Mon. Not. R. astr. Soc. (1987) 226, 655-687

1987MNRAS.226..655B

The statistics of cosmic background radiation fluctuations

- J. R. Bond Canadian Institute for Theoretical Astrophysics, Toronto, ON M5S1A1,
- G. Efstathiou Institute of Astronomy, Madingley Road, Cambridge CB3 0HA and Institute for Advanced Study, Princeton, NJ 08540, USA

Accepted 1987 January 9. Received 1986 November 25

satisfied if the primordial fluctuations are Gaussian. The assumption of Summary. We present computations of the radiation correlation functions and isocurvature initial conditions. The results are valid on all angular scales. We describe the statistical properties of the radiation pattern and develop the theory of two-dimensional Gaussian random fields. A large number of properties of such fields may be derived analytically or semi-analytically, such as the number correlation properties. The formulae presented here provide valuable insight into the textural characteristics of the microwave background anisotropies and must Gaussian initial conditions allow us to make highly specific predictions for the pattern of the temperature anisotropies. This is demonstrated by the construction angular power spectra for microwave background anisotropies expected in Ω =1 of maps of the fluctuations predicted for the total intensity and the polarization. adiabatic of peaks and scale-invariant the eccentricities with dominated universes coldspots, of hotspots and dark matter pe

1 Introduction

The origin of density irregularities in the Universe represents one of the most important problems in cosmology which, until recently, was largely considered intractable. The inflationary model of primordial density fluctuations (e.g. Starobinskii 1982; Guth & Pi 1982; Bardeen, Steinhardt & Turner 1983). Although these calculations are hardly definitive, they have succeeded in drawing attention to a particular set of initial conditions, namely scale-invariant, Gaussian fluctuations the early Universe has, however, led to a potentially viable mechanism for the origin superimposed on an Ω =1 Friedman background.

radiation (CMB), assuming that the initial fluctuations are Gaussian. The background radiation will then form a 2D Gaussian random field and should provide a clean and direct test of the statistical aspects of the radiation pattern. It is unfortunate, then, that CMB anisotropies have yet In this paper, we investigate the statistical properties of the cosmic microwave background statistics of the initial conditions. Given a particular cosmological model, we can compute

1987MNRAS.226..655B

for they would provide a definitive test of the inflationary prediction of scale-invariant Gaussian fluctuations. to be detected,

(Davis & Peebles 1983; White, Frenk & Davis 1983; Davies et al. 1985) and CMB anisotropies for the origin of large-scale structure in which the present mass density is dominated by cold dark matter (CDM, see the review by Blumenthal et al. 1984, and references therein). The The general predictions of the inflationary picture, together with constraints derived from primordial nucleosynthesis (Yang et al. 1984), observations and simulations of galaxy clustering Silk 1984) have in turn led to a serious candidate model favoured set of parameters for the CDM model, consistent with the above constraints, as follows: (i) adiabatic, Gaussian, scale-invariant initial conditions; (ii) $\Omega = 1, \Lambda = 0$; $h = (H_0/100 \text{ km s}^{-1} \text{ Mpc}^{-1}) \approx 0.5$; (iv) baryon density $\Omega_B \approx 0.1$. & Efstathiou 1984; Vittorio &

 $\langle (\Delta T/T)^2 \rangle^{1/2} = 1.2 \times 10^{-5}/b$ (Section 4.1). Here b is a 'biasing' parameter which is unity if galaxies trace the mass distribution and is expected to lie in the range 1.5-2.5 in this specific model (Section 4.3). In the absence of beam smearing, the predicted anisotropy on this angular scale is $4.7 \times 10^{-5}/b$. We have provided the results of our computations in a form in which experimenters can readily assess the level of sensitivity required of their particular experimental configuration to Here we present a thorough analysis of the CMB anisotropies expected in Ω =1 CDM models. The high level of detail of our study is motivated by our impression that there is a realistic prospect of detecting the CMB anisotropies in the near future if the CDM model with the parameters listed above is correct. For example, a beam-switching experiment with a beam throw of 6° and a Gaussian beam profile of 5° FWHM [similar to the experimental configuration of Melchiorri et al. (1981) who report a detection of $\Delta T/T = 4.1 \pm 0.7 \times 10^{-5}$] would yield set convincing constraints on the CDM model.

If primordial CMB anisotropies are discovered at about the level suggested above, then radiation correlation function and tests of the Gaussian nature of the initial conditions. We have therefore emphasized the spatial characteristics of the radiation field throughout this paper and have provided examples of how the fluctuations would appear in the sky. Full information on the temperature autocorrelation function can only be obtained by mapping sizeable regions of the celestial sphere. In many respects, such studies of the CMB will be similar to current investigations of large-scale structures in the galaxy distribution. In the case of the CMB there is a attention will shift towards much more demanding tests of the model, such as the shape of the reasonable hope that non-linear effects are unimportant (at least on scales >1 arcmin, Ostriker & Vishniac 1986) though this simplicity is partly offset by the difficulty of the observations.

summary of the mathematical theory of the texture of maxima and minima in 2D homogeneous separations, their shapes, and their correlation functions. The development of these results is relegated to four appendices, and relies heavily on the theory of peaks for 3D random fields as developed by Bardeen et al. (1986, hereafter BBKS). These results provide a number of In Section 2, we discuss the general formulation of the statistical problem for the CMB. We assume that the radiation field is Gaussian, hence entirely characterized by the two-point angular correlation function $C(\theta)$ or its angular power spectrum. In Section 3, we present a short Gaussian random fields, presenting results for their number density requirements which the radiation field must necessarily satisfy if it is Gaussian. and isotropic

In independent work, Sazhin (1985) and Zabotin & Nasel'skii (1985) have also considered some of the properties of hotspots and coldspots. These authors have suggested that experiments may be capable of detecting high peaks in the radiation intensity fluctuations even if they are insensitive (i.e. noise limited) to more typical 1σ fluctuations. However, peaks of height 3σ and higher are extremely rare. Further, if instrumental/confusion noise has spatial characteristics similar to those of intrinsic CMB fluctuations, it will be difficult to distinguish between high peaks in the radiation field and rare excursions in the noise. However, if noise is correlated only on small scales, then the spatial characteristics of the intrinsic fluctuations may be recovered by applying a low pass filter. We stress that at this stage the primary use of our statistical analysis is as a device to aid intuition, since armed with only two numbers (the parameters γ and θ_* defined in Section 2.4 below) a variety of interesting features of the radiation pattern may easily be computed.

1987MNRAS.226..655B

parameters which we apply to adiabatic and isocurvature CDM universes with scale-invariant initial conditions. The techniques are generally applicable, however, and are not specific to this class of models. In Section 5, we display realizations of the radiation pattern expected in In Section 4, we describe the formalism for detailed calculations of $C(\theta)$ and related spectral two $\Omega = 1$ CDM models of the Universe and compare these with some of the results of Section 3. Our main results are summarized in Section 6.

2 Radiation fluctuation statistics

associated angular power spectrum (Section 2.2). In Section 2.3, the finite beam size of radio into an equivalent distribution for the microwave background radiation pattern, provided that the Universe is linear at the epochs at which the CMB fluctuations arise. We then introduce the single quantity required to specify the Gaussian statistics of the radiation pattern, $C(\theta)$, and the Spectral parameters required to describe the properties of the maxima and minima and the overall In this section, we first discuss how the statistical distribution of the initial fluctuations translates telescopes is shown to be equivalent to low pass filtering of the power spectrum. amplitude of the radiation fluctuations are defined in Section 2.4.

2.1 GAUSSIAN STATISTICS

perturbation acts like a free quantum field with zero-point oscillations in the de Sitter vacuum described by a Gaussian wave functional (Fischler, Ratra & Susskind 1985; Halliwell & Hawking 1985). When translated to a classical random field description, the probability functional, the introduction, this hypothesis has been adopted in many popular models of galaxy formation, in particular in those relying on fluctuation generation in an inflationary epoch. In inflationary fluctuations of a scalar field in de Sitter space (e.g. Bardeen et al. 1983; Axenides, Brandenberger & Turner 1983). Provided that the scalar field spatial fluctuations can be treated as linear perturbations to the dominant spatially homogeneous component of the scalar field, then the We assume that the initial perturbations form a Gaussian random field. As mentioned in the arise from quantum mechanical square of the wave functional, is Gaussian in each of the scalar field modes with random phases. may models, adiabatic and isocurvature perturbations

In particular Gaussian fields remain Gaussian throughout the linear regime. (This is also the As long as the fluctuations obey linear evolution equations, the joint probability distribution for any number of the normal modes of the perturbations is form-invariant: N-point correlation case for fields whose normal modes have random phases, for the central limit theorem implies functions of normal mode amplitudes evolve in a self-similar way. Only when mode-mode coupling occurs in the non-linear regime does the form of these probability functionals change. that such fields obey Gaussian statistics to a high degree of precision.)

We define the fluctuations Δ_T in the microwave background by the perturbation to the photon distribution function:

$$\delta f_{\mathrm{T}}(\mathbf{q}, \mathbf{x}, \tau) = (T_0 \delta \hat{f} / \delta T_0) \Delta_{\mathrm{T}}(\hat{q}, \mathbf{x}, \tau) / 4.$$

 \hat{q} is a unit vector in the direction of the photon momentum \mathbf{q} , \mathbf{x} is the comoving position and τ is Here, T_0 and \overline{f} are the unperturbed radiation temperature and distribution function, respectively, conformal time, $\int dt/a(t)$ where a is the cosmological scale factor.

linear regime, Δ_T will be a linear combination of the initial perturbation amplitudes, and will Since we assume that the fluctuations in the microwave background were imprinted in the

(2.4)

J. R. Bond and G. Efstathiou

therefore have the same probability distribution. In particular, $\Delta_T(\hat{q})$ evaluated at our current location $\mathbf{x} = 0$ and epoch $\tau = \tau_0$, the two-dimensional field which the experiments probe, is Gaussian if the initial conditions are. Such fields with zero mean are completely characterized by their two-point correlation functions, or equivalently, their power spectra. The radiation correlation function,

.. 922.2AMNT891

$$C(\theta) = V_{16} \langle \Delta_{\mathsf{T}}(\hat{q}_1) \, \Delta_{\mathsf{T}}(\hat{q}_2) \rangle \qquad \cos(\theta) = \hat{q}_1 \cdot \hat{q}_2, \tag{2.3}$$

depends only upon the relative angle θ and not on the absolute directions of the incoming photons. This is a consequence of homogeneity and isotropy.

2.2 POWER SPECTRUM

The CMB radiation pattern represents a 2D random field on the two-sphere. A Gaussian random field in a rectangular domain is completely characterized by the Fourier components of the two-point correlation function, its power spectrum. The analogue in spherical geometry is C_l, the Ith component of the Legendre polynomial expansion:

$$C(\theta) = \frac{1}{4\pi} \sum_{l} (2l+1) C_l P_l(\cos \theta).$$
 (2.2)

The discrete function C_l is the power spectrum associated with a spherical harmonic expansion of the radiation temperature seen on the sky from our location:

$$T(\hat{q}) = T_0[1 + \Delta_T(\hat{q}, \mathbf{x} = 0, \tau_0)/4]$$

$$= T_0 \sum_{lm} a_l^m Y_l^m(\dot{q}). \tag{2.3}$$

For Gaussian fields, the spherical harmonic expansion coefficients a_l^m , $l\neq 0$, are independent Gaussian fields with random phases, zero means, and variances

$$\langle a_l^m a_l^{m'} \rangle = \delta_{ll'} \delta_{mm'} C_l, \qquad l \neq 0.$$

The monopole Gaussian variable $a_0^0/(4\pi)^{1/2}$ has mean 1 and dispersion C_0 . However, since the average microwave background temperature we observe,

$$\vec{T} = T_0 \left(1 + \int \frac{d\Omega}{4\pi} \Delta_{\rm T} / 4 \right) = T_0 a_0^0 / (4\pi)^{1/2}, \tag{2.5}$$

includes the monopole part of the perturbation, the ' $\Delta T/T$ ' we would measure is $(T-\bar{T})/\bar{T}$ with the monopole subtracted off. In addition, the large dipole component

$$\sum a_1^m Y_1^m \equiv \mathbf{d} \cdot \hat{q},$$

which is most likely due to our motion $(\mathbf{d} \approx \mathbf{v}/c)$, should be subtracted before a correlation function is determined. The sum in equation (2.2) is therefore restricted to $l \ge 2$ terms.

equation (2.1). The observed correlation function $C_{\rm obs}$ could, with complete observational information, be determined by angle-averaging $\Delta T(\hat{q}) \, \Delta T(\hat{q}')$ over the sky with $|\hat{q} - \hat{q}'|$ kept The correlation function measured from our position will differ from the ensemble average

$$C_{\text{obs}}(\theta) = \sum_{l \ge 2} \sum_{m = -l}^{l} |a_l^m|^2 / (4\pi) P_l(\hat{q} \cdot \hat{q}'). \tag{2.6}$$

Within the ensemble, Cobs has a non-Gaussian probability distribution with mean given by the ensemble average, equation (2.2), but with a variance

$$\{[C_{\text{obs}}(\theta) - C(\theta)]^2\} = \left(\frac{1}{4\pi}\right)^2 \sum_{I} (2I+1) C_I^2 P_I^2$$

(2.8)

dominated by terms with $l \sim k \tau_0$. The relative deviation of realization average from ensemble average is therefore $\sim (k\tau_0)^{-1/2}$, negligible unless there is a large amount of power on decade on scales larger than the horizon at recombination. The shape of $C(\theta)$ will then be difficult to determine reliably at any angular scale unless a large-angle high pass filter is first applied to the map. Accordingly tests of theoretical predictions will require careful modelling of the estimation about that mean. The contribution to the sum over l for modes with comoving wavenumber k, is horizon-scale wavelengths. However, this is precisely the case for the model universes which are currently of most interest, those with scale-invariant initial fluctuations having equal power per techniques, an issue we turn to again in Section 6.

..987.RARAS.226..

longitude, $\boldsymbol{\omega} = 2\sin(\theta/2)$, and θ colatitude. The constraint $\boldsymbol{\omega} < 2$ gives an equal area mapping of a disc of radius 2 on to the two-sphere $(d\Omega = \varpi d\varpi d\phi)$, with $d\Omega$ a solid angle element). The map is For small angular patches of the sky, a framework more closely aligned to that used for Gaussian fields in flat 2D space is more appropriate. Consider the region about an arbitrarily chosen 'North Pole' of the sky. Choose polar coordinates (ϖ, ϕ) about this pole where ϕ is extremely distorted near the South Pole, the $\varpi=2$ boundary. For $\varpi \leqslant 2$, the geometry is flat. If we define a continuous power spectrum of $C(\theta)$ by

$$S(Q) = 2\pi \int_0^2 \varpi \, d\varpi \, C(\varpi) \, J_0(Q\varpi), \tag{2.7a}$$

the Fourier transform of $C(\theta) \vartheta(2-\varpi)$, with ϑ denoting the Heaviside function, then

$$C(\theta) = (2\pi)^{-1} \int_0^\infty Q \, dQ \, S(Q) \, J_0(Q\varpi).$$
 (2.7b)

Provided CJ_0 falls off sufficiently rapidly with ϖ , we can take the upper range of the integral in equation (2.7a) to be infinite, so C and S form a Hankel transform pair.

