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Abstract

Urban scaling relations characterizing how diverse properties of cities vary on average with their population size have
recently been shown to be a general quantitative property of many urban systems around the world. However, in previous
studies the statistics of urban indicators were not analyzed in detail, raising important questions about the full
characterization of urban properties and how scaling relations may emerge in these larger contexts. Here, we build a self-
consistent statistical framework that characterizes the joint probability distributions of urban indicators and city population
sizes across an urban system. To develop this framework empirically we use one of the most granular and stochastic urban
indicators available, specifically measuring homicides in cities of Brazil, Colombia and Mexico, three nations with high and
fast changing rates of violent crime. We use these data to derive the conditional probability of the number of homicides per
year given the population size of a city. To do this we use Bayes’ rule together with the estimated conditional probability of
city size given their number of homicides and the distribution of total homicides. We then show that scaling laws emerge as
expectation values of these conditional statistics. Knowledge of these distributions implies, in turn, a relationship between
scaling and population size distribution exponents that can be used to predict Zipf’s exponent from urban indicator
statistics. Our results also suggest how a general statistical theory of urban indicators may be constructed from the
stochastic dynamics of social interaction processes in cities.
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Introduction

The search for a general multidisciplinary science of cities is a

fundamental scientific problem with strong roots in economics

[1,2], sociology [3–5], urban planning and architecture [6,7]. As

human populations become increasingly urban the quantification

of general insights and solutions that transcend each particular

place is increasingly necessary and would have important

consequences for our fundamental understanding of human

societies and for urban planning and policy [8].

Cities should be regarded primarily as dynamical social

networks, constantly changing in terms of their composition and

interactions. Consequently, urban indicators, denoted by Y , and

population N, should be treated in general as stochastic variables.

More specifically, there are practical circumstances when a full

statistical approach to urban quantities becomes necessary. For

example, a statistical treatment of urban indicators is essential

when average characterizations is insufficient because of the

granularity that arises when dealing with small integer numbers in

Y (or in N). In such extreme regimes we may investigate if and to

what extent urban scaling laws apply and how they may emerge in

the limit of large numbers, when Y can be thought of as an

effectively continuous variable.

In order to probe urban indicators that show granularity and a

large level of temporal and geographic variation we analyze here

data on annual homicides in cities of three Latin American

countries over a several year period during which national

homicide rates have varied substantially. We analyze data from

three of the largest nations in Latin America, presently showing

some of the highest homicide rates in the world: Brazil, Colombia

and Mexico, for which data are available at the municipal level.

The number of homicides is a quantity that is widely available at

the local level in developed and developing nations. It is thought

generally to be reliably reported, notwithstanding some important

caveats [9]. For these reasons, we use the annual number of

homicides in Latin American cities to develop a statistical

approach to urban scaling.

Homicides, as the ultimate expression of violence in human

societies, are a widely investigated quantity [10,11]. Many reasons

have been advocated for the rise and fall of homicides in cities

throughout the world, especially in the US and Europe [12]. Here

it is not our intention to distinguish between these ideas or propose

new ones, but to determine general characteristics of the statistics

of homicides in connection with the population size of a city. More

specifically, our main objective is to establish general properties of

the statistics of urban indicators in the limit of high granularity and
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to investigate if and how urban scaling laws emerge and are related

to Zipf’s law for the population size of cities. We expect that such

insights should extend to other urban indicators and shed some

light on a full statistical theory of cities in terms of their

quantitative observable properties.

In the next section we discuss some of the characteristics of the

data and our main formal objective, the estimation of the

conditional probability density P(Y DN) for a particular realization

Y in a city with population N . Because no two cities have the same

population direct estimation of this probability is impractical so we

exploit Bayes’ rule to compute instead P(N DY ) and P(Y ). We

describe the statistical properties of these two distributions and

then derive a closed form for P(Y DN). We then show that scaling

laws emerge as the expectation value of Y given N and how

knowledge of the conditional distributions and of P(Y ) lead to

Zipf’s law for the size distribution of cities. Finally, we discuss

several qualifications and generalizations of these results and some

of their general implications.

Results

Scaling Relations and Units of Analysis
We have recently shown [13,14] that many urban properties Yi

vary, on average, with city population size Ni according to a

scaling relation.

Yi(t)~Y0(t) Ni(t)
b, ð1Þ

where the subscript i refers to a particular city within an urban

system at time t, Y0(t) sets the baseline value of Y for the urban

system and the exponent b measures the average relative change

in Y with N, b~(D lnY )=(D lnN). In particular, for socioeco-

nomic quantities such as urban GDP, wages or violent crime b is

typically superlinear (bw1), expressing an average per capita

increase in these quantities with city size N. Here we go beyond

mean expectations to show how Eq.(1) emerges statistically.

