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INTRODUCTION

�e term “earthquake early warning” (EEW) is used to describe 
real-time earthquake information systems that have the poten-
tial to provide warning prior to signi�cant ground shaking. 
�is is possible by rapidly detecting the energy radiating from 
an earthquake rupture and estimating the resulting ground 
shaking that will occur later in time either at the same loca-
tion or some other location. Warning times range from a few 
seconds to a little more than a minute and are primarily a func-
tion of the distance of the user from the earthquake epicenter. 

�e concept has been around for as long as we have had 
electric communications (e.g., Cooper 1868), but it is only in 
the last two decades that the necessary instrumentation and 
methodologies have been developed (e.g., Nakamura 1988; 
Espinosa-Aranda	et	al. 1995). The last five years in particular 
have seen a rapid acceleration in the development and imple-
mentation of EEW, fueled by a combination of seismic network 
expansion, methodological development, and awareness of the 
increasing threat posed by earthquakes paired with desire by 
the seismological community to reduce risk.

�is special issue of Seismological	 Research	 Letters is 
intended to facilitate communication of EEW methodologies 
and experiences in implementation. It complements the spe-
cial section of Geophysical	Research	Letters published in March 
2009 (Allen, Gasparini, and Kamigaichi 2009). Together, 
these collections of papers describe the science, engineering, 
and societal considerations of the active warning systems in 
Mexico, Japan, Taiwan, Turkey, and Romania and detail the 
development and testing of methodologies in the Unites States, 
Europe, and Asia (Figure 1). �is introductory paper summa-
rizes this content to provide an overview of EEW status around 
the world. We provide a summary of the various early warning 
methodologies and then describe the active implementation of 
early warning including the current users, the successes, and 
the failures. The Perspectives, Misconceptions, and Challenges 
section provides synthesis on the state of early warning around 

the world, the progress made in the last few years, some of the 
lessons learned and misconceptions uncovered, and �nally the 
challenges for the future.

APPROACHES TO EEW

Front Detection
All EEW systems must �rst detect hazardous earthquakes and 
then transmit a useful warning. �e simplest approach to iden-
tifying when an earthquake is hazardous is to detect damaging 
ground shaking. �e �rst approach to EEW was therefore to 
detect strong ground shaking at one location and transmit a 
warning ahead of the seismic energy. �is concept, called front 
detection, was initially proposed for San Francisco following 
the 1868 earthquake on the Hayward fault east of the San 
Francisco Bay. �e radiating telegraph cables could be used to 
signal coming ground shaking by ringing a characteristic bell 
above the city (Cooper 1868). This system was never imple-
mented, but it captures the main concept of front detection by 
installation of seismic sensors between the earthquake source 
and the possible recipient of warnings. Front detection requires 
good knowledge of the locations of future earthquakes.

In the late 1960s, the Japanese railway systems deployed 
seismometers along their tracks that would trigger when the 
ground shaking intensity exceeded some threshold and shut 
o� power to the trains. �is approach, using “alarm-seismom-
eters,” only provides warning once serious ground shaking has 
started. By deploying some instruments along the east coast of 
Japan, between the large o�shore earthquakes and the train 
tracks, more warning time could be gained (Nakamura 1984). 
All warning systems that make use of a network also use the 
front detection concept by detecting an earthquake in one loca-
tion and providing warning to another. 

When the only seismic sources are some distance from a 
populated area, front detection can provide signi�cant warn-
ing times, i.e., tens of seconds. �e Seismic Alert System (SAS) 
for Mexico City uses front detection. Instruments along the 
coast adjacent to the subduction zone trigger on earthquakes 
and transmit the warning ~320 km to the city. Implemented in 
1991, the SAS was the �rst public warning system and contin-
ues to provide ~60 s warning to Mexico City (Espinosa-Aranda 
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et	al. 1995). The warning system for Bucharest, Romania, uses 
the same concept. Seismometers in the Vrancea zone of the 
southeastern Carpathians detect earthquakes and provide 
~25 s warning to Bucharest, which is ~160 km away (Böse	et	
al. 2007). Istanbul also uses front detection. Ten instruments 
along the northern shore of the Marmara Sea trigger based on 
exceedance of an acceleration threshold at two or three sites 
(Alcik	et	al. 2009).

Using the P Wave
Waiting for strong ground shaking to be observed at one loca-
tion before issuing a warning results in a large “blind-zone” 
around the epicenter where no warning can be provided. Given 
a move-out velocity of ~4 km/s for peak ground shaking fol-
lowing shallow earthquakes, every second of delay increases the 
radius of the blind zone by 4 km. Using the P wave to deter-
mine whether an earthquake will produce hazardous ground 
shaking provides additional warning. Given that the stron-
gest ground shaking usually arrives at the time of, or a�er, the 
S-wave arrival, using the P wave to provide warning has the 
potential to increase the warning time everywhere, reduce the 
radius of the blind zone, and potentially provide warning at the 
epicenter.

A variety of observational parameters have been developed 
for using the P wave to assess earthquake hazard. Many are 
designed to estimate the magnitude of an earthquake, which 
can then be translated into expected ground shaking. These are 
discussed in this section. Others are designed to bypass mag-

nitude and to estimate the ground shaking directly; they are 
discussed in the following section, Onsite Warning.

One of the �rst P-wave parameters developed for early 
warning was the predominant period of the �rst few seconds 
of the P wave (Nakamura 1988). This was found to scale with 
the magnitude of an earthquake while remaining insensitive 
to the epicentral distance within a few hundred kilometers of 
the event. Nakamura’s original method generates a continuous 
time series of predominant period from which the maximum 
value, τp

max, can be extracted and converted to a magnitude 
estimate (Nakamura 1988; Allen and Kanamori 2003). The 
advantage of this approach is that an initial magnitude esti-
mate is available rapidly, within about one second, which can 
then be increased if τp

max increases. Typically, the predominant 
period is monitored for three or four seconds. While concern 
has been expressed about the stability of the measurement 
(Wolfe 2006), the use of τp

max has been successfully tested 
using earthquakes from the western United States, Japan, and 
Taiwan (Nakamura 2004; Lockman and Allen 2007; Tsang et	
al. 2007; Wurman et	al. 2007; Brown et	al. 2009, this issue). 
�e use of τp

max is currently part of real-time system testing in 
California (Allen, Brown, Hellweg et	al. 2009), Taiwan (Hsiao 
et	al. 2009), and Istanbul (Fleming et	al. 2009, this issue).