In the limit of large l and small ϖ , $P_l(\cos\theta) \approx J_0[(l+1/2)\theta]$, hence

$$S(Q) \approx C_l, \qquad Q \approx l \gg 1.$$

Thus C_l can be used in the construction of maps of small patches of the sky by Fourier transforms, a prescription we use in Section 5.

2.3 BEAM PROFILE FILTERING

The finite beam size of a radio telescope may be taken into account by convolving the intensity with a resolution function $\mathscr{F}(\hat{q}-\hat{q}')$, where \hat{q} denotes the beam centre and $-\hat{q}'$ denotes the directions of arrival of the photons incident on the telescope:

$$\Delta_{\mathrm{T}}^{\mathcal{F}}(\hat{q}) = \Delta_{\mathrm{T}}(\hat{q}; \theta_{\mathrm{s}}) = \int d\Omega_{\hat{q}'} \mathcal{F}(\hat{q} - \hat{q}') \, \Delta_{\mathrm{T}}(\hat{q}'). \tag{2.9}$$

in most cases, ${\mathscr F}$ is approximately symmetric. The full-width at half-maximum $heta_{\mathrm{fwhm}}$ is the Some telescopes have asymmetric convolution functions which are quite complicated, though, scale most often used to characterize the beam smearing. Instead, we use a smoothing angle

$$\theta_s \approx 0.425 \, \theta_{\text{fwhm}}$$
 (2.10)

to characterize the beam-smearing scale, motivated by the Gaussian approximation to the smoothing function F:

$$\mathscr{F}(\dot{q} - \dot{q}') = \frac{1}{2\pi\theta_s^2} \exp\left[-\left|\dot{q} - \dot{q}'\right|^2/(2\theta_s^2)\right]. \tag{2.11}$$

If \mathscr{F} is a function only of $|\hat{q}-\hat{q}'|$, then it can be expanded in Legendre polynomials with

(2.14)

J. R. Bond and G. Efstathiou

e22B

 $\mathcal{F}(Q)$ of \mathcal{F} using the polar coordinate prescription of equation (2.7a). The beam-smeared coefficients $\mathcal{F}_l(4\pi)$ as in equation (2.2); alternatively we can determine the Fourier transform correlation function is then

... 922.2AMNT891

$$C(\theta; \theta_s) = \frac{1}{4\pi} \sum_{l} (2l+1) \, \mathscr{F}_l^2 C_l P_l(\cos \theta)$$

$$\approx \int \frac{Q \, dQ}{2\pi} | \widetilde{\mathscr{F}}(Q)|^2 \, S(Q) \, J_0(Q\varpi)$$

$$= \int_0^2 \exp\left[-\frac{(\varpi^2 + \varpi_l^2)}{4\theta_s^2} \right] I_0\left(\frac{\varpi\varpi_1}{2\theta_s^2}\right) \, C(\varpi_1) \, \frac{\varpi_1 \, d\varpi_1}{2\theta_s^2}.$$

The first two expressions clearly show that ${\mathscr F}$ acts as a filter on the power spectrum whether we work in l or Q space. The last expression holds for Gaussian profiles (Wilson & Silk 1981), for

$$\mathscr{F}_l \approx \widetilde{\mathscr{F}}(Q) = \exp(-\theta_s^2 Q^2/2).$$
 (2.13)

2.4 SPECTRAL PARAMETERS

damp the high Q part of the power spectrum. The associated scale is characterized by the In addition to filtering by finite beam resolution, there are physical filtering processes which coherence angle, θ_c , defined in terms of the unsmoothed correlation function,

$$\theta_c^{-2} \equiv -C''(0)/C(0),$$

where the primes denote differentiation with respect to ϖ

Following BBKS, we define the following spectral quantities

$$\sigma_p^2(\theta_s) = \sigma_0^2 \langle Q^{2p} \rangle \equiv \int_0^\infty \frac{Q}{2\pi} \frac{Q}{2\pi} Q^{2p} S(Q) = p! 2^{2p} (-1)^p \frac{d^p C}{d(\varpi^2)^p} (0),$$

$$\gamma(heta_s) \equiv \sigma_1^2/(\sigma_0\sigma_2), \qquad heta_*(heta_s) \equiv \sqrt{2}\,\sigma_1/\sigma_2.$$

(2.15)

(2.16)

In particular,

$$\sigma_0(\theta_s) = [C(0; \theta_s)]^{1/2}$$

is the overall amplitude of the rms fluctuations that would be measured in a single beam of smoothing scale θ_s . The amplitude $\sigma_0(0)$ is directly related to the correlations in the mass density, and is typically fixed by comparing with observations of galaxy correlations (BE and Section 4.2). We also define a scaled correlation function

$$\psi(\theta; \theta_s) = C(\theta; \theta_s)/C(0; \theta_s) \tag{2.17}$$

which is independent of the normalization. For Gaussian beams, the rms amplitude changes with smoothing angle according to

$$\sigma_0^2(\theta_s)/\sigma_0^2(0) = \int_0^2 \exp(-y) \, \psi(2\theta_s \sqrt{y}) \, dy. \tag{2.18}$$

3 The statistics of hotspots and coldspots

In this section, we give an overview of the properties of the maxima and minima of 2D

homogeneous, isotropic Gaussian random fields. We relegate all of the detailed derivations and most of the relevant formulae to a series of appendices (1-4) and just highlight the results in this section. The framework we use follows closely the techniques developed by BBKS for 3D Gaussian fields. Application of some of these results to specific CDM models is given in Section 5.

..987.RARAS.226..

The basic 2D peak problem on the sphere is to determine all of the statistical properties of the point process defined by the number density 'operator'

$$n_{\rm pk} = \sum_{\rm p} \delta(\hat{q} - \hat{q}_{\rm p}) \tag{3.1}$$

which are warmer or cooler than average when smoothed on large angles. The properties of the ensemble average of $n_{
m pk}$ and of the local shapes of the radiation field about the peak points can be determined analytically, but computation of the exact two-point and higher correlation functions is difficult and we have resorted to approximate procedures. In the following, we characterize the relative heights of the radiation field by $\nu \equiv \Delta_T/(4\sigma_0)$. Properties of hotspots and coldspots depend only upon the spectral parameters γ and θ_* and not upon the overall maxima and minima on the two-sphere do not depend upon the fact that the geometry is curved rather than flat since they are defined by local properties. [The derivations of Appendix 1 do utilize an orthogonal coordinate system, which we can locally take to be the variables ($\varpi\cos\phi$, $\varpi \sin \phi$) expressed in terms of the polar coordinates introduced in Section 2.] In two dimensions, for points \hat{q}_p selected to be a subclass of the extremal points of the field $[\nabla \Delta_T(\hat{q}_p) = 0]$. Additional constraints may include requiring the points to be maxima or minima, thereby restricting the range of second derivatives, to have specified amplitudes, eccentric shapes, or to lie in regions amplitude σ_0 .

3.1 AVERAGE NUMBER DENSITY OF HOTSPOTS AND COLDSPOTS

The differential number of maxima per steradian with height in the range ν to $\nu+d\nu$ can be calculated analytically [equation (A1.9)] and the results are shown in Fig. 1(a) for a variety of γ . Only for high peaks $(\nu>3)$ is the asymptotic result,

$$V_{\text{max}}(\nu) d\nu = \frac{1}{2\pi\theta_*^2} \exp(-\nu^2/2) \frac{d\nu}{(2\pi)^{1/2}} \gamma^2(\nu^2 - 1)$$
 as $\nu \to \infty$, (3.2)

accurate.

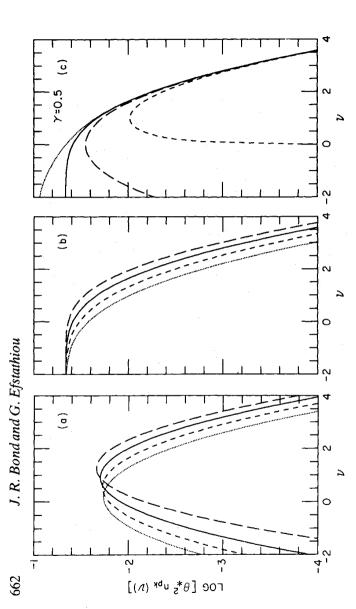
The integrated number density of maxima with height ν above some (sharp) threshold ν_t (Fig. 1b) must be evaluated numerically, but is approximately given by

$$n_{\max}(\nu_t) = \frac{1}{4\pi\sqrt{3}\theta_*^2} \max \left[1, \left(\frac{6}{\pi} \right)^{1/2} \gamma^2 \nu_t \exp\left(-\nu_t^2/2 \right) + \text{erfc} \left\{ \frac{\nu_t}{[2(1 - 2\gamma^2/3)]^{1/2}} \right\} \right], \tag{3.3}$$

of arbitrary height $(\nu_t = -\infty)$ and the second is the analytic expression for the density of maxima plus minima, $n_{\text{max}}(v_t) + n_{\text{min}}(v_t)$. Of course, $n_{\text{min}}(v_t) = n_{\text{max}}(-v_t)$ relates the number of coldspots below a given negative threshold to the number of hotspots above the same threshold but with an expression which is very accurate for $\gamma \nu > 0.5$. The first term gives the number of maxima opposite sign. Fig. 1(c) demonstrates the accuracy of equation (3.3).

3.3 SIZE OF A HOTSPOT

Fig. 1(c) also plots the mean number density of upcrossing points $n_{\rm up}(\nu_t)$ on the contour curves $\nu = \nu_t$ of height ν_t [equation (A1.13)]. An upcrossing point is defined by fixing a direction and considering points on the contour curves whose tangents are perpendicular to the chosen axis and from which movement in the positive direction takes one into the contour region. For high v_t , the



characteristic of these surfaces per unit area (short dash), $n_\chi/2$, are compared with the density of maxima (solid) in $= n_{\min}(-\nu_t)$ of peaks above the threshold ν . For $\gamma = 0.5$, the density of maxima plus minima above height ν and one-half of the Euler , $n_{\min} + n_{\max}$ is a good analytic approximation to n_{\max} which is very $_{min}(-\nu)$ is plotted against height $\nu = F/\sigma_0$ for the following values of γ : 0.1 (dot), 0.3 (short dash), 0.5 (solid), 0.7 (long dash). (b) Gives the integrated number densities (dot), the density of upcrossing points on contour surfaces of height ν (long dash) Figure 1. (a) The differential number density $\mathcal{N}_{max}(\nu) = \mathcal{N}$ The approximation max $[(4.665\theta_*)^{-2},$ accurate for $\gamma\nu>0.5$ $n_{\max}(\nu_i)$. છ

upcrossing points basically count the connected contour regions. For lower ν_t , the contours are highly convoluted regions so there are many upcrossing points per connected region. However, the number of upcrossing points gives an indication of the number of convex pieces within these connected regions, and hence might still be considered a reasonable measure of spot number.

The fraction of the sky enclosed within the contour regions is the probability $P(\nu > \nu_t) = 0.5$ erfc $(v_t/\sqrt{2})$, so the area per hotspot is approximately the ratio

Area
$$(v_t) \equiv \frac{P(v > v_t)}{n_{\rm up}(v_t)}$$

$$\sim 2\pi \left(\frac{\theta_*}{\gamma v_t}\right)^2 \left(1 - \frac{1}{v_t^2}\right) \quad \text{as } v_t \to \infty.$$

(3.4)

3.3 DISTANCES BETWEEN HOTSPOTS AND COLDSPOTS

The mean distance of a hotspot of height above v_i from a field point uncorrelated with it is

$$\langle b \mid \max, v_t \rangle = 2[\pi n_{\max}(v_t)]^{-1/2}/3.$$
 (3.5)

presence For maxima of arbitary height, this mean distance is $1.8\theta_*$. Since the positions of maxima and minima are correlated, this estimate will only be an approximation to the mean distance between minima and maxima, but is a reasonable first guess. The mean distance from one peak to another tend to be strongly clustered (Section 3.5), although they do exclude each other from their immediate does depend upon the peak-peak correlation function since high peaks

(Bardeen et al., in preparation). The net effect should reduce slightly the estimate of equation

3.4 THE SHAPES OF HOTSPOTS AND COLDSPOTS

are defined by the Taylor series expansion of the field about the peak taken to be at the origin of Local shape parameters of a peak of height, ν , measuring radial curvature, x, and asymmetry, e, polar coordinates:

$$\Delta_{\mathbf{T}}(\boldsymbol{\varpi}) \approx \sigma_0 \left\{ \nu - V_2 \gamma_X \left(\frac{\boldsymbol{\varpi}}{\theta_c} \right)^2 \left[1 + 2e \cos(2\phi) \right] \right\}. \tag{3.6}$$

average as one goes away from the peak characterized by the constraints of given ν , ε and x [equations (A2.7) and (A2.8)] are shown in Fig. 3 for a high (ν =3, ε =0.68) and low (ν =1, regions is certainly evident in the maps of Section 5 below. The cross-correlation function for height ν is given by equation (A2.2) and plotted in Fig. 2(a). The distributions of the 'ellipticity' e and the eccentricity $\varepsilon = 2[e/(1+2e)]^{1/2}$ of the contour ellipses [equations (A2.3), (A2.5), (A2.6)] plotted in Fig. 2 show that the peaks of low height are quite elongated, and that even relatively high peaks are not circular. The average shape of the radiation field and the dispersion about this $\varepsilon = 0.76$) peak with average parameters appropriate to their height. The elongation of peak unorientated peaks of height in excess of a threshold value v_t with the temperature field is the The contour curves in the neighbourhood of the peak are ellipses. The coordinates are orientated along the major and minor axes. The distribution of x subject to the constraint that the peak has mean profile [equation (A2.9)]

$$C_{\rm pk,\,\Delta}(\theta) = \sigma_0 \left[\frac{\langle v \rangle}{1 - \gamma^2} \left(\psi + \theta_*^2 \nabla^2 \psi / 2 \right) - \frac{(\langle x \rangle / \gamma)}{1 - \gamma^2} (\gamma^2 \psi + \theta_*^2 \nabla^2 \psi / 2) \right]. \tag{3.7}$$

Downloaded from https://academic.oup.com/mnras/article/226/3/655/1034894 by U.S. Department of Justice user on 16 August 2022

3.5 THE HOTSPOT CORRELATION FUNCTION

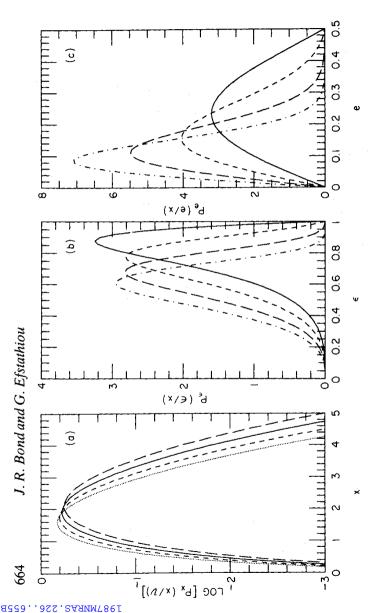
Just as in the 3D case, calculation of the 2D correlation function of peaks $C_{\rm pk.\,pk}(\varpi)$ above the threshold height v_t is difficult. In Appendix 4, we resort to an approximation used in BBKS which should give good estimates for the correlation of peaks for ϖ >max(θ_c , θ_s), provided derivatives of $C(\theta)$ can be neglected in comparison with $C(\theta)$. The correlation function [equation (A4.10)] reduces in the limit of small ψ to

$$C_{\mathrm{pk,pk}}(\theta) \approx \exp[A(\nu_t) \psi(\varpi)] - 1, \quad \text{for } \psi \leqslant 1,$$
 (3.8)

equation (3.8). Fig. 3(c) shows these correlation functions for a number of thesholds. Hotspots where the amplitude $A(v_t)$, determined by equation (A4.15), reduces to v_t^2 for extremely high thresholds. In addition to the continuous function equation (3.8), there is a Poisson contribution to the correlation function, $n_{\rm pk}^{-1}(\nu_{\rm t})\delta(\hat{q}-\hat{q}')$, associated with the self-correlation of individual peaks with themselves. Further, if the continuous part of the correlation function is computed more accurately, one finds that $C_{pk,pk}$ goes to zero at $\theta=0$ reflecting the fact that different peaks are not found on top of each other. The characteristic scale of this repulsive core is $\sim \theta_*$ (Bardeen et al., in preparation). Beyond this scale, hotspots are strongly clustered as indicated by and coldspots do not strongly cluster together.