We have also observed that for US metropolitan areas many

urban quantities vary only slowly, with most change being due to

the temporal variation of Y0 and to the dynamics of population

change. This has the consequence that deviations from average

scaling - for example in economic quantities or measures of

innovation - tend to persist, and sometimes be reinforced, for

several decades [14]. Under these circumstances it becomes

difficult to observe systematic variations in the statistics of urban

metrics, precluding us from eventually establishing the properties

of their underlying processes.

To address these points, we introduce here new extensive data

sets for homicides in three fast evolving (and developing) nations:

Brazil, Colombia and Mexico. These nations are presently among

the most violent in the world with registered homicide rates

greater than 15 per 100,000 inhabitants, see [10,11]. Their

homicide rates have, in addition, experienced substantial changes

over time, both at the national level and in some particular cities.

In all three cases the rise in violence, especially in particular cities,

has become a major impediment to national economic develop-

ment and a challenge to international security. Changes in crime

rates in these nations, as elsewhere, have been attributed to new

initiatives to fight organized crime [15] or to the rise of several

organized crime groups and to ‘wars’ between them [16].

Although these and other explanations for the variation of crime

in cities have been advanced and are widely discussed in the

literature, the evaluation of their relative merits requires, in our

opinion, improved statistical models, that quantify and specify the

nature of fluctuations and go beyond average rates.

In Brazil, Colombia and Mexico the smallest spatial unit for

which data are available is the municipality (municipio). Municipios

are defined as the smallest administrative units with a local

government. Because municipalities partition the entire national

territory, their interpretation as urban units is flawed, just as it

would be to assume that each county in the US, for example, is a

city. Most municipalities consist, in fact, of several human

settlements over extensive rural areas. This introduces a limitation

in the resolution at the smallest population scales. At the larger

population scales we can address this issue because large functional

cities (metropolitan areas) are made up of a set of municipalities.

Thus, bearing in mind these caveats, we adopt a definition of

urban units in terms of metropolitan areas for which an official

definition exists, plus the remaining non-metropolitan municipal-

ities. Data sources, definitions and more details are provided in the

Methods section.

We motivate the need for our statistical study by displaying in

Figure 1 the scaling of total homicides versus population size over

a single year. The solid line fits the scaling of homicides for

metropolitan areas only. Large differences are displayed between

municipalities, and our goal is to characterize these fluctuations in

a complete framework. We will not discuss the specificities of

urban homicides but their general statistical nature, and their

relation to scaling and Zipf’s law.

Bayesian Approach to the Statistics of Urban Indicators
Equation (1) is an average statement that cannot be obeyed

exactly in every instance. This is not only because all cities have

specific local characteristics and urban indicators fluctuate over

time but, more fundamentally, because a continuous scaling

relation must break down in the limit of small discrete numbers.

The correct statement must then be formulated in probabilistic

terms. To do this we think of both Y and N as stochastic variables,

and of their values at each particular city and time as statistical

realizations. We can then estimate their probability distributions.

This problem is specified in terms of the conditional probability

distribution function of Y , given a city of population N , P(Y DN).

We use Bayes’ rule

P(Y D N)~
P(N D Y ) P(Y )

P(N)
, ð2Þ

to compute it, given knowledge of the probability distribution

P(Y ) of homicides in cities regardless of their population, and the

conditional probability distribution P(N DY ) for the population size

of cities with a given number of homicides. The denominator is a

constant in Y and can be expressed as the trace of the numerator

over all values of Y . We will return to this point below as P(N) is

Zipf’s probability density function for city population sizes.

The reason to estimate P(Y DN) indirectly is motivated primarily

by practical considerations. To estimate P(Y DN) directly we would

have to aggregate cities of similar size together into arbitrary

discrete size intervals (binning), potentially introducing errors and

leading to several additional complications. To avoid this, we

exploit to our advantage the granularity of the data as there are

substantial numbers of cities with Y~0,1,2,3, . . . leading naturally

to estimates of P(N DY ).

Estimating the Distribution of Total Urban Homicides
The distribution of total homicides in cities P(Y ) must reflect

the fact that urban properties change (super)extensively with

population and that there are cities with widely varying sizes. As

such we should expect P(Y ) to be a broad distribution. Because of

Statistics of Urban Scaling
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these general facts, power-law probability densities (Zipf or Pareto

distributions), are common among urban metrics. More specifi-

cally, these distributions account for the fact that a small number

of cities are responsible for most homicides and that a large

number of cities display only a few. In Mexico, for example,

approximately 60% of homicides come from 2% of cities! Similar

numbers characterize Colombia and Brazil for the years studied.

