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ABSTRACT 

Microlensing at cosmological distances can induce violent fluctuations in the 
observed light curves of macro lensed quasars. In a previous publication the 

amplification probability distributions for a large sample of microlensing light curves 
were presented. This paper extends these earlier results and presents a temporal 
analysis for this light-curve sample. The temporal properties are explored using the 
first-order structure function. The results of this study show that (1) the asymptotic 
global curvature of the structure function depends on the macrolensing parameters 
(J' * and y and not on the detail of the mass distribution, (2) the characteristic time

scale for variability due to microlensing is oc.J <m >, where <m> is the average mass 
of the micro lensing objects, and again does not depend on the detailed shape of the 
mass distribution, and (3) the structure function time-scale does not vary with shear 
angle as a purely geometric transformation, but does possess an underlying 
symmetry solely dependent on the macro lensing parameters. A comparison of 
simulations of the quadruple lens, 2237 + 0305, with the currently available 
temporal light curves suggests that the average mass distribution of the lensing 

objects in 2237 + 0305 is within the range 0.1 < <m> < 10 Mo' 

Key words: methods: numerical - gravitational lensing. 

1 INTRODUCTION 

The effects of a single, solar-mass star on the light beam of 

a distant quasar were first investigated by Chang & Refsdal 

(1979). Although the image splitting was found to be 

unobservable, ~ 10-6 arcsec, it was seen that the lensing 

amplification could be substantial and would result in fluc

tuations in the observed light curve of a macrolensed 

quasar. In realistic macrolensed objects this single-star 

approximation is invalid, as many microlenses will affect the 

passage of a light ray through a galaxy. As this number of 

stars can be large, analytic solutions of the ray-tracing 

become intractable, and simulations of microlensing have to 

be tackled numerically. 

The workhorse for simulating microlensing light curves 

has been the backwards ray-tracing technique (Kayser, 

Refsdal & Stabell 1986; Schneider & Weiss 1987). With 

this, a regular grid of light rays are traced from an observer, 

through a plane of lensing objects and into a source plane. 

The distribution of the rays over the source plane con

stitutes an amplification map, indicating the brightness of a 
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resultant image at various positions of a source. This 

method requires many rays to be traced through the lens 

plane and is very time-consuming. In general, only a single 

realization is generated per parameter set. These synthetic 

light curves did show that in the many-star regime a micro

lensed quasar will show complex and violent fluctuations. 

Recently, the development of the efficient, one-dimen

sional contour-following algorithm (Lewis et al. 1993; Witt 

1993), where the images of the locus of a source trajectory 

are followed and summed to produce a microlensing light 

curve, has allowed the generation of large samples of statis

tically independent micro lensing light curves (Lewis & 

Irwin 1995, hereafter Paper I). That paper also presented an 

analysis of the form of the microlensing amplification prob

ability distribution over a large volume of parameter space, 

illustrating the insensitivity of this statistic to the details of 

the mass function at all amplifications. 

This paper extends the earlier paper and presents a quan

titative study of the variability seen in these microlensing 

light curves. The paper begins by discussing previous studies 

of these temporal properties. The structure function is then 

introduced. This is the statistical tool employed to charac

terize the microlensing variability. This is followed by an 
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interpretation of the results, with a comparison to previous 

studies. The appendix discusses a number of scalings in the 

microlensing relations, and demonstrates that these are 

displayed in the light curves generated with the efficient 

contour-following algorithm. 

1.1 Microiensing equations 

The deflection of a light ray through a field of point masses 

is described by the normalized microlensing equation, 

Y= X-Uex-Imi 2' (
1-1' 0) N. (x-x;) 

o 1+1' i~l (x-Xi) 
(1) 

where Y and x are angular coordinates in the source and 

image plane, respectively (Schneider, Ehlers & Falco 1992). 

Here, l' is the shearing of the bundles of light rays due to the 

large-scale matter distribution, and Ue is the effect of a local 

smooth matter component. The final term refers to the 

contribution due to a surface density, U *, of N * point 
masses, each with a mass mi=Mi!MO • These densities are 

normalized with respect to the critical lensing surface mass 

density 

(2) 

where Dos, Dol and Dis are the observer-source, observer

lens and lens-source angular diameter distances, respec

tively. The distances are in units of an angular Einstein (or 

critical) radius bo' of a solar-mass star, which is given by 

(3) 

The theoretically expected average amplification with these 

parameters is given by 

1 
(4) 

1.2 Effective microiensing veloCity 

The rate of these microlensing fluctuations is dictated by the 

effective velocity of the complex lensing amplifications 

structure crossing over the source plane. This velocity is a 

combination of the velocities of the source, lens and the 

observer. Kayser et al. (1986) expressed the resultant velo

city as 

(5) 

where Vi are the velocities perpendicular to the line of sight, 

ofthe source (at a redshift of zs), lens (at ZI) and observer. 

1.3 Motivation and previous results 

In general, two separate approaches are used to study the 

temporal structure in synthetic microlensing light curves. 

The first of these employs a characterization of individual 

events in a synthetic light curve. This analysis is sensitive to 

short-time-scale variability, which is dependent upon the 

size and form of the source being lensed (Wambsganss 

1990). A second approach is to measure the longer time

scale characteristics of the variability. This depends on 

large-scale structure in the light curve and is less dependent 

on the nature of the source. This will be the focus of this 

paper. 