The fractional variance in the peak number from realization to realization over a grid of area Q_{patch} is related to the correlation function by

$$\langle (\Delta N_{\rm pk})^2 \rangle / \langle N_{\rm pk} \rangle^2 = \langle N_{\rm pk} \rangle^{-1} + \int \int C_{\rm pk, \, pk} (\hat{q} - \hat{q}') \frac{d\Omega_{\hat{q}}}{\Omega_{\rm patch}} \frac{d\Omega_{\hat{q}'}}{\Omega_{\rm patch}}, \tag{3.9}$$



The conditional probability of the curvature parameter $x = |\nabla^2 F/\sigma_2|$ given the height $\nu = 0$ (dot), 1 = 0.347, the value appropriate to the h = 0.75 adiabatic CDM model. The eccentricity (b) and ellipticity (c) distributions for x = 1 (solid), 2 (short dash), 3 (long dash) and 4 (dot-dash) are independent of the spectral parameters and ν . Integration over x gives the ε and distributions for specified values of the peak height ν [equation (A2.6), Appendix 2]. (short dash), 2 (solid), 3 (long dash) of the maximum (or minimum) is plotted for γ

where the $\langle N_{pk} \rangle = n_{pk}(\nu_t) \Omega_{patch}$ term gives the Poisson fluctuations and the continuous integral reflects the excess variance over Poisson in the map due to clustering. The rms fluctuations are by a factor of therefore larger for high peaks,

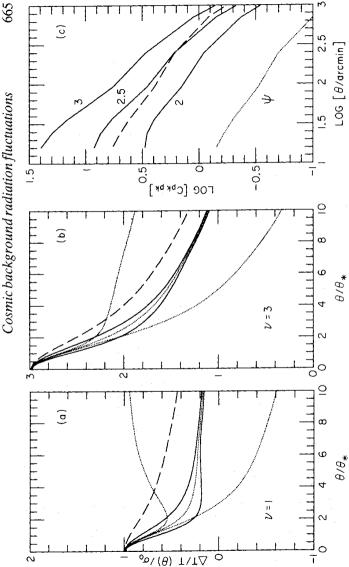
Computations of angular correlations and power spectra

4

anisotropies in inflationary models, particularly those in which CDM dominates the present <1 models are ad hoc; it is not even clear how to</p> parameterize the fluctuations in a simple way, since the models contain a characteristic scale, that of the curvature. (See Wilson 1982, 1983 for a discussion of anisotropies in open cosmological The general techniques for calculating small-angle anisotropies in the CMB radiation have been 1978, hereafter DZS; Wilson & Silk 1981; Bond & Efstathiou 1984, hereafter BE). In this paper, we require computations of $C(\theta)$ which are accurate over the entire angular range. In Section 4.1 The restriction to flat models since then the mode functions for the perturbations are simple plane waves. Furthermore, $\Omega = 1$ is a natural outcome described in a number of papers (e.g. Peebles & Yu 1970; Doroshkevich, Zel'dovich & Sunyaev of inflationary models in which well-defined predictions of the initial fluctuations can be made. Thus, the techniques developed here allow us to make highly specific predictions of the of large-angle anisotropies models. $\Omega = 1$ density. In contrast, the initial perturbations in \Omega accomplished for determination this may be simplifies show how considerably models.)

we first present our methods for exactly computing $C(\theta)$ and then discuss approximate methods. We present results for $C(\theta)$ for several adiabatic CDM models and for one isocurvature model. The spectral parameters required for the statistical formulae in Section 3 are given in Section 4.2. In Section 4.3, we describe methods for evaluating the power spectrum C₁. Section 4.4. In the are presented in Accurate fitting formulae for the correlation functions In Section 4.1

1987MNRAS.226..655B



the profile for field points of height v, $v\psi$ (dash), are those for the unsmoothed $h \approx 0.75$ adiabatic CDM model. This (dot). For $\nu=3$, $C_{pk,pk}$ is compared with the extension to small θ of the asymptotic form of the peak correlation function (dash), $(\tilde{\nu})^2 \psi(\theta)$ [equation (A4.15)]. curvature parameter, x, (0.189 and 0.224) have been chosen. The spectral parameters $\gamma = 0.347$, $\theta_* = 4.59$ arcmin and The angle-averaged profile, which is the cross-correlation function $C_{\rm pk.\,\Delta}(\theta)/\sigma_0$, and the $\pm 1\sigma$ curves (dashed curves) are also shown. The latter illustrate that peaks are coherent only out to a few θ_* even for $\nu=3$. (c) Shows the correlation functions for 3 computed using the approximations of Appendix 4 equation (A4.10)]. Again $\gamma = 0.347$ was chosen. The normalized correlation function ψ is shown for comparison Figure 3. Typical profiles for (a) $\nu = 1$ and (b) $\nu = 3$ peaks. Average values for the ellipticity, e_{ν} (0.2 and 0.15) and the axes (solid) profile is not as steep as the profile about a peak. Comparison of the profiles along the principal 1 and 2 demonstrates that $\nu=1$ peaks are quite elongated and $\nu=3$ peaks are moderately aspherical. peaks (solid) of height in excess of the thresholds v_t =2, 2.5,

following, we do not explicitly include the ensemble average symbol $\langle - \rangle$ where the averaging is clear, as in expressions for $C(\theta)$, C_l and the spectral parameters σ_p of equation (2.15)

COMPUTATIONS OF THE CORRELATION FUNCTION

solve the Boltzmann transport equations for the total radiation intensity fluctuations $\Delta_{
m T}$ and linear polarization fluctuations $\Delta_{
m P}$ Our method for evolving the radiation field through recombination has been discussed in BE. perturbations into plane waves, by expanding both in Legendre polynomials, the Briefly, we decompose

$$\Delta_{\mathrm{T}}(\mathbf{k}, \, \hat{q}, \, \tau) = \sum_{l} (2l+1) \, \Delta_{\mathrm{T}l}(k, \, \tau) \, P_{l}(\mu), \qquad \mu = \hat{k} \cdot \hat{q}, \tag{4.1}$$

and evolving the hierarchy of coupled equations for the $\Delta_{T'}$ and $\Delta_{P'}$. These equations are coupled to evolution equations for the baryon density and velocity, the CDM density, the Boltzmann equation for three massless neutrino flavours and the perturbed Einstein equations in the Bond (1986, hereafter EB), and Bond & Szalay (1983) and will not be repeated here. We assume the standard recombination physics as described by Peebles (1968); reionization synchronous gauge for the scalar metric fluctuations h and h_{33} . The equations are given in BE, is discussed in a separate paper. Efstathiou &

The temperature autocorrelation function is given by

$$C(\theta, \tau_0) = \frac{V_x}{32\pi^2} \int_0^\infty \sum_{l \ge 2} (2l+1) |\Delta_{Tl}(k, \tau_0)|^2 P_l(\cos \theta) k^2 dk,$$
(4.2)

the polarization correlation function $C_P(\theta)$. The relationship between C_P and observations of polarization is discussed in Appendix 5. In practice, we evolve the hierarchy of equations for $\Delta_{Tl}(k,\tau)$ until an epoch τ_s when recombination is complete and the optical depth to the observer is where V_x is a box-normalization volume for the plane waves. An analogous expression holds for negligible. After τ_s , the radiation obeys the free-streaming equation

$$\dot{\Delta}_{\rm T} + i \dot{q} \cdot \mathbf{k} \, \Delta_{\rm T} = (1 - \mu^2) \, \dot{h} + (3 \mu^2 - 1) \, \dot{h}_{33},$$

$$\dot{\Delta}_{\mathbf{P}} + i\dot{q} \cdot \mathbf{k} \, \Delta_{\mathbf{P}} = 0,$$

where the dot denotes differentiation with respect to τ . Let us define auxiliary variables

$$\widetilde{\Delta}_{\text{T0}} = \Delta_{\text{T0}} - 2\ddot{h}/k^2,$$

$$\widetilde{\Delta}_{\mathrm{T}1} = \Delta_{\mathrm{T}1} + \frac{2i}{3k}\dot{h},$$

$$\widetilde{\Delta}_{\mathrm{T}l} = \Delta_{\mathrm{T}l}, \qquad l \geq 2.$$

(4.4)

When the approximations $h \propto \tau^2$ and $h_{33} \approx h$ apply, as occurs in adiabatic models once after the universe becomes matter dominated, then $\widetilde{\Delta}_{Tl}$ at τ_0 is related to $\widetilde{\Delta}_{Tl}(k, \tau_s)$ by

$$\widetilde{\Delta}_{Tl}(k, \tau_0) = \sum_{l'} \sum_{m=0}^{\min(l, l')} \widetilde{\Delta}_{Tl'}(k, \tau_s) (2l'+1) \frac{c_{l, l', m}}{i^{l+l'-2m}} j_{l+l'-2m}(k\Delta\tau),$$
(4.5)

where

$$\Delta \tau = \tau_0 - \tau_s,$$

and

$$a_{l,l',m} = \frac{\alpha_{l'-m}\alpha_m\alpha_{l-m}}{\alpha_{l+l'-m}} \frac{2l+2l'-4m+1}{2l+2l'-2m+1}$$

$$\alpha_n = \frac{(2n-1)!!}{n!}.$$

An equivalent expression holds for $\Delta_{Pl}(k, \tau_0)$. It is computationally much faster to evaluate this series than to evolve the coupled free-streaming equations for the Δ_i s.

Our procedure for the adiabatic case is as follows: we evolve the full set of integro-differential equations as in BE to a redshift of about 300. Beyond this time the series expansion, equation (4.5), accurately describes the subsequent evolution of the radiation. We have checked that the solutions derived in this way are highly accurate using a number of tests. First, equations (4.3) require a conservation condition,

$$\sum_{l=0}^{\infty} (2l+1) \mid \widetilde{\Delta}_{Tl}(k, \tau_0) \mid^2 = \sum_{l=0}^{\infty} (2l+1) \mid \widetilde{\Delta}_{Tl}(k, \tau_s) \mid^2.$$
(4.6)

Secondly, as the radiation free-streams, $|\widetilde{\Delta}_{\mathsf{T}}(k,\mu,\tau)|$ retains the same functional form. Thirdly, we have compared the series solution of equation (4.5) with the direct evolution of equation (4.3) to the present. These tests show that our final results are accurate to within a few per cent. The

1987MNRAS.226..655B

Is	0.75	0.03 12.2	0.158	8.44	53.2	2.44	0.524	5.36	10.2	95.44	0.0613	64.9	311.1	15.23	26.42	521.0	0.206	34.34	7.234	9.248
Ad	0.50	3.54	0.342	3.79	10.94	1.98	0.667	2.90	4.35	9.90	0.0920	9.93	44.10	4.428	5.688	116.4	0.0120	6.744	1.639	1.976
Ad	0.50	0.03 2.79	0.391	5.17	12.76	1.84	0.693	4.23	6.11	5.87	0.172	8.75	61.91	6.725	8.694	148.7	0.0131	9.495	2.376	2.839
Ad	0.75	1.80	0.347	4.59	12.84	1.05	0.693	3.66	5.28	1.96	0.216	5.70	57.05	7.011	9.380	33.51	0.0192	8.314	2.361	2.823
Ad	1.0	0.03	0.322	4.32	12.59	0.711	0.680	3.26	4.79	1.84	0.326	4.46	167.2	9.719	24.01	172.1	0.0184	7.547	2.090	2.511
Mode	ų	$b\sigma_0(\times 10^5)$	7	*	$\theta_{\rm c}$	$b\sigma_{p0}(\times 10^6)$	γ_p	θ_{*p}	θ_{cp}	$A(\times 10^{10})$	×	$a_2(\times 10^6)$	$ heta_1$	θ_2	θ_3	θ_4	κ_{ρ}	θ_{p_1}	θ_{p2}	θ_{p3}

Notes

Ad denotes adiabatic mode; Is denotes isocurvature mode. The quoted values of γ and θ_* were applying a smoothing of $\theta_s = 1$ arcmin. $\theta_s = 0$ for the other spectral parameters listed. All angles are quoted in arcmin. sum in equation (4.5) must extend to $l > k\tau_0$. Thus, for high wavenumbers, large values of l are required. We use Miller's method (Abramowitz & Stegun 1970) for evaluating the spherical Bessel functions.

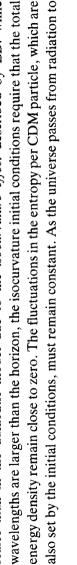
The evolution of isocurvature fluctuations has been described in detail by EB. In this case, equation (4.5) cannot be used until $h \propto r^2$, which occurs in the matter-dominated regime only for wavelengths much smaller than the horizon. For long wavelengths we evolved equations (4.3) until this condition was satisfied or until τ_0 was reached.

 $\Omega = 1$ adiabatic CDM models. The parameters for these models are listed in Table 1. We also present results for one isocurvature CDM model with h=0.75 and $\Omega_{\rm B}=0.03$. The scale-invariant isocurvature model faces a number of difficulties especially when compared with large angle anisotropy limits (EB) and is included primarily to contrast with the h = 0.75, $\Omega_B = 0.03$ adiabatic We have used the above procedures to compute correlation functions for several case. These two models are compared in detail in this and the next section.