In practice, we adopt a common procedure of plotting the

complementary cumulative distribution function rather than the

probability density function, which avoids the noisy character of

the tail for large cities.

The empirical cumulative distributions of homicides for the year

2007 in Colombia, Mexico and Brazil are shown in Fig. 2. These

distributions appear very similar, showing a heavy tail for several

decades and an effective lower cutoff for small values of Y . We

were unable to reject power-law fits using the procedure of [17].

We assumed the functional form of P(Y ) to be

P(Y )~
(Yzk){t

z(t,k)
, Y[N, ð3Þ

where tw0 is the power-law exponent and k is a positive real

number, which allows P(Y ) to remain analytic as Y?0. Here

z(t,k)~
X?

Y~0

(Yzk){t ð4Þ

is the generalized or Hurwitz zeta function [18], which ensures the

normalization of P(Y ) as a discrete variable.

Estimating P(N DY ) and Deriving P(Y DN)
To calculate P(N DY ) we fix the value of Y and estimate the

probability distribution over population. Fig. 3 shows the

histograms of frequencies of homicides for Colombia, Mexico

and Brazil, for a range of Y . Note that N in the x-axis is plotted on

a logarithmic scale (ln (N)). These figures give us an impression of

what type of probability distribution describes the data. We

observe that all distributions, at each value of Y , show a distinct

peak with definite mean and variance. The null hypothesis of a

Poisson distribution was rejected with high confidence by a

maximum likelihood method. Instead, these are well fit in terms of

a log-normal distribution:

P(N DY )~
1

N

ffiffiffiffiffiffiffiffiffiffiffi
2ps2Y

q e
{

lnN{mYð Þ2

2s2
Y , ð5Þ

where the subscript in mY and sY indicates that these parameters

are in general functions of Y .

The shape of this distribution, which we had more implicitly

noted in [14] for other quantities, is perhaps curious, first, because

it does not conform to the more classic distributions, such as the

Gaussian or Poisson, despite the fact we are dealing with count

data that are traditionally related to neutral processes like the law

of rare events (see [19]). And second, because it states that urban

metrics are much more predictable given other variables (here

simply population size) than a Zipfian distribution might have lead

us to believe. Thus, effectively a Zipf distribution blurs fairly

predictable quantities, given N, over a broad range of population

sizes. Seen from the opposite perspective, log-normal distributions

are what we observe if we look at the variables described by a Zipf

distribution through a ‘‘lens’’ that allows us to distinguish its many

(and widely varying in size) component units (cities).

One drawback of the log-normal distribution is that both N and

Y are in reality discrete numbers, whereas the log-normal

describes typically a continuous stochastic variable. (Discrete log-

normal distributions are sometimes used in the statistics literature,

see [20] and references therein). In spite of this property, it is still

reasonable to assume that the variation in population is

approximately continuous as the minimal values of N are typically

on the order of thousands.

The mean and variance are given by:

SNTY~e
mYzs2

Y
=2 ð6Þ

(DNY )
2
~(e

s2
Y{1)e

2mYzs2
Y : ð7Þ

Figure 1. Annual number of homicides in cities of Colombia, Mexico and Brazil versus population size (2007). Large cities are defined
in terms of metropolitan areas which are aggregations of municipalities (red circles) while non-metropolitan municipalities are shown separately
(green squares). The solid blue line fits only the scaling of homicides for metropolitan areas. Large variations, especially among the smaller population
units, and the fact that many municipalities have Y~0 (not shown) prevent a direct scaling analysis. However, it is possible to analyze the data
consistently through the estimation of conditional probabilities.
doi:10.1371/journal.pone.0040393.g001
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The maximum likelihood estimators of the log-normal param-

eters are:

cmYmY~
1

nY

X

i[SY

lnNi ð8Þ

cs2Ys2Y~
1

nY

X

i[SY

( lnNi{cmYmY )2, ð9Þ

where nY is the number of cities in the set SY with Y homicides.

If the normal distribution holds in terms the logarithmic

variables of population given different values of Y , we can collapse

the different histograms of Fig. 3 by standardizing log-variables.

We achieve this by calculating the maximum likelihood estimators

of the mean and variance for every value of Y , and then plotting

in the same histogram the distribution for several values of Y .

Fig. 4 shows these standardized distributions. This procedure has

its limitations due to the fact that as we increase Y , the number of

cities decreases, until there is only one city with given Y and N

and statistical estimation becomes impossible. Conversely, it has

the advantage that the shape of the distribution P(N DY ) for several

values of Y can be displayed in one single figure.