By taking various cuts across amplification maps, Wambs

ganss was able to generate a number of microlensing light 

curves for various macrolensing parameters (Wambsganss, 

Paczynski & Katz 1990). From these light curves, he could 

calculate the autocorrelation function as a measure of the 

variability. This is defined as 

r(M) = _<f.l_(t_)_X_f.l-:-(t_+_L\_t)_-,--<_f.l_/_) 

<f.l2) -<f.l/ ' 
(6) 

where M is the 'lag', and ../<f.l2) - <f.l)2=Up. is the standard 

deviation of the signal. This function is normalized to unity 

at M = 0, and tends to zero as M -+ 00. The 'correlation 

time', Mcom was defined such that r(Mcorr) =0.5. The corre

lation length, 'Icom is given by 

(7) 

where V is the effective velocity across the source plane 

(equation 5). Wamsbsganss calculated the correlation 

length for several microlensing scenarios, and found that 

this measure depended on the orientation of the source 

trajectory relative to the shear, e, such that 

(8) 

where aoo =ll-u*-yl and a90 =ll-u*+yl, the eigen
values of the amplification tensor. For later comparison we 

note that this can be rewritten as 

(9) 

2 MICROLENSING LIGHT-CURVE SAMPLE 

For this study a large sample of microlensing light curves 

were generated using the efficient contour-following algo

rithm (Lewis et al. 1993; Witt 1993). This method utilizes 

novel properties of the lensing mapping, namely that the 

image of an infinite straight line, which represents the locus 

of a source trajectory, is imaged into a non-linear infinite 

curve and a series of image loops. Each of these loops 

crosses at least one star in the field and this enables each 

loop to be located. This allows the determination of all 

images at all times. The total light curve is generated by 

summing each of these individual loop contributions. This 

method is essentially a one-dimensional contour-following 

algorithm and allows a more efficient generation of light 

curves when compared to other contemporary algorithms, 

such as the backwards ray-tracing technique. Several 

examples of light curves produced by this technique are 

presented in Fig. 1. As a further test of the efficacy of this 

method of generating light curves, we demonstrate in 

Appendix A how the expected scaling properties of micro

lensing due to the relative contributions of smoothly distri-

© 1996 RAS, MNRAS 283, 225-240 
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Figure 1. An example of several sections of light curves generated with the efficient contouring algorithm. Those in the left-hand panels are 

for the parameter set (0"*, O"c) = (0.5, 0.0), while those on the right are for (0"*, O"J = (0.25, 0.5). The x-axis is in Einstein radii, while the y-axis 

is in magnitudes. In both cases the light curves are for point sources and have been normalized to the theoretical mean magnitude (equation 

4). 

buted matter, and matter in discrete objects, can be used to 

verify the effectiveness of the method. 

, Paper I presented the details of the sample employed in 

this study, as well as an analysis of the microlensing ampli

fication probability distribution. The first set of light curves 

were generated for optical depths of (J * = (0.2, O.3S, O.S, 

0.6S, 0.8), with no external shear term, i.e., ')' =0.0. Two mass 

distributions were employed, per surface density. In the first 

of these, which is referred to as MSOLAR, all the stars have 

a mass of 1 Mo' In the second mass function, SALPETER, 

the stellar masses were drawn from a Salpeter mass distribu

tion, which is defined to be 

f(m) dmocmP dm, (10) 

with P = - 2.3S, between the limits of 0.1 < m < 1.0 Mo' At 

least SO light curves, each of 20 Einstein radii in extent, were 

generated for each sample. 

The second set of light curve samples also employed the 

same (J * range, but employed a non-zero external shear. For 

each surface density, samples with')' = (0.2, O.3S, 0.5, 0.6S, 

0.8) were generated. 

3 METHOD 

3.1 The structure function 

Several observational studies have employed structure func

tion analysis as a method to characterize the variability seen 

in a light curve (Simonetti, Cordes & Heeschen 1985; Hook 

et al. 1994). For a time-dependent signal, /let), the first

order structure, t/I(At), is defined to be 

t/I(At) = < [/l(t + At) - /l(tW>. (11) 

This function is related to the correlation function, equation 

(6), such that, 

© 1996 RAS, MNRAS 283, 225-240 

t/I(At)=2U;[r(0) - reAt)] =2(J~[1- reAt)]. (12) 

For the following analysis Tl/2 is defined to be the rise time 

of the structure function to half its asymptotic value. Noting 

that t/I( 00 ) = 2U;, and that reAtcorr) = O.S, then 

t/I(Atcorr) [1- r(At )] =0.5 
t/I( (0) corr' 

(13) 

and it can be seen how Tl/2 is related to the correlation 

length, Atcorr (equation 6). 

For the analysis presented in this paper the discrete struc

ture function, defined as (Hook et al. 1994) 

t/lj=<lmi+j-mD, (14) 

was employed. Here, m is a magnitude, and is defined to 

be 

m = - 2.5 log ii, (IS) 

where /l is the microlensing induced amplification. An 

advantage of structure functions is that they do not depend 

on prior estimates of the mean amplification, and a further 

advantage of using the absolute difference is that it is more 

robust to outlying points than the more conventional quad

ratic difference function. The lessened susceptibility to 

sharp variations, which occur for point sources, is useful for 

measuring just the overall trend of the structure function.! 

1 Since there is no simple scaling relationship betwen the structure 

functions defined by equations (11) and (14), we performed a 

series of tests, using a subset of the microlensing light-curve 

sample, to investigate the derived properties of the two forms. We 

found no significant differences in the temporal trends, and 

conclude that physical properties deduced from either structure 

function would be the same. In particular, in a later section investi

gating the dependence of the time-scale on geometrical effects, we 

find no difference in the conclusions arrived at using either form. 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 
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0 1 2 3 4 5 12 19 25 

7 7 6 
2 2 2 2 8 14 13 

3 3 3 9 15 20 
4 4 10 16 21 

5 11 17 22 
12 18 23 

19 24 
25 

Figure 2. A nine-point Golomb ruler. The top row of numbers represents the ruler points, while the triangle below presents the difference 
between various pairs of ruler points. As can be seen, all separations up to 25 are present, with 1, 2, 3, 4 and 7 being 
measured more than once. 

The structure function was evaluated by sampling each 

light curve with a series of simulated 'observations'. For the 

analysis presented in this paper the sample positions were 

chosen to provide regular sampling in 11t. This provides a 

uniform data set to which a functional form for the structure 

function can be readily evaluated without giving undue 

weight to particular regions. 

3.2 Regular sampling in At: Golomb's ruler 

The positions of data points in observed microlensing 

quasars is very heavily biased due to observational factors, 

such as the position of the Sun, weather conditions and the 

allocation of telescope time. When a correlation, or struc

ture function, analysis is applied to data sampled in this way, 

in general, provides very poor coverage in I1t space: see Fig. 

9 for the coverage in At for the observed light curves of the 

lensed quasar system. The theoretical light curves presented 

in this section were sampled with 'observations' correspond

ing to the spacing on a Golomb ruler (Dewdney 1985,1986). 

