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Abstract: Alcohol-induced oxidative stress (OS) plays a pivotal role in the pathophysiology of alcohol
dependence (AD). This meta-analysis was aimed at investigating the changes in the levels of OS
biomarkers in AD patients. We included relevant literature published before 1 April 2022, from the
PubMed, Web of Science, and EBSCO databases following PRISMA guidelines. Finally, 15 eligible
articles were enrolled in this meta-analysis, including 860 patients and 849 controls. Compared with
healthy controls, AD patients had lower activities of superoxide dismutase (SOD) and glutathione
peroxidase (GPx) enzymes, and lower levels of albumin, while levels of malondialdehyde (MDA),
vitamin B12, homocysteine, and bilirubin were significantly increased in serum/plasma samples
of AD subjects (all p < 0.05). In male patients, the activities of SOD and GPx were increased in
serum/plasma but decreased in erythrocytes (all p < 0.05). The opposite trends in the level of SOD
and GPx activities in serum/plasma and erythrocytes of male patients could be used as the biomarker
of alcohol-induced OS injury, and the synergistic changes of MDA, vitamin B12, albumin, bilirubin,
and homocysteine levels should also be considered.

Keywords: alcohol dependence; oxidative stress; antioxidant; superoxide dismutase;
glutathione peroxidase

1. Introduction

Alcohol dependence (AD) or alcoholism is a complex and serious psychiatric disorder
that can lead to perturbations in daily physical, psychological, and social functions [1].
Currently, AD accounts for a prevalence rate of about 2.6% in the general population [2–4].
The lack of effective prevention strategies, treatments, and rehabilitation programs are the
major contributing factors to the increasing global health burden of AD [5]. AD patho-
genesis is highly complex and involves multifaceted etiological factors, including altered
neuroplasticity, neuropsychiatric disorders, disoriented socio-environmental interactions,
and genetic inheritance.

The imbalance between the rate of generation of toxic free radicals such as reactive
oxygen species (ROS) and reactive nitrogen species (RNS) and compromised or insufficient
antioxidant defense response can cause chronic oxidative injury to the human body. Al-
though low levels of ROS and RNS play a vital role as secondary signal transducers and
gene activators under normal physiological conditions [6,7], persistently accumulating
non-neutralized excess free radicals lead to a broad spectrum of oxidative damages to
almost all types of major macromolecules, such as DNA, RNA, proteins, and lipids, thereby
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inducing a number of chronic neuropsychiatric and neurodegenerative diseases [8], includ-
ing mild cognitive impairment (MCI), dementia [9], schizophrenia [10], and Parkinson’s
disease (PD) [11]. Normally, the human body, especially the brain, possesses excellent
antioxidant defense machinery to prevent damages caused by free radical toxicities. How-
ever, this preventive mechanism can be compromised under diseased or abnormal health
conditions [12–14].

In the brain, ethanol is oxidized to acetaldehyde through the action of catalases
(CATs) [15,16], cytochrome P450 enzymes (CYP2E1) [17], and alcohol dehydrogenase
(ADH) [18,19]. Notably, CAT and CYP2E1 play major roles in catalyzing the biochemical
conversion of ethanol to acetaldehyde [20]. It has been found that the expression of CYP2E1
is induced by long-term drinking habits or AD [21]. The mechanistic functions of CYP2E1
and ADH reportedly produce RNS and ROS, which in turn activate downstream enzymes
such as nitric oxide synthase, nicotinamide adenine dinucleotide phosphate (NADP) oxi-
dase, and xanthine oxidase [17]. Furthermore, acetaldehyde consumes reduced glutathione
(GSH), perturbing the intracellular redox balance, resulting in oxidative stress (OS) [22].
Therefore, alcohol and its toxic metabolites may be the sole cause of increased cellular
burdens of ROS/RNS and other types of highly reactive free radicals and superoxides,
leading to the OS injuries to the vital organs of the body [23]. It has been demonstrated
that an initial high level of OS can activate the antioxidant defense to scavenge free radicals
and prevent lethal free radical chain reactions [24]. Hence, increased activity of antiox-
idant enzymes, including glutathione peroxidase (GPx), superoxide dismutase (SOD),
glutathione reductase (GR), and CAT, is observed in AD patients [25,26]. Moreover, during
the process of ROS/RNS neutralization and prevention of systemic free radical chain reac-
tions [27,28], the levels of non-enzymic antioxidants such as vitamin B9 (folate), vitamin
B12 [29], GSH [30,31], bilirubin [30], and homocysteine [29] are significantly increased.
On the other hand, levels of certain antioxidant enzymes (SOD, CAT, GPX) [30,32] and
non-enzymatic molecules (vitamin E/α-tocopherol, albumin, vitamin C/ascorbic acid) [33]
remain unchanged or decrease under OS. Ethanol-induced ROS causes oxidative damages
in multiple ways, including oxidation of DNA/RNA/protein/lipid molecules, covalent
adduct formation between acetaldehyde and membrane lipids [34] initiating lipid per-
oxidation and malondialdehyde (MDA) production [35–37], protein carbonylation [38],
and generation of 8-hydroxy-2′-deoxyguanosine (8-OHdG) as a marker of oxidative DNA
damage [35]. Therefore, chronic exposure to alcohol or persistent AD can lead to OS-
mediated pathological alterations in brain microstructures and the functional connectivity
among neuronal circuitry, resulting in cognitive impairment [39–41], which may turn into
Wernicke’s encephalopathy (WE) [42] or Korsakoff syndrome (KS) [43,44] in the long run.
Alcohol-induced OS may also induce pathogenesis of major diseases [45–47]. Therefore,
due to the inconsistent changes in OS markers and the possible serious health complications
of AD patients, it is of utmost importance to delineate the actual level of OS induction in
AD subjects.

