and S, and S,, are the mass 

rates of addition per unit volume. These quantities are (in principle) known functions of the 
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physical and chemical properties of the gases involved and the formulation is completed by the 

equation of state, 
P = p(m,h,p) ,  (2.5) 

where m denotes the set of species mass fractions. Other quantities, such as temperature T, can 

be determined from similar, auxiliary, relations, 

S, is the mass rate of addition of species a due to chemical reaction. The reaction rates, and 

hence S,, are algebraic functions ofp, p, T and m .  p and T a r e  given in terms ofp, h and m by 

equations (2.5) and (2.6), and so S, can be expressed as a function ofp, m and h. The assumption 

of low Mach number, Ma, is invoked in order to remove the dependence of S, on pressure vari- 

ations, Ap, caused either by the mean flow or by turbulent fluctuations. The magnitude of such 

variations can be estimated as follows: 

where U is a characteristic velocity and a is the speed of sound. I n  terms of the ratio of specific 

heats (y  z 1.4, say) the speed of sound is 

a = ( Y P / P ) ~  (2.8) 

which leads to Ap/p K Ma2. (2.9) 

Thus, while S, depends upon the absolute level of pressure, its dependence on pressure fluctu- 

ations can be ignored at  low Mach number. 

Enthalpy, h, represents the thermodynamic and chemical (but not mechanical) energy per 

unit volume, and its source Sh Citn be caused by two agencies -radiation and the conversion of 

mechanical energy to heat by compressibility and viscous dissipation. The treatment of radiant 

heat transfer in flames is a difficult task and outside the scope of the present work. I t  is assumed, 

therefore, that the contribution of radiation to Sheither is known in terms ofp, m and h or is 

negligible. (For small flames, such as those in laboratories, heat loss by radiation is usually a 

negligible fraction of th t  total heat flow.) 

The assumption of low Mach number allows the neglect of the transfer of mechanical energy 

to heat. The mechanical energy (per unit mass), i U 2 ,  is small compared with the heat content, 

The left hand side of equation (2.10) represents the fractional rise in temperature, A T /  T, that 

would result from all the mechanical energy being converted into heat. Clearly, at  low Mach 

number this is negligible compared with the temperature rise due to combustion. 

I n  inert, isothermal flows of ideal gases, the viscous stress tensor is given by Newton's law of 

viscosity, 

and, for binary mixtures, the species mass flux J; is given by Fick's law, 

I n  flames, with many chemical species and steep gradients of density and temperature, these 

processes are far more comp1icat:ed; quantities diffuse down gradients other than their own and 

the diffusion coefficients can be strong (though not simple) functions of the thermodynamic 
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variables. I t  is possible to write a general expression for these processes but the complexity this 

would cause in the ensuing manipulations, if not making the equations intractable, would cer- 

tainly result in attention being paid to the processes out of all proportion to their physical im- 

portance. Further, at  the end of such analysis, drastic simplifications would be required in order 

to make the resultant equations practically solvable. In  fact, the models presented below make no 

reference to laminar viscosities and diffusivities at all. I t  is only sensible, therefore, to make sim- 

plif~~ingassumptions at  this stage rather than after a great deal of algebraic manipulation. Con- 

sequently, simple gradient diffusion given by equations (2.11) and (2.12) will be employed. 

Some justification for this expedient assumption is provided by the following three points. 

(i) The assumption is not that the molecular processes are described by simple gradient 

diffusion for this is unlikely to be true. Rather, it is assumed that the behaviour of the equations 

on all but the smallest scales is independent of the detailed form of the diffusion. This, clearly, 

is a far weaker assumption. 

(ii) Even if the details of the molecular processes have some influence, they are unlikely to be 

rate-controlling. Molecular action is only significant on small length-scales and the process of 

scale-reduction - whereby the length scales of the turbulent fluctuations are decreased - is an 

inertial process and therefore independent of viscosity and diffusivity. 

(iii) I n  pragmatic vein, until a convincing theory is obtained based upon the simplified 

equations there is little merit in considering a more complicated set. 

The assumptions made allow equations (2.2)-(2.5) to be rewritten as: 

and P = P(4),  

where $, represents one of the scalars (m, or h)  and p and S, are known functions. 

3. Statistical equations 

Equations (2.1) and (2.13)-(2.15) form a closed set. With initial conditions, U(x, to) and 

+(x, to), and boundary conditions, U(xb, t) and 4(xb, t), then Uand 4 are determined within the 

boundary by these equations for times greater than to. Analytic solutions have only been obtained 

for simple laminar flows. In  general, numerical solution seems to be the only way but, for turbu- 

lent flows, even this is restricted to very low Reynolds number, Re, because of computer limi- 

tations. And the computer time required to solve the equations increases (at least) as ReL&'. This 

indicates that the direct approach is ill conceived since the mean quantities of interest are found 

to be, at  most, weak functions of Reynolds number. Since it is average quantities that are of 

interest, an immediately apparent alternative approach is to consider the averaged conservation 

equations. 

There is some difficulty in providing a definition of average quantities that is easy to measure 

and has the desired mathematical properties. Here ensemble (or realization) averaging, indicated 

by angular brackets, is used: 
1 N 

($(x, t)) = lim 2 $(")(x, t), 
~ - + mNn=1 
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where #(")(x, t )  is the value of 4 a.t x and t in the nth of N similar realizations. Nearly all the rele- 

vant experiments are performed in statistically stationary flows (that is, a($(x, t))/at = 0) in 

which case the more easily measured time averages are equal to ensemble averages. 

From the definition of ensemble averaging, it follows that 

and (4 + e >  = (4) + (6). (3n4) 

With the further definition of fluctuating values, 

it follows that (4') = 0, 

(4'6') = (46') = ($6) - (4) (6)) 

and similar relations for multiples of three and more quantities. 

Decomposing each variable into its mean and fluctuating component, substituting into 

equation (2.13) and ensemble averaging yields an equation for the conservation of mean 

momentum: 

(urather than U' is used for fluctuatingvelocity.) I t  is immediately apparent that, in the process of 

decomposing and averaging, extra terms are generated and the equation loses its straightforward 

physical interpretation. In  hindsight, part of the reason for this is readily seen. I n  the momentum 

equation (2.13)) which can be regarded as an equation for q.,p q .  represents the momentum per 

unit volume. The mean momentum per unit volume is (p) (q.)+(put) and so the subject of 

equation (3.8) can be thought of as (q)+ (pui)/(p): the equation is commensurately compli- 

cated. 

Simpler and more easily interpreted equations are obtained by decomposing quantities into a 

mean 6, and fluctuating component, $", such that ( p ) fi, is the mean mass of species a per unit 

volume and so on. This is achieved through density-weighted averaging or Favre averaging 

(Favre 1969) which defines 6 and 4" by 

and 4" = 4-6. (3.10) 

Equation (3.9)) as well as defining 6, defines the process of density-weighted averaging: thus, for 

example, 

(P) P = (P#") = 0, 

and 

Note, however, that in general (4") is non-zero. 
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By using density-weighted averaging, the conservation equation for mean momentum 

becomes, 

+ (p)gr (3.13) 

In  this equation, the first term represents the change with time of the meanj-direction momen- 

tum per unit volume; a((p) oiDj)/axi represents the net loss due to mean flow convection while 

a(pu','u;)/axi is the net loss due to turbulent convection. The first term on the right hand side 

represents a gain due to molecular diffusion and is negligible at high Reynolds number: (L$) is, 

at most, a weak function of Reynolds number whereas p is inversely proportional. The final terms 

represent the mean force in the j-direction per unit volume. 

Equations (2.1) and (2.13)-(2.15) provide a closed set of equations. Their mean counterparts 

(omitting the negligible molecular diffusion terms) are: 

-at 
a 

(P)A + 
a 

((P) 0,4, + ( p u ; ~ ) )= (p)gU(+), (3.16) 

and (P) = ( ~ ( 4 ) ) .  (3.17) 

(The derivation of all equations quoted can be found in the appendix.) I t  may be noted that 
hcl 

(p) uiuy could be written for (pu','u;) and similarly for (puzq5:).  

The quantities appearing in these equations may be considered in three groups:  

( i )  ( p  u ) ,  (pu','#:), 

and ( ~ ( 4 )  gu(4).)Y 

Group (i) comprises the meanquantities which it is the objective to determine. Equations (3.14)- 

(3.16) can be considered equations for n a n d  &, (p) being a function of fl, and then groups (ii) to 

(iii) quantities are 'unknowns'. The quantities in group (ii) are density-weighted velocity- 

velocity or velocity-scalar correlations which are zero for a laminar flow but non-zero for 

turbulent flows whether reactive or not. The principle aim of turbulence modelling is to provide a 

means of determining these. 

The quantities in the third group are functions of the scalars alone and their determination if 

trivial in laminar flows. p(4) and S,(d) are known functions and, typically, Sis highly nonlinear. 

Consequently, $a@) # sU(?); (3.18) 

indeed, the two sides of this inequality can differ by several orders of magnitude. The mean 

reaction rates (and any other function) can be evaluated from the joint probability density 

function (p.d.f.) of the scalars by 

(P) J u ( ~ )  P($) $a($) d*, (3.19)= I@($) 
(I t  may be recalled that + represents the composition space and p($) d$ is the probability that 

4 lies in the range $ < 4 < + + d+.) Here, the determination of$(+) is regarded as the principal 

aim of combustion modelling. Of course, P($)contains far much more information than is 

required - that is, JU(4)  and ( ~ ( 4 ) )  -and so it could be claimed that the determination ofp($) is 
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commensurately more difficult than the determination of 3&(4)and (p(4)). In  fact, becausep(+) 

contains all the statistical informahon about the scalars at  a point, its determination is in many 

ways more simple. 