Although these rulers sample light curves in an irregular 

way, they provide a regular sampling in 11t. Such a coverage 

allows a functional form to be fitted to the I1t statistic in a 

robust way. It should be noted that for a required, fixed 

spacing, &, in I1t space, a Golomb ruler sampling will pro

vide a complete set of data points, such that 

11t;=ix& (16) 

for the minimum number of observations in t. 

Golomb rulers define an ordered numeric sequence such 

that the difference between any two points on the ruler is 

not repeated. This is most easily illustrated by example. 

Consider a ruler with four marks upon it, at 0, 1, 4 and 6 

units. Any distance between 0 and 6 units is measurable. 

This is, in fact, the maximum size for a perfect Golomb 

ruler, and all rulers greater than this length cannot uniquely 

measure all the integer measures between the start and end 

of the ruler. Mathematicians, therefore, search for optimum 

rulers. Like perfect rulers, these do not repeat any differ

ences between points, but a number of measures are not 

possible. Optimal rulers with 19 marks, able to measure 171 

distances out on a total ruler of length 246 units, have been 

found (Dollos, Rankin & McCracken 1996). There is no 

general method used in the construction of these rulers, and 

possible combinations are validated by numerical 

searches. 

For the analysis presented in this paper a form of minimal 

Golomb rulers are employed. These rulers are almost per

fect, containing the minimum number of repetitions of a 

particular separation. As with all the kinds of ruler, the 

validation of minimal Golomb rulers must be checked via 

numerical techniques. An example of the Golomb's ruler 

employed in this analysis is presented in Fig. 2. 

3.3 Functional fit 

The resultant structure functions for each of the samples of 

light curves were fitted with an analytic function of the 

form 

(I1t)P 
f(l1t) = - Te . (17) 

This function has the limits 1/1(0) = 0 and I/I( 00 ) =A, whereA 

is the asymptotic limit presented in Paper I. This functional 

form has the advantage that it has an asymptotic limit, A, 
that can be derived directly from the convolution of the 

microlensing amplification probability distribution, and is 

therefore not a free parameter in the temporal fits. The 

structure function is then completely characterized by three 

parameters, A, p and Te , where p parametrizes the overall 

degree of curvature of the structure function, while Te is the 

time-scale over which the structure function rises to 

(1- e- 1) - 0.632 of the asymptotic value. Another useful 

measure of the lensing time-scale is given by TlIz , which is 

the time-scale over which the structure function rises to 

O.5A, as described in Section 3.1. This is defined to be 

TlIz = (In 2)lIPTe • (18) 

Each structure function was also fitted with a polynomial 

of the form 

(19) 
;=1 

where the constants, k;, were determined with a least

squares minimization technique. This functional fit was 

solely used to establish the characteristic time-scale TlIz in 

an alternative way. 

4 RESULTS 

4.1 Samples with no shear 

The first row in Table 1 presents the asymptotic value, A, of 

the structure function for the samples with no shear. The 

fitted parameters: Texp , P and TlIz , using these values, are 

presented in Fig. 3. It is immediately apparent from these 

© 1996 RAS, MNRAS 283, 225-240 
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Thble 1. The asymptotic value of the struc-

ture function as derived in Paper I. These 

values are drawn directly from a convolu-

tion of the amplification probability distri-

bution. Here, (J * is the surface density in 

point-mass lenses, and y is the global 

shear. 

,),\0". 0.20 0.35 0.50 0.65 0.80 

0.00 0.36 0.61 0.77 0.83 0.72 

0.20 0.40 0.64 0.80 0.78 

0.35 0.44 0.71 0.76 0.72 

0.50 0.56 0.76 0.82 0.90 

0.65 0.72 0.96 1.03 0.97 

0.80 1.14 1.13 1.05 0.96 

figures that curvature of the fit, p, is independent of the 

mass function of the lensing objects, but it is strongly 

dependent upon the value of the surface mass density, 0"*. 
The dashed line represents a functional fit of the form, 

p=0.882-0.1380"* -0.618~. (20) 

4.2 Samples with shear 

The asymptotic values of the structure function for the 

samples with shear are presented in Table 1. The results of 

0.25 
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the fitting for these samples are presented in Table 2. It was 

found that the polynomial form gave more reliable esti

mates of the characteristic time-scale than parametric 
representation, using equation (17); consequently, all time

scales were estimated using the former. For the various 0"* 

and y samples, Table 2 presents T1/2 as a function of the 
shear orientation (). 

The third, fourth and fifth columns present TV2 for shear 
orientations () = 0°, 45° and 90° respectively, in units of 

Einstein radii in the source plane. Each of these columns 

contains two numbers, the top is for the SALPETER 
samples, while the lower values are for MSOLAR cases. 

The final column in this table presents the mean of Tli2 for 

the SALPETER cases divided by the equivalent MSOLAR 

cases. 

5 INTERPRETATION 

5.1 Variability and (m) 

The Einstein radius for a star of mass m can be seen, by 

equation (3), to be proportional to Jiii. As the crossing time 
of this radius defines the time-scale that an individual star 

has 'influence' on a light curve, it would be expected that the 

time-scale of the variability also scales as Jiii. For an 
ensemble of masses the variability will scale as the square 

root of the characteristic lensing mass, which can be taken 
to be the mean of the mass distribution. This was shown by 

Witt, Kayser & Refsdal (1993), who studied the mean 

I 

I) 

• • 
0 

9 

f 

.. i' 

1t 

tJ 
"b' 

.......... 
...... ...... 

....... -e, 
....... 

....... 
....... 

....... 
........... ...... 