We can now estimate the parameters of Eq.(5) using Eqs.(8) and

(9), and plot cs2Ys2Y (see Fig. 5) and cmYmY (see Fig. 6) versus Y , to infer

their functional Y -dependence.

The behavior of s2Y shown in Fig. 5 is stable and we will assume

it to be constant henceforth. Because of this we can reject other

count models such as the Negative Binomial, which is designed to

model over-dispersed data. The curves shown in Fig. 6 display a

logarithmic growth of cmYmY on Y . The most general logarithmic

function that can be fit to cmYmY (see Fig. 6) is.

cmYmY~f (Y )~b ln (Yzr)z lnA ð10Þ

where r is a positive constant that allows the logarithm to remain

finite (and positive) as Y?0 and A is a positive number. Below,

the constant b will be identified with the scaling exponent 1=b.
This is the reason why the values of these parameters in Figs. 1 and

6 coincide. The rest of the paper rests on these two assumptions

about the behavior of s2Y and mY , suggested by Figs. 5 and 6. For

the fitting procedure of the remaining parameters see the Methods

section.

Finally, using Eq.(2), we derive the conditional probability

function P(Y DN). If Eq.(5) holds for all Y§0, using Eq.(3), we

obtain.

P(Y DN)!(1= ~YY ) exp {
1

2s2Y
( lnN{mY )

2
z(1{t) ln ~YY

� �
, ð11Þ

where ~YY:Yzk.

Using Eq.(10) to replace mY for cmYmY , we obtain

P(Y DN)!(1= ~YY ) exp

{
1

2s2Y
( lnN{ lnA (Y �)b )2z2s2Y (t{1) ln ~YY
� �� �

:
ð12Þ

We can expand the squared terms, the logarithms, group some

of the terms, so this equation transforms into:

P(Y DN)!(1= ~YY ) exp

{
1

2s2o
ln2 Y �

{2 ln
(Y �)P

~YYs2o(t{1)

� �
zP2

� �� �
,

ð13Þ

where Y �
~Yzr, P~ 1

b
ln (N=A) and so~(sY=b).

Now, recall that both r in Y �
~Yzr and k in ~Yzk were

introduced to account for the limit when Y?0. These constants

generate the expected limits and prevent us from dividing by zero

in the power-law distribution and from taking the logarithm of

zero in cmYmY . There are no constraints that keep us from assuming

them to be equal (and from considering them to be small). Indeed,

both introduce a characteristic scale which manifests itself as a

regime change in the scaling behavior when cities are very small

and realizations of zero homicides (or other discrete measures)

begin to occur. Therefore, it is not unreasonable to assume they

are they same, thus Y �& ~YY (see the Methods section for an

Figure 2. Cumulative normalized distributions of homicides in Colombia, Mexico and Brazil (2007) are well described by power-law
distributions. Here we plot not the density function but the complementary cumulative distribution to attenuate the tail fluctuations and ease
visual interpretation. Best fits (dashed red line) of the form P(Y§y)~Cy{tz1 were estimated using the procedure in [17] to the density function (see
Methods section). Standard errors are reported in parenthesis. The solid blue line shows the minimum value of Y for which a power-law fit holds.
While the distribution of total homicides is scale invariant, this is the result of tracing more predictable conditional distributions for each city over a
broad distribution of city sizes (see text).
doi:10.1371/journal.pone.0040393.g002
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Figure 3. Normalized frequency histograms of the logarithm of city population for varying number of observed homicides Y. Each
column corresponds to a different country and each row, from top to bottom, corresponds to the values Y~0,5 and 10 homicides per year. A log-
normal distribution (notice the x-axis is expressed in terms of lnN) is shown as a solid red line, with parameters obtained via maximum likelihood
estimation.
doi:10.1371/journal.pone.0040393.g003