At this stage the general problem and objective can be stated mere clearly. Equations (2.1) and 

(2.13)-(2.15) describe the detailed behaviour of turbulent flames but, because they contain so 

much detail, they cannot be solved directly. However, a statistical description in terms ofaverage 

quantities, ( U ) and ($), is adequate for nearly all purposes. (In fact, for variable density flows, 

it is more convenient and physically more meaningful to consider the density-weighted mean 

quantities, and F.) Equations (3.14)- (3.16) can be solved for and $ if the turbulent fluxes 

((pu',:~;) and (pu;&)) and the mean reaction rates and density are known: a knowledge of the 

joint probability distribution of the scalars, p(+),is sufficient to determine these latter two quan- 

tities. Thus, the description of turbulent flames sought can be achieved with a knowledge of 

the turbulent fluxes and the joint p.d.f. of the scalars. 

4. Closure strategy 

I n  the transport equations for a group of statistical quantities, quantities appear that are 

not contained within the group. This is the closure problem which exists for all groups, and 

combinations of groups, of statistical quantities. I t  reflects the fact that statistical quantities 

can provide only a partial description of turbulence and that they are affected by influences 

other than those that they describe. Statistical theories effect closure by approximating these 

influences in terms of the statistical quantities within the group considered, thus equalizing the 

numbers ofquantities and equations. 

Statistical theories are different in nature to deterministic theories. From the instantaneous 

conservation equations, the future state of a flow can (in principle) be determined precisely, given 

a precise knowledge of the initial and boundary conditions. Given only statistical information 

about the initial and boundary conditions, the flow is not completely specified and so the future 

state, even of statistical quantities, is not completely determined. I n  other words, there is an 

uncertainty in the future values of statistical quantities due to the influence of the remaining, 

unknown, initial and boundary conditions. The most that can be expected of a statistical theory, 

therefore, is to provide an estimate of' the future values within this uncertainty. An accurate 

theory is only possible if this uncertainty is small which, in turn, requires that the influence of the 

unknown initial and boundary conditions be small. Consequently, a high-level closure (which 

considers many statistical quantities) is potentially more accurate than a low level closure since it 

affords a more complete flow spec;ification. A closure developed for only one class of flow is also 

potentially more accurate, since then the unspecified boundary conditions are, to an extent, 

implied by those specified. The present restriction to flows remote from walls is advantageous in 

this respect. 

A high-level closure is 'potentially' more accurate, but this potential must be realised. I fa  given 

level of closure is adequate in a given flow, then the unknowns can be accurately represented as 

functions of the known quantities. The task of the theory is to determine the precise form of such 

functions. The following factors bear upon this task: 

(a) physical insight, 

(b) available experimental data 

and 

(c) ease of solution of the resultant equations. 
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Both available data and the ease of solution of the equations decreases with increasing levels 

of closure. Consequently, the full potential of high-level closures is unlikely to be realized 

since testing is difficult. Physical insight tends to increase to a maximum a t  some level of 

closure and then decrease rapidly: the concepts associated with a low-level closure may be 

too crude to provide a physically-based understanding of the phenomena, while at  a high 

level, the complex statistical quantities involved and the lack of data result in a poor picture of 

the physics. 

The optimum level at  which to close the statistical equations of 9 3  is now considered. In fact, 

more than one level is usually appropriate: concepts appropriate to one level can be used to 

effect closure at  another while, for practical flow calculations, a lower level (with more easily 

solved equations) may be preferable. 

There is little doubt that, for constant-density flows, a second order closure represents the 

optimum level. In  this, transport equations are solved for all second moments (that is, the group 

(ii) quantities (pu;u:), (pu:$;) and ( ~ $ 1$;)) and for c, the dissipation rate of turbulent kinetic -
energy. That  this is the optimum level is a consensus view. Data of uiu;  are available for many 

flows while the smaller amount of data of u: q5: and $1q5; is almost adequate for modelling pur- 

poses: more physical insight is provided than from a consideration of and $ alone, and the 

resultant equations are not too difficult to solve, at  least for the simple flows for which there are 

data. 

The closure of the Reynolds-stress, dissipation and scalar equations is considered in 9s5,6  and 7 

and the effects of variable density in $8 .  The mean quantities, all second moments and the dissi- 

pation, c, are regarded as 'known'. Closure approximations for the unknowns in terms of the 

knowns renders a closed set of equations. Specific closure approximations for all the unknowns 

are discussed. 

The potential accuracy of this set of equations depends on the extent to which the 

unknowns are uniquely determined by the knowns; or, from a different point of view, the 

equations are likely to become inaccurate for flow regions where this determinism does not 

exist. The accuracy of the models is assessed in 9 9. No model has yet realized the full potential 

of Reynolds-stress closures and consequently it is not possible to establish unequivocally 

whether this level of closure is sufficient to describe a given flow accurately. That is, when 

discrepancies are found between experiment and theory, it is not always possible to distinguish 

between inaccurate modelling and the insufficiency of the level of closure. If it is the former, 

then a refined model will calculate the flow accurately, if it is the latter, then there can be 

no remedy within that level of closure. I t  is suggested that second order closures are sufficient 

for simple flows (jets, for example) and that for more complex flows the case is, as yet, 

unproved. 

I t  has already been shown that the joint p.d.f. p($) provides a complete description of the - 
reacting scalar field and that a knowledge of u:u; and p($) is sufficient to effect a closure. The 

transport equation for p(+) has the advantage over equations for moments of 4 that chemical 

reaction is expressed in closed form. Other terms have to be modelled and this is discussed in 9 1I. 

The modelled equation for $($) can be solved in simple cases and an ever increasing body of 

experimental data is available. However, the difficulty in solving the equation escalates rapidly 

as the complexity of the flow and the number of scalars increases. Consequently, a simpler set of 

equations is required in the general case. 
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A simpler set of equations inevitably contains less information, and the deficit must be made up 

by assumptions, either explicit or implicit. In 9 12, a general method of determining p($) from 

given information is presented: the explicit assumption is, simply, that p($) is the statistically 

most likely distribution, subject to available information. The minimum amount of information -
required is mean values, & all second moments, 4," 4;) and the reaction rates, S,(t+h).From this, a 

p.d.f. is deduced which has the correct first and second moments and accounts for the effects of 

reaction on the distribution. Thus, rather than solving the transport equation forp(t+h), equations -
for &and 4; are solved andp(t+h) is deduced from the resulting values. As a lower order closure, 

and a degenerate form of the transport equation forp(t+h), this method is ideal since any amount of 

information (e.g. third and fourth moments) can be included. Whether more than second 

moments are required is a question to be answered by future experience. 

B. T U R B U L E N C EM O D E L S  

E i .  The Reynolds-stress equation 

In  this and the next three sections turbulence models for. determining the Reynolds stresses and 

scalar second moments in constant-density flows are considered. The restriction to constant 

density greatly simplifies the algebra and allows a larger body of established knowledge, both 

experimental and theoretical, to be admitted. This having been done, the necessary extension to 

variable-density flows is discussed in 4 8. The practice of density-weighted averaging allows most 

of the modelling to be transferred directly and then the major effects of density fluctuations are 

accounted for implicitly. Additional effects can be identified and are discussed. The model 

equations are assessed in 9 in an attempt to determine the types of flow for which this level of 

closure is adequate. The accuracy of some of the model equations can be assessed from comparison 

with experimental data but much of the modelling, especially that pertaining to scalars in 

variable-density flow, has yet to be tested. 

I n  constant-density flows, the R.eynolds-stress equation is 

Three types of unknowns appear: the gradient of the triple correlation represents turbulent 

convection of the Reynolds stresses, there are two pressure-interaction terms and two involving 

molecular diffusion. The final terms, which are known, account for the production of the 

Reynolds stress by the mean velocity gradients. 

The terms involving molecular diffusion can be dealt with summarily: they can be re-

expressed as 
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The first term on the right hand side of (5.2) represents transport due to molecular diffusion and is 

negligible at  the high Reynolds number considered. The second term, 

again at  high Reynolds number has negligible off-diagonal components (Lumley 1975 a) and 

can therefore be written, 
sjk = '$€ajk, (5.4) 

where 

s is the rate of dissipation of turbulent kinetic energy (k - +(uiu,)) and, as may be seen from 

equation (5.5)) it is non-negative. Thus, the effect of molecular action is to extract energy equally 

from the t.hree normal stresses without affecting the shear stresses. 

In  the type of closure considered, s is calculated from its own transport equation which is 

treated separately in the next section. 

Attention is now turned to the pressure-interaction terms which can be decomposed as follows: 

The first term is the pressure-rate of strain correlation which contracts to zero, since au,/ax, is 

zero. (The variable-density case, in which this is not so, is considered in 5 8.) That the term con- 

tracts to zero indicates that it has no effect upon the trace of the Reynolds-stress tensor (that is, 

(twice) the kinetic energy): it serves to redistribute energy from one component to another. The 

second term in equation (5.6) represents transport and is zero, therefore, in homogeneous tur- 

bulence. 

Lumley (1975 b) has pointed out that the decomposition of the pressure-interaction terms into a 

deviatoric part (zero trace) and a transport part is not unique. This means that the pressure- 

rate of strain term may also contribute to transport and, conversely, the transport term in (5.6) 

may serve to redistribute energy among the Reynolds stresses. For homogeneous turbulence 

there is no ambiguity since all transport terms are zero. 

Chou (1945) has shown that the fluctuating pressurep' has contributions from the turbulence 

alone, pi, and from the combination of turbulence and mean velocity gradients,!;. Consequently, 

models of the pressure-rate of strain term generally contain two contributions: one due topi and 

the other due to ph. Launder, Reece & Rodi (1975) follow Rotta (1951) in modelling the first 

part as 

where aij is the normalized anisotropy tensor, 

and C, is taken to be a constant (C, = 1.5). 

A more detailed study of the term has been undertaken by Lumley & Newman (1977) who 

propose a complex expression which cannot be written explicitly. I t  does, however, predict the 

correct behaviour in all the homogeneous shear-free flows for which data are available. The major 
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implication of Lumley & Newman's work for the simpler model (5.7) is that C, cannot be a con- 

stant. An invariant measure of the anisotropy is 17= aij aji: as 17tends to zero, the turbulence 

becomes isotropic and, it is shown, C, tends to unity. On  the other hand 17has a maximum 

possible value corresponding to two dimensional turbulence which, in principle, is stable which 

again gives C, = 1. Thus, if C, is to differ from unity, it must be a nonlinear function of 17. 