Here, we conducted a meta-analysis involving the published biomarkers of OS, includ-
ing levels of antioxidant enzymes, non-enzymatic antioxidants, and OS injury-associated
by-products commonly found in the blood of AD patients, to provide an objective reference
basis for the clinical prevention and rehabilitation treatment.

2. Materials and Methods

The Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA)
guidelines [48] were followed to perform this meta-analysis (CRD42022341481).

2.1. Literature Screening

We searched for relevant full-length articles published before 1 April 2022, in PubMed,
Web of Science, and EBSCO databases using the keywords “alcohol dependence/dependent”
+ “oxidative/oxidant/antioxidative”. The inclusion criteria of eligible articles were as fol-
lows: (1) the subjects were diagnosed with AD, according to the Diagnostic and Statistical
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Manual of Mental Disorders (DSM) or International Classification of Diseases (ICD) criteria
at admission; (2) patients’ blood or other samples were collected within 24 h of admission,
such that patients’ health status could be assessed before initiating any treatments for AD
symptoms, and the study data should include outcome indicators related to OS; (3) healthy
control data were included; (4) articles were peer-reviewed and published in the English
language; and (5) if the same experimental samples were measured for the same indexes,
the research articles with the largest sample sizes or the most detailed data were selected.
The exclusion criteria included: (1) studies involving animal and/or in vitro experiments;
(2) conference abstracts, books/chapters, reviews, meta-analyses editorials/letters, and
other non-research articles; (3) incomplete data, missing controls, or patients were not
diagnosed by DSM or ICD; and (4) the authors could not provide explanation or details
of incomplete or missing information. The study retrieval and inclusion and exclusion
processes are shown in Figure 1.
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2.2. Quality Assessment

Since the purpose of this study was to analyze differences in OS levels between AD
patients and healthy controls, the quality assessment for case-control studies was performed
using the Newcastle–Ottawa scale (NOS) (http://www.ohri.ca/programs/clinical_epidem
iology/oxford.asp, accessed on 5 May 2022) to evaluate the quality of chosen articles. The
NOS is divided into three parts and includes a total of eight items. Each item scores 1 star
except the comparable items that can score 2 stars, indicating the comparability between
the patients and controls (e.g., age and gender) so that the scale can obtain a maximum of
9 stars. Two clinical researchers independently scored the included literature. In case of any
inconsistency in the evaluation of a certain index of an article, the primary investigators first
discussed the matter. However, if it remained unresolved, a third researcher was involved
for arbitration. The two researchers first received the necessary training. Then, kappa (κ)
test showed a strong consistency (κ = 0.87) in the judgment of these two investigators.

http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp
http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp
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2.3. Data Extraction

The following information was extracted from the included articles: the first author’s
surname, publication year, sample size, patient diagnosis method, demographic indicators
(sex, average age, drinking history, alcohol intake), OS indicators (sample type, data
mean/standard deviation, unit), if all values were converted into the form of mean and
standard deviation [49–51].