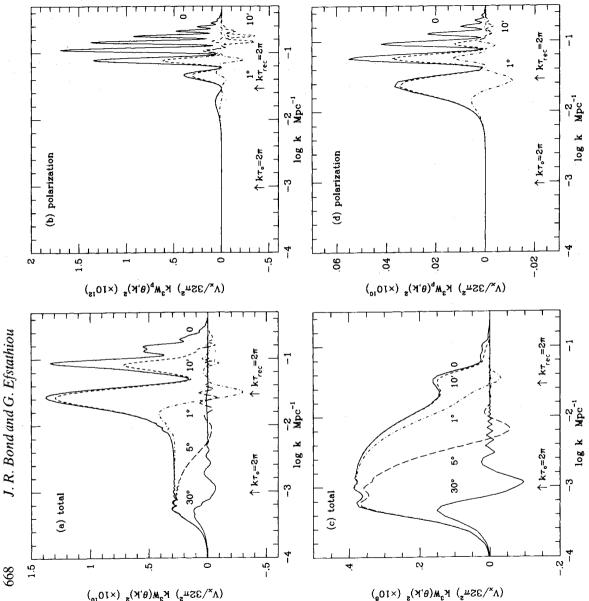
In Fig. 4(a) and (c), we plot $k^3W_1^2(\theta, k)$, the integrand of equation (4.2), where

$$W_{\mathrm{T}}^{2}(\theta, k) = \sum_{l \ge 2} (2l+1) |\Delta_{\mathrm{T}l}(k, \tau_{0})|^{2} P_{l}(\cos \theta), \tag{4.7}$$

due to anisotropies in the gravitational potential fluctuations contributes. The flat part is equal large peaks arise from anisotropies generated by Thomson scattering off the moving electrons on for several values of θ . This illustrates the contribution to $C(\theta)$ from each decade of wavenumber for scale-invariant initial conditions. In the adiabatic model, the fundamental role played by the horizon at recombination is evident. For longer wavelengths, only the Sachs-Wolfe effect to $\ddot{h}^2(k, \tau_0)/k$ which reflects the scale-independence of the initial potential fluctuations. The two



© Royal Astronomical Society • Provided by the NASA Astrophysics Data System



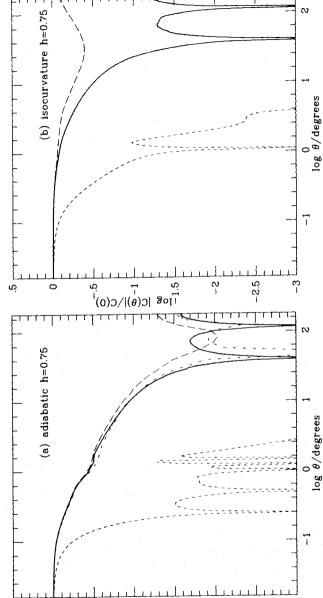
Show the integrands for the total and polarization correlation functions, respectively for a scale-invariant adiabatic The area under each curve gives $C(\theta)$ thus it is easy to assess how These curves have been Figure 4. Integrands of the radiation autocorrelation function $k^3W_1^2(\theta,k)$ plotted against $\log k$ for various θ . (a, b) =0.75. (c, d) Show the equivalent plots for a scale-invariant isocurvature CDM normalized according to the prescription given in Section 4.2 with the biasing parameter b=1fluctuations on various scales would contribute to experiments probing any particular angle. model with identical cosmological parameters. CDM model with $\Omega = 1$, $\Omega_B = 0.03$, h

scales smaller than the horizon at recombination, $\tau_{\rm rec}$. On scales smaller than the width of the last and (d) show analogous plots for the polarization $k^3W_{\rm P}^2(\theta, k)$]. The power in the polarization correlation function comes almost entirely from scales smaller than au_{rec} , generated as a result of the polarization dependence of the Thomson scattering surface, these anisotropies are cancelled by contributions from oppositely directed 4(b) velocity flows across the wave. Fig. scattering cross-section.

while In the isocurvature models, the total correlation function $C(\theta)$ has much more power on large wavelengths are larger than the horizon, the isocurvature initial conditions require that the total energy density remain close to zero. The fluctuations in the entropy per CDM particle, which are by EB: adiabatic model due to the isocurvature effect described scales than in the

Cosmic background radiation fluctuations

1987MNRAS.226..655B



scale-invariant CDM models shown in Fig. 4. The dotted lines show the polarization correlation function $C_P(\theta)$. We have plotted the logarithm of the absolute value of C(heta) with the understanding that a zero-crossing occurs whenever a curve hits the x-axis in these plots. The long-dashed lines show the approximation to $C(\theta)$ given by equation (4.11) and the dot-dashed line shows the approximation of equation (4.14). For the isocurvature model shown in (b) these fluctuations intensity total the autocorrelation functions of two approximations give nearly identical results. the solid lines show The

³ by matter domination these two constraints necessitate a transfer of the fluctuation from the CDM to The peak in the $C(\theta)$ power is related to the initial scale-invariant power in the CDM perturbations $|\delta_{Xi}|^2 \propto k^$ the photons and baryons, building up the radiation perturbation amplitude.

$$k^3 W_T^2(\theta=0,k) = (4/3+\gamma)^2 k^3 |\delta_{Xi}|^2, \qquad \gamma=0.266.$$

(4.8)

The part involving γ represents the usual Sachs-Wolfe effect, while the rest is due to the isocurvature effect. Deviations from flatness in Fig. 4(c) arise since the transfer of the fluctuation amplitude from CDM to radiation is arrested once the waves come within the horizon and the CDM perturbations begin to grow. For waves that enter the horizon before $\tau_{
m rec}$, the physical in the similar to those effects, including the generation of the polarization amplitude, are adiabatic case discussed above.

for0 are shown in Fig. scale-invariant initial conditions. The large-angle form of $C(\theta)$ is well described by The correlation functions $C(\theta)$ and $C_p(\theta)$ for these two models

$$C(\theta) \approx \frac{3a_2^2}{2\pi} \left[\ln \left(\frac{2}{1 - \cos \theta} \right) - 1 - \frac{3}{2} \cos \theta \right]. \tag{4.9}$$

Sachs-Wolfe contribution $\Delta_{Tl} = (-2\ddot{h}/k^2) j_l(k\tau_0)/i^l$ in the adiabatic case analysis using equation (4.8) in the isocurvature case This follows from the and from an identical

(as with scale-invariant perturbations), although the difference $C(0) - C(\theta)$ (which is all that is the shape of $C(\theta)$ and for the value of C(0) in cases when substantial power exists on large scales required for comparison with small-angle experiments) is computed accurately. For example, the fits to $C(\theta)$ derived for CDM models in BE using the small-angle approximation of Wilson & Silk Previous numerical calculations of $C(\theta)$ have been based on small-angle formulae (e.g. DZS; Wilson & Silk 1981; BE; Vittorio & Silk 1984). These approximations can yield poor estimates for

J. R. Bond and G. Efstathiou

(1981) are inappropriate for the applications described in this paper and could give a false impression of the characteristics of the radiation field. Here we derive formulae which extend the small-angle approximations of DZS [equation (4.11)] and of Wilson & Silk [equation (4.14)] by including the Sachs-Wolfe and isocurvature effects. For $\theta \leqslant 1$

..987.RARAS.226..

$$\widetilde{\Delta}_{\mathrm{T}}(k,\hat{k}\cdot\hat{q},\tau_{0})\widetilde{\Delta}_{\mathrm{T}}^{*}(k,\hat{k}\cdot\hat{q}',\tau_{0}) \approx |\widetilde{\Delta}_{\mathrm{T}}(k,\hat{k}\cdot\hat{q},\tau_{s})|^{2}\exp\left[i\mathbf{k}\cdot(\hat{q}-\hat{q}')\,\Delta\tau\right]. \tag{4.10}$$

The rigorous conservation theorem equation (4.6) leads to the following expression once monopole and dipole terms have been subtracted:

$$C(\theta) \approx \frac{V_x}{32\pi^2} \int_0^\infty k^2 dk \left\{ \frac{1}{2} \int_{-1}^1 d\mu \mid \widetilde{\Delta}_{\mathrm{T}}(k, \mu, \tau_{\mathrm{s}}) \mid^2 J_0[k\tau_0 \varpi (1 - \mu^2)^{1/2}] - |\widetilde{\Delta}_{\mathrm{T0}}(k, \tau_0)|^2 - 3\cos\theta \mid \widetilde{\Delta}_{\mathrm{TI}}(k, \tau_0) \mid^2 \right\}, \quad \tau_0 \gg \tau_{\mathrm{s}},$$
(4.11)

vhere

$$\begin{split} \widetilde{\Delta}_{\text{To}}(k, \, \tau_0) &= -\frac{2\ddot{h}(\tau_s)}{k^2} j_0(k\Delta\tau) + \frac{2\dot{h}(\tau_s)}{k} j_1(k\Delta\tau) + \sum_{l=0}^{\infty} (2l+1) \, \Delta_{\text{Tl}}(k, \, \tau_s) \, j_l(k\Delta\tau)/i^l, \\ \widetilde{\Delta}_{\text{Tl}}(k, \, \tau_0)/i &= \frac{2\ddot{h}(\tau_s)}{k^2} j_1(k\Delta\tau) - \frac{2\dot{h}(\tau_s)}{3k} [2j_2(k\Delta\tau) - j_0(k\Delta\tau)] \end{split}$$

$$(x, au_0)/i = \frac{\sqrt{3}}{k^2} j_1(k\Delta au) - \frac{\sqrt{3}}{3k} [2j_2(k\Delta au) - j_0(k\Delta au)] - \sum_{l=0}^{\infty} \frac{\Delta_{Tl}(k, au_s)}{i^l} [(l+1) j_{l+1}(k\Delta au) - lj_l(k\Delta au)].$$

In Fig. 5, this approximation is shown as the long-dashed lines. It works quite well out to $\sim 10^\circ$ in the adiabatic case, but less well for the isocurvature model.

Another approximation, which is more accurate for the adiabatic models, may be derived as follows. The solution to the free streaming equation gives

$$\widetilde{\Delta}_{\mathrm{T}l}(k,\,\tau_0) = \frac{1}{2} \int_{-1}^{1} d\mu \, \widetilde{\Delta}_{\mathrm{T}}(k,\,\mu,\,\tau_{\mathrm{s}}) \, \exp\left(-ik\mu \,\Delta\tau\right) \, P_l(\mu).$$

Fourier transforms of $\widetilde{\Delta}_{\mathrm{T}}(k,\mu,\tau_{\mathrm{s}})$ and P_{l} , the former being a narrow function of $k\Delta\tau$ and the For $l \geqslant 1$, the function $P_l(\mu)$ has width $\sim l^{-1}$, whilst $\widetilde{\Delta}_{\mathrm{T}}(k,\mu,\tau_s)$ is a single peaked function of width $\sim (k\tau_{\rm rec})^{-1}$ for $k\tau_{\rm rec} > 1$. Thus, for $l > k\tau_{\rm rec}$, $\tilde{\Delta}_{\rm Tl}(k, \tau_0)$ is approximately the convolution of the latter broad $[\infty j_l(k\tau_0)]$. We therefore lose little accuracy in writing

$$|\widetilde{\Delta}_{TI}(k,\tau_0)|^2 \approx W_T^2(0,k) j_I^2(k\tau_0), \qquad l \geqslant k \tau_{\mathrm{rec}}, \qquad k \tau_0 \geqslant 1.$$

The constant multiplier $W_T^2(0,k)$, evaluated at τ_s , is fixed by the conservation theorem equation (4.6). Our comparisons with the exact solution, equation (4.5), show that at fixed k equation (4.13) provides an accurate description apart from a slow variation of the phase of j_l with l. Substituting in equation (4.2) and subtracting monopole and dipole terms as in equation (4.11) Equation (4.13) is the basis of the small-angle approximation used by Wilson & Silk and BE.

$$C(\theta) \approx \frac{V_{x}}{32\pi^{2}} \int_{0}^{\infty} k^{2} dk \left[W_{T}^{2}(0,k) j_{0}(k\tau\varpi) - |\widetilde{\Delta}_{T0}(k,\tau_{0})|^{2} - 3\cos\theta \, |\widetilde{\Delta}_{T1}(k,\tau_{0})|^{2} \right]. \tag{4.14}$$

In Fig. 5(a), this approximation is shown by the dot-dashed line and agrees extremely well with the exact solution out to the first zero of $C(\theta)$. For the isocurvature model, equation (4.14) gives almost identical answers to equation (4.11). The poorer performance of both approximations in Fig. 5(b) arises because long wavelengths $(k\tau_0 \sim 1)$ make a proportionately larger contribution to $C(\theta)$ than for the adiabatic model shown in Fig. 5(a) (see Fig. 4).

4.2 SPECTRAL PARAMETERS

..987.RARAS.226..

The formulae in Section 3 require the calculation of the spectral parameters σ_0 , σ_1 and σ_2 which are given by the following exact expressions:

$$\sigma_0^2 = \frac{V_x}{32\pi^2} \int_0^\infty k^2 \, dk \sum_{l=2}^\infty (2l+1) \mid \mathscr{F}_l \mid^2 \mid \Delta_{Tl} \mid^2,$$

$$\sigma_1^2 = \frac{V_x}{32\pi^2} \int_0^\infty k^2 \, dk \sum_{l=2}^\infty (2l+1) \, l(l+1) \mid \mathscr{F}_l \mid^2 \mid \Delta_{Tl} \mid^2,$$

$$\sigma_2^2 = \frac{V_x}{32\pi^2} \int_0^\infty k^2 \, dk \sum_{l=2}^\infty (2l+1) \, (l+2) (l+1) \, l(l-1) \mid \mathscr{F}_l \mid^2 \mid \Delta_{Tl} \mid^2.$$

In the absence of beam-smearing, σ_1 and σ_2 have substantial contributions from high wavenumbers where application of equation (4.2) is impractical $(k\tau_0>5000)$. To overcome this limitation, we can use equations (4.15) with the upper limit of the k-integral set to k_m and adding the following integrals derived from the derivatives of the small-angle approximation, equation (4.12):

$$\Delta \sigma_0^2 = \frac{V_x}{32\pi^2} \int_{k_m}^{\infty} k^2 dk \left[\frac{1}{2} \int_{-1}^{1} d\mu \, | \, \tilde{\Delta}_{\mathrm{T}}(k, \, \mu, \, \tau_{\mathrm{s}}) \, |^2 - | \, \Delta_{\mathrm{T0}}(k, \, \tau_0) \, |^2 - 3 \, | \, \Delta_{\mathrm{T1}}(k, \, \tau_0) \, |^2 \right],$$

$$\Delta \sigma_1^2 = \frac{V_x}{32\pi^2} \int_{k_m}^{\infty} k^2 dk \left[\frac{1}{2} \int_{-1}^{1} d\mu \, | \, \tilde{\Delta}_{\mathrm{T}}(k, \, \mu, \, \tau_{\mathrm{s}}) \, |^2 (1 - \mu^2) (k \tau_0)^2 - 34 \, | \, \Delta_{\mathrm{T1}}(k, \, \tau_0) \, |^2 \right],$$

$$\Delta \sigma_2^2 = \frac{V_x}{32\pi^2} \int_{k_m}^{\infty} k^2 dk \left[\frac{1}{2} \int_{-1}^{1} d\mu \, | \, \tilde{\Delta}_{\mathrm{T}}(k, \mu, \, \tau_{\mathrm{s}}) \, |^2 (1 - \mu^2)^2 (k \tau_0)^4 \right]. \tag{4.16}$$

accurate. For scale-invariant initial conditions σ_2 diverges logarithmically at high k. Strictly speaking, the predicted anisotropy field is a non-differentiable random field since $C^{(iv)}(0)$ does not exist. The physical origin of this divergence is from a small-scale Sachs-Wolfe term which To include Gaussian smoothing in equation (4.16) $|\widetilde{\Delta}_{T}(k, \mu, \tau_{s})|^{2}$ should be multiplied by $\exp[-(1-\mu^2)(k\tau_0\theta_s)^2]$. Even with $k_m=0$, the results from equation (4.16) leads to a contribution to the rms temperature fluctuations of

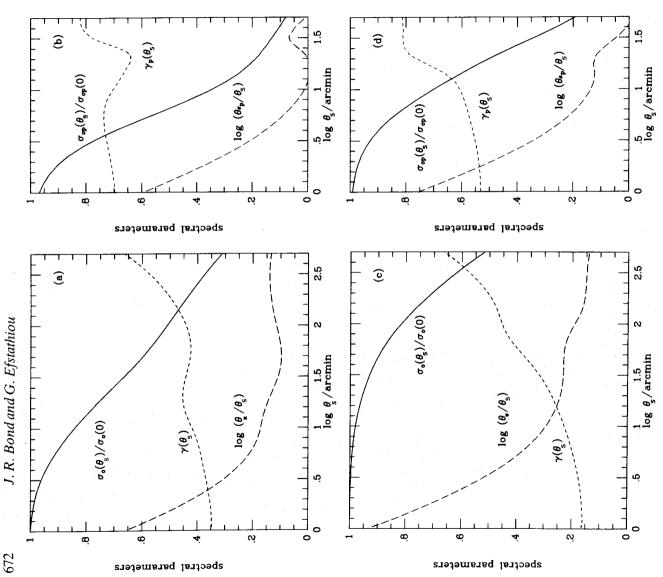
$$W_{\rm T}(0, k) \approx \frac{9}{2} \frac{\ddot{h}}{k^2} \left(\frac{\varrho_{\rm B}}{\varrho \gamma} \right)_{t_{\rm rec}}.$$

However, this is unlikely to be of interest in any conceivable experiment since even for small beam widths (θ_s <1 arcmin) the net contribution of this effect to $C^{(iv)}(0)$ is negligible.