Models for the second part of the redistribution term have been proposed by several workers, 

notably Lumley & Khajeh-Nouri (1974)) Launder, Reece & Rodi (1975) and Lin & Wolfshtein 

(1977). O n  the assumption that: the term is a linear combination of ,velocity gradients and 

Reynolds stresses, Launder, Reece & Rodi deduced the following form: 

where 4, is the production of (u,. u,), 

and P, the production of kinetic energy, is given by 

The assumption of linearity allows (5.9) to be written with only one undetermined quantity, 

C,, which is held to be a constant (C, = 0.4). Since there are no measurements of th'e term, nor 

are there likely to be, there would be large uncertainties in prescribing functions or constants in a 

more complicated model. Also, for the same reason, the accuracy of (5.9) cannot be determined 

directly but can only be surmised from the behaviour of a complete model. Consequently, such an 

appraisal is deferred to 5 9. 

Turbulent transport of the Reynolds stresses is caused by gradients in the triple correlations 

(u ,u juk)  and in the pressure-velocity correlations (uiPr). As mentioned above, gradients in 

(uip') may also cause redistribution. Most workers have assumed that the contribution of (u,pr) 

to transport is negligible. This is an expedient assumption since there are no data of (u,p') by 

which a model can be tested. There are data of the triple correlation with which Cormack, Leal 

& Seinfeld (1978) compared the performance of four models; that of Shir (1973): 

(ua u j  u,) = - (Cslk2/&)a(ui uj)/axk, 

that of Daly & Harlow (1970) 7 : 

and the more complicated proposals of Hanjalid & Launder (1972) and of Lumley & Khajeh-

Nouri (1974). Cormack et al. concluded that the Lumley & Khajeh-Nouri model produced the 

best agreement but that it is too complicated for practical use. The Hanjalid & Launder model, 

being second best, was recommended for use. Also the optimum values of the constants in equa- 

tions (5.13) and (5.14) were fouiid to be C,, = 0.0368 and C,, = 0.13. 

7 As written, equations (5.13) and (5.14) are improper in that the left hand sides are symmetric in all indices 
while the right hand sides are not: however, differentiation with respect to x ,  yields the contribution of the triple 
correlation to the transport, and then both sides are symmetric in i andj.Also, it should be noted that equation 
(5.13) is not exactly the model proposed by Shir. 
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Launder, Reece & Rodi (1975) compared the performance of the Daly & Harlow and the 

Hanjalid & Launder models in a variety of shear flows. The Daly & Harlow model produced 

better results in general and, because of its relative simplicity, was preferred. However, the 

constant used was C,, = 0.21 and, more recently, Launder & Morse (1977) give C,, = 0.22. There 

is a similar discrepancy in the value attributed to the constant in Shir's model: the best-fit value 

given by Cormack et al. is C,, = 0.0368 and yet for consistency with the constants in lower-order 

closures (e.g. Jones & Launder 1972) the value should be C,, = 0.09. The lower values of C,, and 

C,, come from direct comparison with the triple correlations while the higher values produce the 

correct amount of transport in shear flows. Although the evidence is indirect, this suggests that 

the difference is due to the pressure-velocity correlations: that is, the higher values of C,, and C,, 

are required in order to account for the additional transport due to gradients of (prui). There 

seems to be little merit, therefore, in using elaborate models for the triple correlation when there 

is an unknown, but comparable, contribution from the pressure-velocity correlations. The simple 

model of Shir, with C,, x 0.09. may behave as well as the more complicated suggestions and its 

simplicity greatly facilitates the solution of the equations. 

To  conclude: the Reynolds-stress equation is a balance between convection, production, 

dissipation, turbulent transport and redistribution by the pressure-rate of strain term. The first 

three of these processes are known. Lumley & Newman's expression for the first part of the redis- 

tribution appears most accurate while, for the second part, there is no evidence to warrant going 

beyond the linear model of Launder, Reece & Rodi. Because of the unknown contribution of the 

pressure-velocity correlation, the simplest model of turbulent transport, equation (5.13), may 

behave as well as the more elaborate models for the triple correlations alone. 

6. The dissipation equation 

The rate of dissipation s, which appears in the Reynolds-stress equation, can be determined 

from its own modelled transport equation. This equation has the form, 

where S,  is the net rate of production of s, and is the turbulent transport. 

The definition 

shows that the dissipation of turbulence energy is due to viscous action. However, this is not the 

rate-controlling process: in a high Reynolds number flow, s is found to be at most a weak function 

of p. Rather, s is determined by the rate at which energy is transferred to the smallest scales, and 

this is an inertial process. That the rate of mixing is governed by inertial processes is especially 

important in reactive flows, since it allows the assumption (made in $ 2 )  that the details of the 

molecular processes are of secondary importance. 

The transport equation for s can be derived from the velocity equation, and hence expressions 

for Tiand S,  can be obtained. However, these expressions give no guide to the modelling, since 

they pertain to the viscous processes rather than to the rate-controlling, inertial processes. As a 

consequence, the modelling of Ti and S, relies almost entirely on empiricism. 

Of the two terms, S, is the more important and Pope (1976~)  attempted to justify its modelling 

in terms of the known quantities (ui uj), s and a(q.)/c?xj. Justification was provided for flows such 
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as jets, mixing layers and far wakes, but not for rapidly changing flows, such as near wakes. While 

lack ofjustification does not constitute condemnation, the physical arguments suggested that this 

level of closure may prove inadequate in these rapidly changing flows. 

In  the simple case of the decay of homogeneous isotropic turbulence, the modelled form of S ,  

can only be 

Lumley & Newman (1977) take C,, - 1.89 from the data of Comte-Bellot & Corrsin (1966)  

while Launder, Reece & Rodi (1975)  use Batchelor & Townsend's (1948)  data to obtain 

C,, = 1.90. For the general case, Launder, Reece & Rodi propose 

S ,  = (pe2 /k )  (1 .44Plpe  - 1.90))  
Lumley ( I975 a )  gives  

S, = (pe2 /k )  (0.5P/pe + 12.717/(1+ 617176) - 1.865),  

and, for flows without shear, Lumley & Newman give 

Data of the decay of anisotropic turbulence without shear indicate a dependence upon the aniso- 

tropy invariant 17 and so, to this extent, (6 .5)  and (6 .6)  are to be preferred. In  flows with signifi- 

cant shear, however, values of P/pe  and 17 are closely related, resulting in similar values of S ,  

being given by (6 .4)  and (6 .5) .  

There is no direct experimental evidence, nor is there likely to be, to support the modelling of 

S ,  by (6 .4)  or (6 .5)  in flows with shear. Further, in general, S ,  may be a function of the ~hree  

invariants of ( u d u j ) , the five invariants of the velocity gradients and many more invariants 

involving both (ud u j )  and a(Ui)/dxj .  There can be no direct evidence of the influence of any of 

the velocity gradient invariants on S,, and to postulate some dependence based on indirect 

evidence tends to be speculative. However, one such speculation is of use in the context of jet 

flames. I t  is found that the model of Launder, Reece & Rodi, which calculates the properties of 

most simple flows quite accurately, over estimates the spreading rate of the round jet by about 

40 % . Pope (1978)argued that an additional contribution to S, can be expected when the mean 

vorticity field is strained. With the appropriate extra term, the model then gives the correct 

spreading rate for the round jet while its performance in plane flows is unaftected. 

The transport term, Ti,remains to be modelled. Various authors have suggested various forms 

of gradient diffusion, but there is no evidence that complicated suggestions have any advantage 

over the simplest form; namely 7::= ( c , p k 2 / e )  aslaxi, (6.7)
where C,  x 0.07. 

7 .  Scalar equations 

For constant-property flows, the transport equations for the mean values of the scalars ($,) 
and the variances ($: $;) are: 

and 
D ( A  $2- A r a ( O h  $2 ap(ui $: $2+p($: S g ( 4 ) )  +P($hS, (4))  -

Dt  axi ax, ax, 
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I n  equation (7.1)) the first term on the right hand side represents transport by molecular diffusion 

and is negligible at  high Reynolds number. The second term, being the gradient of the turbulent 

scalar flux (ui $:), represents turbulent transport; and, as has been mentioned, the final term is 

to be determined from p($). The two scalar flux -mean scalar gradient terms represent the pro- 

duction of ($: $;) due to inhomogeneities in (+); and 

is the dissipation of (4: 4;) due to molecular action. Thus, with the function of S being deter- 

mined fromp($), the remaining unknowns in these equations are (ui $:), (ui $: $;) and s,,. 

Since thr scalar flux makes an important appearance in both equations, its determination is 

considered first. The simples't method, and that used in most flame calculations, is to assume 

gradient diffusion, giving 

( ~ i4;) = - (C+ k2/s) a($a)laxi, (7.4) 

An underlying assumption of mixing-length theory (on which equation (7.4) is based) is that the 

value of the transported quantity (9,) does not change during the transport process. For reactive 

scalars, this assumption is unfounded and hence the use of equation (7.4) is dubious. Consequently, 

the alternative of determining the scalar fluxes from modelled transport equations is preferable. 