0.6 0.8 

G* 
Figure 3. These three panels present the fit parameters for the samples with no external shear. The open points in the panels indicate the 

result for the SALPE1ER sample, while the filled points are for the MSOLAR sample. The error bars are the standard deviation of 50 

realizations of the structure function, for each parameter set. The stars in the figure for TIi2 (equation 18) are drawn from the polynomial fit 

of the data points. 
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Table 2. For the various macrolensing parameters this table presents Tl/z( 0). The first two columns contain the 

macro parameters, (1* and y, while the next six contains the Tl/2( 0) for 0 = 0°,45° and 90°. The first three are for 

the SALPETER samples (S), while the second three are for the MSOLAR samples. The final column contains 

the time-scale for the MSOLAR data points divided by the value from the SALPETER values, averaged over 

the three shear directions, with (1.-1 errors. The error in the individual values of Tl/2 is estimated to be 0.03. 

u. 'Y Tf (0°) Tf (45°) Tf (90°) 
2 2 2 

0.20 0.20 0.23 0.27 0.47 

0.20 0.35 0.16 0.22 0.39 

0.20 0.50 0.12 0.18 0.33 

0.20 0.65 0.10 0.13 0.29 

0.35 0.20 0.21 0.26 0.29 

0.35 0.35 0.17 0.22 0.32 

0.35 0.50 0.10 0.14 0.27 

0.35 0.80 0.10 0.13 0.28 

0.50 0.20 0.21 0.22 0.29 

0.50 0.35 0.13 0.16 0.25 

0.50 0.65 0.11 0.14 0.25 

0.50 0.80 0.13 0.16 0.34 

0.65 0.20 0.21 0.25 0.34 

0.65 0.50 0.11 0.14 0.20 

0.65 0.65 0.14 0.19 0.31 

0.65 0.80 0.15 0.19 0.31 

0.80 0.35 0.13 0.15 0.20 

0.80 0.50 0.14 0.18 0.26 

0.80 0.65 0.17 0.18 0.29 

0.80 0.80 0.17 0.20 0.30 

caustic crossing rate, for two separate mass functions in 

models of the Huchra lens. Simulations incorporating a low

mass stellar component showed systematically more caustic 
crossings per Einstein radius, when compared to a sample 

with only higher mass stars. 
To investigate this predicted behaviour, several more 

microlensing samples were generated for the case where 

(J * = 0.5, with no external shear. The details of these samples 
are presented in Table 3, and are described fully in 

Paper I. 
With a delta-function mass distribution the mean mass is 

the mass of any of the individual stars, while for the Salpeter 

Tf (00) Tf (45°) Tf (90°) (Tf ITt) ± Un_l 
2 2 2 

0.48 0.59 0.88 2.05±0.13 

0.37 0.45 0.99 2.30±0.25 

0.28 0.35 0.68 2.11 ±0.20 

0.18 0.25 0.53 1.85 ±0.06 

0.44 0.54 0.63 2.12 ± 0.05 

0.33 0.40 0.74 2.02±0.26 

0.22 0.26 0.50 1.97± 0.20 

0.19 0.26 0.56 1.97±0.06 

0.43 0.47 0.59 2.07±0.06 

0.25 0.33 0.46 1.94 ± 0.11 

0.29 0.27 0.57 2.28 ± 0.35 

0.25 0.34 0.66 2.02±0.14 

0.41 0.50 0.63 1.94 ± 0.08 

0.21 0.26 0.41 1.94 ±0.20 

0.28 0.32 0.55 1.82 ± 0.16 

0.28 0.34 0.69 1.96± 0.23 

0.24 0.32 0.41 2.01 ± 0.15 

0.27 0.33 0.45 1.83 ± 0.10 

0.30 0.36 0.49 1.82 ±0.16 

0.33 0.37 0.68 2.02±0.22 

mass function, the distribution of masses is dominated by 

stars at the lower bound. It may be argued, therefore, that 

<m> is not the only possible characteristic moment that 
could describe the global temporal behaviour caused by the 

mass function distribution. To investigate this further, 
several additional microlensing light-curve samples were 

generated. These were chosen to have a uniform mass 

function, 

f(m) dmocmo dm, (21) 

between an upper and lower mass limit. These possess no 
particular characteristic mass, unlike the delta function and 
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Table 3. The additional light curves samples at various mass 
distributions, generated to determine the dependence of the 
variability on <m). All masses are in solar units. Delta refers 
to samples where all stars were of the same mass, while 
Salpeter refers to stars with masses drawn from a Salpeter 
mass distribution (equation 10). Uniform denotes stellar 
masses drawn from a uniform mass function equation (21) 
between the indicated limits. The determination of the 

number of stars used in a simulation, N *' is described in 
Lewis et al. (1993). Note that, as the duration of a light curve 
varied between the samples, this number is not a monotonic 
function of the optical depth to microlensing; rather it is 
illustrative of the parameter range accessible to the simula
tion technique. The length of each light curve, in unit of 
Einstein radii (equation 3) is presented in column L*. 

Mass Function Mass Limits (m) N. L. 

Delta 1.0 1.0 989 20 

Salpeter 0.1 < M < 1.0 0.223 2621 20 

Delta 0.3 0.3 83912 200 

Delta 10. 10. 2915 200 

Salpeter 0.3 < M < 10. 0.825 33345 200 

Salpeter 0.3 < M < 1.0 0.495 1477 20 

Salpeter 1.0 < M < 100 3.084 1866 20 

Salpeter 0.05 < M < 100 0.179 13313 20 

Uniform 0.1 < M < 1.0 0.45 1457 20 

Uniform 0.1 < M < 2.0 0.95 1109 20 

Uniform 0.1 < M < 6.0 2.95 779 20 

Uniform 0.1 < M < 10. 4.95 686 20 

Uniform 0.1 < M < 20. 9.95 595 20 

Salpeter mass case, which are dominated by a single mass 

value. At least 50 light curves, of length 20 Einstein radii, 

were generated for samples with differing mass limits. The 

details of these samples are presented in Table 3. 

Fig. 4 presents the value of the rise time, TI12 , as a func

tion ofthe mean mass, <m), for these samples. The dashed 

line is of the form 

(22) 

As can be seen, this relation holds over the both the mass 

range considered in these samples and is independent of the 

detailed shape of the distribution function. 

This scaling in TI12 can be seen in the microlensing 

samples with an external shear by examining the final col

umn in Table 2. This column presents the time-scale, T1I2 , 

for the SALPETER samples divided by the MSOLAR 

cases. For a particular set of values of (J* and y, the value 

presented is an average of the three shear orientations. If 
the time-scale is proportional to <m), the expected scaling 

between these two samples is 

<T~, y =0) J<mM
) [ok 

s --s-~ ---2.12 
<TI12 , y=O) <m) 0.223 

(23) 

(cf. Table 3), and the values in Table 2 are in good agree

ment with this. 
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S.2 Variability and shear orientation 

Fig. 5 graphically presents the information in Table 2. The 

points in this figure represent TI12( 0) scaled such that 

(24) 

When scaled in this way, TI12 is independent of the mass 

spectrum of the lensing objects. This is due to the .J<m) 
scaling discussed previously. 