To normalize σ_0 we have matched values of

$$J_{3\rho}(x_0) = \int_0^{x_0} \xi_{\rho}(x) \ x^2 \ dx$$

computed using the density fluctuation spectra at t_0 for our CDM models to the value $J_{3g}(x_0)$ ξ_g measured in the CfA survey for $x_0 = 10 \, h^{-1} \,\mathrm{Mpc}$ (see BE for details). This normalization is only appropriate if galaxies trace the determined from the galaxy autocorrelation function



(a, b) Show these parameters for the total and polarization fluctuations respectively for the h = 0.75 scale-invariant adiabatic CDM model. (c, d) Show as a function of smoothing angle θ_s . equivalent plots for the h=0.75 scale-invariant isocurvature model. Figure 6. The spectral parameters σ_0, γ and θ_*

if we include this effect. We therefore quote values for $b\sigma_0$, where $b^2 \equiv J_{3g}(x_0)/J_{3\varrho}(x_0)$, with the θ_c , γ and θ_* together with the analogous quantities for polarization fluctuations are listed in we show $b\sigma_0$, γ and θ_*/θ_s as a function of the smoothing angle θ_s for our two h=0.75 models. It is straightforward to evaluate these spectral parameters for the total intensity fluctuations using the analytic fits to $C(\theta)$ provided in Table 1 (see Section spectral mass distribution. In the Ω =1 CDM model galaxies are assumed to be more clustered than the underlying assumption that $\Omega = 1$ (e.g. Davis et al. 1985; BBKS). Our models are consistent only understanding that appropriate values for b lie within the range 1.5–2.5 (see BBKS). Values for distribution so that dynamical estimates of the value of Ω may be reconciled with The 4.4. below) together with equation (2.12) and its derivatives evaluated at θ =0. Table 1 for each of our models. In Fig. 6, mass $b\sigma_0$

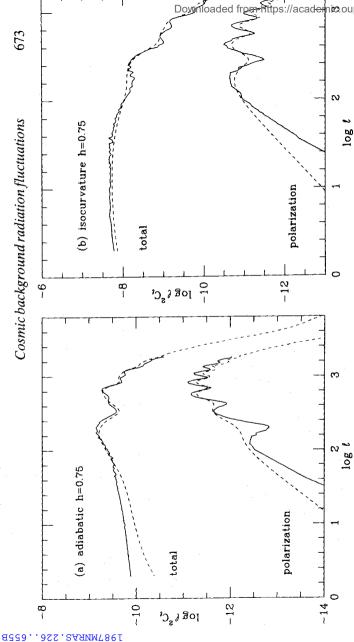


Figure 7. Power spectra for the two h = 0.75 scale-invariant CDM models. The solid lines show results from equation and the dotted lines show approximate results derived from equation (4.19).

80

equations (4.15) and (4.16) or by interpolating the numerical computations of $C_P(\theta)$ together with equation (2.12) since it is not possible to provide simple analytic formulae for the complex accurate at polarization fluctuations must be calculated either by using are (but see Section 4.4 for analytic fits which parameters characterizing the S behaviour shown in Fig. θ <10 arcmin)

4.3 EVALUATION OF POWER SPECTRA

the radiation field. To simulate the temperature fluctuations, as we will do in Section 5, we require the power spectra of our models. Equations The sections above have described how to obtain the various correlation properties required characteristics of to specify the statistical (2.2) and (4.2) give

$$C_{l} = \frac{V_{x}}{8\pi} \int_{0}^{\infty} k^{2} \, dk \, |\Delta_{\text{T}l}(k, \tau_{0})|^{2}. \tag{4.17}$$

For low values of l(<40), where only the Sachs-Wolfe or isocurvature effects are important, equation (4.17) yields

$$C_l = (a_2)^2 \frac{\Gamma[l + (n-1)/2] \Gamma[(9-n)/2]}{\Gamma[l + (5-n)/2] \Gamma[(3+n)/2)]}, \qquad n < 3, \qquad l \ge 2,$$

$$(4.18)$$

where n is the spectral index $(|\delta_X(k, \tau_0)|^2 \propto k^n)$ on comoving scales much larger than the horizon scale-invariant fluctuations corresponding to scale-invariance in two dimensions. radiation. For and matter of equal density of eboch $(n=1) C_l \propto l^{-2}$. at the

For $l \gg 1$, each Δ_{Tl} is a highly oscillatory function of k and is approximately given by equation (4.13). At large *l*

$$\langle j_l^2(z) \rangle \approx [2z(z^2 - l^2)^{1/2}]^{-1}, \qquad z > 0$$

J. R. Bond and G. Efstathiou

674

Thus a useful approximation to C_l is

1987MNRAS.226..655B

$$C_l \approx \frac{V_x}{8\pi} \int_{l/r_0}^{\infty} \frac{k^2 dk}{2k\tau_0[(k\tau_0)^2 - l^2]^{1/2}} W_{\bar{\mathbf{T}}}^2(0, k). \tag{4.19}$$

For $k_{T_{rec}} \gg 1$, a 3D plane wave make a significant contribution to the sky fluctuations only when seen in a direction perpendicular to the wavevector. Thus naively one might expect

$$l^2C_l \approx \frac{V_x}{16\pi} k^3 W_1^2(0, k), \qquad k = l/\tau_0,$$

so C_l would be describable in terms of a 'transfer function' $\propto W_{\rm T}$ (i.e. a linear relation with the primordial fluctuation spectrum, e.g. Kaiser 1984). However this expression is only accurate to factors of order unity because $\widetilde{\Delta}_{\mathrm{T}}(k,\mu)$ falls with increasing k at about the same rate as it decreases away from $\mu = 0$.

In Fig. 7 we show C_l evaluated for our two h = 0.75 CDM models using equations (4.17) and (4.19). The estimates of C_l from equation (4.15) for l > 20 have been averaged in logarithmically spaced intervals to smooth the rapid oscillations in k and hence reduce numerical error. Our results do not depend upon the details of the smoothing method used. As Fig. 7 demonstrates, the approximate expression equation (4.19) is quite accurate for l > 100. Evaluation of S(Q) using equation (2.7a), after smoothing over Q to reduce numerical error, gives results in agreement with our determination of C_l as expected from equation (2.8)

4.4 FITTING FORMULAE FOR C(heta)

A three-parameter fitting formula describes our correlation functions to within a few per cent over the entire angular range:

$$C(\theta) = \frac{A \exp\left[-(\theta/\theta_1)^2\right]}{\left[1 + (\theta/\theta_2)^2 + (\theta/\theta_3)^4\right]^{\varkappa}} + \frac{3a_2^2}{\pi} \left\{ \frac{1}{2} \ln\left(1 + 4/\theta_4^2\right) - \frac{1}{2} - \frac{1}{8} \ln\left[1 + (\varpi/\theta_4)^8\right] - \frac{3}{4} \cos\theta \right\},$$

$$\boldsymbol{\varpi} = 2\sin(\theta/2)$$
.

(4.20)

numerical results with the remaining quantities, θ_2 , θ_3 and A constrained to reproduce the values for σ_0 , γ and θ_* listed in Table 1. The fitted parameters and the quadrupole amplitude a_2 are listed in Table 1. The form of the second term in equation (4.20) was chosen to give equation (4.9) in the high pass filter (1<40), the reader may subtract terms from equation (2.2) using the approximate The parameters θ_1 , κ and θ_4 were determined by non-linear least-squares minimization to our large-angle limit and to have small derivatives at the origin. As a rough estimate of the effects of a formula (4.18)

The correlation functions describing the degree of polarization cannot be approximated at all angular scales by a simple formula. However, we have fitted $C_P(\theta)$ for $\theta < 10$ arcmin to

$$C_{\rm p}(\theta) = \frac{\sigma_{\rm P0} \exp\left[-(\theta/\theta_{\rm P1})^2\right]}{\left[1 + (\theta/\theta_{\rm P2})^2 + (\theta/\theta_{\rm P3})^4\right]^{\kappa_{\rm P}}}.$$
(4.21)

As above θ_{P2} and θ_{P3} are fixed by the values of γ_P and θ_{*P} . The best-fitting parameters are listed in Table 1.

5 Maps of the cosmic background radiation

anisotropies using the power spectra obtained in Section 4.3. These pictures provide a graphic temperature CMB square realizations of the 10 degree we will generate section In this

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System

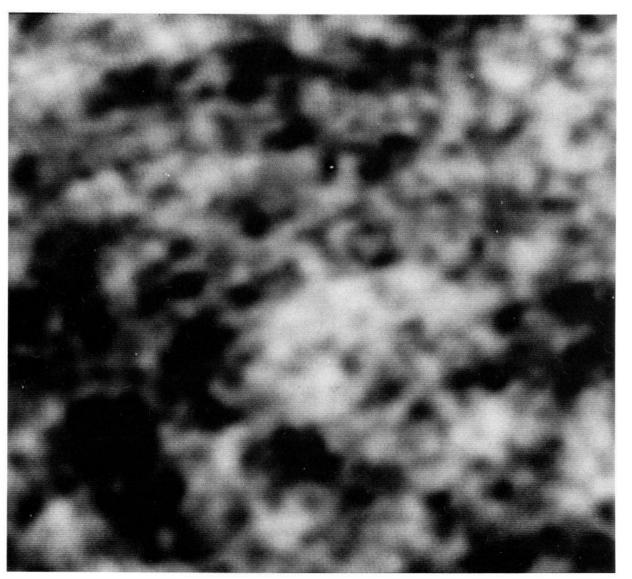


Plate 1. Grey-scale photograph of the total temperature fluctuations in a $10^{\circ} \times 10^{\circ}$ patch of sky expected in a scale-invariant adiabatic model with $\Omega = 1$, $\Omega_{\rm B} = 0.03$, h = 0.75.

allow a check of some of the statistical formulae derived in Section 3. Numerically generated maps of this kind would probably be essential to interpret data from experiments in which the illustration of the texture of the radiation field expected in scale-invariant CDM models, and effects of high pass filters, asymmetric beam profiles, or l-dependent interferometric experiments) might have to be taken into account.

.. 922.2AMNT891

Given the spectra C_l shown in Fig. 7, small-angle maps of the radiation fluctuations may be generated by evaluating the Fourier series.

$$\Delta T/T = \sum_{n_i, n_y} D(\mathbf{n}) \exp \left[i \frac{2\pi}{L} \mathbf{n} \cdot \boldsymbol{\theta} \right],$$

conditions can thus be generated by evaluating a Fast Fourier Transform after selecting the where L denotes the size of the simulated region. A Euclidean map with periodic boundary amplitude of $D(\mathbf{n})$ from a Gaussian distribution with zero mean and variance

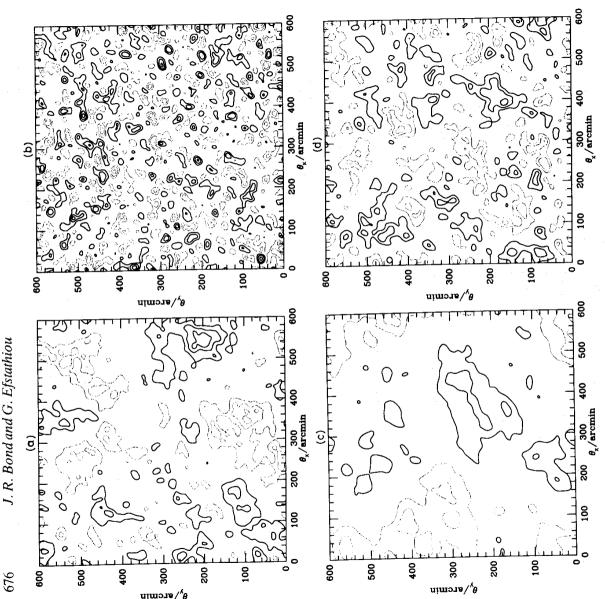
$$\langle |D(\mathbf{n})|^2 \rangle = S\left(\mathbf{Q} = \frac{2\pi}{L} \mathbf{n}\right)$$

and assigning phases at random in the interval $(0, 2\pi)$. The resulting maps include fluctuations only from wavenumbers $l > 2\pi/L$. Hence the shape of the correlation function will differ for these realizations from the forms shown in Fig. 5 since we have effectively applied a high pass filter. However, those characteristics of the radiation field which only depend upon local properties, e.g. the abundance of hotspots and coldspots, are unaffected by the filter. Large-scale simulations over the entire sky could be generated by using the spherical harmonic expansion, equation (2.3). This is computationally demanding if the map is to resolve small-scale patterns. Unless otherwise stated, the simulations described in this section were produced by evaluating FFTs on a 512×512 grid.

plots generated with a smoothing angle $\theta_s = 5$ arcmin for the total and polarization fluctuations in A grey-scale picture of the temperature fluctuations, corresponding to a smoothing angle θ_s =1 arcmin, is shown in Plate 1 for the h=0.75 scale-invariant adiabatic CDM model. Contour the adiabatic and isocurvature h=0.75 models are shown in Fig. 8. Solid contours show v=1, 2and 3 positive thresholds and dotted contours show the corresponding negative thresholds.