Figure 4. Collapsed histograms of P(N |Y) across values of Y in 2007. Log-normal probability density functions for the three nations are
shown as solid red lines. This shows that power-law distributions describing total homicides in the urban systems have in fact more predictable
statistics when conditioned on city population size.
doi:10.1371/journal.pone.0040393.g004
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estimation of k). Under this assumption we can complete the

square and compute the posterior distribution. Realizing that

P(Y DN)~P(Y �DN) because DY �=DY~1, and keeping only Y

dependent terms (the others will ultimately be absorbed by the

normalization constant), we arrive at

P(Y �DN)!(1=Y �) exp {
1

2s2o
lnY �

{(P{s2o(t{1))
� �2

� �
, ð14Þ

which is a log-normal distribution for Y � given N, with

parameters mN~P{s2o(t{1) and sN~so. By expressing the

distribution parameters in the original variables, and by introduc-

ing the proper normalization constant, we finally obtain

P(Y �DN)~
1

Y �

ffiffiffiffiffiffiffiffiffiffiffi
2ps2N

q e
{

lnY�
{mNð Þ2

2s2
N , ð15Þ

mN~
1

b
ln

N

A

� �
{s2N (t{1) ð16Þ

s2N~s2Y=b
2: ð17Þ

The Connection Between Log-normal Statistics, Urban
Scaling and Zipf’s Law
These expressions connect the log-normal statistics of the

conditional distribution P(Y DN) with scaling and Zipf’s law for the

size distribution of cities. As we show below this leads to a

relationship between scaling and Zipf’s exponents.

Determining these conditional distributions enables us to

calculate their moments, such as the mean and variance. We take

Eq.(10) and Eq.(16) to derive SNTY and SYTN explicitly in terms

Figure 5. Estimates of s2Y (via maximum likelihood) for different values of Y[f0, . . . ,29g, for Colombia, Mexico, and Brazil. A
different curve was constructed for every year of the analysis (see Methods). The plots show the average over several years. Error bars represent one
standard deviation intervals (67% confidence level). The plots show no clear systematic Y -dependence of cs2Ys2Y . This suggests, in turn, that each
country has a characteristic variance of its indicators conditioned on other urban quantities. In this respect, it is interesting to note the similarities
between Colombia and Brazil.
doi:10.1371/journal.pone.0040393.g005

Figure 6. Estimates of mY (via maximum likelihood) for different values of Y[f0, . . . ,29g, for Colombia, Mexico, and Brazil. A
different curve was constructed for every year of the analysis, and the points plotted are the averages over several years. The error bars represent one
standard deviation intervals about the mean. Plots show a logarithmic dependence on Y , from which a scaling relationship emerges in terms of
expectation values (see text). Best fits were obtained using a Levenberg-Marquardt algorithm, weighting every point by its error, see Methods.
doi:10.1371/journal.pone.0040393.g006
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of Y and N , that is:

SYzrTN~
e
(3=2{t)s2

N

Ab

 !
Nb ð18Þ

SNTY~A e
s2
Y
=2

(Yzr)1=b ð19Þ

where b~1=b is recovered as the exponent of the scaling relation

in Eq.(1). These two expressions represent complementary scaling

relations. Note that they are not identical statistically as they

express the expectation value of each variable in terms of a given

value of the other, not its mean.

Similarly, the standard deviations DY �
N and DNY can be

expressed as

DY �
N~SN Nb ð20Þ

DNY~SY (Yzr)1=b, ð21Þ

where SN and SY are proportionality coefficients.

From the preceding sections it should already begin to be clear

how the log-normal distribution relates to Zipf’s law. We can show

how a power-law distribution emerges by deriving the probability

distribution of N. In Eq.(2), P(N) is called the ‘‘evidence’’, and

acts in practice as a normalization constant. It can be calculated

from knowledge of the numerator as.

P(N)~
X?

Y�~r

P(N DY �)P(Y �):

!N{a, ð22Þ

which is a power-law distribution. It then follows that the various

exponents are constrained to obey the relationship (see Methods

section)

b~
a{1

t{1
: ð23Þ

Thus, from this perspective Zipf’s law follows from P(Y ) and the

statistics of Y for cities of a given size and the observation of

scaling of its expectation value.

If superlinear scaling (bw1) holds for some urban indicator Y ,

we can predict population sizes to be power-law distributed with

exponent awt, and vice versa if the scaling is sublinear. If a&2

(unity in a rank-size plot) as has been observed for several urban

systems [21], superlinear scaling means that tv2, and thus the

quantity Y may lack a definite mean and variance. In these

cases, references to ‘‘average cities’’ have no sound mathematical

meaning. Note however that it is also possible that awtw2

provided that Zipf’s exponent is sufficiently larger than 2, as has

been argued long ago by Mandelbrot [22] in a different context.

In general these properties can be used to constrain the value of

Zipf’s exponent from the observation of the statistics of many

different urban indicators and knowledge of their average scaling

properties.

Discussion

In this manuscript we characterized the statistics of homicides -

a highly variable and granular metric - in three fast changing

urban systems in Latin America. This analysis allowed us to

address the statistics of urban indicators under extreme conditions

and investigate how urban scaling laws emerge for noisy and

granular variables within a larger probabilistic context.