The solid curve is the behaviour of Td 0) ifthe action of 

shear on microlensing produces a purely geometric trans

formation ofthe amplification map in the source plane (cf. 

equation 8). There are obviously substantial departures 

from this expected form, especially approaching the Jl = 00 

diagonal in the (J*-y plane, with the measured form being 

consistently greater, except for «(J*, y) of (0.2,0.2) and 

(0.8,0.8). 

Fig. 6 presents a caustic map for a region of the source 

plane, with microlensing parameters «(J*, (Je, y) = 
(0.35, 0.0, 0.5), generated using the backwards ray-tracing 

technique (Kayser et al. 1986; Schneider & Weiss 1987). 

There is significant structure in this map, with a preferred 

direction of clustering due to the influence of the shear 

term. Due to these long chains of caustic structure a geo

metrical transformation of this map using equation (8) still 

possesses a preferred direction of caustic clustering, with 

the time-scale of variability being dependent upon the 

orientation of the source trajectory. This illustrates that the 

addition of a global shear term transforms the caustic map 

in a highly non-linear fashion, and one should not expect the 

microlensing time-scale to vary in a simple, geometrical 

fashion. 

It is also apparent that there exists a symmetry in the form 

of T;12(O) over the (J*-y plane which occurs when 

y=y' = (1 - (J *) and (1- (J *)=(1- (J~) = y. It is interesting 
to note that these symmetries are not reflected in the form 

of the amplification probability distributions (see figs 5 and 

6 in Paper I). The transforms also produce the symmetry 

seen in the form of the geometric solution (the solid curve in 

Fig. 5). This implies that the relation between the orienta

tion of the shear and TI12 is dependent upn 11 - (J * ± y I, the 
eigenvalues of the amplification tensor. The moduli of these 

eigenvalues are invariant under the symmetry transforma

tion above, and hence any function of the eigenvalues and 

the angle 0 will also be invariant to the transform. In par

ticular, we have found that the geometrical functional form 

of equation (8), with R empirically defined from the simula

tions as T1/2(OO)/TI12(900) provides as good a parametrization 

as any. A theoretical study of the nature of this relation is 

currently underway. 

The variation of Tl/2 with shear orientation can then be 

described by 

R. 
TI12(O)=C i .J<m) I , 

.JR~ sin 02 + cos 02 

(25) 

where <m) is the average mass of lensing objects, in units of 

Mo' and Ci and Ri are parameters deduced from the simula

tions. This is similar to the geometric interpretation (equa

tion 8), with the dependence on (J * and y implicit in the 
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0.5 

0.2 0.5 1 2 5 10 

(m) 
Figure 4. The rise-time parameter, T1!2' as a function of the mean mass of the lensing objects, for eight different mass profiles. The dashed 

line represents the expected behaviour of the variability from simple scale arguments. The error bars are drawn from 50 realizations of the 

time-scale measurement. 

o 45 90 0 45 90 0 45 90 0 45 90 

angle (e) 

Figure 5. T!(z«(}) for the samples with shear. The time-scales are normalized with respect to T1I2(900) for each sample. The stars represent the 

SALPETER light curves, whilst the filled circles represent the MSOLAR sample. The solid line represents the expected effect on Tl!2 if the 

application of a shear is interpreted as a purely geometric stretching of the caustic network (cf. equation 8). The dotted line is an equivalent 

formalization, normalized at Tl!2(OO) and Td900) (see equation 25). 
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-5 o 5 

Figure 6. An example of a caustic map generated with the backwards ray-tracing technique. The parameters used for this simulation were 
(0" *, O"C' y) = (0.35, 0.0, 0.5). All stars in this simulation were of mass 0.386 Mo ' and the box units are in Einstein radii for a solar-mass star 
(equation 3). For a purely geometrical distortion the expected difference in the time-scale along the x- and y-axes would be a factor 
~7.6 . 

Table 4. The Ci parameter, used in equa-
tion (25), for the samples with shear. 0"* 

runs horiziontally, while y runs vertically. 

'Y\uo 0.20 0.35 0.50 0.65 0.80 

0.20 0.95 0.63 0.60 0.67 

0.35 0.90 0.70 0.50 0.42 

0.50 0.69 0.70 0.42 0.49 

0.65 0.59 0.55 0.61 0.55 

0 .80 0.58 0 .69 0.67 0.66 

derived R i. The parameters, Ri and Ci, are presented in 

Tables 4 and 5. The mean difference between this functional 

form and the values derived from the microlensing sample is 

5 per cent, with a maximum deviation of 16 per cent. The 

symmetry described in the previous paragraph is apparent 

as a symmetry in the values R i • 

To demonstrate this parametric representation, five addi

tional samples of microlensing light curves were generated. 

The micro lensing parameters used were «(J *, ')') = 

(0.20,0.65), at shear angles of 8=0.0,22.5,45.0, 67.5 and 

90.0. Each sample consisted of at least 100 light curves, each 

© 1996 RAS, MNRAS 283, 225-240 

Table 5. As for Table 4, except that this 
table presents the Ri parameter in 
equation (25). 

'Y\uo 0.20 0.35 0.50 0.65 0.80 

0.20 0.52 0.70 0.72 0.63 

0.35 0.40 0.49 0.53 0.61 

0.50 0.38 0.49 0.53 0.58 

0.65 0.32 0.39 0.47 0.59 

0.80 0.35 0 .38 0.45 0.52 

being 60 Einstein radii in extent. The characteristic time

scale, T1!2(8), for these samples are presented in Fig. 7. The 

solid line in this figure represents the parametric fit, 

employing equation (25) and the numeric values in Tables 4 

and 5. The parametric fit accurately reproduces T1!2 at the 

various shear angles. 

6 MICROLENSING IN Q 2237 + 0305 

The lensing system Q 2237 + 0305 consists of four images of 

a z = 1.69 quasar in a cruciform shape centred on the 
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<0 

a (0.20,0.65) • 

N 

a 

o 20 40 60 80 

Shear Angle e 
Figure 7. The points in this figure present Tl/lfJ) drawn from microlensing light curve samples at various orientations. The curve represents 

a parametrized fit, employing equation (25) and the numeric values in Tables 4 and 5. 

nucleus of a nearby, z = 0.039, spiral galaxy. Monitoring of 

the images in this system revealed the first unambiguous 

evidence for microlensing occurring in any system (Irwin et 

a1. 1989). 