2.4. Data Analysis

The RevMan5.4 (https://training.cochrane.org/online-learning/core-software-cochra
ne-reviews/revman, accessed on 3 March 2022) software was used for meta-analysis. The I2

test was used to analyze the heterogeneity of literature that included various OS parameters.
The random effect (RE) model was used to assess the large heterogeneity in the index when
I2 > 50%. The fixed effect (FE) model was applied to estimate the minor heterogeneity of
the index when I2 ≤ 50%. When I2 = 0, the results of the RE and FE models were fully
consistent, and we chose the RE model for analysis. Sensitivity analysis measured the
contribution of the literature to the combined effect by the one-by-one elimination method.
OS index analysis showed variations depending on the sample type such as serum, plasma,
red blood cell (RBC), and possibly the male gender. Because the outcome index has different
units such as µg/mL, U/g, and U/mL, the differences in OS indexes between AD patients
and healthy controls were quantified by standard mean difference (SMD). The combined
effect was considered significant when p ≤ 0.05.

3. Results
3.1. Literature Screening

A total of 397 records were retrieved from PubMed (n = 50), Web of Science (n = 161),
and EBSCO (n = 186) databases, and 5 references were included. First, 43 repeated records
and 11 non-English articles were excluded. Second, 45 in vitro experiments, 83 books or
chapters, 79 review articles, 36 correspondences or editorials, and 44 animal experiments
were excluded based on the study topic and abstract. Next, we reviewed the remain-
ing 61 full-length articles, further excluding 3 non-research articles, 11 non-AD studies,
15 articles without control data, 9 articles with inappropriate experimental design, 7 articles
without patients’ diagnostic criteria, and 1 article for not having the full text available
online. The retrieval and exclusion processes are illustrated in Figure 1. Finally, 15 articles
were included for meta-analysis [25,26,29–33,35–38,52–55], including 860 AD patients and
849 healthy controls (Table 1).

Table 1. Basic information of the included literature.

Study Year

Patient Control
Diagnosis

Criteria
Drink History

(Years)
Alcohol

Consumption Oxidative IndexSize
(M/F)

Age
(Mn ± SD)

Size
(M/F)

Age
(Mn ± SD)

Balkan 2005 32
(26/6)

48.6 ± 9.86
(40–60)

24
(18/6)

52.3 ± 10.2
(42–62) DSM-IV 18.8 ± 9.04

(5–30) 225.9 ± 88.2 (g/day)

Plasma: bilirubin,
MDA, diene
conjugate,
homocysteine, folic
acid, vitamin B12

Bleich 2003 52
(34/18)

M: 45.59 ±
8.41

F: 48.44 ±
9.98

30
(16/14)

M: 48.34 ±
8.13

F: 48.00 ±
11.36

DSM-IV M: 13.35 ± 5.74
F:12.61 ± 3.71

Lifetime drinking (kg)
M: 1652.56 ± 1572.94
F: 685.44 ± 320.52

Plasma: total
homocysteine, folic
acid, B12, B6

Chen 2011 79
(67/12) 41 ± 7.0 63

(58/5) 40.7 ± 8.3 DSM-IV-IR 11.0 ± 7.5
(n = 75) 196.5 ± 105.0 (g/day) Serum: MDA, total

bilirubin, 8-OHdG

Chen 2012 124
(79/45) 40.0 ± 8.5 111

(73/38) 34.0 ± 9.8 DSM-IV-IR 11.6 ± 7.1
(n = 103)

Lifetime drinking (kg)
566.0 ± 484.0 (n = 103) Serum: albumin

https://training.cochrane.org/online-learning/core-software-cochrane-reviews/revman
https://training.cochrane.org/online-learning/core-software-cochrane-reviews/revman
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Table 1. Cont.

Study Year

Patient Control
Diagnosis

Criteria
Drink History

(Years)
Alcohol

Consumption Oxidative IndexSize
(M/F)

Age
(Mn ± SD)

Size
(M/F)

Age
(Mn ± SD)

Cravo 1996 32
(24/8) 43(29–60) 31

(19/12)
36

(25–63) DSM-III-R ≥5 years
P: 2.78 ± 1.32
(g/kg/day)
C: ≤30 g/day

Serum: folate,
pyridoxal
phosphate, vitamin
B12
RBC: Folate

Fucile 2013 10
(8/2) 45.7 ± 11.0 20

(16/4) 42.8 ± 8.4 DSM-IV-TR NA NA Plasma: MDA

Guemouri 1993 58
(58/0)

42.1 ± 8.2
(26–61)

78
(78/0)

35.8 ± 5.7
(24–54) DSM-III-R 13.7 ± 8.5

P: 197.1 ± 132.6
(g/day)
C: 19.9 ± 20.6 (g/day,
≤88 g/d)

Plasma: bilirubin,
albumin, SOD, GPx
RBC: SOD, GPx,
CAT

Huang 2008 76 41.2 ± 8.5 19 30.4 ± 10.4 DSM-IV-TR 12.4 ± 7.7 208.9 ± 100.7 (g/day)
Serum: SOD, MDA,
total bilirubin, total
albumin