Ignoring terms that are negligible at high Reynolds number, the transport equation for the 

scalar flux is 

This equation has been studied mainly in the context of atmospheric boundary layers with S,(+) 

equal to zero. I n  that instance, the principal unknown is (4: api6'/axi),which can be treated in an 

analogous way to the pressure-rate of strain. Thus, the term can be decomposed as 

The first term contributes to transport: the remaining two terms represent the two parts of the 

pressure-scalar gradient correlation. For the first part, Monin (1965) has suggested the model 

(Launder (1976) suggests Cq, = 3.8.) Assuming that the second part is a linear function of scalar 

fluxes and velocity gradients, Launder (1973) and Lumley (1975~)  obtained 

There is no reason to doubt the specific form of (7.8) nor data to support it. On  the other hand, 

Lumley (1975 a) has proposed a more elaborate expression for (pi c?$A/axi) but, as Launder 

(1976) points out, the only other form for which values of the constants have been suggested is 

(Pi a$A/axi> = - (c41P e lk )  (ui $A) - (C i , p€a i j / k )(uj $2. (7.9) 

The scalar flux is itself transported by three mechanisms; turbulent convection, (ui  uj  $A), 
pressure diffusion, ($A$') Sij,and an unknown contribution from (pja$A/axi). Several models for 
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(ui uj $:) have been suggested (see Launder 1976) but there seems little merit in going beyond the 

simplest form : 
a $2

transport of (ui #k) = -ax, (Cqk2/e) -axj . (7.10) 

For inert flows, to which the scalar-flux equation is usually applied, this completes the closure 

but for reacting flows the addition term (ui S,($)) appears and must be modelled. Because the 

term is a correlation of S, with the fluctuating velocity, it cannot be determined from p($); a 

knowledge of($(+) ui) is required. In  5 11 the modellingof (fir(@)ui)is discussed and it is suggested 

that a mixing length type of model may be a fair approximation. However, at this level of closure 

this leads to an inconsistency since (u, #:) given by the mixing-length model and the value given 

by the scalar-flux equation are not likely to be the same. In  order to avoid the inconsistency the 

following model is tentatively proposed: 

where Cq w 0.13 and [ui/$A] is symbolic for 

Summation is implied over repeated suffices. (The significance of the additional term is discussed 

in 5 11.) A model for (ui S,($)) is obtained by multiplying equation (7.1 1) by $,(I,$) and inte- 

grating: 

(~iSa(4))= - (C4ka/c) a(scc(4)>/axi+[~i/#hI ($hSa($)). (7.13) 

The correlation (ui$&i5j) which appears in the transport equation for ($A$;) can also be 

obtained from equation (7.11) ; 

Attention is turned to the sca1a.r dissipation sap and the dissipation of fluctuations of a single 

scalar is considered first. With $ = $, and eg = ie,, (no summation) the transport equation for 

The simplest model for eq is €6 = C,$2e($12)/(~?), (7.16) 

which, in effect, assumes that the time scale of decay of scalar fluctuations is proportional to the 

decay time scale of velocity fluctuations: Cq2 is the constant of proportionality. For shear flows in 

which the scalar and velocity fields share a common history and common boundary conditions, 

this assumption appears to be satisfactory. Btguier, Dekeyser & Launder (1978) deduced the 

value of C+, from data of three shear flows: a boundary layer, pipe flow and a plane wake; the 

value C42 = 2.0 fits the data to within 20 % over nearly all of the flows. In  addition, Spalding 

(1971) and Samaraweera (1978), using models incorporating equation (7.16) with C6, = 2.0, 

obtained good agreement with experimental data for round and plane jets, wakes and mixing 

layers. 

These findings support the contention that Cq2 can be taken as a constant in the type of shear 

flows mentioned, but there is equally clear evidence that Cq2 is not a universal constant. Data of 

the decay of temperature fluctuations in grid generated turbulence (Lin & Lin 1973) show a 

large spread in decay rates although Launder (1976) suggests C6, z 1.0 provides a reasonable 

fit. In  other flows values of Cq2 of 1.25 (Launder 1976) and of 1.4 (Wyngaard 1975) have been used. 
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I n  general, then, an alternative method for determining e4 would be preferable. The natural 

alternative is to solve a separate transport equation for e4. Such a modelled equation would 

contain a source Se4 of the form 

s e ,  = ( ~ e e ~ l k )  a( q>laxj> aij, (4 '2>el  (kc+) (k'le(4'2>') a($>laxil, (7.17)'[('Is) > 

where F is an unknown, dimensionless, invariant function. As has been observed by Launder 

(1976), the task of determining S,+ is similar to that of determining S, except that twice as many 

quantities are involved, and, it may be added, there is less than half the quantity of relevant 

experimental data. Consequently, although modelled equations for S,# have been proposed 

(Lumley & Khajeh-Nouri 1974), there is no evidence that they are more reliable than the 

simpler equation (7.16). 

The form of (7.17) corresponding to a transport equation for e,,, is yet more complicated and so, 

for the moment, a model akin to equation (7.16) seems appropriate. The only admissible model in 

terms of k, e and (& 4;) is 

Transformation laws (see 5 10) exclude other possibilities. 

8. Efec t s  of variable density 

The second order closures of 555-7 have been developed primarily for constant-density flows. 

Several authors, Lumley (1975 a) and Launder (1976) for example, have also made allowance 

for the effects of buoyancy caused by small density variations. The buoyancy forces may be large 

but, it is assumed, the density variations are small enough for other effects to be negligible. Such 

an assumption is untenable for flames where, typically, the density varies by a factor of five. 

The behaviour of statistical equations in variable-density flows may differ from that of their 

constant-density counterparts because of the appearance of addition terms, and because existing 

terms behave differently. Without density weighting, addition terms arise involving fluctuating 

density correlations: equation (3.8) is an example. On  the other hand, it may be seen that the 

density-weighted equations derived in the appendix appear the same whether the density varies 

or not. There is no term that vanishes for constant density flows. This indicates that, as written, 

no additional terms appear, but it does not imply that the terms behave in the same way with 

and without density variations. 

Taking the pressure-rate of strain correlation as an example, it appears that variable density 

may have an effect. A Poisson equation for pressure can be obtained by taking the divergence of 

the momentum equation, equation (2.13) : 

and from Green's Theorem (neglecting a surface integral), the velocity-pressure gradient corre- 

lation is 

In  constant-density flows, all but the leading term in equation (8.1) are zero, giving 
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I t  is this analysis that leads to the conclusion that there are two parts to the pressure-rate ofstrain 

and guides the modelling. For variable-density flows all the terms in (8.1) are non-zero and even 

the first term cannot be expressed as simply as (8.3). This demonstrates that the term (u,"ap/ax,.) 

may behave differently in constant-density and variable-density flows. 

I t  is not difficult to suggest how the modelling of the pressure-rate of strain term could be 

extended to account for variable density; the following could be added: 

as well as linear functions of these terms with the Reynolds stresses and velocity gradients. The 

difficulty arises in ascribing values to the (supposed) constants. Equation (8.1) is not amenable to 

analysis, and one cannot expect there to be sufficient experimental data to determine the con- 

stants empirically. 

The same applies to the dissipation equation: the source of dissipation S, may be supposed to 

depend upon ( a ( p ) / a ~ ~ ) ~  and aO,/ax,, but there is no means to establish the dependence. 

This being the case, the best available hypothesis is that the same modelling applies to the 

density-weighted equations in variable-density flows as in constant-density flows. There is a 

shortage of data to test this hypothesis directly but the mixing layer data of Brown & Roshko 

(1974) provide some evidence. Libby (1973) used a lower-order closure (using density-weighted 

averaging) to calculate the velocity and density profiles; for one test condition the agreement was 

very good while, for another, it was less good. There are more data for round jets, but as was 

mentioned in 5 6, standard second-order closures calculate their spreading rates incorrectly even 

for constant-density flows. In  addition, the usefulness of reacting flow data for this purpose is 

diminished by the uncertainties introduced into the calculations by combustion models. These 

difficulties are decreasing: laser -]Doppler anemometry is providing accurate turbulence data in 

reactive and non-reactive flows; the modification to the dissipation equation proposed by Pope 

(1978) allows round jets to be calculated, and, hopefully, the uncertainties in combustion models 

are lessening. 

In  comparing measured and calculated values, it is important to compare like with like. Laser- 

Doppler anemometers measure unweighted quantities whereas those obtained by gas sampling 

techniques are density-weighted: the precise nature of the quantities measured by other tech- 

niques is less certain. There are enough experimental difficulties as it is without demanding that a 

particular form of averaged quantity be measured. To determine unweighted quantities from 

calculated density-weighted quantities is comparatively simple. The unweighted joint p.d.f. 

p ( + )  is related to the density-weighted p.d.f. j(+)by 

and so the unweighted mean of any quantity f (4) is given by 

The relation between weighted and unweighted velocities is readily determined from their 

definitions: u, = (U,) +ui = Di +u;; (8.6) 

therefore 

and thus 
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From these equations, the unweighted velocity and Reynolds stresses are seen to be 

IV 

and (ui uj) = U;U; + (u;) (u;) - (p'ui uj)/(p). (8.10) 

The final term in (8.10) can be assumed to be small, since, to a first approximation, 

(P'uiu,) ( P I )  {uiu3) +(P'u~)(uj) + (pluj) ( ~ i )= 0. (8.1 1) 

Thus, a knowledge of (u:) is all that is required to determine (Ui) and (uiu,). (u:) can be 

expressed as 

A consistent model can be obtained by using the density-weighted equivalent of the model for 

@'I($) u,), equations (7.1 1) and (7.12). This leads to 

where [ui/#:] is the density-weighted form of [u,/q5;] (equation 7.12). 

Thus, unweighted mean values of scalars can be determined, without approximation, from 

equation (8.5) and the unweighted velocities and Reynolds stresses can be determined from 

equations (8.9), (8.10) and (8.13). 

9. Assessment of models 

We should like to answer the following questions: For what types of flow are second order 

closures adequate? And, for such flows, are the specific models introduced in the previous sections 

accurate? I t  is important to distinguish between these questions and to realize that they must be 

answered in different ways. 

The first question is ofgreater lasting significance but no satisfactory answer has been provided. 

Attempts tend to be disappointing. As an illustration, modelling the pressure-rate of strain term 

can be justified for homogeneous turbulence and first order departures from it. But, without 

quantifying the inaccuracy caused by departures from homogeneity, the result is of limited value. 

Similarly, modelling of the source in the dissipation equation, S,, can be justified provided that 

the normalized Reynolds stresses and velocity gradients are nearly homogeneous and that the 

normalizing parameters, k and e say, change at  a nearly constant rate (Pope 1976~) .  I n  other 

words, second order closures are adequate for nearly-homogeneous, near-equilibrium flows and 

can be expected to become progressively inaccurate for departures from these conditions. The 

unanswered question is: how inaccurate? Nevertheless, with little uncertainty, it can be con- 

cluded that this level of closure is adequate for free shear flows -jets, wakes and mixing layers -
but for rapidly changing flows, such as those with recirculation, the question is undecided. 