Several models exist that reproduce the observed image 

configuration and provide estimates of the microlensing 

parameters at the positions of the images (Kent & Falco 

1988; Schneider et a1. 1988; Kochanek 1991; Wambsganss & 
Paczynski 1994). Recently, Hubble Space Telescope images 

of this system were acquired, and these data were used to 

reproduce the image configuration using a simple mass

traces-light model for the lensing action of the galaxy 

(Crane et al. 1991; Rix, Schneider & Bahcall 1992). The 

microlensing parameters from this study, listed in Table 6, 

were used to generate samples of at least 50 synthetic micro

lensing light curves, each 20 Einstein radii in extent (more 

details of these samples can be found in Paper I). 

6.1 Asymptotic values of the structure function 

As with the microlensing samples presented in Paper I, the 

amplification probability distributions for each image of 

2237 + 0305 can be used to calculate the asymptotic value of 

the structure function. The values for the images were 

found to be 

A =0.76, 

B =0.77, 

C =1.04, 

D=0.91, 

independent of the lensing mass function. These values are 

Table 6. Macrolensing parameters for 

the four images in Q 2237 + 0305. These 

values represent the best solutions of 

the lens modelling by Rix et al. (1992). 

Image (1. 'Y 

A 0.41 0.471 

B 0.38 0.43 1 

C 0.65 0.68 

D 0.59 0.56 

in magnitudes and are employed in the following analysis of 

the structure function of light curves of the Huchra lens. 

6.2 Temporal analysis 

The structure functions were measured with Golomb ruler 

sampling in an identical fashion to those presented in 

Section 3. The resulting data points were fitted with a para

metric function (equation 17), and the time-scale, T1!2' was 

measured via a polynomial fit. The asymptotic values pre

sented in Section 6.1 were used to normalize the structure 

function as At --+ 00 . 

6.3 Results 

As with the samples with shear presented in Section 4.2, 
time-scales, T1!2' were derived directly from the polynomial 

fit. 

As expected, the variation of the time-scale of the varia

bility with the shear orientation is not described by a simple 

© 1996 RAS, MNRAS 283, 225-240 
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geometric transformation (equation 8), although it can be 

represented by equation (2S), with parameters Ci and R i • 

Table 7 presents Ci and Ri for the simulations presented in 

this paper. The average deviation of this function from the 

data points is less than S per cent, with the maximum devia

tion being less than 11 per cent. This can be seen graphically 

in Fig. 8, which presents the data points for the structure 

function for the samples presented in this paper, as well as 

the functional fit outlined above. 

6.4 Microlensing mass limits in Q 2237 + 0305 

Using the values drawn from the temporal analysis of the 

light curve simulations, coupled with the scaling presented 

Table 7. The parameters for equation 
(7) for the simulations for the images of 

the Huchra lens. Ri is dimensionless, 
while C i is in units of Einstein radii in 

the source plane. These values can be 

transformed into observed time-scales 
via equation (7). 

Cj R; 

A 0.49 0.44 

B 0.61 0.44 

C 0.60 0.47 

D 0.52 0.46 

co 
ci 

MSOLAR 

A 

en 
ci ~ 
co 
ci 

....... ... 
:a en 
III ci 
~ 

B 

.~ 

.S 
Q) .... 
III 
J:I co C 
~ ci ....... 
E-<- en 

ci ~ 
co D 
ci 

en 
ci ~ 

Microlensing light curves 235 

in Section S.l, mass limits can be placed on the mean mass 

of microlenses in the Q 2237 + 030S system. 

Using equation (3), it can be seen that an Einstein radius 

for a solar-mass star, projected into the source plane, is 

'10 = O.OS h;o 1/2 pc. (26) 

The close proximity of the lensing galaxy ensures a large 

projected velocity over the source plane, which, considering 

typical departures from the Hubble flow, gives an effective 

velocity of 6000 kIn S-I (Kayser et al. 1986). With this, the 

crossing time of an Einstein radius is 8.2 hSO I/2 yr. 

The orientation of the global shear with respect to the 

source motion is unknown, but equation (2S) increases 

monotonically as the shear orientation changes between 0° 
and 90°. With this, the mean mass of the microlensing 

objects can be seen to be 

( 
tl/2 )2 ( IVI )2 

(m)=Khso 8.2 yr 6000 kIn S-I Mo ' 

where the factor K is constrained to be 

A 

B 

C 

D 

4.17 <K < 21.S1 

2.69 < K < 13.88 

2.78 <K < 12.57 

3.70 <K < 17.48, 

depending upon the shear orientation. 

(27) 

(28) 

Q 2237 + 030S has been monitored, at very irregular 

SALPETER 

A 

~ 

B 

~ 
C . 
~ 

D . 
~ 

I{,) ... 
ci 

I{,) ... 
ci 

I{,) ... 
ci 

o 45 90 0 45 90 

Shear Orientation (8) 

Figure 8. The predictions, derived from equation (25) using the parameters given in Table 7, (the solid line) accurately describe the data 
points drawn from the microlensing light curve samples (the filled circles). The left-hand panels are for the MSOLAR samples, while the 

right-hand panels are for the SALPETER cases. Note the different scales on the y-axes. This is due to the .J(m) scaling discussed 
previously. 
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0.8 

0.6 

0.2 

o 
o 500 

Shear 00 

Shear 45 

1000 

----

-f~ 
A 

1500 

Time (days) 

--------------

-.- .. ---

B 

BHI3 

2000 

_ .. - .. -
.. - .. - .. 
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2500 

Figure 9. The structure function of the observed light curves of the images of Q 2237 + 0305. The letters refer to the individual images. The 

three curves represent the scaled median structure function, averaged over the four images, for three shear orientations. The thicker lines 

represent the structure functions for (m) =0.1 Mo, while the thinner set of functions represent the case where (m) = 10 Mo. 