Huang 2009 121
(113/8) 42.2 ± 9.0 19

(11/8) 30.4 ± 10.4 DSM-IV-TR 13.2 ± 8.5
(n = 113)

216.6 ± 107.1 (n = 114,
g/day)

Serum: SOD, CAT,
GSH, MDA, total
bilirubin

Kapaki 2007 71
(58/13) 45 ± 11 61

(27/34) 44.8 ± 17.9 DSM-IV 16.7 ± 7.6 360 ± 258 (g/day) Serum: protein
carbonyl

Lecomte 1994 102
(102/0) 40.5 ± 8.8 317

(317/0) 36.2 ± 6.7 DSM-III-R 13.2 ± 8.3

P: 194.3 ± 140.7
(g/day)
C: 10.6 ± 9.2 (g/day,
≤33 g/day)

Plasma: albumin,
α-tocopherol,
ascorbic acid,
selenium, GPx,
SOD, MDA
RBC: GPx, SOD

Peng 2005 29
(28/1)

43.81 ± 10.41
(25–66)

19
(11/8)

30.33 ±
10.93

(21–57)
DSM-III-R 22.2 ± 10.5

(3–46)
271 ± 123.6 (120–660)
(g/day)

Serum:
total-bilirubin, total
protein, albumin,
uric acid, MDA,
SOD, CAT, GR,
GPX

Saribal 2019 21
(21/0) 28–52 25

(25/0) 28–52 DSM-IV-IR NA >80 (g/day)

RBC: SOD, CAT,
GPx, MDA, Cu, Fe,
Zn
Serum: total
bilirubin

Thome 1997 20
(18/2)

40 ± 8
(30–59)

15
(13/2)

33 ± 10
(23–57)

ICD-10 &
DSM-III-R

14.3 ± 7.6
(4–35)

249 ± 99 (120–450)
(g/day)

Serum: lactoferrin,
SOD

Ucar 2005 33
(33/0)

I: 45.1 ± 6.3
(34–56)

II: 41.6 ± 9.6
(27–62)

17
(17/0)

40.3 ± 8.4
(29–56) ICD-10 I: 14.1 ± 6.9

II: 22.3 ± 9.7 NA

RBC (lysates and
membranes): lipid
peroxidation, GSH,
GSSG,
protein-bound GSH,
GR, CAT, SOD, GPx

Note: 8-OHdG, 8-hydroxy-2′-deoxyguanosine; C, controls; CAT, catalase; Cu, cuprum; F, female; Fe, iron; GR,
glutathione reductase; GPx, glutathione peroxidase; GSH, glutathione; GSSG, oxidized glutathione; M, male;
MDA, malondialdehyde; Mn ± SD, mean ± standard deviation; P, patients; RBC, red blood cell; SOD, superoxide
dismutase; Zn, zinc.

3.2. Quality Assessment

General information on the included articles is presented in Table 1. Most studies
applied the DSM standard, while only two articles involved ICD. The average age of
AD patients was slightly higher (~40 years) compared with that of healthy controls. The
average age and sex of patients and healthy controls were matched in most articles. The
quality assessment results were expressed on the NOS (Table 2), and the average score of
the included literature was >6 points.
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Table 2. Results of quality assessment by using the Newcastle–Ottawa scale for case-control studies.

Study Selection

Comparability
Control for
Important

Factor #

Exposure Score *

Case
Definition

Is Adequate

Representativeness
of the Cases

Controls
Selection

Controls
Definition

Ascertainment
of Exposure

Same
Method of
Ascertain
for Cases

and
Controls

Non-
Response

Rate

Balkan
2005 F F F F FF F F F 9

Bleich
2003 F F F F FF F 7

Chen 2011 F F F F FF F F F 9
Chen 2012 F F F F FF F F F 9
Cravo
1996 F F F F F F F F 8