The second question - are the specific models accurate? - can be answered by comparing 

solutions of the model equations with experimental data. The model of Launder, Reece & Rodi 

(1975) has been tested in jets, wakes and mixing layers by themselves, by Pope & Whitelaw 

(1976), and by Samaraweera (1978). Except for the spreading rate of the round jet, the agree- 

ment between calculations and experiment is good. Typically, mean quantities are in error by 

less than 5 % and turbulence quantities by less than 20 %. In  addition, Samaraweera obtained 

similar agreement for a passive scalar, the scalar flux and the scalar variance. There are, however, 
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discrepancies in the round jet, the round jet with swirl (Launder & Morse 1977) and 

recirculating flows (Pope & Whitelaw 1976). I t  is likely, at  least in the first two cases, that the 

discrepancy is due to inaccurac.y in the modelling, not to the inadequacy of the level of 

closure. I n  future attempts to increase the accuracy of the model, the proposals of Lumley & 

Newman (1977) and of Pope (1978) should prove useful. 

Less can be said about the accuracy of the scalar equations because they have not been com- 

prehensively tested. The work of Samaraweera (1978) is encouraging, as it shows accurate 

calculations for three free shear flows. There are also several works related to atmospheric 

boundary layers in which model1t:d scalar equations are solved (see Launder 1976 for references). 

However, these flows are dominated by wall effects and, in many cases, by buoyancy. Conse- 

quently they are less relevant to the present purpose. The available data are sufficient for testing 

the model equations for (ui$A) and (q5: $A) (no summation) in inert, constant-density flows. But 

it is unlikely that measurements of (q5: q5;) (a# ,8) in inert flows or of any of those quantities in 

reactive flows will be available f ~ r  some time. In  summary: a more precise assessment of the 

modelled scalar equations must await further testing: data are available for this purpose. 

C. I 'ROBABILITY D I S T R I B U T I O N S  

10. Dej5nition.s and properties 

I n  the theoretical description of turbulent flames, the usefulness of the joint probability 

function stems from the fundamental property density 

(Q(+(x, t)))  = /P(+; 8. t ) Q(+)d+. (10.1) 

That is, for any function Q - a reaction rate for example - the ensemble average can be deter- 

mined fromp(+). I n  this section some of the properties ofp(+) are presented. The next section is 

concerned with the transport equation forp(+). This equation is useful in describing the physical 

behaviour ofp(+), but its solution in modelled form is only feasible for the simplest of cases. A 

practical means of determiningp(+) is to assume that, in a turbulent flame,@(+) is the statistically 

most likely distribution. The method of determining this distribution is presented in § 12. 

The joint p.d.f. of a set of scalars - q5,(x, t), a = 1,2, ...,g-is defined such that p(+; x, t )  d+ is 

the probability that + lies in the interval 

+ < +(x,t) < ++d+.  (10.2) 

d+ = d$, d$, . . .d$, represents an elemental hypervolume at  +. Equation (10. I)  follows from 

this definition and from the definition of an ensemble average. Henceforth, p(+; x, t) is written 

@(I)), the dependence upon x and t being implied.  

p(+) can be related to +(x, t) in terms of Dirac delta functions. Defining  

and substitution of this for Q in equation (10.1) produces 

(6(9(x,t) -11)) = 6 0 - 0  d+.SP(+) 
The right hand side is nothing butp(q), and so (changing q to +)p ( + )  is given by 

P(+) = (S(+(x, t) -+)). 
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I t  is also possible to take this relation as the definition of p(+). Equation (10.1) can then be 

recovered by multiplying by Q(+) and integrating. The transport equation forp(+) (considered 

in the next section) can be deduced from equation (10.5). 

The density-weighted joint p.d.f. is defined by 

a(+)= A+)P(+)I(P). 

Multiplying by Q (+) and integrating yields 

Thus, density-weighted averages can be obtained directly from a(+).  

FIGURE2. (a) The (yk,, @,) composition space. (6) Reaction paths in the ($,, $,) composition space. (c) The 
accessible region of a (yk,,  $,) composition space. 

p(+) is a distribution in +-space. Different locations in +-space correspond to different com- 

positions of the gaseous mixture and so + is termed the composition space. Some properties of 

composition spaces are illustrated by reference to the following example. A reaction takes place 

between species A and species B to form species C, these being the only three compounds involved: 

Then, with q5, = m, and q5, = m,, since the mass fractions sum to unity, mc is given by 

The y?,) composition space is sketched in figure 2 a .  The locations (1, O), (0, 1) and (0, 0) 

correspond respectively to pure A, pure B and pure C. The lines joining any two of these points 

correspond to a mixture of two components in the absence of the third, while within the triangle 

all three species exist. Locations outside the triangle correspond to a negative mass fraction for at  

least one species: such a composition cannot occur. In general, the region of a composition space 

that corresponds to compositions that cannot occur is termed the disallowed region. The remainder 

of the space is the allowed region. In  the example, the sides and interior of the triangle ABC com- 

prise the allowed region. 
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The rates of increase of A and B due to reaction are S,($,, 4,) and S,(4,, 4,). In  general, 

reaction paths in a composition space are defined by 

where 

y is the distance along the path from some arbitrarily chosen starting point, @,. Reaction paths 

can be interpreted as follows: if, at  time to, a homogeneous (non-turbulent) gas mixture has 

composition q5 = @,, at  time to +y the composition is 4 = Y(y). That is, the changing compo- 

sitions follow a reaction path. Th.e speed along apath is defined as 

If s(@) is zero, a reaction path is not defined. Reaction paths in the (y?,, y?,) composition space 

are sketched in figure 2 b. The essential feature of the sketch is that all paths lead to the point E 

where the speed is zero. This loca.tion corresponds to the composition at  chemical equilibrium. 

The allowed region, reaction paths and the speed along a path are all functions of the proper- 

ties of the gas mixture. They do not depend upon the nature of the flow in which the reaction is 

taking place. 

In  a given flow, not all of the allowed compositions may be accessible. The accessible region of the 

composition space contains all locations corresponding to compositions that could occur in the 

flame under consideration. The accessible region depends upon the flow. The following three 

rules determine the composition!; that are accessible: (i) all compositions that are specified as 

boundary or initial conditions are accessible; (ii) all compositions lying on reaction paths starting 

from accessible compositions are also accessible compositions; (iii) all compositions lying on a 

straight line between two accessible compositions are also accessible compositions. 

The first rule is obvious: boundary and initial compositions occur and therefore, by definition, 

are in the accessible region. The second and third r e f ~ r  to reaction and mixing, respectively. If 

there is no mixing then compositions follow reaction paths; hence, (ii). In  order to illustrate rule 

(iii), consider the mixing of mass a of a gas mixture of composition 4 = (@), and mass b with 

4 = (@),. The result is mass (a +b) of composition 4 = (@(y)),, where 

and y = a/(a +b) .  (@(y)),, it may be seen, is a straight line between (@), and (@),. Thus, mixing 

between two accessible compositions can give rise to compositions on the joining straight line: 

these compositions are also accessible therefore. 

From these rules it can be deduced that the accessible region is the smallest convex region 

which contains all the specified boundary and initial compositions and which, on its boundary, 

has no outward pointing reaction path. 

Returning to the example, for ;tjet of composition m, = 3, m, = 3 issuing into an atmosphere 

of pure A, the accessible region is sketched in figure 2c.  The boundary compositions are at  A and 

J. Compositions on the straight line A*J and AE can occur as a result of mixing and along the 

reaction path JE as a result of reaction. Subsequently, any other composition within the region 

can occur by mixing. 

Useful information is obtained by considering the behaviour of p(@)and of the composition 

space when the scalars 4 are subjected to a linear transformation: 
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The transpurr, equation (2.14) for 4 can be written 

where L is a linear differential operator: 

Substituting the definition of $2 into the transport equations produces 

where the transformed reaction rate has been defined by 

I n  principle, +* could be determined in two ways: by solving its transport equation; or by 

solving the transport equation for 4 and then performing the transformation. Clearly, the result 

obtained by each method is the same. I t  is equally clear that the theory should also produce results 

that transform correctly. The modelling of eaB and (u ,  4;) is fj7 is guided by this principle. 

The transformation of moments is straightforward. The mean is 

($t>= (4p) + ba, (10.19) 

and, writing Cap for ($I, $;1) and Cap for ($:'$$'), the second moments are 

C& = say ap6 C7G.  

The transformed composition space ** is given by  

$2 = asp + ba> (10.21) 

and the joint p.d.f. of 4 *  is defined such that!*(@*) d$* is the probability that $* lies in the 

range JI* < 4 *  < $* + d$*. I t  follows that P and p* are related by 

@*(@*Id@*=P(*) d*, (10.22) 

or p*(@*)= p(*) la@*/a@kl=p(@)1al-l. (10.23) 

Here, (a$*/a+l represents the determinant of the Jacobian of the transformation which is equal 

to the determinant of a. An expression for I a1 is obtained by taking the determinant of both sides 

of equation (10.20) : 
IC*I = la121CI. (10.24) 

Thus, the relation between P and p* can be written 

I CIA has a clear physical interpretation. Cap is symmetric and so can be diagonalized by a pure 

rotation. The determinant (which is unaffected by rotation) is then the product of the diagonal 

elements which are the squares of the standard deviations in each direction. Thus I C / i  is the pro- 

duct of these standard deviations: it may be thought of as a normalization for p(@).Equation 

(10.25) contains the important result that the normalized joint p.d.f., I C* lip* ($*),is invariant 

under linear transformations. That is, the value of I C* lip* (+*) is independent of the transform- 

ation parameters aap and 6,. 

Here and elsewhere summation is implied over repeated indices. 
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There is one other function of the composition space that is invariant under linear transform- 

ations: this is the normalized speecl along a path or the normalized reaction speed 9 (+) ,  

G"@) = c$ $a(+) sp(+). (10.26) 

Again, the physical significance of Q(+) can best be seen in the diagonal frame in which case, 

Qz,(+)= cs~(+)/caa. (10.27) 
a  

That is, D(+)is the Euclidean norrn of the reaction rates normalized by the standard deviations. 

These transformation laws and the invariant 9(+)are used in the following sections. 