intervals, for a decade (Lewis, Itwin & Hewett 1995; Lewis 

et aI., in preparation). This short data train does not allow 

an accurate determination of the form of the structure func

tion, as demonstrated in Fig. 9. Here, the letters refer to the 

values of the observed structure function, for each of the 

macrolensed images. To compare these observed values to 

the synthetic sample, each light curve was smoothed with a 

Gaussian kernel of radius 0.01 Einstein radii. This is equiva

lent to a source size of '" 1015 em, a typical scalesize of a 

continuum-emitting accretion disc about a supermassive 

black hole (Rees 1984). The resulting light curves were then 

sampled with the same frequency as the current observa

tions to establish the median structure function (the median 

reflects a typical 'observation', rather than the average of a 

long data train). The structure functions for the MSOLAR 

sample at each shear orientation were averaged and scaled, 

and are presented in Fig. 9.2 The set of structure functions 

represented by the thicker lines are for the case where 

<m) = 0.1 Mo, while the thinner set of curves have been 

scaled to represent the case where <m) = 10 Mo. These 

curves bound the data suggesting that, with equation (27), in 

this lensing system 

0.1 < <m) < 10 Mo, (29) 

(I V I = 6000 km S -1 , 3 hso = 1), although a substantially longer 

light curve will be required to place tighter limits on the 

mean microlensing mass in this system. 

2The same exercise was conducted for the SALPETER light curve 

samples, and when accounting for the .J(m) scaling presented in 

Section 5.1, the results of this section were unchanged. 

3It must be noted that this velocity is the effective velocity across 

the source plane, as given by equation (5). It is a projection of an 

assumed velocity for the lensing galaxy, which is taken to be 600 km 

s-I, a typical departure from the Hubble flow (Kayser et al. 

1986). 

7 CONCLUSIONS 

This paper has presented the temporal analysis of a large 

sample of microlensing light curves. This was achieved via 

the evaluation of a structure function. The asymptotic value 

of this function was measured in Paper I, using the ampli

fication probability distribution. The structure functions 

were fitted with an analytic model, from which a character

istic time-scale, T1!2' the time taken for the structure func

tion to rise to half its asymptotic value, could be derived. 

The variability time-scale was found to scale with .J<m), 
where <m) is the mean, or characteristic, mass of the lens

ing objects. This was shown to hold for various mass dis

tributions. 

The variability time-scale is expected to be a function of 

the direction in which a source moves with respect to the 

global shear. Wambsganss suggested an analytic formalism 

for how this relative orientation should affect the time-scale 

(Wambsganss et ai. 1990). This formula represents a simple 

geometric shearing of the amplification map over the source 

plane. This paper has shown that this geometric representa

tion does not, in general, represent the scaling of T1!2. This 

is possibly due to non-linear effects in the clustering and 

merging of the caustic network wIth the application of an 

external shear. 

Fig. 5 illustrates that there are strong symmetries in the 

shape of Tl/2 with shear orientation over the O"*-y plane. 

These symmetries are those expected if one considers the 

geometric formalism (equation 8), although the symmetries 

are not apparent in the amplification probability distribu

tions drawn from the same light curves. This suggests that 

there exists an underlying physical reason for the sym

metries, which is dependent only upon 0"* and y. This will be 

a topic of further work. 

A similar analysis was applied to simulations of the 
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images of the quadruple quasar Q 2237 + 030S.1t was found 

that these samples exhibited the same behaviour as those in 
the larger light-curve sample presented in the earlier sec

tions of this paper. These results, coupled with the lensing 

configuration within this system, allowed the mean mass of 

microlensing objects to be limited to 0.1 < <m) < 10 Mo. 
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APPENDIX A: MICROLENSING AND 
SCALING RELATIONS 

Ai Introduction 

Several authors have considered the effect of the screen of 

smoothly distributed matter over the microlensing region 
(Kayser et al. 1986; Paczynski 1986; Schneider 1987). This 
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Table AI. The details of the micro lensing 

samples presented in this appendix. Here, 

N * is the number of stars used in each 

simulation. The mean amplification of each 

sample is (Jl), while the theoretical value is 

Jlth (equation 4).4 

Uc J-tth 

0.50 0.00 0.00 989 3.86 4 

0.25 0.50 0.00 1392 15.60 16 

matter, Ue in equation (1), is assumed to be uniform over the 

region of stars that have influence over the source during 

the period of the light curve. The matter can be baryonic gas 
or dust, or a smooth distribution of non-baryonic matter. It 

was shown that such a non-zero smooth matter component, 

Ue , rescales the parameters U * and l' in the microlensing 
equation (equation 1), such that 

(u*, Ue> 1')=>(0-*, 0, y)=(~, 0, _1'_). 
1- Ue 1- Ue 

(A1) 

This transformation also rescales the mean theoretical 

amplification, as well as the source and lens plane scale
lengths. These are 

(~o, '10' Jl)=>(~o, ~o, ji) = [~11- uel~o, R ' (1 ~ Ue)2] , 

(A2) 

where '1o=boDos and ~o=boDol> and are the physical size of 
Einstein radii in the source and lens plane without a smooth 

matter component. Once these scaling factors have been 

taken into account, the resultant microlensing properties of 
the two cases must be equivalent. 

A2 The microlensing samples 

To examine the parameter scalings, two samples of light 
curves were generated using the efficient contouring algo

rithm (Lewis et al. 1993; Witt 1993). The first sample was 

generated with the parameter set (u *, ue) = (0.5,0), the 

second with (u *, ue) = (0.2S, 0.5). All the stars in these simu

lations were of 1 Mo' and the external shear l' = O. In each 
case a total of SO light curves of length 20 Einstein radii were 
generated. The number of stars and the mean amplifica

tions of these samples are presented in Table AI. Several 

examples of the light curves for these parameter sets are 
presented in Fig. 1. These parameter sets are equivalent 

under the scaling relations presented in Section AI. 