than the correlation functions given in Section 4.1. Such maps illustrate clearly the effects that beam smearing and beam switching have. In particular, experiments with switching angles peaks are more highly clustered, the contour regions are significantly elongated, and the characteristic size of the small-scale structure is the coherence angle θ_c . Also, the statistically averaged shape of the hotspots described by equation (3.7) can be seen to fall off more steeply smaller than the coherence angle (e.g. Uson & Wilkinson 1984a, b for which θ =4.5 arcmin) measure only the small differences of temperature associated with the gentle slope of the The textural features discussed in Section 3 are evident in Plate 1 and the contour plots: high

are influenced by the low pass filtering associated with the beam smearing (Fig. 6). The spectral The parameters for the polarization maps are unaffected by the high pass filter and may be read The number of hot and cold maxima in these realizations is compared in Table 2 with the predictions of the average number that should occur in maps of this size using the expression for $n_{\text{max}}(\nu_t)$ obtained in Section 3. Note that we have computed γ for these two models by restricting the sums in equation (4.15) to l > 36 to account for the high pass filter used in the simulations. The high pass filtering affects σ_0 , but not σ_1 and σ_2 , thus γ is modified, but θ_* is not. Both parameters parameters for the total intensity maps of Fig. 8 are $\sigma_0 = 1.3 \times 10^{-5}$, $\gamma = 0.474$ and $\theta_* = 8.3$ arcmin for the adiabatic case and $\sigma_0 = 6.1 \times 10^{-5}$, $\gamma = 0.397$ and $\theta_* = 13.2$ arcmin for the isocurvature case.



equivalent contours for the using the method h = 0.75The heavy the a 512×512 grid and a smoothing angle of θ_s =5 arcmin. respectively for scale-invariant constructed =0.75upward fluctuations and the light lines show Show maps of the total and polarization fluctuations and polarization fluctuations the Show analogous maps for ਰੇ we used ပ္ Gaussian CDM model. m and plots, model. In constructing these (a, ö scale-invariant adiabatic correspond to in Section 5. downward fluctuations Realization described contours

the isocurvature model. In this case, the large amount of clustering on the scale of the map implies from the integral of equation (A1.9) is extremely good for the polarization maps since there is and this is reflected in the towards negative 6. The agreement of the peak numbers in Table 2 with the average number expected give large map-to-map variations. The expected dispersion from especially important for with occasional large positive excursions, as we have verified by explicit construction of skewed IS. being a equation (3.9) is significantly larger for the total intensity fluctuations, This $\Delta N_{
m pk}$ means. a large dispersion which is reflected in the distribution of from the theoretical deviations of the counted numbers scales to number of realizations. on large from Fig. values, v little

predicts (22 arcmin)² of the map should The trend of $(9.5 \, \text{arcmin})^2$ area per contour region of equation (3.4) For the adiabatic map shown in Plate 1, average an giving $3\sigma_0$ in height, pe

with theory in 10 degree square simulations of the radiation field compared peaks Number densities of તં Table

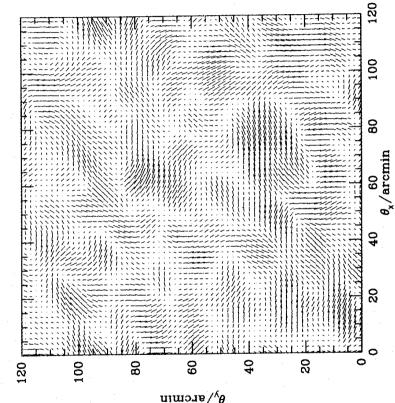
1987MNRAS.226..655B

Cosmic background radiation fluctuations

		min	£	38	124	207	241	242
		max		36	117	196	225	226
$\int_{\rm max}(\nu)$ isocurvature	lod	theory	3.6	33	118	200	225	227
		mim	0	7	23	51	72	78
		max	0	∞	37	69	62	83
	total	theory	8.0	8.7	37	74	6	95
		min	12	92	569	390	415	415
		max	∞	85	281	392	418	418
. $l_{max}(v)$ adiabatic	pol	theory	10	87	268	385	404	404
		min	4	32	92	191	232	238
		max	8	19	95	187	217	225
	total	theory	2.7	27	106	197	233	238
		4	3.0	2.0	1.0	0.0	-1.0	-2.0

Note

total give results for the total intensity fluctuation maps (Fig. 8a and c) and those labelled pol show results for the expected total number of maxima (or minima) derived from equation realization shown in Fig. 8 and the columns labelled min list the number of minima counted. The columns labelled above the indicated threshold number of maxima counted Columns labelled theory give the theoretically max give the total polarization maps (Fig. 8b and d) Columns labelled (A1.9).



=0.75polarization and the orientation gives the plane of polarization. This picture was constructed on a 128×128 grid using a smoothing angle of patch for the h $a 2^{\circ} \times 2^{\circ} I$ adiabatic model simulated in Fig. 8. The length of each vector is proportional to the degree of and spatial variation of the plane of polarization in vectors. plot 64×64 visual clarity, we only Simulation of the degree =1 arcmin. For θ

The $3\sigma_0$ coldspots in Plate 1 should be about 100 arcmin using evident in this plot. also increasing threshold is contour regions with separation between $3\sigma_0$ hotspots and decreasing size of equation (3.5)

polarization fluctuations ou simulation was constructed of the linear adiabatic CDM model. This particular orientation and of the degree a map =0.759 we show 7 expected in the In Fig.

J. R. Bond and G. Efstathiou

Notice that the characteristic size of the domains over which the polarization direction is coherent is $\sim \theta_{cp}$. It may be possible to set constraints on CDM models using small-beam polarization 128×128 grid following the procedure outlined in Appendix 5. The smoothing scale is 1 arcmin. experiments since these do not require beam switching (see Efstathiou 1987).

1987MNRAS.226..655B

6 Discussion

scale-invariant CDM models and we have provided general formulae to describe some of value of the temperature differences measured in two or three beams may be related to complicated experiments, e.g. drift-scan observations, requires specific predictions for $C(\theta)$ in order to set constraints of any particular theory. This latter type of experiment which makes more use of the spatial structure in $C(\theta)$ is potentially more powerful, particularly if the spatial In this paper we have presented detailed calculations of the radiation fluctuations expected in the spatial characteristics of the radiation pattern. Past anisotropy experiments have generally been of the beam-switching type (Partridge 1987, to be published) in which the expectation differences of $C(0; \theta_s) - C(\theta; \theta_s)$. For this type of experiment our results may easily be used to predict the variances expected in CDM models for any value of θ_s . The analysis of more characteristics of confusion or instrumental noise differs from that expected in the model.

communication). In either case, it is quite likely that some sort of map of the sky fluctuations will be produced. Indeed low-resolution maps have already been constructed using the balloon-borne observations of the Princeton and Berkeley groups (e.g. Lubin & Villela 1986) and the Soviet satellite Prognoz 9 (Strukov & Skulachev 1984). The most important use of such maps will be However the power spectra coefficients $C_{\rm obs}(l)$ computed for incomplete patches of the sky are not statistically independent and thus the main advantage over correlation function analysis is lost or $C_{obs}(l)$ will most likely be estimated by Monte Carlo simulations in which many realizations similar to Fig. 8 (or their spherical harmonic generalizations) are generated for a specific interferometric data where the sensitivity to different Fourier components will be related in a The key feature of scale-invariant radiation fluctuations is the slow decline of $C(\theta)$, characterized by the relatively large coherence angles. Experiments probing angular scales $> heta_{
m c}$ are therefore preferred to optimize the signal from primordial fluctuations. For experiments at \sim 1 cm this means using horns or perhaps a close-packed array of small dishes (Lasenby, private direct estimation of $C(\theta)$. Power spectrum analysis is an alternative way of analysing the map. (Peebles 1973). For practical applications the significance levels associated with measures of $C(\theta)$ analysis theoretical model. This procedure will undoubtedly be necessary in the complex way to the spatial distribution of the array.

features in a map are compatible with a Gaussian model. The importance of these tests, and physical insight they provide for the texture of the radiation fluctuations expected in any cosmological scenario with Gaussian initial conditions. This is not without practical applications since the properties of hotspots and coldspots, such as their number densities, characteristic sizes and shapes, offer an important consistency check of Gaussian models. For example, it would be a remarkable coincidence if confusion sources had the same characteristics as the primordial hotspots and coldspots whilst also having a $C_{\rm obs}(\theta)$ compatible with a CDM model. Using the formulae given in Section 3 and the related appendices one can quickly check whether the others that can be constructed numerically using Monte Carlo simulations, is that they provide redundancy checks of both the underlying statistical distribution and form of the radiation In principle, maps could also be used to obtain σ_0 , γ , θ_* and other spatial characteristics from the statistics of hotspots and coldspots. However, we believe that the most useful aspect of the statistical formulae for Gaussian random fields that we have derived in Section 3 lies in the fluctuations.

realizations of the radiation field. At this stage in the search for CMB anisotropies it is difficult to However, the simulation technique is easily applicable to complex experimental configurations where analytic calculations would be impractical. By comparing such Monte Carlo calculations We have also demonstrated the machinery required to make accurate computations of the radiation power spectrum and autocorrelation functions and how these may be used to construct make more specific theoretical computations of direct relevance to realistic experiments. with real data, the likelihood of a given theoretical model can be assessed.

1987MNRAS.226..655B

already probably excluded by large-angle anisotropy limits (EB). If the limits can be improved sufficiently to exclude the current favourite adiabatic CDM model ($h\approx0.5, \Omega_{\rm B}\approx0.1$), we will be forced to considerable revision of our views on the origin of galaxies and perhaps of conditions in We hope that the parameters for the CDM models presented in Table 1 will serve as a challenge for prospective experimenters. The predicted anisotropies in these models are not beyond reach given well-designed experiments. Indeed scale-invariant isocurvature models are the early Universe.

Acknowledgments

for JRB's research was supported by an Alfred P. Sloan Fellowship, a Canadian Institute for thanks the Institute Advanced Study for their hospitality while some of this work was completed. Advanced Research Fellowship and the NSERC of Canada. GE

References

Abramowitz, M. & Stegun, I. A. (eds), 1970. Handbook of Mathematical Functions, Dover Publications, New York.

Axenides, M., Brandenberger, R. & Turner, M. S., 1983. Phys. Lett., 126B, 178.

Bardeen, J. M., Steinhardt, P. J. & Turner, M. S., 1983. Phys. Rev. D, 28, 679. Bardeen, J. M., Bond, J. R., Kaiser, N. & Szalay, A. S., 1986. Astrophys. J., 304, 15. Blumenthal, G. R., Faber, S. M., Primack, J. R. & Rees, M. J., 1984. Nature, 311, 517.

Bond, J. R. & Efstathiou, G., 1984. Astrophys. J., 285, L45.

Bond, J. R. & Szalay, A. S., 1983. Astrophys. J., 274, 443.

Chandrasekhar, S., 1960. Radiative Transfer, Dover Publications, New York.

Davis, M. & Peebles, P. J. E., 1983. Astrophys. J., 267, 465.

Davis, M., Efstathiou, G., Frenk, C. S. & White, S. D. M., 1985. Astrophys. J., 292, 371.

Doroshkevich, A. G., Zel'dovich, Ya. B. & Sunyaev, R. A., 1978. Sov. Astr., 22, 523.

Efstathiou, G., 1987. In: Cosmology, Astronomy and Fundamental Physics, Proc. Second ESO/CERN Symp.,

p. 103, eds Setti, G. & van Hove, L., ESO Publications, Garching bei München.

Efstathiou, G. & Bond, J. R., 1986. Mon. Not. R. astr. Soc., 218, 103. Fischler, W., Ratra, B. & Susskind, L., 1985. Nucl. Phys., B259, 730.

Guth, A. & Pi, S.-Y., 1982. Phys. Rev. Lett., 49, 1110.

J. J. & Hawking, S., 1985. Phys. Rev. D., 31, 1777.

Kaiser, N., 1983. Mon. Not. R. astr. Soc., 202, 1169.

J., 282, 374. Kaiser, N., 1984. Astrophys.

Lubin, P. & Villela, T., 1986. In: Galaxy Distances and Deviations from the Hubble Flow, p. 169, eds Madore, B. F. & Tully, B. F., Reidel, Dordrecht, Holland.

Melchiorri, F., Melchiorri, B. O., Ceccarelli, C. & Pietranera, L., 1981. Astrophys. J., 250, L1.

Ostriker, J. P. & Vishniac, E. T., 1986. Astrophys. J., 306, L51. Peebles, P. J. E., 1968. Astrophys. J., 153, 1.

Peebles, P. J. E., 1973. Astrophys. J., 185, 413.

Peebles, P. J. E. & Yu, J. T., 1970. Astrophys.

Sazhin, M. V., 1985. Mon. Not. R. astr. Soc., 216, 25P.

Starobinskii, A., 1982. Phys. Lett., 117B, 175.

Strukov, I. A. & Skulachev, D. P., 1984. Sov. Ast. Lett., 10, 1.

Uson, J. M. & Wilkinson, D. T., 1984a. Astrophys. J., 277, L1. Uson, J. M. & Wilkinson, D. T., 1984b. Nature, 312, 427.

J. R. Bond and G. Efstathiou

Vittorio, N. & Silk, J., 1984. Astrophys. J., 285, L39.

& Davis, M., 1983. Astrophys. J., 274, L1. White, S. D. M., Frenk, C. S.

Wilson, M. L., 1982. Astrophys. J., 253, L53.

1987MNRAS.226..655B

Wilson, M. L., 1983. Astrophys. J., 273, 2.

Wilson, M. L. & Silk, J., 1981. Astrophys. J., 243, 14.

& Olive, K. A., 1984. Astrophys. J., 281, 493. Yang, J., Turner, M. S., Steigman, G., Schramm, D. N. & Ol Zabotin, N. A. & Nasel'skii, P. D., 1985. Sov. Astr., 29, 614.