11. Transport equations 

The p.d.f. transport equation is examined in order to provide an understanding of the processes 

affecting p.d.fs in reactive flows. The equation provides a description of the transport of$(+) in 

position and composition spaces with the effect of chemical reaction appearing in closed form. T o  

model and solve this equation is a useful research exercise, but it is unlikely that this direct 

approach will prove to be practicable except in the simplest of cases. Consequently, the modelling 

is not discussed in great detail. 

The transport equation for the density-weighted joint p.d.f. is 

where pl(+) is written for 6(+-+), The terms on the left hand side represent convection by the 

mean flow and by turbulence; they account for the transport of$(+) in position space. The terms 

on the right hand side account for the transport of$($) in composition space due to reaction 

and molecular mixing. 

The convection of $(+) by the mean flow is known in terms of$(+) and 0,while the turbulent -
convection is due to the correlation u:pl(+). Two models for the similar correlation (u,p'($)) 

have been proposed: the proposal of Dopazo (1975) can be generalized to 

and the gradient diffusion model proposed by Pope (1976b) is 
/-

U; PI(+) = - (c6k2/s) a$(+) /axi. 

Dopazo's proposal is accurate for small departures from Gaussianity and homogeneity. On  the 

other hand, for large departures from these conditions, the gradient diffusion model is likely to be 

better behaved since it results in an elliptic (rather than a hyperbolic) partial differential equation 

for b(+). 
The use of equation (11.3) in conjunction with a second order closure would lead to an in- -

consistency. Thisis because the value of u; $1obtained from the gradient diffusion model is likely 

to be different from that given by its transport equation. In  order to avoid the inconsistency a 

correction can be added, giving 

TV 

where ($$u','), is the difference between the scalar flux and its value according to the gradient 

diffusion model; --4

($2 11;) = $;: U; + (c$ (a$!/axi). (11.5) 
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The additional term is simply Dopazo's model evaluated with the scalar flux difference rather 

than the scalar flux itself. 

The most notable feature of the transport equation forj(@) is that the effect ofreaction appears 

in closed form: no term associated with reaction needs to be modelled. I n  order to interpret the 

effect of Sa(@) uponj($), consider the hypothetical case of the evolution of$(@) in homogeneous 

turbulence without mixing (i.e. I' = 0). Equation (11.1) then reduces to 

The mathematical interpretation of this simple equation is slightly subtle, but the physical inter- 

pretation of the process involved is straightforward. The physical interpretation is given first and 

then the mathematical justification is provided. 

FIGURE3. Transport of probability in composition space due to reaction. 

Reaction paths in the two-dimensional composition space (kl, are sketched in figure 3. 

At t = to the p.d.f. at (@;, @;) isF(@;, $;; to),and the probability within the indicated element is 

$($I,$;; to)q'g.As time progresses, the effect of reaction is to transport this element along the 

reaction path at the speeds(@). Ifs(@) is increasing along the path then the element is stretched in 

the direction of the path. The width of the element normal to the path increases if the paths are 

diverging and decreases if they are converging. The probability within the element remains con- 

stant: thus at time t = t,, when the element is at (@!, y;),we have 

(11.7)$(pi,Y;; t,) q N g n=a($;,$;;to) tt1. 

Such a process should be expressible as a hyperbolic equation with the reaction paths as the 

characteristics. Indeed this is so; but, as equation (11.7) indicates, the quantity that is conserved 

along the characteristic is not j($). By defining 0(+) by the equation 

a {sa(@)/e($))/a$a = 0, (11.8) 

equation (1 1.6) can be rewritten as 

mailto:speeds(@)
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The reaction paths are characteristics of this equation, which has the solution 

~ " ( w t ) ;  (11.10)t) ~ ( t ) )  =a(+,,to)wo). 
I t  may be seen that 8 (  Y (t)) plays the r61e off"'", and that O (  Y ( t ) ) / 8 ( ~ , )  represents the fractional 

dilatation of an elemental volume. 

Thus, reaction causes probability to be transported along reaction paths at  the speed s($). 

Probability - but not probability density - is conserved in this process. 

The final term in the transport equation for j($)represents mixing by molecular action. The 

evolution ofj($) in the absence of all other effects corresponds to the decay of the joint p.d.f. of 

inert scalars in homogeneous turbulence. The equation then becomes 

FIGURE4. The evolution of 4(x, t )  and $($; t )  in homogeneous turbulence. 

Thus E($) is defined. The modelling of E($)is not straightforward nor has a completely satis- 

factory model been demonstrated. 'The aim here is to show the effects that molecular action has on 

the p.d.f., to show how these effects are reflected in the transport equation, and to give a brief 

description of the modelling difficulties. The modelling is a specialist activity and until a satis- 

factory model is developed there is little virtue in describing the models in great detail. However, a 

brief description is appropriate since the form of such models has implications for the ease of 

solution of the equations. 
45-2 
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The effects of molecular action on p.d.fs is best demonstrated by considering the evolution of 

a(+)in homogeneous turbulence. Consider an initial distribution of two equal delta functions at  

$ = O a n d $ = l ;  

I($)= is($)+ @ ( I - $). (11.12) 

The evolution of j ($)  is governed by equation (1 1.1 I ) ,  the change in time being due solely to 

molecular action. As the double delta function distribution can only be realized by a rectangular 

wave-form of #(x,  t ) ,  diffusion will rapidly smooth the discontinuities. This process is sketched 

in figure 4. The initial rectangular wave and associated double delta function p.d.f. evolve to 

a smoother waveform and consequently j (+) adopts the indicated shape. Eventually diffusion 

eliminates all fluctuations giving 4 = 4and thus 

At intermediate times a($) is presumed to adopt the shape indicated on the figure. Intuitively, 

and as the results of the next section indicate, ash($) tends to a delta function at $ = & it does so 

as a Gaussian distribution. Consequently not only do all moments tend to zero but so also do the 

cumulants. 

I t  is important to recognise the effects that molecu.lar action cannot cause. Molecular action -
cannot alter the mean value of $,, it cannot increase the variance &',, (no summation), and it 

cannot cause a(+)to be non-zero outside the accessible region of +-space. The influence on the 

moments can be deduced by expressing equation (1 1.11) in the form (see Pope 1976 b) 

Integrating this equation to form equations for the moments yields 

and 

- The first equation indicates that $, is unaffected by mixing, and in equation (1 1.16) with a = /I 

the integral is positive indicating that $;',, &',, is a decreasing function of time. That mixing cannot 

cause a(+)to become non-zero outside the accessible region was illustrated in the previous 

section. I t  can also be shown that this follows from the definition ofE(+) . The lengthy proofof this 

is not included here since the result is obvious from physical reasoning. 

Possibly the first model of the effects of molecular action was the 'conditionally Gaussian' 

model introduced by Dopazo (see Dopazo 1975). This has the virtue of mathematical simplicity 

but, unfortunately, it does not produce the correct qualitative behaviour. This point is discussed 

by Pope (1976 b, 1979 a) and by Dopazo (1979 a, b )  . Pope (1976 b) considered the modelling of 

E(+)for a single scalar and proposed a model that contained the product of two integrals in 

+-space. This model produces the correct qualitative behaviour but, because of the integrals, it is 

computationally expensive. Recently Dopazo (1979~)  and Kollmann (1979) independently 

suggested models for E(+)which are also products ofintegrals. These three integral models are for 

a single scalar only. Earlier, but in a different context, Curl (1963) suggested a model for E(+) 

which takes the form of an integral over +-space. Again, this produces the correct qualitative 

behaviour. However, none of the models has been shown to produce the correct quantitative 
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behaviour. For example, none of them shows a(+) tending to a delta function as the limit of a 

Gaussian. 

This type of modelling appears to lead to a general expression of the form 

where T is a turbulent time scale, and the kernel g is positive and an even function of its second 

argument. We do not wish to go into the details of the model but only to note its form. There are 

two terms each of which is a volume integral over +-space of an integral along a line in +-space. 

To  compute this quantity in a composition space of more than one dimension would be a 

formidable task. I t  is for this reason that the direct approach of solving a modelled transport 

equation for J(+)is only practicable in simple cases. 

To  summarize: a transport equation for the density-weighted joint p.d.f. can be deduced from 

the definition of!(+) and from the transport equation for 4.$(+) is transported in position space 

by mean flow and turbulent convection and in composition space by reaction and molecular -
mixing. A consistent model for the turbulent fluxp'(+)u: has been proposed. The effect of reaction 

is to transport probability along reaction paths in composition space at  the speed s(+). Molecular -
mixing, while not affecting $,, tends to reduce the variances $;(,, and, in the limit, it causes 

$(+) to tend to a delta function (presumably) as the limit of a Gaussian. A completely satisfactory 

model of the mixing has yet to be demonstrated, but it appears that the complicated form that 

such a model adopts will restrict the solution of the modelled equation to simple cases. 

12. Assumed distributions 

I n  a system characterized by a.scalars, the transport equations for &contain the mean reaction 

rates ,!?(#I) which can be determined from the v-diaensional joint p.d.f. $(+) could, in turn, be 

determined by the solution of its modelled transport equation but the computational effort 

involved would be out of all proportion to the information sought, namely F. Consequently, a 

simpler method of determining$(+) is required. Such a method would be to assume the shape of 

J(+)based on the value of a finite number ofits moments. This idea is not new. A variety of shapes 

have been suggested for the p.d.f. of a single passive scalar: a Gaussian (Hawthorne, Weddell & 

Hottel 1949), a beta function distribution (Richardson, Howard & Smith 1953, Rhodes 1975), a 

'clipped Gaussian' (Lockwood & Naguib 1975) and a double delta function distribution (Bush 

& Fendell 1974; Khalil, Spalding & Whitelaw 1975). In  the model of Bray & Moss (1974) a 

p.d.f. for a single reactive scalar is prescribed; Donaldson & Varma (1976) implicitly assume the 

joint p.d.f. of reactive scalars to be comprised of delta functions. All these distributions are deter- 

mined as functions of the first arid second moments for which modelled transport equations are 

solved. 

For this approach to be generally applicable a method of determining $(+) is required that 

(i) is applicable to reactive scalars, (ii) is applicable to any number of scalars, (iii) is mathe- 

matically correct, and that (iv) has physical justification. 