A slightly di�erent approach to measuring the frequency 
content of the P wave was formulated by Kanamori (2005). The 
τc method calculates the e�ective (average) period of the P-wave 
signal over a fixed time window that is commonly selected to be 
three seconds. �is approach shows similar scaling between τc 
and magnitude and has been tested in California and Taiwan 
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(blue) and where EEW systems are currently being tested as part of a real-time seismic system (green).
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(Wu and Kanamori 2005a; Wu et	al. 2007). While the τpmax 
and τc methods aim to characterize the same property of the P 
wave, i.e., the frequency content, it has been shown that there is 
an advantage to using both simultaneously (Shieh et	al. 2008). 
�e τc parameter is currently part of real-time system tests in 
California (Böse, Hauksson, Solanki, Kanamori, and Heaton 
2009), Taiwan (Hsiao et	 al. 2009), Japan, China, and at the 
Pacific Tsunami Warning Center in Hawaii.

�e amplitude of the P wave is also a useful parameter for 
estimating earthquake hazard, provided a correction for the 
epicentral distance can be made. �e use of the peak displace-
ment, velocity, or acceleration of the �rst few seconds, typi-
cally three seconds, of the P wave has been shown to scale with 
magnitude (Wu and Kanamori 2005b; Zollo	et	al. 2006; Wu 
and Kanamori 2008a) and ground motion (Böse	 et	al. 2007; 
Wu and Kanamori 2005a). The peak displacement, referred 
to as Pd, is usually found to be the most robust amplitude 
parameter provided that integration or double integration of 
the waveform at a station is possible. For instruments where 
robust calculation of Pd is not possible due to, for example, 
noisy accelerometers, Pv has also been shown to be useful 
(Wurman et	al. 2007). Pd is currently in use by the real-time 
systems in California (Allen, Brown, Hellweg et	 al. 2009; 
Böse, Hauksson, Solanki, Kanamori, and Heaton 2009), 
Taiwan (Hsiao et	al. 2009), Istanbul (Fleming et	al. 2009, this 
issue), Japan, China, the Pacific Tsunami Warning Center in 
Hawaii, and the Campania region of southern Italy (Lancieri 
and Zollo 2008).

In Japan, the amplitude of the seismic waveform is used 
in a continuous fashion to estimate the magnitude of an earth-
quake. No limit on the number of seconds of P wave is imposed. 
Instead, the continuously monitored maximum amplitude of 
the P-wave displacement (vector summation of the three com-
ponents) is used until the S wave arrives at a station. �en, a 
similar scaling between the amplitude of the S-wave displace-
ment and magnitude is used (Kamigaichi 2004). The epicentral 
distance, which is necessary to translate the maximum ampli-
tude value into magnitude, is estimated by using the �rst two 
seconds of the log-transferred P-wave envelope slope (B-delta 
method; Odaka et	al. 2003).

A similar envelope function is used by several methodolo-
gies to parameterize the seismic waveforms. �e peak accelera-
tion, velocity, and displacement is calculated every second and 
used as an input. �e Virtual Seismologist uses this data to trig-
ger on an event and estimate the magnitude using a linear com-
bination of the peak values (Cua and Heaton 2007). While 
this approach uses amplitude, a frequency dependence is intro-
duced by the combination of acceleration, velocity, and dis-
placement. �ere is therefore a similarity between this ampli-
tude-based approach and the frequency-based methodologies 
described above. �e neural-network based PreSEIS approach 
makes use either of the cumulative absolute velocity (CAV; 
Böse	et	al. 2008) or of other envelope parameters (Köhler et	al. 
2009, this issue) to predict seismic source and ground-motion 
parameters. �e Virtual Seismologist and PreSEIS are cur-

rently being tested in California and Switzerland (Cua et	 al. 
2009, this issue; Köhler et	al. 2009, this issue).

Finally, the cumulative energy of the seismogram can also 
be used. In Mexico, the energy and growth rate are matched 
to similar observations from previous earthquakes and used to 
estimate the magnitude (Espinosa-Aranda	et	al. 1995). 

One of the concerns when using the �rst few seconds of the 
P wave to estimate the magnitude of an earthquake is that the 
magnitude estimate may saturate for large magnitude events. 
If four seconds of P-wave data is being used, and the duration 
of an M 6.5 earthquake is four seconds, can P-wave parameters 
distinguish an M 7.5 earthquake from an M 6.5 event? There is 
clear evidence that the amplitude of the P wave within the �rst 
few seconds does saturate for M > ~7 earthquakes (Zollo et	al. 
2006; Wurman et	al. 2007; Murphy and Nielsen 2009; Brown 
et	al. 2009, this issue). To try to reduce this problem, several 
methodologies use longer time windows of the P wave and/or 
the S wave to update magnitude estimates (Zollo	et	al. 2006; 
Kamigaichi et	al. 2009, this issue). When using the frequency 
content of the P wave there is less empirical evidence for satura-
tion (Kanamori 2005; Olson and Allen 2005; Lewis and Ben-
Zion 2008; Brown	et	al. 2009, this issue), although this conclu-
sion is controversial (Rydelek and Horiuchi 2006; Yamada and 
Ide 2008), and a satisfactory physical explanation remains elu-
sive. It may be su�cient to know that an event is M 6.5 or larger 
and broadcast a warning. However, methodologies to map the 
�nite ruptures of these large (M > 7) earthquakes could also be 
developed and would enhance system performance (Yamada et	
al. 2007; Yamada and Heaton 2008; Zollo et	al. 2009).