We have found that homicides Y occurring in cities of Brazil,

Colombia and Mexico all follow statistics that are well described

by log-normal distributions. These distributions are parameterized

by an expectation value that is population size dependent and a

variance of the log-variables that is not (or that at least can be

assumed not to be, for the data analyzed here). In this context

scaling laws emerge as the expectation value of Y as a function of

N, SYT(N) ~Y0Y0N
b. This average relationship, when expressed in

terms of logarithms, exposes the issue that it cannot hold in the

limit of Y or N going to zero (unless they do so together). We have

devoted particular attention to this regime and found that

effectively annual homicide rates saturate at a very small but

non-zero value at sufficiently small N . In this sense true scale

invariance emerges only when Y&0. A dual scaling law for

SNT(Y ) emerges from a Bayesian inversion of the relationship for

Y and we have shown that this - i.e. the estimation of P(N DY ) at

small discrete Y - is often the most practical way to estimate

P(Y DN). This lead us in turn to the consideration and estimation

of P(Y ) - the distribution of the total number of homicides across

cities - which we found to have a Zipfian form. Because these

distributions can be used to derive Zipf’s law through marginal-

ization, we obtained a relationship between urban indicator

statistics, urban scaling laws and Zipf’s distribution in the form of a

constraint between the scaling exponent and the Zipfian exponents

for Y and N.

Much effort has traditionally been devoted to model the broad

distributions and lack of characteristic scales displayed by urban

systems [23–25]. However, our results show that parts of the urban

system manifest greater predictability than is usually recognized.

Although non-broad distributions would be expected to arise for

many quantities when considering cities of fixed size, log-normal

statistics are special because they point to multiplicative processes.

If these processes depend on the structure of social interactions,

log-normality then suggests that quantities should scale with city

size in non-trivial ways.

Furthermore, the consistency between log-normal statistics for

individual cities and Zipfian distributions for the urban system, as

well as scaling relations across city sizes, suggest that local

indicators are the result of self-consistent urban system dynamics

and that these indicators are naturally bounded. Consequently,

when considering goals for urban planning it is important to think

at once locally and at the level of the urban system. In this light, on

the one hand, questions about particular cities and the magnitude

of their metrics may not make much sense unless we take into

account the whole urban system in which they are embedded. On

the other hand, characterizing urban systems only through power-

law distributions prevents us from observing finer quantitative

patterns present locally. Several mechanisms have been proposed

for the emergence of log-normal [26] and power-law [19,26–28]

statistics, usually relying on multiplicative random processes

[29,30]. Population size dependent stochastic interaction processes

within cities, which are multiplicative, provide a natural setting to

explain these observations and will be the focus of future research.

Given the general implications of these results a few remaining

issues and some caveats are worth further discussion. First of all,

we motivated the log-normal distribution as a good general

Statistics of Urban Scaling

PLoS ONE | www.plosone.org 7 July 2012 | Volume 7 | Issue 7 | e40393



description of the data. However, the data may be compatible with

other statistical densities, specifically a Laplace distribution (which

is also characterized by two parameters a scaling mean and a fixed

dispersion, see [14]). We found no consistent evidence in our

empirical analysis that pointed conclusively to the need for these

alternative and potentially more complex statistical models, but

such need may arise as larger datasets are analyzed.

Second, one of our main results is the observation of deviations

from scaling in the limit Y?0, where we are also dealing with

small municipalities in terms of N. This regime and its statistical

treatment is fraught with empirical difficulties, including the fact

that we are then dealing predominantly with rural territories in

which several small towns are aggregated together as a munici-

pality. Thus, these units are not true single cities. To address this

point more disaggregated data would be necessary to probe the

behavior of Y in truly small towns. In this sense our parametri-

zation of the several distributions through the introduction of a

saturating constant should be seen as provisional, and is in any

case not unique. Another issue, that becomes important for small

cities, is the use of annual homicides. If in reality the expected

homicide rate vanishes only with vanishing population size, but

becomes very small in small towns then it will take on average a

longer and longer period of time for any homicides to be observed

and any chosen time period will lead to an underestimation of such

a rate for a suitably small city. Thus, by making the time period

that defines the homicide rate longer we should see the saturating

parameters decrease and scale invariance be restored to smaller

and smaller population scales. We probed this regime empirically

and indeed observed a systematic reduction in the size of cities

with zero homicides, but the full consideration of this question is

complex and is beyond the current analysis. The empirical and

theoretical consideration and re-analysis of these issues may

become possible in the future and would be interesting to pursue in

order to investigate the limits of urban scaling in small population

agglomerations. While it seems plausible to us that a finite

probability of violence exists in human communities of any size,

the lower limit may be difficult to probe in practice.