Mathematical correctness requires that a valid p.d.f. can be determined from any valid set of 

moments, and that this p.d.f. should transform correctly. The method presented here meets all 
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these requirements and has the additional advantage that extra information - third and fourth 

moments, for example - can be incorporated. 

With a knowledge of the first and second moments, the following is known aboutp"($): 

and 

Integration is over the whole of the accessible region outside which$($) is zero. With a scalars, 

since Cap is symmetric, there are & ( u  + 1) (a+2) of these integrals. Clearly there are many differ- 

ent p.d.fs that satisfy these &(a+1) (a+2) constraints. How, then, is one distribution to be 

singled out? The only non-arbitrary assumption appears to be that p"($) is the statistically most 

likely distribution subject to these constraints. 

The details of the determination of the statistically most likely distribution are given by Pope 

(1979b) .  The entropy H of a distribution is defined by 

where q($) is the a priori probability. q(+) is a positive quantity which represents the bias in 

composition space; if q(+) is large, 4 is biased towards that value of $, if q($) is small then 4 is 
biased away from $. For passive scalars, it will be shown, there is no bias and so q($) is uniform. 

The specific form of q(+) for reactive scalars is given below. H i s  introduced because a combina- 

torial analysis shows that the statistically most likely distribution is the one with the maximum 

entropy. An alternative view is that the distribution which maximises H contains a minimum of 

information. Any other distribution contains more information, therefore, and the additional 

information is spurious. Thus, it is assumed that$(+) is the distribution that maximises Hsubject 

to the constraints, since this is the most likely distribution and the one that contains no spurious 

information. 

The maximum entropy distribution subject to the constraints imposed by equations (12.1)- 

(12.3) is 

$(*) = 4(*) exP (A0 +A, $a +Bep$a $b) - (12.5) 

The number of parameters ( A  and B) that have been introduced is +(a+ 1) ( u+ 2), the same as 

the number of constraints. Consequently A and B are determined by the values of 4, and Cab and 

by the condition that $($) integrates to unity. 

In  one important case A and B can be determined explicitly. If the scalars are unbounded (the 

accessible region is infinite) and they are non-reactive (q(+) = constant) the maximum entropy 

distribution is, 
P($) = ( 2 n ) - B u I C I - t e x ~ { - & C ~ ~ ( $ a - 6 a )($~-$,B)I. (12.6) 

This may be recognized as a u-dimension Gaussian distribution. 

For a single, bounded, non-reactive scalar the maximum entropy distribution is readily ob- 

tained by solving equations (12.1)-(12.3) and (12.5) by numerical means. Figures 5a-c show the 

resulting p.d.fs of temperature at three different radial locations in a heated axisymmetric jet. 

The maximum entropy distribution is shown as a full line and the points are taken from the 
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experimental data of H. A. Moneib (1977,personal communication). Figure 5 a  corresponds to 

the edge of the jet, figure 5 c  to the centre-line, and figure 5 b to a location in between. I t  may be 

seen that at the edge of the jet the p.d.f. is concentrated close to the lower bound where there is a 

spike. On  the other hand, on the centre-line the distribution is little affected by either bound and, 

consequently, the maximum entropy distribution is nearly Gaussian. For both these positions, 

there is good quantitative agreement between the measurements and the predicted distribution. 

At the intermediate location, the distribution is clearly affected by the lower bound but there is no 

spike. In this instance, the discrepancy between the measurements and the maximum entropy 

distribution is more evident: but, considering that the distribution is based on only two moments, 

the agreement at all three locations is as good as can be expected. 

~ ( $ 1  
(a)0.1 

FIGURE5 .  Graphs of P($) against $ in an axisymmetric heated jet at  x/D = 22.0; $= (T -T , ) /T1 .  
(a) r / D =  3.6; ( b )  r / D  = 2.6; ( c )  r / D  = 0. 

For reactive scalars the apriori probability q(+) is not uniform. I n  order to determine q(+) we 

proceed in three stages: the general functional form of q(+) is given; then, by considering the 

behaviour of q(@) under linear transformations, the general functional form can be reduced to a 

functional of two invariants of @-space; and, finally, physical arguments are used to determine the 

specific form of this functional. 

The only functions of composition space that appear in the conservation equations are the 

reaction rates and the density. I t  is to be expected therefore that q(+) is a function of these quan- 

tities only. However, in order to confirm this expectation, it is supposed that q(+) may be an 

intrinsic function of @ as well: such an explicit dependence upon + will be shown to be inadmis- 

sible. I n  addition to +, S,(+) and p ( @ ) ,a turbulent time scale 7,the correlation Cupand the 
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density (p) - none of which is a function of + - are used for normalization. Thus, q(+) can be 

written as an unknown functional, Q', 

q(+)  obeys the same transformation laws asp"(+), see 5 10. With an asterisk denoting quantities in 

the linear transformed +*-space, 

IClW+) = IC*l~9*(+*), 

and, since the functional form of q should be independent of the transformation, 

Consequently, (12.7) can be rewritten as 

where Q is an unknown functional and I,, I,, . . .,I, are all the non-dimensional, invariant functions 

that can be formed from the arguments of Q'. There are only two invariants, p(+)/(p) and X(+), 

where 

X(+)= 7Q(+) 

and Q2(+)= CC,] $a(+) SF(+). (12.12) 

Q(+), it may be recalled, is the normalized speed along a path. Thus, the functional form of q(+) 

can be reduced to, 

9(+) = 1 GI -dQ(x(+)j P(@)/(P)). (12.13) 

In  constant-density, inert flows this relation becomes, 

indicating that, although Q has not been specified, the a priori probability is uniform: the right 

hand side of equation (12.14) contains no dependence upon +. (The most likely candidate, 

C L ~ $ ~ $ ~ ,is invariant under rotation and stretching but not under translation.) The general 

form ofq(+), equation (12.13) has been deduced without introducing any assumptions. Physical 

arguments are needed to determine the specific form. 

As with other statistical quantities, that p " ( + )  behaves the same in variable-density flows as 

P(+)does in constant-density flows seems to be the best available hypothesis. This argument was 

first put by Bilger (1975)) and the works of Kent & Bilger (1977) and Bilger (1977) provide 

supporting evidence. This hypothesis implies that q(+) is not a function ofp(+) and thus, 

The determination of Q(X) is guided by the following reasoning. Consider a particle moving 

randomly through a given space. If the particle is not biased towards any particular region of the 

space and if the behaviour of the particle is the same in all regions, then the probability of finding 

the particle in a given region is the same for all equally sized regions. I n  other words, if there is no 

bias then the a priori probability is uniform. Suppose, now, that there is some bias. Suppose, all 

other things being equal, that on average the particle travels through one region faster than 

through another. Since the time spent in a region is inversely proportional to the speed of travel 

through that region, the probability of finding a particle in the region is inversely proportional to 

mailto:P(@)/(P))
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its average speed. Thus, we conclude that the a priori probability at  a point is inversely pro- 

portional to the average speed of transport at  that point. 

In  composition space, transport is due to reaction and mixing. For a single scalar, a speed can 

readily be associated with each of' these processes. With $' as the standard deviation, 

the effect of mixing alone is to cause $' to decay according to 

where this equation is used to define the turbulent time scale 7. According to the modelling of 

5 7 (equation (7.16)), T is 
7 = 2k/(C$26). ,(12.18) 

Thus, $'/r is the speed of transport due to mixing. The speed due to reaction has already been 

identified as the speed along a path. In  the case of a single scalar this is, simply, the absolute value 

of the reaction rate, IS($) I .  
Implementation of the principle that the a priori probability is inversely proportional to the 

speed leads to an expression for q ( $ )  : 

Here, ($'/T) + IS ($) 1 is the sum of the speeds and $'IT(in the numerator) is used for normal- 

ization. Or, dividing the numerator and denominator by $'IT,q($) can be rewritten as 

and then T I $ ( $ )  I /$ '  is the ratio of the speeds. 

This expression for q($) has 'been obtained from physical arguments. Is it, one may ask, 

consistent with the form of q($) deduced from the transformation properties (equation (12.15)), 

and can it be extended to more than one scalar? Both questions can be answered in the affirm- 

ative since the ratio of speeds is nothing but the invariant X(+).Thus, the general expression 

for q($) is 
4(+) = ICI-3/(1+X(+)), (12.21) 

and X(+) can be interpreted as the Euclidean norm of the ratio of the speeds. I n  a transform space 

in which Cupis diagonal, X(+) b~ecomes, 

The main points of this section are now summarized prior to a discussion. The statistically 

most likely distribution is that which maximises entropy (defined by equation (12.4)) subject to 

whatever constraints are imposed by the available information: equations (12.1)-(12.3) for 

example. The a p r i o r i  probability q(+), which appears in the definition of entropy, is uniform for 

non-reactive scalars. These are assumption free results. For reactive scalars, the properties of 

transformations in composition spacelead to the functional form of q($) given by equation (1 2.13). 

Physical arguments suggest that q(+) is not a function ofp(+)/(p) and that its dependence upon 

X(+) is given by equation (12.21). 
Vo1. 291. A. 
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The four requirements of a general method of determining an assumed distribution have been 

met. The method is applicable to any number of reactive or non-reactive scalars and it produces 

mathematically correct distributions. Its physical justification rests on the assumption that j($) 

is the statistically most likely distribution. Since any other assumption introduces extra (and 

therefore spurious) information, it appears that this is the best possible assumption. I t  is possible 

to imagine pathological cases in which the maximum entropy distribution (based on the first two 

moments) is far from the true distribution. This does not cast doubt on the assumption but rather 

indicates that in that case more information is required - third and fourth moments, for example. 

Such information could be incorporated as additional constraints on the maximization of 

entropy, and would result in cubic and quartic terms in the exponential of equation (12.5). 

The validity of the expression for q($), equation (12.21), could be tested by comparing the 

resulting maximum entropy distribution either with measurements of j ($)  of with the solution 

of the modelled joint p.d.f. equation. Accurate measurements of j($)for reactive scalars are 

unlikely to be made for some time. Although there are still uncertainties in the modelled 

joint p.d.f, equation, the solutions can be expected to be quantitatively correct. Consequently 

a qualitative check on q($) could be obtained by solving the modelled equation for a simple 

case such as a homogeneous reaction. Since a quantitative check is not available, it is fortunate 

that the expression for q($) contains no undetermined function or constant. 