4In the analysis presented here the measured mean amplification, 

(Jl) is systematically lower than the theoretically expected value, 

Jlth. If one, however, considers the more extensive sample pre

sented in Paper I, it can be seen that there is a reasonable scatter 

of (Jl) about Jlth. As well as being due to the finite length of the 

light-curve sample, these values reflect the uncertainty introduced 

when averaging over sample points drawn from a distribution with 

an extended tail. 
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Figure AI. Amplification probability distributions for the parameter sets ((I., (I" ]I) = (0.5,0,0) (dotted line) and (0.25, 0.5, 0.0) (dot-dashed 

line) respectively. Both distributions are plotted with respect to their theoretical mean. The distributions are the same, in accordance with 
the scaling relations presented in equations (AI) and (A2). 

lJl 

0 

"<t 

C 0 

0 
+-' 
U 
C 
::J n 

LL ci 
QJ 
I-

::J / 

+-' 
/ 

/ 

U N / 

::J 0 
r 

l- v 
+-' 
(j) 

ci 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

/:::'y 

Figure A2. The solid line in this figure represents the structure function for the parameter set ((J., (Ie) = (0.5,0.0), while the dotted line is for 
((J., (Je) = (0.25,0.5). In both cases the stars were 1 Mo. The dashed line represents the ((J., (Ie) = (0.25,0.5) case scaled with the relations 

presented in equations (AI), and (A2). 

A3 Results 

Fig. Al presents the amplification probability distributions 
(Wambsganss 1992) for the samples of light CUIVes. These 
distributions are normalized with respect to their theoreti-

cal mean amplification (equation 4). It was demonstrated 
that for a particular parameter set, «(J *, y), the shape of this 
distribution is independent of the mass function of the lens
ing objects, although the overall form was found to be 
strongly dependent upon these macrolensing parameters 
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Table A2. The details of the microlensing 
samples with a global shear term presented 
in this appendix. Here, N * is the number of 
stars used in each simulation. The mean 
amplification of each sample is <11>, while the 
theoretical value is 11th (equation 4). 

0.80 0.00 0.80 1443 1.55 1.67 

0.20 0.75 0.25 2797 25.52 26.67 

(Paper I). This figure demonstrates that, when scaled to the 
theoretically expected mean, the form of these distributions 
is the same. 

If the mass function of the lensing objects is the same 
between parameter sets, then the temporal structure in the 
individual light curves of the two samples must be statis
tically identical when the scaling relations presented in 
Section Al are taken into account. As with Section 3, the 
structure function is employed to study the temporal nature 
of the light curves. With an effective velocity, V, over the 
source plane, this time is related to a physical distance in the 
source plane by A'1 = VM. As Ay = A'1/'1o, the scaling rela
tions presented in Section Al predict that 

AY(o.5o.o)=.j'1AY(O.25,0.5)' The structure function for the two 
samples of light curves are presented in Fig. A2, with the 
solid line representing the (0"*, O"e) = (0.5, 0.0) sample, and 
the dotted line being (0"*, O"e) = (0.25, 0.5). The dashed line 
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presents this curve with the temporal coordinates scaled by 
a factor of .j'1. With this scaling the temporal nature of the 
two samples of light curves match. 

A4 Samples with external shear 

A further test was performed by repeating the above analy
sis with two samples of light curves with a global shear term. 
The microlensing parameters used to generate these 
samples are presented in Table A2. In both cases all the 
stars were 1 Mo' and each light curve was 20 Einstein radii 
in duration. Owing to the availability of additional computer 
processing, each sample consisted of at least 300 individual 
light curves. 

The amplification probability distributions for these 
samples, normalized to the theoretical mean (equation 4), 
are presented in Fig. A3. There is an excellent correspond
ence between the two curves, as expected from the smooth 
matter scaling relations. The dotted curve in this figure 
represents the amplification probability distribution for the 
case where (0"*, 0" e' y) = (0.2, 0, 0.2), which can be seen to be 
quite different in form from the (0"*, O"e' y) = (0.2, 0.75, 0.2) 
distribution, illustrating that the addition of a smooth 
matter component can have drastic effects on observed 
microlensing statistics. 

The structure functions for each sample were also 
measured, and are presented in Fig. A4. The expected tem
poral scaling for these two samples, from equation (A2), is 

AY(O.8,O.O,O.8)=2AY(O.2,O.75,O.2)' The dashed curve in Fig. A4 
represents the structure function for the (0"*, O"e' y)= 

-1 -2 -3 

{;"M 

Figure AJ. The solid lines present the amplification probability distributions for the parameter sets (u *' uc , ')') = (0.8, 0, 0.8) and 
(0.2,0.75,0.2), respectively, Both distributions are plotted with respect to their theoretical mean. The distributions are the same, in 
accordance with the scaling relations presented in equations (AI) and (AZ). The dotted line in this figure represents the amplifications 
probability distribution for the case (u *' uc ' ')') = (0.2, 0, 0.2), a comparison case without smooth matter. 
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Figure A4. The solid line in this figure represents the structure function for the parameter set (u *, uc , y) = (0.8, 0.0, 0.8), while the dotted line 

is for (u*, uc ' y) = (0.2, 0.75, 0.2). In both cases the stars were 1 Mo' The dashed line represents the latter case scaled with the relations 
presented in equations (AI) and (A2). 

(0.2,0.75,0.2) scaled by this factor. This curve can then be 
seen to match the structure function for the 
(0"*, o"c, y) =(0.8,0,0.8) sample (solid line). 

AS Breaking the degeneracy 

The scaling factors discussed in this section demonstrate 
that the addition of a smooth matter component can affect 
the expected statistics in observed microlensing systems. 
The following describes how the individual microlensing 
parameters can be determineq by monitoring a known 
microlensing system. 

In simple systems, such as those consisting of an isolated 
galaxy, modelling of the lensing configuration can deter
mine the total surface mass density, 0" = O"C + 0"*, and the 
global shear, y, at the position of each image. Long-term 
monitoring of the images will allow the determination of the 

form of the amplification probability distribution, which can 
then be compared to those drawn from microlensing simu
lations. If it is assumed that all matter is in the form of 
compact objects with no smooth matter component, 
O"c=O.O, any discrepancy between the theoretical and the 
observed amplification probability distribution will indicate 
the presence of smooth matter [subject to the effect of a 
finite source, which tends to cut off the high amplification 
tail rather than affecting the overall form of the distribution 
(Paper I)]. Matching the observed distribution to the equiv
alent theoretical distribution with no smooth matter compo
nent will, as the total surface mass density, 0", and global 
shear, y, are known, allow the surface mass density in com
pact objects, 0"*, to be determined. This information can 
then be coupled with the measurement of the variability 
structure function, limiting the mean mass of the micro
lensing compact objects (Section 6.4). 
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