Appendix 1: Densities of maxima and minima for 2D gaussian fields

In this appendix, we sketch the derivation of the peak density of 2D homogeneous, isotropic Gaussian random fields. We follow the techniques and notation of BBKS

The peak density is the 'operator'

$$n_{\rm pk} = \sum_{p} \delta(\hat{q} - \hat{q}_p) = |\det(\zeta)| \delta(\eta). \tag{A1.1}$$

Here, $\eta = \nabla F$ and the ξ_{ij} are the components of the second derivative matrix. We use an orthogonal set of coordinates in the two-sphere in the following. We rotate to the principal axes of ξ_{ij} , by angle θ , to the diagonal form $-\text{diag}(\lambda_1, \lambda_2)$, ordered by $\lambda_1 \ge \lambda_2$, and introduce the variables

$$x = (\lambda_1 + \lambda_2)/\sigma_2, \qquad e = (\lambda_1 - \lambda_2)/(2\sigma_2 x),$$
 (A1.2)

in terms of which

$$\xi_{11} = -\frac{\sigma_2 x}{2} [1 + 2e \cos(2\theta)], \ \xi_{22} = \frac{\sigma_2 x}{2} [1 - 2e \cos(2\theta)].$$
 $\xi_{12} = -\sigma_2 x e \sin(2\theta).$ (A1.3)

Since the principal axes are oriented, π is the maximum rotation angle required to transform the ζ distribution, equation (A1.6), below.] The transformation of the volume element in ζ -space is system into the principal axes system. [This restriction enters as a constraint on the probability

$$d\xi_{11}d\xi_{22}d\xi_{12} = 2\sigma_2^3 x^2 dx ede d\theta.$$

(A1.4)

To obtain the probability distribution involving the variables x, e, and θ , we transform the Gaussian distribution obtained with the ξ_{ij} . The result is simplified if we use the variable

$$w = (v - \gamma x)/(1 - \gamma^2)^{1/2}$$
(A1.5)

in place of ν , so that ν and x are independent, and $\langle \nu^2 \rangle = 1$. The distribution is then

$$P(\nu, \eta, x, e, \theta) dw dx de d\theta = \exp(-w^2/2) \frac{dw}{(2\pi)^{1/2}} \exp(-x^2/2) \frac{dx}{(2\pi)^{1/2}} \exp(-\eta^2/\sigma_1^2)$$

$$\times \frac{d^2 \eta}{\pi \sigma_1^2} \exp(-4x^2 e^2) 8x^2 e de \frac{d\theta}{\pi}.$$
(A1.6)

The orientation angle, θ , is thus randomly distributed over $0 \le \theta < \pi$. The mean differential density of maxima is

$$\mathcal{N}_{\max}(v_0, x_0, e_0, \theta_0) = \langle \delta(v - v_0) \ \delta(\boldsymbol{\eta}) \ \delta(x - x_0) \ \delta(e - e_0) \ \delta(\theta - \theta_0) \ \sigma_2^2 x^2 (1 - 4e^2) \ \vartheta(1 - 2e) \ \vartheta(e) \rangle.$$

The average is taken using the distribution, equation (A1.6), ϑ is the Heaviside unit function which expresses the constraints required to satisfy $\lambda_1 \ge \lambda_2 \ge 0$.

from equation (A2.3) of Appendix 2. A subsequent integration over e gives the differential Integration over the orientation angle, θ , yields. $I_{\text{max}}(\nu, x, e) d\nu dx de$, which can be inferred

1987MNRAS.226..655B

$$\int_{\text{max}} (v, x) \, dv \, dx = \frac{1}{2\pi \theta_*^2} \exp\left(-v^2/2\right) \frac{dv}{(2\pi)^{1/2}} g(x, \gamma, x_*) \, dx,$$

$$g(x, \gamma, x_*) = f(x) \frac{\exp\left[-(x - x_*)^2/2(1 - \gamma^2)\right]}{[2\pi(1 - \gamma^2)]^{1/2}},$$

$$f(x) = x^2 - 1 + \exp\left(-x^2\right).$$

The integration over x from 0 to ∞ can also be done analytically, unlike in the 3D case:

$$V_{\text{max}}(v) dv = \frac{1}{2\pi\theta_*^2} \exp\left(-v^2/2\right) \frac{dv}{(2\pi)^{1/2}} G(\gamma, \gamma v),$$

$$G(\gamma, x_*) = (x_*^2 - \gamma^2) \left[1 - \frac{1}{2} \operatorname{erfc} \left\{ \frac{x_*}{[2(1 - \gamma^2)]^{1/2}} \right\} \right] + x_* (1 - \gamma^2) \frac{\exp\left\{-x_*^2/[2(1 - \gamma^2)]\right\}}{[2\pi(1 - \gamma^2)]^{1/2}}$$

$$+ \frac{\exp\left[-x_*^2/(3 - 2\gamma^2)^{1/2}}{(3 - 2\gamma^2)^{1/2}} \left[1 - \frac{1}{2} \operatorname{erfc} \left\{ \frac{x_*}{[2(1 - \gamma^2)(3 - 2\gamma^2)]^{1/2}} \right\} \right]. \tag{A1}$$

The high ν limit, $G \rightarrow \gamma^2 (\nu^2 - 1)$. For $\nu < 0$, use should be made of erfc(-x) = 2 - erfc(x).

approximations to this integrated number density. For example, the total number of peaks of Integration over ν from some (sharp) threshold ν_t to ∞ gives $n_{\rm pk}(\nu_t)$, which must be evaluated numerically. However, certain calculations can be done analytically which give accurate arbitrary height is

$$n_{\rm pk}(-\infty) = (4\pi\sqrt{3})^{-1}\theta_*^{-2} = (4.665\theta_*)^{-2}.$$
 (A1.10)

The differential number density of minima, $\ell_{\min}(\nu) = \ell_{\max}(-\nu)$, can be combined with the differential number density of maxima via

$$(\mathcal{N}_{\text{max}} + \mathcal{N}_{\text{min}})(v) dv = \frac{v^2}{2\pi\theta_*^2} \frac{\exp(-v^2/2)}{(2\pi)^{1/2}} \left\{ v^2 - 1 + \frac{\exp[-x_*^2/(3 - 2\gamma^2)]}{\gamma^2 (3 - 2\gamma^2)^{1/2}} \right\}$$
(A1.11)

to yield the analytic expression for the integrated (minimum plus maximum) density

$$n_{\max}(\nu_t) + n_{\min}(\nu_t) = \frac{\gamma^2}{(2\pi)^{3/2} \theta_*^2} \nu_t \exp\left(-\nu_t^2/2\right) + \frac{1}{4\pi\sqrt{3}\theta_*^2} \operatorname{erfc}\left\{\frac{\nu_t}{[2(1-2\gamma^2/3)]^{1/2}}\right\}.$$
(A1.12)

Fig. 1(c) shows that if we use equation (A1.12) but impose an upper limit using equation (A1.10),

we have a reasonably accurate approximation for $n_{\text{max}}(\nu_i)$ which is very accurate for $\gamma \nu > 0.5$. The mean number density of upcrossing points on the contour surfaces of height ν_i is given by

$$n_{\rm up}(v_t) = \langle \delta(F - v_t \sigma_0) | \eta_2 | \vartheta(\eta_2) | \delta(\eta_1) | \xi_{11} | \rangle$$

$$= \frac{\gamma^2}{(2\pi)^{3/2} \theta_*^2} \exp(-v_t^2/2) \left\{ |v_t| [1 - \text{erfc} (|av_t|/2)] + \frac{(2/a)}{(2\pi)^{1/2}} \exp[-(av_t)^2/2] \right\},$$

$$a^2 = (2\gamma^2/3)/(1 - 2\gamma^2/3). \tag{A1.13}$$

The Euler characteristic of the contour surfaces per unit volume is

$$n_{\chi}(\nu_{t}) = \langle \delta(F - \nu_{t}\sigma_{0}) | \eta_{2} | (-\xi_{11}) \delta(\eta_{1}) \rangle$$

1987MNRAS.226..655B

$$=2\frac{\gamma^2}{(2\pi)^{3/2}}\frac{\theta_*^2}{\theta_*^2}\exp(-\nu_t^2/2)\nu_t.$$
 (A1.

These approximations to $n_{\text{max}}(\nu_t)$ are also indicated in Fig. 1(c). Equation (A1.12) is more accurate down to lower $\nu_{\rm t}$.

[The evaluation of these formulae is aided by the introduction of the variable

$$b = -\left(\frac{2/3}{1 - 2\gamma^2/3}\right)^{1/2} (2\xi_{11}/\sigma_2 + \gamma \nu)$$

obeying the relations $\langle b^2 \rangle = 1$, $\langle b \nu \rangle = 0$. The required probability distribution,

$$P(v, b, \eta) dv db d^2 \eta = \exp(-v^2/2) \frac{dv}{(2\pi)^{1/2}} \exp(-b^2/2) \frac{db}{(2\pi)^{1/2}} \exp(-\eta^2/\sigma_1^2) \frac{d^2 \eta}{\pi \sigma_1^2},$$

is then just a product of independent distributions. The presence of the δ -functions in equations (A1.13) and (A1.14) simplifies the integrations leading to the closed form results given.]

Appendix 2: The shapes of 2D maxima and minima

The conditional probabilities for the local shape parameters x and e characterizing the Taylor series expansion of the field

$$F(\boldsymbol{\omega}) \approx v\sigma_0 - \frac{1}{4}\sigma_2 x \,\boldsymbol{\varpi}^2 \left[1 + 2e\cos\left(2\theta\right) \right]$$

follow from some of the results obtained along the way to the derivation of the number density of maxima described in Appendix 1. The distribution of x subject to the constraint that the peak has height ν is

$$P_x(x \mid \nu) \ dx = \frac{\mathcal{N}_{\max}(\nu, x)}{\mathcal{N}_{\max}(\nu)} \ dx = \frac{g(x, \gamma, \gamma \nu)}{G(\gamma, \gamma \nu)} \ dx, \tag{A2.2}$$

where g and G are defined in Appendix 1.

The distribution of 'ellipticity' e subject to the constraint of given x – it is independent of ν – is

$$P_e(e \mid v, x) = \frac{8x^4}{f(x)} (1 - 4e^2) \exp(-4x^2 e^2) ede.$$
(A2.3)

The ellipticity is restricted to lie in the range $0 \le e \le 0.5$. It is more conventional to discuss shapes in terms of the principal axial ratios a_1 and a_2 , where $\lambda_2/\lambda_1 = a_1^2/a_2^2$, or in terms of the eccentricity The distribution of the eccentricity,

$$\varepsilon = (1 - \lambda_2/\lambda_1)^{1/2} = 2[e/(1+2e)]^{1/2},$$
(A2.4)

is a simple transformation of equation (A2.3):

$$P_{\varepsilon}(\varepsilon \mid \nu, x) d\varepsilon = \frac{8x^4}{f(x)} \frac{4(1-\varepsilon^2) \varepsilon^3 d\varepsilon}{(2-\varepsilon^2)^5} \exp\left[-\left(\frac{x\varepsilon^2}{2-\varepsilon^2}\right)^2\right]. \tag{A2.5}$$

As in the 3D case, one should choose x using equation (A2.2) and e or ε using equations (A2.3) or (A2.5). It is also possible to integrate over the x to form $\mathcal{N}_{max}(\nu, e) d\nu de$, hence the

conditional probability

$$P_e(e|\nu) = \mathcal{N}_{\max}(\nu, e)/\mathcal{N}_{\max}(\nu)$$

$$= \frac{(1-4e^2)8ede}{[1+8(1-\gamma^2)e^2]^{1/2}} \frac{\exp(-4x_*^2e^2)}{G(\gamma,x_*)} \left\{ 1 - \frac{1}{2} \operatorname{erfc} \left[\frac{x_*}{\{2(1-\gamma^2)[1+8(1-\gamma^2)e^2]\}^{1/2}} \right] \right\}.$$

This probability density can be transformed to a constrained eccentricity distribution $P_{arepsilon}(arepsilon \mid
u)$ using equation (A2.4) to convert from e to ε .

Following the methods given in appendix 4 of BBKS, we derive the distribution of shapes $F(\boldsymbol{\varpi})$ given that at $\boldsymbol{\varpi}=0$ there is a peak characterized by the constraint data $\mathscr{C}=\{\nu,\,x,\,e,\,\theta\}$. The distribution is Gaussian with mean

$$\langle F(\varpi) | \mathscr{E} \rangle = \frac{\nu}{1 - \gamma^2} \left[\langle F(\varpi) \ \nu \rangle - \gamma \langle F(\varpi) \ x \rangle \right] + \frac{x}{1 - \gamma^2} \left[\langle F(\varpi) \ x \rangle - \gamma \langle F(\varpi) \ \nu \rangle \right] + 8xe \langle F(\varpi) \ xe \rangle$$

$$= \sigma_0 \left[\frac{\nu}{1 - \gamma^2} \left(\psi + \nabla^2 \psi / 2 \right) - \frac{(x/\gamma)}{1 - \gamma^2} (\gamma^2 \psi + \nabla^2 \psi / 2) - 4(xe/\gamma) (\psi'/r - \nabla^2 \psi / 2) \cos(2\theta) \right]$$
(A2.7)

$$\langle [\Delta F(\boldsymbol{\omega})]^2 | \mathcal{E} \rangle / \sigma_0^2 = 1 - \frac{1}{1 - \gamma^2} \psi^2 - \frac{1}{1 - \gamma^2} \psi \nabla^2 \psi - \frac{1}{\gamma^2 (1 - \gamma^2)} (\nabla^2 \psi / 2)^2 - \frac{1}{\gamma^2} (\psi')^2 - \frac{1}{2\gamma^2} [r(\psi'/\boldsymbol{\omega})']^2.$$
(A2.8)

Downloaded from https://academic.oup.com/mnras/article/226/3/655/1034894 by U.S. Department of Justice user on 16 August 2022

The radius, $\boldsymbol{\omega}$, is expressed in units of θ_* . The dispersion retains the same spherically symmetric form [equation (A2.8)] when the orientation angle constraint is dropped, but the mean is modified:

$$\langle F(\boldsymbol{\sigma}) | \max \text{ at } \boldsymbol{\sigma} = 0, v, x, e \rangle = \text{equation (A2.7) with } e = 0.$$
 (A2.9)

threshold v_t is performed, equation (A2.9) becomes the cross-correlation function $C_{pk,\Delta}$. (The The profiles are therefore spherically symmetric, as expected. The same result is obtained by explicitly angle-averaging the mean equation (A2.7). If a further averaging over ν above some factor of 4 in going from Δ_T to $\Delta T/T$ is included in this.)

Appendix 3: Distance between maxima and minima

We ignore correlations, supposing that maxima and minima are not highly correlated at their average separation. The probability that there is a minimum of depth below v_t a distance b away from a maximum is then

$$P(b) db = 2b db/b_{\min}(v_t)^2,$$
 (A3.1)

where

$$b_{\min}(v_t) = [\pi n_{\min}(v_t)]^{-1/2}$$
 (A3.2)

is the radius within which a minimum should be encountered from an ambient field point. The analogous radius for maxima is $b_{\text{max}}(v_t) = b_{\text{min}}(-v_t)$. (A high threshold for coldspots has $v_t \ll 0$.)

J. R. Bond and G. Efstathiou

The mean distance of a minimum is then

$$\langle b \mid \min, v_t \rangle = 2b_{\min}(v_t)/3.$$

.. 92S. 2AANM78e1

The mean distance to a minimum of arbitrary depth is therefore

$$\langle b | \min, v_t = \infty \rangle = 1.755 \theta_*.$$
 (A)

minima of depth below v_t a distance, b, away from a maximum of height in excess of v_p involves These estimates are exact for an arbitrary field point. However, the true distribution for the conditional density of minima

$$n_{\min}(b, \nu_t | \max \text{at } r = 0, \nu_p) = n_{\min}(\nu_t)[1 + C_{\min}, \max(b; \nu_t, \nu_p)],$$
 (A3.5)

where $C_{\min, \max}$ is the minimum-maximum correlation function which is quite difficult to evaluate for small b. Thus equation (A3.1) is modified, becoming

$$P(b) db = [1 + C_{\min}, \max(b; v_t, v_p)] 2b db/b_{\min}(v_t)^2 \vartheta(b_1 - b).$$
(A3.6)

The maximum value b_1 of b in this distribution is that for which $P(\langle b_1 \rangle = 1)$. Of course $b_1 = b_{\min}$ in the uncorrelated case. Provided the maximum-minimum correlation function $C_{\text{max}, \text{min}}(b)$ is small at the separation $\langle b \rangle$ determined using equation (A3.3), the estimate given for the average distance of minima from ambient field points will suffice for the average distance of minima from maximum points. Since $\langle b \rangle$ is only a few θ_* , where we expect that the correlation will be slightly more negative due to the coherence of the maximum, the mean separation will be slightly larger.