Onsite Warning
�e principle of onsite or single-station warning is to detect 
seismic energy at a single location and provide warning of 
coming ground shaking at the same location, i.e., detect the 
P wave and predict the peak shaking. �is is possible using a 
combination of the P-wave parameters described above. �e 
simplest approach is to look for a scaling relation between the 
P-wave amplitude and the peak ground-shaking (e.g., Wu and 
Kanamori 2005b). However, small magnitude earthquakes 
may have very large amplitude but high frequency spikes. 
Combining the amplitude with frequency information is 
therefore a more robust approach. If large amplitudes are also 
associated with low frequencies, i.e., larger magnitudes, then a 
warning should be issued.

UrEDAS is the grandfather of earthquake early warning 
systems in general and onsite warning speci�cally (Nakamura 
1988). UrEDAS uses three seconds of the P wave to estimate 
source parameters. Predominant period is used to estimate 
magnitude, and then the P-wave amplitude and magnitude 
provide an estimate of epicentral distance. �e particle motion 
is used to estimate the event azimuth and depth. All this is 
achieved with a single three-component seismometer and with 
remarkable accuracy. �e complete point source description 
can then be used to trigger an onsite alert based on prede�ned 
criteria. The Compact UrEDAS uses the same principles but 
only one second of the P wave to provide more rapid warn-
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ings (Nakamura and Saita 2007b). UrEDAS continues to be 
used along the rail systems in Japan (Nakamura 1996, 2004; 
Nakamura and Saita 2007b) and a mobile unit named FREQL 
is also in use by emergency response teams (Nakamura and 
Saita 2007a).

�e τc–Pd method is another onsite method that com-
bines two of the P-wave parameters described above (Wu and 
Kanamori 2005a; Wu and Kanamori 2005b; Wu	et	al. 2007; 
Wu and Kanamori 2008a, 2008b). When a station triggers on 
the P-wave arrival, τc is used to estimate magnitude and Pd to 
estimate peak ground velocity (PGV). �rough careful selec-
tion of the appropriate combinations of τc and Pd, as well as 
through the introduction of station corrections, the system can 
be tuned to alert only when strong shaking is expected (Böse, 
Hauksson, Solanki, Kanamori, Wu, and Heaton 2009). �is 
methodology is currently being tested in California (Böse, 
Hauksson, Solanki, Kanamori, and Heaton2009), Taiwan 
(Hsiao et	al. 2009), Japan, China, and at the Pacific Tsunami 
Warning Center in Hawaii.

Regional Warning
Regional warning makes use of a seismic network and typi-
cally combines many or all of the components described above. 
Historically, seismic networks have been designed to stream 
waveform data back to a network processing center, where 
they are processed to detect, assess, and report on earthquakes. 
�e development of EEW has followed this route, installing 
new processing modules at the network centers to generate 
earthquake alerts and then distributing the warning to users. 
“Onsite” processing algorithms are still used in a network set-
ting to provide the most rapid warnings, i.e., warnings based 
on a P wave at a single station. In addition, networks also allow 
data from multiple stations to be combined. �is gives more 
accurate predictions of the distribution of ground shaking 
across the a�ected region by providing the earthquake location 
and reduced uncertainties in earthquake magnitude estimates. 

Once a communications network is in use both to col-
lect the seismic data and to give warning to users, the front 
detection concept also provides for increased warning times. 
Seismometers close to the epicenter are used to detect the event 
and assess the hazard, and the communications provide warn-
ing to users at greater distances. In the case of large magnitude 
earthquakes (M > 6.5), this approach can provide tens of sec-
onds of warning to areas that can expect damage. But there 
will also likely be a blind zone around the epicenter where no 
warning is available. �is is due to the time lost transmitting 
data to a processing center, processing the data, and sending 
out a warning. A true onsite approach, where a seismometer is 
installed at the user’s location and provides a warning at that 
location, removes these telemetry delays, but with increased 
probability of false or missed alarms. 

Mexico. �e operational network-based warning system 
in Mexico consists of two components: the SAS system for 
Mexico City and Guerrero and the SASO system for Oaxaca. 
�e SAS system uses a network of 12 accelerometers along the 

coast of Guerrero above the subduction zone to provide warn-
ing to Mexico City ~320 km to the north (Espinosa-Aranda et	
al. 1995; Espinosa-Aranda et	al. 2009, this issue). �e system 
1) integrates energy at each station in a time interval starting 
at the P-wave arrival and equal to twice the S-minus-P time 
and 2) measures the growth rate. Empirical scaling relations 
are used to determine whether the earthquakes are “strong” 
or “moderate,” corresponding approximately to M ≥ 6 and 
6  >  M  ≥  5 respectively. When two or more stations report a 
strong earthquake, a “public” warning is issued; when two or 
more report a moderate earthquake, a “preventive” warning is 
issued. Although the system waits until well a�er the S-wave 
arrival before issuing any alert, ~60 s warning is still available 
to Mexico City due to the distance. Ground-shaking is still 
high in the city, and much stronger than is typically the case 
at such distances, due to amplification by factors of 100–500 
caused by the basin sediments on which the city is built (Suárez 
et	al. 2009, this issue).

The SASO system uses a network of 36 seismic stations 
distributed across Oaxaca. The subduction zone earthquakes 
are distributed over a wider area than the adjacent Guerrero 
section of the subduction zone (see Figure 9 in Espinosa-
Aranda et	al. 2009, this issue). Because the distances between 
the earthquake sources and population centers are shorter, 
algorithms requiring shorter time-windows of data must be 
used. Empirical relations use parameters measured in two time 
windows. During the interval from the P- to the S-arrival, the 
dominant period, peak acceleration, and energy are measured. 
When the S-minus-P time is more than three seconds, the 
dominant period of the �rst three seconds of the P wave is also 
measured. �ese parameters are used to determine whether the 
earthquake is strong or moderate. Public or preventive warn-
ings are then issued, as with the SAS system.