D. C O N C L U S I O N  

13. Summary 

The aim of this work has been to present and develop a theory which can be used to determine 

mean properties of turbulent flames. Attention has been focussed on the basic processes in rela- 

tively simple flames. Specifically, it is assumed that the Mach number is low and that the Rey- 

nolds number is high. Subject to these assumptions the properties at any point in the flame can be 

characterised by the velocity U(x, t ) and the set of scalars 4(x ,  t ) : these quantities are governed 

by equations (2.13)-(2.15). However, the solution of these equations with initial conditions and 

boundary conditions appropriate to turbulent flames is prohibitively difficult. Statistical theories 

attempt to describe the behaviour of averaged quantities in terms of averaged quantities. This 

requires the introduction of closure approximations, but renders a more readily solvable set of 

equations. I t  has been argued that a closure of the Reynolds-stress equations and the probability 

density function equation represents an optimum level of closure from the standpoint of 

physical insight. The conception of turbulent combustion tliat stems from the probability 

equations is one of transport in composition space: the consumption of a species by reaction 

corresponds to the transport of the p.d.f. to regions in composition space with lower values of that 

species. The use of the p.d.f. equation removes the difficulties that are otherwise encountered due 

to nonlinear functions of the scalars such as reaction rates. The computational expense of solving 

the modelled p.d.f. equation can be avoided by estimating the shape of the p.d.f. from its first and 

second moments. A general method has been presented for determining the statistically most 

likely distribution of any number of reactive or non-reactive scalars. 

In  order to close the Reynolds-stress equations three terms must be modelled: the pressure-rate 

of strain, the turbulent transport and the dissipation. The pressure-rate of strain term can be 

decomposed into two portions: the first, which is non-zero even in the absence of mean velocity 

gradients, has been modelled in most detail by Lumley & Newman (1977).Several models for the 
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second part have been proposed, in the form of the mean velocity gradients multiplied by a 

function of the Reynolds stresses. Of these, the proposal of Launder, Reece & Rodi (1975) is 

probably the most general model that can be justified with the present experimental data. Tur- 

bulent transport of Reynolds stress is caused by gradients of the triple velocity correlations and 

also by pressure velocity correlation gradients. I t  has been suggested that, until uncertainties in 

other areas of the model are reduced, simple gradient diffusion may provide an adequate 

description of the transport. 

Dissipation is determined frorn its own transport equation. s can be regarded as the rate 

of transfer of energy from the energy-containing motions, and is governed by inertia, not by 

molecular processes. The source in the dissipation equation given by Lumley (1975 a) appears 

to account for similar flows with and without shear. The additional term proposed by Pope 

(1978) overcomes the previously encountered discrepancy for the round jet. 

I n  the transport equations for the first and second moments of 4, the scalar flux (uiq5:) is the 

dominant unknown. Its gradient accounts for the transport of (q5,) and multiplied by the mean 

scalar gradient it represents the production of (4;  4;). The transport equation for the scalar 

flux is similar to that for the Reynolds stresses and similar modelling has been proposed. There is 

some uncertainty in modelling the dissipation of scalar fluctuations cap: the data indicate that the 

contention that cap is proportional to c and (4L;Q;j)can be in error by 50%. Consequently, pro- 

posals have been made for a modelled transport equation for sap. This is sound in principle, but 

because of modelling uncertainties there is no reason to believe that this will produce more 

accurate results. 

The behaviour of statistical equations in variable-density flows may differ from that of their 

constant-density counterparts because of the appearance of additional terms, and because 

existing terms behave differently. The use of density-weighted averaging generally ensures that 

no additional terms arise. Also, since their transport equations retain conservative form, density- 

weighted quantities may be expected to behave similarly in constant-density and variable- 

density flows. There is no shortage of suggested additions to models to account for density vari- 

ations. The shortage is of definitive experiments; data by which such additions can be tested. At 

present, there is no strong case for believing that any additional term would enhance the accuracy 

of any modelled equation. In  comparing measured and calculated values in variable-density 

flows, it is essential to compare like with like. I t  is relatively easy to convert from density-weighted 

to unweighted quantities (or vice versa) in a calculation, but less so in experiments. Means of 

conversion are given in $8. 

Second order closures can be expected to be accurate for near-equilibrium, nearly-homo- 

geneous flows. Although this assessment is imprecise, this level of closure can be expected to be 

adequate for free shear flows. A considerable amount of work needs to be done in order to pro- 

duce a more accurate and general second order turbulence closure. Such work is being performed 

in several centres and those involved are not in need of suggestions: what is required is the pains- 

taking evaluation and developmeiit of existing proposals. The only area that seems to be receiving 

less attention than it deserves is that of variable-density flows. Although relevant experimental 

data are far from abundant, there are sufficient to provide useful tests of the models 

Thejoint p.d.f.P($) is a distribution in $-space, the composition space. Avalue of$ corresponds 

to a gas mixture of composition +(x,  t )  = $. $-space is bounded since only some compositions 

are allowed. For example, negative mass fractions clearly are disallowed. In  a particular flame 

not all the allowed composjtions may be accessible. The accessible region, outside which^($) is 
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zero, is defined in 5 10. Chemical reaction in a homogeneous (non-turbulent) mixture proceeds 

along reaction paths in composition space. 

The transport equation for the density-weighted joint p.d.f. indicates that j ($)  is convected in 

position space by the mean flow and by turbulence and is transported in composition space by -
reaction and by molecular mixing. A consistent model for the turbulent flux Pf($)u',' has been 

proposed. The effect of reaction (which appears in closed form) is to transport probability along 

reaction paths in composition space. I n  the absence of other effects, molecular action causes the 

second moments ofj($) to decrease without changing the mean values 6,.In  the limit as j ($)  

tends to a delta function it is presumed to do so as a Gaussian and consequently all cumulants 

tend to zero. Models which produce the correct qualitative performance take the form ofintegrals 

over the composition space and are, therefore, computationally expensive. None of these models 

has been shown to produce the correct Gaussian asymptote. 

Rather than solving the computationally-expensive modelled transport equation for j($)it 

has been suggested that j ($ ) can be estimated from a finite number of its moments. A general 

method has been presented for determining the statistically most likely distribution. This is 

achieved by maximising entropy subject to the constraints imposed by the first and second 

moments. The apriori probability q ($ ) ,  which appears in the definition of entropy, is uniform for 

passive scalars. For reactive scalars, q ( $ )  is a function of the two invariants of composition space, 

and physical arguments have been used to determine the specific form of this function. 

A general method of deriving density-weighted equations is presented. I t  results in the general 

equations (A 6) and (A 20) which are used to obtain the equations given in the text. 

A general quantity expressed as a function of the dependent variables, Q(U, $), is considered 

first. Then functions of fluctuating components of the dependent variables, R(u",$"), are treated. 

Within the first class are the mean quantities themselves, 4and 4,)and within the second are 
h r - -

the velocity and scalar correlations u', '~;,  u','$g and q5: q5;. Finally, the transport equation for 

the joint probability density function of the scalars j ( $ ) is derived. 

Functions of 0and $ 

Defining, - - -  = - "q-
~ t - a t  

a 
ax,' (A 1) 

and 

then, for any quantity Q, 

In  (A 3) use has been made of the instantaneous continuity equations (2.1) and its mean, 

For any function of U and 4, Q( U, 4))the left hand side of (A 3) may be rewritten 
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where summation is over all a. Thus, combining (A 3) and (A 5 )  gives the density-weighted 

transport equation for Q ( U, 4): 

The mean velocity equation 

With 

then 

and 

Substitution of equations (A 8)-(A 11) into equation (A 6) yields 

Replacing pDU, /Dt  by the right :hand side of equation (2.13) gives the mean velocity equation 
h-'

DO. a(p )u?u;  = a
( p )  ---" +--

~t ax, GP 

The mean scalar equation 

With Q (  u, 4) 9 a  

nda 
/-V 

a similar procedure yields ( P )Dt+a ( p )  u; 9: 
3% = ( P g )  

and, from equation (2.14) the mean scalar equation is 

For these two cases, the method is almost trivial but its advantages are evident for more involved 

functions. 
.Functions of U" and 4" 

For any function ofu" and 4", R(uU, 4"), the form of equation (A 3) holds; that is 

Expanding the left hand side gives 

Now, 
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Thus, combining equations ( A  17)  and ( A  1 8 ) )  with D $ i / D t  given by ( A  1 9 ) )  and similarly for 

Dui lDt ,  produces the transport equation for R :  

The Reynolds-stress equation 

With R(u",  4 " )  = u;u;) 
TV 

then a = u;u;~.,- -iiRui  = u'!uNu 
z i k ,  

and 

Substituting these relations into equation ( A  20)  gives 

a au au. a a aui 
= - ( " ~ ~ ) - ( u ; ~ ) + ( ~ ~ - ~ax, ax, (%+$I).ax, (+-))+(uiG;rls  ( A  28)  

where DU,/Dt has been taken from equation (2 .13) .  

The scalar correlation equation -
The density-weighted equation for $1/$; is obtained in a directly analogous way with the 

substitution 
R(uU,4")= $:#;. ( A  29)  

The result is 



- - 
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The scalar-Jlux equation - 
The transport equation for the scalar-flux, u; $1 is obtained by the substitution of  

R(u", 4") = u;$;  
into equation (A 20) : 

The probability density function equation  

The joint probability distribution of a scalars 4, (a: = 1,a) is given by  

where 

Gbeing the Dirac delta function. Thus, from (A 3), 

( p  D%$)) = ( P )DJ(+) a(p) 4 a(+ -4)
Dt ax, 9 

where j(+)is the density-weighted p.d.f. 

The left-hand side of (A 35) may be expanded as 

which combined with ( A  35) gives the transport equation for j(+) 

O r  finally, writingpl(+) for S(+ -4), 

This work was performed at  Imperial College with the support of the Procurement Execu- 

tive, Ministry of Defence, and at  the California Institute of Technology. I wish to thank Sally 
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