(A3.6) with $C_{\text{max}, \text{max}}(b; \nu_{t1}, \nu_{t2})$ replacing $C_{\text{min}, \text{max}}$ and $b_{\text{max}}(\nu_{t1})$ replacing b_{min} . Again, the The mean distance from a peak of height above v_{t2} to the next peak of height above v_{t1} requires knowledge of the peak-peak correlation function, since the distribution is given by equation uncorrelated estimate is a reasonable first guess.

Appendix 4: 2D peak-peak correlation function

In this appendix, we obtain the 2D correlation function of peaks in the same approximation used in BBKS: derivatives of the normalized correlation function $\psi(\varpi) = C(\theta)/C(0)$ are ignored when compared with $\psi(\varpi)$. At small angles, a local power-law approximation holds for $\psi(\varpi)$, hence ψ' and ψ'' fall off faster than ψ by $\dot{\theta}^{-1}$ and θ^{-2} , respectively.

The N-point correlation function of peak number densities,

$$\left\langle \prod_{i} \mathcal{N}_{\max}(\hat{q}_{i}, v_{i}) dv_{i} \right\rangle = \left\langle \prod_{i} \delta[v_{i} - F(\hat{q}_{i})/\sigma_{0}) dv_{i} | \lambda_{1}(\hat{q}_{i}) \lambda_{2}(\hat{q}_{i}) | \vartheta(\lambda_{2}(\hat{q}_{i})] \delta[\boldsymbol{\eta}(\hat{q}_{i})] \right\rangle, \tag{A4.1}$$

we only include $\langle v_i v_j \rangle = \psi(|\hat{q}_i - \hat{q}_j|)$ in the cross-correlations, which should be valid for the class requires the joint probability distribution for the 5N variables $\{v_i, x_i, e_i, \theta_i, \eta_i\}$. Even in two dimensions, the full problem is quite complicated. However, the evaluation is tractable provided of $\psi(\varpi)$ considered here. The derivation follows precisely the steps given in BBKS. In particular, steps (A6.6)-(A6.12) of appendix 6 in that paper can be followed to yield

$$\left\langle \prod_{i} \mathcal{N}_{\max}(\hat{q}_i, v_i, x_i) \, dv_i \, dx_i \right\rangle = \prod_{i} \left\{ \exp\left(-v_i^2/2\right) \frac{dv_i}{(2\pi)^{1/2}} \, g[x_i, \gamma, x_*(i)] \frac{f(x_i)}{2\pi \theta_*^2} \, dx_i \right\} \times \frac{\exp\left(\tilde{v} + C\tilde{v}/2\right)}{\left[\det\left(\mathbf{I} + \mathbf{\Psi}/\left\{1 - \gamma^2\right\}\right)\right]^{1/2}}, \tag{A4.2}$$

Cosmic background radiation fluctuations

(A4.3)

where $\tilde{\nu}$ is an N-dimensional vector with components

$$\widetilde{v}\left(i\right) \equiv \left(v_i - \gamma x_i\right)/(1 - \gamma^2)$$

and

1987MNRAS.226..655B

$$\stackrel{}{\approx} \left(\mathbf{I} + \frac{\Psi}{1 - \gamma^2} \right)^{-1} \Psi \tag{A4.4}$$

and Ψ are $N \times N$ matrices. The components of the latter are

$$\Psi_{ij} = \psi(|\hat{q}_i - \hat{q}_j|), \qquad i \neq j, \qquad \Psi_{ij} = 0, \qquad i = j.$$

(A4.5)

This is equivalent to the equation (A6.13) for the 3D case of BBKS

Integration over x requires some approximation. The prescription used in BBKS which we adopt here is to replace fg by a Gaussian,

$$f(x)g(x,\gamma,x_*) = f(\langle x \mid \nu \rangle)g(\langle x \mid \nu \rangle, \gamma, \gamma \nu) \exp\left[-\frac{\nu_2 \beta_g(\langle x \mid \nu \rangle)(x - \langle x \mid \nu \rangle)^2\right], \tag{A4.6}$$

centred about the conditional mean

$$\langle x | \nu \rangle = x_* + (1 - \gamma^2) H(\gamma, x_*) / G(\gamma, x_*),$$

where

$$H(\gamma, x_*) = \partial G/\partial x_* = 2x_* \left[1 - \frac{1}{2} \text{erfc} \left\{ \frac{x_*}{[2(1-\gamma^2)]^{1/2}} \right\} \right]$$

$$-2x_* \frac{\exp\left[-x_*^2/(3-2\gamma^2) \right]}{(3-2\gamma^2)^{3/2}} \left[1 - \frac{1}{2} \text{erfc} \left\{ \frac{x_*}{[2(1-\gamma^2)(3-2\gamma^2)]^{1/2}} \right\} \right]$$

$$+4\frac{(1-\gamma^2)^2}{3-2\gamma^2} \frac{\exp\left\{ -x_*^2/[2(1-\gamma^2)] \right\}}{[2\pi(1-\gamma^2)]^{1/2}}.$$
(A4.7a)

Asymptotically, we have

$$\langle x | \nu \rangle \rightarrow \gamma \nu \left[1 + \frac{2(1 - \gamma^2)}{\gamma^2 (\nu^2 - 1)} \right]$$
 as $\nu \rightarrow \infty$. (A4.7b)

The dispersion of the Gaussian, β_g^{-1} , is obtained by evaluating the second derivative function

$$\beta_{g}(x) = -\frac{\partial^{2} \ln \left[g(x, \gamma, x_{*}) \right]}{\partial x^{2}} = \frac{1}{1 - \gamma^{2}} + \frac{2\{x^{2}[1 - \exp(-x^{2}) - 2x^{2} \exp(-x^{2})] + [1 - \exp(-x^{2})]^{2}\}}{[x^{2} - 1 + \exp(-x^{2})]^{2}}$$
(A4.8)

at the conditional mean, equation (A4.7a).

With this approximation, the average differential peak density becomes

$$\int_{\text{max}} (v) \ dv \approx \frac{G_{\text{app}}}{(2\pi)^{3/2} \theta_*^2} \exp(-v^2/2) \ dv,$$

where

$$G_{\mathsf{app}} = (2\pi)^{1/2} g(\langle x \mid \nu \rangle, \gamma, \gamma \nu) / [\beta_g(\langle x \mid \nu \rangle)]^{1/2}. \tag{A4.9}$$

(A4.13)

J. R. Bond and G. Efstathiou

989

1987MNRAS.226..655B

The two-point function of peaks chosen according to some selection function $t(\nu)$, which we take to be that associated with a sharp threshold v_t , $t(v) = \vartheta(v - v_t)$, is given by

$$1 + C_{\text{max}, \text{max}}(r) \equiv \langle n_{\text{max}}(r_1; v_t) | n_{\text{max}}(r_1; v_t) \rangle / \langle n_{\text{max}}(v_t) \rangle^2$$

$$= \frac{\int d\nu_1 \ t(\nu_1) \ \mathcal{N}_{\text{max}}(\nu_1) \int d\nu_2 \ t(\nu_2) \ \mathcal{N}_{\text{max}}(\nu_2) \exp \left[S(\nu_1, \nu_2, \psi) \right] / D(\psi)^{1/2}}{\left[\int d\nu \ t(\nu) \ \mathcal{N}_{\text{max}}(\nu) \right]^2}.$$

(A4.10)The functions S and D are related to the matrices **C** and $\beta = \text{diag}[\beta_g(1), \ldots, \beta_g(N)]$ by

$$S \equiv \hat{\mathbf{v}} + \mathbf{C} [\beta - \mathbf{C} \gamma^2 / (1 - \gamma^2)^2]^{-1} \beta \hat{\mathbf{v}} / 2,$$

$$D = \det[\beta - \mathbf{C}\gamma^2/(1 - \gamma^2)^2]/\det(\beta),$$
(A4.11)

where \hat{v} is a vector with components

$$\hat{v}(i) = (v_i - \gamma \langle x \mid v_i \rangle) / (1 - \gamma^2). \tag{A4.12}$$

Their explicit form is therefore

$$S(\nu_1, \nu_2, \psi) = \left[2\hat{v}_1 \hat{v}_2 - \frac{(\hat{v}_1^2 + \hat{v}_2^2) \, \psi}{(1 - \gamma^2)} + \frac{[\hat{v}_1^2/\beta_g(2) + \hat{v}_2^2/\beta_g(1)] \, \gamma^2 \, \psi}{(1 - \gamma^2)^2} \right] \alpha \psi / [2D(\psi)],$$

$$D(\psi) = 1 + \frac{[\beta_g^{-1}(1) + \beta_g^{-1}(2)] \, \alpha \gamma^2 \, \psi^2}{(1 - \gamma^2)^3} - \frac{\beta_g^{-1}(1) \, \beta_g^{-1}(2) \, \alpha \gamma^4 \, \psi^2}{(1 - \gamma^2)^4},$$

$$D(\psi) = 1 + \frac{(r + g/2) \cdot r \cdot g/3}{(1 - \gamma^2)^3} - \frac{r \cdot g/2 \cdot r/2}{(1 - \gamma^2)^4},$$

$$\alpha = [1 - \psi^2/(1 - \gamma^2)^2]^{-1}.$$

In computing the integrals in equation (A4.10), the approximation, equation (A4.9), must be used in both numerator and denominator.

In the small ψ limit, we have

$$1 + C_{\max}, \max(\boldsymbol{\omega}) \approx \exp[\langle \widetilde{v} \rangle^2 \psi(\boldsymbol{\omega})],$$

(A4.14)

where the average of \tilde{v} is taken with respect to v and x:

$$\langle \tilde{v} \rangle = \frac{\int dv \ t(v) \ \mathcal{N}_{\text{max}}(v) \ \hat{v}}{\int dv \ t(v) \ \mathcal{N}_{\text{max}}(v)}. \tag{A4.15}$$

Appendix 5: Polarization statistics

The distribution function for polarized radiation is a 2×2 matrix $f_{\lambda\lambda}(\mathbf{x},\mathbf{q},\tau)$, where the index λ Analogous to the introduction of Δ_T in Section 2.1, we introduce $\Delta_{\lambda\lambda'}$ to describe the fluctuations in the polarization matrix. The conventional Stokes parameters, I, Q, U, V, are related to this refers to the two polarization states $\hat{\varepsilon}_{\lambda}$ of the electromagnetic waves incident from direction $-\hat{q}$. matrix by an expansion in Pauli spin matrices,

$$(\Delta_{\lambda\lambda'}) = 1/2(s_0I + \mathbf{s} \cdot \boldsymbol{\sigma}),$$

$$s_0 = I = \Delta_T, s_1 = U, s_2 = V, s_3 = Q.$$
 (5.1)

If Thomson scattering is the only process modifying the geodesic propagation of the photons, then the transfer problem for the polarization matrix considerably simplifies (Chandrasekhar 1960). For a given plane wave, the polarization matrix is diagonal if the unit vectors

1987MNRAS.226..655B

Cosmic background radiation fluctuations

$$\hat{\varepsilon}_l(\mathbf{k}, \hat{q}) = \frac{\hat{k} - \mu \hat{q}}{(1 - \mu^2)^{1/2}}, \qquad \hat{\varepsilon}_r(\mathbf{k}, \hat{q}) = \hat{k} \times \hat{q}$$
(A5.2)

BE) since $\Delta_{\lambda\lambda'}$ remains diagonal as propagation proceeds. However, when we reconstruct the $\hat{q}:\hat{\varepsilon}_l = R(\phi_k)\hat{\varepsilon}_1, \hat{\varepsilon}_r = R(\phi_k)\hat{\varepsilon}_2$, where R is a 2D matrix describing rotation by an angle ϕ_k . In this new basis the polarization matrix is $(\Delta_{ij}) = R^{+}(\Delta_{\lambda\lambda'})R$, hence there are now three non-zero Stokes polarization distribution at the present time by summing over wavenumbers, we must first rotate our k-dependent basis to a fixed basis $\hat{e}_i(\hat{q})$ in the plane perpendicular to the photon direction are used to describe the polarization vectors. In this case, the only non-zero Stokes parameters are I and $Q = \Delta_P$. We solve our transfer equations relative to this polarization basis (Kaiser 1983) parameters, the total intensity $I = \Delta_{\rm T}(\hat{q})$, and the two polarization measures

$$Q(\hat{q}) = \frac{V_x}{(2\pi)^3} \int d^3k \, \Delta_P(k, \mu, \tau_0) \cos(2\phi_k),$$

$$U(\hat{q}) = \frac{V_x}{(2\pi)^3} \int d^3 k \, \Delta_{\rm P}(k, \mu, \tau_0) \sin(2\phi_k). \tag{A5.2}$$

Clearly, Q and U are independent 2D Gaussian random fields with zero means and covariance functions

$$\langle Q(\hat{q}) Q(\hat{q}') \rangle = \langle U(\hat{q}) U(\hat{q}') \rangle = \frac{1}{2} C_{P}(\theta), \qquad \cos(\theta) = \hat{q} \cdot \hat{q}'. \tag{A5.4}$$

To construct small-angle maps of the polarization it is a good approximation to assign angles ϕ_n uniformly at random in the interval [0, 2π] and to generate two maps by evaluating the Fourier series

$$Q(\boldsymbol{\theta}) = \sum_{\mathbf{n}_{x}, n_{y}} D_{\mathbf{p}}(\mathbf{n}) \cos (2\phi_{\mathbf{n}}) \exp \left[i \frac{2\pi}{L} \mathbf{n} \cdot \boldsymbol{\theta} \right],$$

$$U(\boldsymbol{\theta}) = \sum_{\mathbf{n}_x, \mathbf{n}_y} D_{\mathbf{p}}(\mathbf{n}) \sin (2\phi_{\mathbf{n}}) \exp \left[i \frac{2\pi}{L} \mathbf{n} \cdot \boldsymbol{\theta} \right].$$

The amplitude $D_{\mathbf{P}}(\mathbf{n})$ is chosen from a Gaussian distribution with zero mean and variance

$$\langle \mid D_{\rm P}(\mathbf{n}) \mid^2 \rangle = (1/2) \, S_{\rm P} \left(\mathbf{Q} = \frac{2\pi}{L} \, \mathbf{n} \right) \approx (1/2) \, C_{Pl},$$

and the same set of amplitudes and phases of $D_{\rm P}$ are used in generating the two maps. In the plot of the polarization vectors shown in Fig. 9, the length of each vector is proportional to $[Q^2(\theta) + U^2(\theta)]^{1/2}$ and the orientation is given by $2\phi = \tan^{-1}(U/Q)$