Japan. �e operational warning system implemented by 
the Japan Meteorological Agency (JMA) combines both an 
alert-seismograph concept and a network-based approach 
(Kamigaichi et	al. 2009, this issue). �e system makes use of 
~1,000 seismic instruments across Japan, 200 operated by 
JMA and 800 by the National Research Institute for Earth 
Science and Disaster Prevention (NIED), and integrates 
methodologies developed by JMA (Hoshiba	 et	al. 2008) and 
NIED (Nakamura	et	al. 2009). When a single station observes 
ground-shaking above 100 cm/sec2, an alert is triggered 
(the alert-seismograph approach). In addition, the network 
approach is used. �e source is characterized based on single 
and multiple P-wave detections. First, the location is estimated. 
Using a single P-wave detection, the slope of the onset is trans-
lated to epicentral distance, and the azimuth is estimated by 
�tting an ellipsoid to the particle motion (Odaka	et	al. 2003). 
In addition, when one or two stations have detected a P wave, 
a “territory” region is de�ned where the event must have 
occurred based on the fact that other stations have not yet trig-
gered (Horiuchi	 et	 al. 2005). The centroid of the territory is 
used as the epicenter. The depth is fixed at 10 km. Once three 
or more stations have triggered, a grid search for the optimal 
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location that minimizes mis�t with the observed arrival times 
is used (Kamigaichi 2004). 

�e magnitude is estimated using scaling between the 
P-wave amplitude and magnitude, correcting for the epicen-
tral distance. �e vector summation of the three-component 
waveform is monitored continuously and the magnitude esti-
mate updated as the amplitude increases. Once the S wave 
arrives, a new scaling relation is used. Given the location and 
magnitude, peak ground motion is obtained by estimating the 
distribution of peak velocity on bedrock, applying site ampli�-
cation factors, and converting peak velocity to JMA intensity 
(Kamigaichi 2004), essentially the same approach as is used for 
ShakeMaps a�er an earthquake. �e system provides an esti-
mate of the intensity and time until shaking for each subpre-
fecture (Kamigaichi	et	al.	2009, this issue).

ElarmS. �e ElarmS EEW methodology (http://www.ElarmS.

org) is currently being tested statewide on the real-time seismic 
systems in California (Allen, Brown, Hellweg et	al. 2009) and 
has been modi�ed for o�ine testing using earthquakes from 
Japan (Brown et	al. 2009, this issue). �e approach processes 
seismic waveforms individually to generate P-wave trigger 
times, Pd, τp

max, and signal-to-noise ratios. �e peak ampli-
tude every second is also determined. �ese parameters stream 
continuously into an event monitor module that associates 
triggers with detected earthquakes, locates earthquakes based 
on observed arrival times, estimates the magnitude using Pd 
and τp

max relations, and predicts the distribution of ground-
shaking using attenuation relations and site corrections. �e 
system updates every second, providing an “AlertMap” of the 
predicted ground-shaking distribution (Wurman et	al. 2007). 
Approximately 600 seismic instruments at ~400 sites cur-
rently stream into the system in California. At the time of this 
writing, the system only provides warning to members of the 
research group. 

Virtual Seismologist. �e Virtual Seismologist methodology 
is also undergoing real-time testing in California, using the 
same ~600 instruments at ~400 sites (Cua et	 al. 2009, this 
issue), and in Switzerland. �e approach uses the peak accelera-
tion, velocity, and displacement every second to detect earth-
quakes, locate them, and estimate the magnitude. �e meth-
odology uses a Bayesian approach to predict the likelihood of 
a given magnitude and source location using prior information 
such as past seismicity and the Gutenburg-Richter relation 
(Cua and Heaton 2007), though these are not yet incorporated 
into the current real-time test version of this system. Virtual 
Seismologist has also developed a sophisticated scheme for �l-
tering false events. At the time of this writing, the system only 
provides warning to members of the research group.

Presto. �is is a probabilistic evolutionary approach to EEW 
that is currently undergoing real-time testing using the 28-sta-
tion Irpinia Seismic Network (ISNet) in southern Italy (Weber 
et	 al. 2007). It uses the P-wave arrival times, along with the 
information that some stations have not yet triggered, to 

identify the 3D region where the earthquake origin could be 
located (Satriano	 et	 al. 2008). The low-frequency amplitude 
of the P wave and also S wave is used to estimate magnitude 
(Lancieri and Zollo 2008). The uncertainty in the EEW alerts 
has been modeled extensively and shows that the largest source 
of uncertainty in PGA estimates is the inherent uncertainty 
in the ground motion prediction equation and not the rapid 
magnitude and location estimates (Iervolino	et	al. 2009). �e 
performance of the system in large-magnitude events has also 
been studied and indicates a signi�cant e�ect of source �nite-
ness (Zollo	et	al. 2009). 

PreSEIS. PreSEIS is a neural-network based approach to early 
warning using P-wave arrival times and ground motions at one 
or more stations to locate earthquake hypocenters, estimate the 
magnitude and expected ground motions, and predict the final 
expansion of the evolving seismic rupture for large magnitude 
earthquakes (Böse et	al. 2008). In order to train and test the 
neural networks, the PreSEIS approach has been applied to 
the station distributions in Istanbul and southern California 
using synthetic seismograms for �nite-fault scenarios (Böse	et	
al. 2008) and envelope functions of real earthquakes (Köhler	et	
al.	2009, this issue), respectively. 

SOSEWIN. �e Self-organizing Seismic Early Warning 
Information Network is a network of 20 stations installed in 
the Ataköy district of Istanbul in June 2008, which is currently 
undergoing real-time testing (Fleming	 et	al. 2009, this issue). 
�is system is di�erent from those described above in that 
there is no central network processing center. Instead, each 
station combines a sensor, onsite processing, and wireless com-
munications to the adjacent stations. So�ware at each location 
triggers on seismic arrivals and calculates a range of parameters 
including arrival time, peak amplitudes, predominant period, 
etc. Adjacent stations share this information, and alerts can be 
generated based on a single-station detection, multiple adjacent 
stations, or multiple components of the array. �e current test-
ing is focused on communications, operation reliability, and 
identifying trigger thresholds. In principle, any of the meth-
odologies described above could be applied to a self-organizing 
wireless network like this. 