As they stand the present results suggest several interesting new

questions for future research. First, they provide a mesoscopic view

of urban indicators and take a step in suggesting the form of a

statistical mechanics approach to universal aggregate properties of

cities, such as scaling laws and size distributions. Such an approach

should lead to theory and methods to bridge scales of analysis from

individuals, through social and economic organizations, to entire

cities and urban systems.

Finally, it is interesting to briefly discuss the practical

implications of the statistical treatment of urban indicators

developed here. Quantitative knowledge of the distribution of

indicators for a given population size allows us to make predictions

e.g. for the homicide rate of a particular place with quantified

levels of uncertainty. The approach developed here takes into

account only data aggregated over a time period, usually a year.

However we know in addition that there is also considerable

predictability for urban indicators of the same city across time.

Thus, we expect that the future combination of these two elements

will yield a procedure to make better predictions of future

indicators for specific places with quantified uncertainty. This

ability will also allow the detection of exceptional events as

statistical anomalies in urban indicators. We hope therefore that

our growing quantitative understanding of cities and urban

systems throughout the world will provide the basis for the

development of a predictive science of cities that will help inform

more effective policy in an increasingly urbanized world.

Materials and Methods

Data Sources
Homicides are defined as deaths caused by other persons,

intentionally or not. Data for Colombia is available online at the

National Institute of Legal Medicine and Forensic Sciences

(http://www.medicinalegal.gov.co) and municipality populations

at the National Administrative Department of Statistics (http://

www.dane.gov.co). Brazil’s population and homicide numbers are

available from the Sangari Institute and Brazilian Ministry of

Justice (http://www.sangari.com/mapadaviolencia/). The data

spans the years 2003–2007 for Brazil, 2004–2009 for Colombia,

and 2005–2009 for Mexico. Data for Mexican municipalities was

compiled by Diego Valle [9].

We adopted standard definitions of metropolitan areas available

at http://www.secretariasenado.gov.co/senado/basedoc/ley/

1994/ley_0128_1994.html for Colombia. However, comprehen-

sive definitions for many metropolitan areas in Colombia do not

exist officially although they are recognized in various contexts (see

for example http://www.dane.gov.co/files/censo2005/

resultados_am_municipios.pdf for the case of Bogotá). We

adopted such unofficial definitions in our analysis. For Mexico

Figure 7. Q-Q plot of the standardized log-variables of the populations of the cities for several values of Y. This shows that a log-
normal distribution is an excellent description of P(N DY ), for the three nations, notwithstanding a number of small exceptions at the extremes (a
perfect straight line in the dots would correspond to an exact normal distribution of log-populations).
doi:10.1371/journal.pone.0040393.g007
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definitions are available at the National Institute of Statistics and

Geography (http://www.inegi.gob.mx/est/contenidos/espanol/

metodologias/otras/zonas_met.pdf), and for Brazil at the Obser-

vatory of the Metropolis (http://www.observatoriodasmetropoles.

ufrj.br/metrodata/ibrm/index.html).

Power-law Fits
Reference [17] developed a methodology to estimate the

parameters of a power-law fit, and to calculate its associated

goodness of fit. The function fitted is the pure power-law

P(Y )~C
Y

Ymin

� �
{t

, ð24Þ

where C is the normalization constant. The distributions of

homicides analyzed here were fitted using this functional form and

we were unable to reject the power-law fit. However, the fit only

holds for values of x§xmin. Following [17], the estimated p-values

were p̂pCol~0:34+0:05, p̂pMex~0:38+0:05 and

p̂pBra~0:73+0:05, which were not sufficiently small for the

power-law distribution to be rejected.

Because we are interested in the regime of small numbers where

the number of homicides Y can be zero, we extend Eq.(24) to.

P(Y )~
(Yzk){t

z(t,k)
, ð25Þ

which converges to Eq.(24) for large Y , but with the difference

that now Y can take any non-negative value.

If we let Yi, i~1, . . . ,n, be the observed annual number of

homicides of each city. Assuming independence, the log-likelihood

of the data under Eq.(25) is

L(t,k)~
Xn

i~1

log
(Yizk){t

z(t,k)

� �

~{n log (z(t,k)){t
Xn

i~1

log (Yizk):

ð26Þ

A numerical estimation of k and t by setting LL=Lt~0 and

LL=Lk~0 to maximize the likelihood function, yields.