Geodetic Networks
Most early warning system development to date has focused 
on the use of seismological networks. Historically, it is seismic 
networks that have provided real-time and post-earthquake 
information, and these networks are very e�ective at detecting 
earthquakes, locating earthquakes, and rapidly estimating the 
magnitude for small and moderate earthquakes. �e ability of 
these P-wave-based methods to rapidly and accurately detect 
large earthquakes (M > 7) is controversial as discussed above. 
Real-time, high-sample-rate GPS networks are now becoming 
more prevalent and could provide real-time constraints. �e 
real-time accuracies are currently at the subcentimeter level, 
meaning that they could provide constraints for large magni-
tude events. 
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In this issue, Crowell et	 al. (2009) describe a prototype 
warning system currently implemented in southern California. 
GPS data from the California Real Time Network is streamed 
to the Scripps Orbit and Permanent Array Center, where it 
is processed using the method of instantaneous positioning 
(Bock	et	al. 2000). Triangulation is then used to determine the 
principal components of strain across the network. �e cur-
rent system triggers e-mail alerts when anomalous strain above 
a prede�ned threshold occurs. �e GPS data can also be used 
to estimate the earthquake location, and Crowell et	al. (2009, 
this issue) are developing scaling relations that could be used to 
estimate the magnitude. 

APPLICATIONS OF EEW

Active warning systems that provide alerts to one or more users 
have been documented in five countries (Figure 1). Mexico and 
Japan stand apart as having systems with warnings provided to 
the general public via multiple communication routes. Taiwan, 
Turkey, and Romania also have warning systems that provide 
information to one or more users. 

Mexico
The SAS system for Mexico City was developed following the 
M 8.1 earthquake on 19 September 1985, which killed 10,000 
and injured 30,000. In August 1991, the system started pro-
viding warnings to a small group of users including 25 schools 
and the subway. In May 1993, it accurately warned of an M 
6.0 earthquake. �e system started providing public warnings 
to Mexico City in August 1993, making it the first publicly 
available warning system in the world (Espinosa-Aranda et	al. 
1995). Strong earthquakes generate public warnings distrib-
uted through 58 public AM and FM radio stations and six 
TV channels in Mexico City , plus three radio and one TV 
station in Toluca (50 km west of Mexico City). In addition, 
more than 250 users receive both public and preventive warn-
ings through dedicated radio links. �ese users are mainly pri-
mary and secondary schools, universities, emergency and safety 
agencies, government buildings, civil protection organizations, 
and the subway system. SAS bulletins are also issued to more 
than 1,800 users via e-mail and posted on the SAS Web site 
(Espinosa-Aranda et	al. 2009, this issue). 

From October 1991 to March 2009 the SAS system issued 
13 public and 52 preventive warnings. The magnitude of events 
generating public and preventive warnings ranges from 4.8 to 
7.3 and 4.1 to 7.3, respectively. In this issue, Suárez et	al. (2009) 
evaluate this performance and conclude that while the SAS sys-
tem is capable of detecting hazardous earthquakes and provid-
ing warning, the accuracy of the magnitude estimates do not 
warrant the distinction between public and preventive warn-
ings. �ere have been two missed events with magnitudes of 
6.3 and 6.7 and one false alarm on November 16, 1993, when 
a public warning was issued but there was no earthquake. �is 
false alarm was issued to an estimated radio audience of 2 
million people during rush hour, but there are no reports of 
panic (Espinosa-Aranda et	 al. 1995). The M 7.3 earthquake 

on 14 September 1995, almost exactly 10 years after the 1985 
earthquake that led to the development of the SAS system, was 
detected and a public warning issued 72 s before the S-wave 
arrival. In this event, the subway was stopped 50 s before the 
S-wave arrival, and schools responded and evacuated as planed 
(Espinosa-Aranda	et	al. 1995; Goltz and Flores 1997). 

�e younger SASO system started providing public warn-
ing in Oaxaca in 2003. Since that time it has issued three pub-
lic and �ve preventive warnings and missed two detections. �e 
SASO system has not been able to maintain continued opera-
tions due to funding lapses. Insu�cient funding for education 
and outreach e�orts are also cited as a serious problem that will 
likely result in failure of the system to reduce the impacts of 
earthquakes on the population (Espinosa-Aranda	et	al. 2009, 
this issue). �ere is also concern that the system does not have 
more users. Only 76 schools out of a possible 5,500 in Mexico 
City use the system. This is not due to poor, or perceived poor, 
performance. In a survey, 90% of users rated the service pro-
vided as good or very good. Instead, the fact that there has 
never been a strategy to identify institutions and critical facili-
ties and lifelines that could bene�t from the SAS system is con-
sidered to be a failure of the overall implementation strategy 
(Suárez	et	al. 2009, this issue). 

Japan
Japan Railways began using alarm-seismometers in the 1960s 
and then front-detection EEW systems in 1982 to shut off 
power to the Shinkansen bullet trains. �e onsite UrEDAS sys-
tem started operation along the Shinkansen lines in 1992 and 
was expanded across the system following the 1995 Kobe earth-
quake. �e Kobe earthquake also motivated a more rapid ver-
sion called Compact UrEDAS that became operational within 
rail and metro systems in 1998. It was not until the 2004 M 6.6 
Niigata Ken Chuetsu earthquake that a major damaging earth-
quake occurred in Japan during the daytime operations of the 
Shinkansen. Out of the four trains that were operational in the 
epicentral region at the time, one derailed. �e P wave reached 
the Compact UrEDAS in the section of the derailed train 2.9 
s a�er the origin time and issued an alert one second later, cut-
ting the power supply to the train and initiating braking. �e 
train operator also saw the Compact UrEDAS warning and 
initiated braking one second a�er the automated braking. �e 
S wave hit the train 2.5 s after the alarm and strong shaking 
started one second after that (Nakamura and Saita 2007b). 
While the train derailed, all but one carriage remained on the 
tracks.

The scale of the 1995 Kobe earthquake damage, which 
killed more than 6,000 and caused an estimated $U.S. 200 
billion in losses, led to the development of a nationwide warn-
ing system. Following this event, several nationwide seismic 
networks were installed with constant station density across 
the country. These included ~800 high-sensitivity stations 
(Hi-net) of which ~650 have up- and down-hole strong-motion 
instruments (KiK-net). An additional ~1,000 surface strong-
motion instruments (K-net) and ~70 broadband seismometers 
(F-net) were installed (Okada	et	al. 2004). These stations were 
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installed by NIED. JMA had recently completed the renewal 
of its nationwide seismometer network including ~200 strong-
motion meters following the 1993 Okushiri earthquake in 
order to provide more rapid and accurate tsunami warning 
and earthquake information. Following the installation of 
these networks, JMA began testing EEW methodologies in 
February 2004. During an M 7.2 earthquake off the coast of 
Miyagi Prefecture on 16 August 2005, a warning was gener-
ated 4.5 s after the first P-wave detection and 16 s before the 
arrival of the S wave at the city of Sendai (Hoshiba et	al. 2008). 
JMA started issuing warnings to a limited group of users in 
August 2006 and began public warnings in October 2007.

During the period of limited warning (August 2006 to 
October 2007), a public education campaign was enacted by 
JMA to provide information about the purpose and limita-
tions of EEW and the proper actions to be taken. �is included 
distributing lea�ets, short informational videos broadcast on 
television, posters, conducting seminars, and posting infor-
mation on the JMA Web site (http://www.jma.go.jp/jma/en/

Activities/eew.html). Figure 2 shows the English version of 
the lea�et describing the actions to be taken in response to an 
EEW alert.

�e now operational public warning system combines the 
~800 Hi-net and 200 JMA strong-motion stations to provide a 
network with a constant 20-km station spacing across the entire 
country. Warnings are issued to the public when the maximum 
intensity is predicted to be 5-lower on the JMA scale (~VII–
VIII on the Modi�ed Mercalli Intensity scale) or greater. From 
October 2007 to March 2009, there were 11 earthquakes for 
which a public warning was issued and/or shaking intensity 
5-lower or greater was observed (see Table 1 in Kamigaichi et	
al. 2009, this issue). �ere were two missed alarms when the 
maximum predicted intensity was 4 but 5-lower was observed, 
and three false alarms when intensity 5-lower was predicted 
but only 4 was observed. The largest event was the onshore 
14 June 2008 M 7.2 earthquake. The first public warning was 
issued 4.5 s after the first detection and was updated 18 s later. 
As expected, there was no warning at the epicenter, but the 
warnings were available and known to have been used by many 
people. Some speci�c reported uses include taking personal 
protective actions in a nursery, kindergarten, school, home, 
several o�ces, and a factory. �e warning was used to auto-
matically control elevators and factory systems and issue a “go-
around” command to an aircra� on �nal approach. One driver 
also reported receiving the warning and stopping without inci-
dent. �e system also provided warning for the 11 September 
2008 M 7.1 offshore earthquake, demonstrating that the sys-
tem is e�ective for both on- and o�-shore events (Kamigaichi	et	
al. 2009, this issue). �ere are no reports of panic during these 
events and no reports of car accidents.

�e public warnings from JMA are communicated to 
the public via various means. NHK (the Japan Broadcasting 
Corporation) is required to broadcast the warnings through its 
nine TV and radio stations. In addition, 122 (out of 127) TV 
stations and 59 (out of 100) AM/FM radio stations broadcast 
the warnings as of September 2008. The multihazard J-Alert 

system also issues warnings to municipalities. As of March 
2009, 226 municipalities (out of 1,851) have J-Alert receivers; 
102 use public loud-speaker systems to announce EEW mes-
sages. Two cell phone companies provide free warnings to their 
users and a third is currently developing the capability. An esti-
mated 21 million people can currently receive the warning on 
their cell phones (Kamigaichi	et	al. 2009, this issue). 

In addition to these public warnings, a wide range of users 
receive the warnings and incorporate them into automated 
control and response systems. JMA does not provide site-spe-
ci�c warning information but private service-providers can, 
once certified by JMA. There were 54 certified service-provid-
ers as of December 2008. They provide information to 52 out 
of 204 rail companies (some of which also operate their own 
EEW systems), factories, construction sites, apartment com-
plexes, schools, shopping malls, hospitals, etc. (Kamigaichi	 et	
al. 2009, this issue). �e Second International Workshop on 
Earthquake Early Warning held in Kyoto, Japan, in April 2009 
provided some specific examples of these systems and their 
applications as described below.

�e private providers o�er a variety of services ranging 
from simple translation of the JMA information into a site-
speci�c predicted intensity and warning time to more sophis-
ticated systems that incorporate local seismometers to provide 
additional onsite warning. One example is the “home seismom-
eter” (Horiuchi	et	al. 2009), which translates the JMA signal 
into a site-speci�c warning and also contains a MEMS sensor 
that can be used for onsite warning based on P-wave detection. 
The device is mounted on a wall, plugs into AC power and 
Internet/Ethernet, and issues an audible warning and count-
down. About 650 home seismometers are currently deployed 
across Japan, including ~500 in schools. 

One of the home seismometers is installed in the British 
School in Tokyo and connected to the public address system 
throughout the school. �e students complete three earth-
quake drills each school year. In the �rst drill, students are 
warned when the drill will occur; in the second, they know 
the week during which it will occur; and the third can be at 
any time. �e school district in Miyagi Prefecture developed 
and installed its own warning system in the classrooms of 
four schools. Training programs and videos were prepared 
and implemented, and the students drill regularly. �ese drills 
show that children can get under desks within �ve seconds in 
response to an audible warning, and the plan is to expand the 
system to all schools in the prefecture. While it may take �ve 
seconds for students to get under desks, the headmaster of the 
British School felt that the public address was still important 
if there was not enough time to take action because it lets stu-
dent know what is happening and reduces the students’ fear. 
Universities are also installing EEW. For example, at Kogakuin 
University in Tokyo, elevators currently open at the nearest 
�oor and alert systems are being installed in all the classrooms. 