T̂TCol~1:864; k̂kCol~1:904; p̂pCol~0:6566+0:005:

T̂TMex~2:296; k̂kMex~1:827; p̂pMex~0:4373+0:005:

T̂TBra~2:157; k̂kBra~1:840; p̂pBra~0:0220+0:005:

A rigorous procedure to estimate these parameters from the

data, estimate the error and determine its scaling properties is part

of future work.

Log-normal Fits
We test the log-normal distribution as a description of P(N DY )

by standardizing the variables ln (N) for each given Y , and then

showing a normal probability plot (or Q-Q plot) in Fig. 7.

Departures from the log-normal distribution (a normal in

logarithmic variables) can be identified by departures from the

straight line and are shown, in Fig. 7, to be both rare and small.

Parameter Estimation of mY~f (Y )
Maximum likelihood estimations of mY for the different values

of Y[f0, . . . ,29g, for Colombia, Mexico, and Brazil, are shown in

Fig. 6. We constructed a different curve cmYmY (t) for every year of the

analysis, and plotted its average cmYmY over the set of annual

estimates:

cmYmY~
1

T

X

t[T

cmYmY (t), ð27Þ

where T the number of years for which we have data, for each

nation.

Error bars represent plus and minus one standard deviation

about the average.

Figure 8. Cumulative normalized distributions of city populations in Colombia, Mexico and Brazil (2007) fitted with pure-power-
law distributions. Best fits (dashed red line) of the form P(N§x)~Cx{az1 were estimated using the procedure in [17] to the density function. Not
disregarding the long-held debate about the city-size distribution, we believe the fit to a power-law distribution stands as a first approximation
consistent with our proposed statistical framework.
doi:10.1371/journal.pone.0040393.g008
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derrYerrY~
1

T

X

t[T

cmYmY (t)
{cmYmY

� �2
: ð28Þ

The fits were performed using a Levenberg-Marquardt

algorithm, which minimizes the sum of least squares of a set of

non-linear equations, weighting every point by its error. The

function to minimize with respect to vector parameter

p~(p0,p1,p2) is.

x2(p)~
cmYmY{f (Y ; p)

derrYerrY

� �2

, ð29Þ

where

f y; pð Þ~
1

p0
ln Yzp1ð Þzp2 ð30Þ

~
1

b
ln (Yzr)z logA: ð31Þ

Zipf’s Law Derivation
Here we give additional details of the calculations leading to

Eq.(22). First, we write P(N) in terms of P(Y �) and P(N DY �):

P(N)~
X?

Y�~r

P(N DY �)P(Y �)

~

X?

Y�~r

1

N
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

Y�

q e
{

lnN{mY�ð Þ2

2s2
Y�

(Y �){t

z(t,k)
: ð32Þ

For simplicity of notation, we drop the subscript in sY � , and we

use the letter Y , although it is important to keep in mind that we

are implicitly referring to Y �. Replacing the sum with an integral

and assuming r is sufficiently small that we can integrate over the

whole range of non-negative numbers, we obtain

P(N)!

1

N

ð
?

0

1

Y
exp {

1

2s2
lnN{ lnAY 1=b
	 
2

{(t{1) lnY

� �
dY

!
1

N

ð
?

0

1

Y
exp

{
1

2b2s2
ln2 Y{2 lnY b ln

N

A
{b2s2(t{1)

� �
zb2 ln2

N

A

� �� �
dY :

ð33Þ

We can now complete the square and re-arrange terms to

obtain.

P(N)!
exp {(t{1) ln N

A

� �b
z

b2s2

2
(t{1)2

	 


N
ð
?

0

1

Y
exp {

1

2b2s2
lnY{f (N; h)ð Þ2

� �
dY :

ð34Þ

Now, we see that the term inside the integral is a log-normal

distribution, integrated over its entire domain. Consequently, the

integral is a constant, regardless of the form of f (N; h), where h

represent the parameters A,b,s and t. Retaining only terms in N,

we obtain

P(N)!
exp {(t{1) lnNb
� �

N

!N{b(t{1){1, ð35Þ

from which we finally see that

P(N)!N{a, ð36Þ

with a~b(t{1)z1, or

b~
a{1

t{1
: ð37Þ

This relationship can also be derived in a more straightforward

way under the assumptions that i) a power-law distribution for Y

(or N) holds and ii) the scaling relationship Y!Nb holds exactly.

Then, using the fact that P(N)~P(Y )dY=dN , we obtain the

same relation between exponents. The derivation given above,

however, does not assume an exact expression in the form of

Y~f (N), but rather a probabilistic relation between N and Y ,

through the expectation value mY �~ ln A(Y �)1=b
h i

.

Figure 8 shows the cumulative empirical distributions of city

populations.
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