In two earthquakes in 2003 the OKI semiconductor fac-
tory in Miyagi Prefecture experienced $U.S. 15 million in 
losses due to �re, equipment damage, and loss of productivity. 
Following this experience they spent $U.S. 600,000 installing 
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Earthquake Early WarningEarthquake Early Warning: Dos & Don: Dos & Don’’tsts

Outdoors

At Home In Public Buildings

When Driving

On Buses or Trains In Elevators Near Mountains/Cliffs

Hold on tight to a strap or 
a handrail

Stop the elevator at the 
nearest floor and get off 
immediately

Watch out for rockfalls 
and landslides

- Follow the attendant’s instructions
- Remain calm
- Don’t rush to the exit

- Protect your head and take shelter under a table
- Don’t rush outside
- Don’t worry about turning off the gas in the kitchen

- Look out for collapsing concrete-block walls
- Be careful of falling signs and broken glass
- Take shelter in a sturdy building if there is 

one close enough

Remain calm, and               Remain calm, and               

secure your personal safetysecure your personal safety

based on your surroundings!based on your surroundings!

After seeing or hearing an Earthquake Early 
Warning, you have only a matter of seconds 
before strong tremors arrive.  This means 
you need to act quickly to protect yourself.

Earthquake 
Early Warning

- Don’t slow down 
suddenly

- Turn on your hazard 
lights to alert other 
drivers, then slow down 
smoothly

- If you are still moving 
when you feel the 
earthquake, pull over 
safely and stop

 ▲ Figure 2. Informational leaflet prepared by the Japan Meteorological Agency for the public, detailing simple instructions of how to 

react when they receive an EEW alert. This leaflet and additional information can be found at http://www.jma.go.jp/jma/en/Activities/

eew.html.
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additional shear walls in the basement and an automated EEW 
response system that shuts down hazardous chemical systems 
and moves sensitive equipment to a safe position. In the two 
earthquakes since the installation, the losses were reduced to 
$200,000, and the number of days of closure was reduced from 
17 and 13 to 4.5 and 3.5, respectively.

Engineering and construction companies are also using 
the warning systems to provide both enhanced building per-
formance during earthquakes and to protect construction 
workers. The Kajima Corporation uses the warnings at its 
facilities. In its o�ce buildings, elevators stop and open at the 
nearest �oor, lights turn on, blinds open, and alerts are issued 
for personal protective measures. On construction sites, work-
ers move away from or out of hazardous locations. �e Shimizu 
Corporation also provides warning to its offices and construc-
tion sites. In addition, they o�er a variety of EEW services to 
their clients following construction. Clients currently using 
Shimizu’s EEW services include a bank, a hotel, and a semicon-
ductor manufacturer. 

Istanbul, Taiwan, and Bucharest
Following two M 7+ earthquakes in 1999 on the north 
Anatolian fault to the east of the Marmara Sea, and recogni-
tion of the westward migration of earthquakes toward Istanbul, 
design and installation of EEW for Istanbul was initiated. 
Two facility-speci�c EEW systems were initially installed and 
remain in operation: one for the Iş-Kul high-rise o�ce build-
ing and the other for the Enron-Trakya electric power station. 
A system for the city as a whole was also installed. It consists 
of 10 strong-motion instruments deployed along the northern 
shore of the Marmara Sea as part of the Istanbul Earthquake 
Rapid Response and Early Warning System (Erdik et	al. 2003). 
The current system is based on the exceedance of predefined 
thresholds of ground motions at two to three sensors before 
a warning is declared (Alcik et	 al. 2009). �e system is now 
operational and expects to start providing warning to several 
industrial users in 2010. �e �rst users will be Marmara Tube 
Tunnel beneath the Bosporus Straits (currently under con-
struction), to stop trains entering the tunnel, and the Istanbul 
Natural Gas Distribution Network, which plans to use the sys-
tem to actuate shut-o� valves. �ere is also a plan to add sea-
�oor seismometers close to the fault trace to increase warning 
time.

In the 15 November 1986 M 7.8 earthquake offshore 
Hualien, Taiwan, the most severe damage occurred in Taipei—
more than 120 km away—due to basin ampli�cation e�ects. 
Since that time, Taiwan has been developing EEW. In 2001, 
the �rst EEW system in Taiwan started operation and con-
tinues to be used today. It uses ~100 accelerometers deployed 
across the island and a Virtual Sub-Net (VSN) algorithm to 
detect and locate earthquakes and estimate magnitudes using 
the P- and S-wave energy (Wu and Teng 2002). On average, 
the system provides warnings 20 s a�er the origin time, cor-
responding to when the S wave is ~70 km from the epicenter. A 
second system that uses Pd, τc, and τp

max relations is now being 
tested to reduce the size of the blind zone. �e warnings are not 

issued to the public, because no public education campaign has 
been possible; however, warnings have been issued in an experi-
mental mode to railway and rapid transit companies, disaster 
prevention agencies, and a hospital (Hsiao	et	al. 2009).

�e EEW system for Bucharest takes advantage of the 
highly localized source of large earthquakes in the Romanian 
Vrancea zone of the southeastern Carpathians. The four 
strong events (M 6.9–7.7) observed during the last century 
all occurred in the same region at hypocentral distances of 
~160 km. A network of three seismic stations in the epicentral 
Vrancea region is used to detect earthquakes and issue a warn-
ing in Bucharest, providing 20–25 sec warning time (Wenzel et	
al. 1999; Böse et	al. 2007). The system currently gives warning 
to the Horia Hulubei National Institute of Physics and Nuclear 
Engineering, where it is used to place a nuclear source in a safe 
position, and there are plans to provide warning to additional 
users (Ionescu	et	al. 2007). 

PERSPECTIVES, MISCONCEPTIONS, AND 
CHALLENGES

�e last �ve years have seen rapid and accelerating develop-
ment of EEW methodologies and implementation around the 
world. Prior to 2003, the number of EEW manuscripts in the 
peer-reviewed literature ranged from zero to two per year. �e 
number has been steadily increasing every year since to more 
than 15 in 2008. This is an indication of the increasing interest 
in EEW within the seismology and engineering communities, 
which has resulted in a corresponding increase in the sophisti-
cation of available EEW methodologies.

At the same time, signi�cant progress has been made 
implementing EEW (Figure 1). At the turn of the decade the 
only EEW systems providing warnings were UrEDAS to rail 
systems in Japan and the SAS for Mexico City. Today, Japan 
has nationwide, publicly available EEW (Kamigaichi et	 al. 
2009, this issue) and Mexico has expanded its system (Espinosa-
Aranda et	al. 2009, this issue). Taiwan, Istanbul, and Bucharest 
have active systems providing warning to one or more users 
(Ionescu et	al. 2007; Alcik et	al. 2009; Hsiao et	al. 2009). All 
are being continually updated and improved. Real-time test-
ing of EEW is underway on various seismic networks in Italy, 
Switzerland, China, Hawaii, and California. In California, 
real-time testing has demonstrated proof-of-concept by gen-
erating hazard information before ground-shaking was felt 
(Allen, Brown, Hellweg et	al. 2009; Böse, Hauksson, Solanki, 
Kanamori, and Heaton 2009; Cua et	al. 2009, this issue). 

In 2005, the First International Workshop on Earthquake 
Early Warning was held at the California Institute of 
Technology. �at meeting focused on the question of whether 
EEW was scienti�cally possible. By the time of the Second 
International Workshop on Earthquake Early Warning held 
in April 2009 at Kyoto University in Japan, it was clear that 
the answer is yes. EEW is scienti�cally and technically possible 
not just in a front-detection scenario such as Mexico City, but 
also for earthquake sources much closer to population centers 
as illustrated in onshore earthquakes in Japan. �e question 
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now is: How useful is this information and how should it be 
applied?

One common misconception about EEW is that a warn-
ing about an imminent earthquake is likely to result in panic. 
Social scientists have long studied this issue and �nd that it is 
not the source of concern many seismologists think it is (e.g., 
Quarantelli 1956; Goltz 2002). The experience from many 
public earthquake alerts in Japan and Mexico also provide no 
evidence suggesting that warnings result in panic. �ere is no 
evidence for tra�c accidents resulting from warnings, and no 
evidence of public stampedes. Implementation of EEW does 
require a broad public education campaign as was carried out 
in Japan (Kamigaichi	et	al. 2009, this issue). Lack of funding 
for the necessary education is cited as a problem in Mexico and 
Taiwan (Hsiao	et	al. 2009; Espinosa-Aranda et	al. 2009, this 
issue; Suárez	et	al. 2009, this issue). 

Another concern with EEW implementation is that the 
system will only be used once a decade or less. UrEDAS was 
installed along the rail systems of Japan in 1992, but there were 
no earthquakes necessitating activation until 2004 when it did 
successfully initiate automatic train braking (Nakamura and 
Saita 2007b). There is no reason why a system cannot activate for 
smaller, more frequent earthquakes. �ese warnings could still 
be provided to appropriate users for informational purposes, 
o�ering an end-to-end test of the EEW system. Informational 
alerts used in an appropriate fashion can remind people of the 
earthquake hazard and also be turned into an opportunity for 
education and increased preparedness generally. 

�e most important scienti�c challenge that would have 
the potential to signi�cantly improve EEW systems is the rec-
ognition and real-time mapping of �nite-fault sources. None 
of the active EEW systems currently identify source �niteness. 
�ere has been much discussion in the literature about satu-
ration of the P-wave parameters used to estimate magnitude 
for large (M > 7) earthquakes (e.g., Olson and Allen 2005; 
Rydelek and Horiuchi 2006; Zollo	 et	 al. 2006; Lewis and 
Ben-Zion 2008; Yamada and Ide 2008; Murphy and Nielsen 
2009; Brown	et	al. 2009, this issue). But this uncertainty in the 
magnitude estimate for large earthquakes is probably not the 
greatest source of uncertainty in ground-shaking predictions. 
For moderate earthquakes, it is clear that the largest source of 
uncertainty lies in the ground-motion prediction equations, 
not the rapid event magnitude and location estimates gener-
ated by EEW systems (Iervolino	et	al. 2009; Brown et	al. 2009, 
this issue). Even with accurate magnitude estimates for large 
earthquakes, the orientation and lateral extent of the fault 
rupture have a profound e�ect on the distribution of ground-
shaking. One approach is to simply warn an entire region when 
an M > 6.5 earthquake is detected. Although only some areas 
within the region would experience extreme shaking and oth-
ers would only feel moderate shaking, most users would not 
consider this a false alarm. Still, EEW performance could be 
enhanced both in accuracy and warning times by integrating 
finite source detection methods (Heaton 1985; Allen 2006). 
Research is already underway using seismic methods to detect 
fault finiteness by assessing the proximity of stations to the 

fault and to map slip on the fault in real time (Yamada	et	al. 
2007; Yamada and Heaton 2008; Zollo	et	al. 2009). Real-time 
geodetic data can currently o�er accuracies at the subcentime-
ter level and could therefore provide constraints on these large-
magnitude events as well (Crowell et	al. 2009, this issue). Much 
more could be done using both seismic and geodetic data, inte-
grating their complementary constraints, and also integrating 
a	priori constraints such as fault models and rupture physics.

Each of the active EEW systems has been implemented in 
response to a signi�cant damaging earthquake. �e challenge 
for earthquake-prone regions without EEW is to implement 
a system before the next big earthquake rather than follow-
ing it. To this end, outreach and education of EEW capabili-
ties beyond the seismology community is important. �ere are 
indications of success toward this end. In Italy, ISNet has been 
installed and is currently testing EEW in response to a known 
earthquake threat. In California, legislation is currently pend-
ing to investigate the integration of EEW within a new high-
speed rail link. �is may be one step toward a public EEW sys-
tem for the state and the United States. �is special issue of 
Seismological	Research	Letters facilitates the open exchange of 
information regarding early warning methodologies and their 
implementation. Our hope is that this exchange of informa-
tion can be used to promote the appropriate application of 
EEW systems. 
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