Fucile
2013 F F F F FF F F F 9

Guemouri
1993 F F F F FF F F F 9

Huang
2008 F F F F F F F 7

Huang
2009 F F F F F F F 7

Kapaki
2007 F F F F F F F F 8

Lecomte
1994 F F F F FF F F F 9

Peng 2005 F F F F F F F F 8
Saribal
2019 F F F F F F F F 8

Thome
1997 F F F F FF F F F 9

Ucar 2005 F F F F F F F F 8

# Comparability control of age and gender each gets a star, maximum of 2. * The maximum score is 9.

3.3. Effect Size Estimation

In comparison with the healthy control patients, the results of combined effect size
estimation of AD patients are exhibited in Table 3. The enzymatic activities of SOD (RE:
SMD =−2.21, I2 = 97%, 95%CI = [−3.59,−0.82], Z = 3.13, p = 0.002; Figure 2A) and GPx (RE:
SMD =−0.89, I2 = 91%, 95%CI = [−1.64,−0.15], Z = 2.36, p = 0.02; Figure 2B) in erythrocytes
of AD patients were significantly decreased. In serum/plasma samples, levels of MDA (RE:
SMD = 0.89, I2 = 61%, 95%CI = [0.58, 1.20], Z = 5.66, p < 0.001; Figure 3A), bilirubin (RE:
SMD = 0.50, I2 = 0%, 95%CI = [0.31, 0.69], Z = 5.05, p < 0.001; Figure 3C), vitamin
B12 (RE: SMD = 0.67, I2 = 55%, 95%CI = [0.21, 1.12], Z = 2.87, p = 0.004; Figure 3D),
and homocysteine (RE: SMD = 0.98, I2 = 0%, 95%CI = [0.62, 1.34], Z = 2.81, p < 0.001;
Figure 3E) were significantly increased, while the albumin level (RE: SMD =−1.07, I2 = 94%,
95%CI = [−1.74, −0.40], Z = 3.12, p = 0.002; Figure 3B) was significantly decreased. In the
serum/plasma samples of male patients, the enzymatic activities of SOD (RE: SMD = 0.30,
I2 = 0%, 95%CI = [0.11, 0.48], Z = 3.10, p = 0.002; Figure 4A) and GPx (RE: SMD = 0.27,
I2 = 0%, 95%CI = [0.09, 0.46], Z = 2.86, p = 0.004; Figure 4B) were significantly increased.
Likewise, activities of SOD (RE: SMD = −2.21, I2 = 97%, 95%CI = [−3.59, −0.82], Z = 3.13,
p = 0.002; Figure 4A) and GPx (RE: SMD =−0.89, I2 = 91%, 95%CI = [−1.64,−0.15], Z = 2.36,
p = 0.02; Figure 4B) were also significantly increased in RBC samples. The serum/plasma
levels of MDA (RE: SMD = 1.16, I2 = 67%, 95%CI = [0.62, 1.71], Z = 4.21, p < 0.001; Figure 4C)
and bilirubin (RE: SMD = 0.40, I2 = 0%, 95%CI = [0.10, 0.70], Z = 2.64, p = 0.008; Figure 4D)
were significantly higher in male AD subjects. There were no significant differences in
other antioxidants between the patients and controls (Figure S1).
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Table 3. The effect sizes of oxidative biomarker between alcohol-dependent patients and healthy controls.

Oxidative Stress Biomarkers Alcohol-Dependent Patients vs. Healthy Controls Patients vs. Controls in Male

SOD

P/S RE: SMD = 0.13, I2 = 98%, 95%CI = [−1.44, 1.17], Z = 0.2 (p = 0.84) RE: SMD = 0.30, I2 = 0%, 95%CI = [0.11, 0.48],
Z = 3.10 (p = 0.002)

RBC RE: SMD = −2.21, I2 = 97%, 95%CI = [−3.59, −0.82], Z = 3.13 (p = 0.002) RE: SMD = −2.21, I2 = 97%,
95%CI = [−3.59, −0.82], Z = 3.13 (p = 0.002)

CAT RBC RE: SMD = −2.68, I2 = 98%, 95%CI = [−6.21, 0.84], Z = 1.49 (p = 0.14) RE: SMD = −2.58, I2 = 98%, 95%CI = [−6.00, 0.84],
Z = 1.48 (p = 0.14)

GPx

P/S RE: SMD = −0.33, I2 = 95%, 95%CI = [−1.26, 0.60], Z = 0.70 (p = 0.48) RE: SMD = 0.27, I2 = 0%, 95%CI = [0.09, 0.46],
Z = 2.86 (p = 0.004)

RBC RE: SMD = −0.89, I2 = 91%, 95%CI = [−1.64, −0.15], Z = 2.36 (p = 0.02) RE: SMD = −0.89, I2 = 91%,
95%CI = [−1.64, −0.15], Z = 2.36 (p = 0.02)

GSH RBC RE: SMD = 0.15, I2 = 98%, 95%CI = [−3.05, 3.35], Z = 0.09 (p = 0.93)

MDA

P/S RE: SMD = 0.89, I2 = 61%, 95%CI = [0.58, 1.20], Z = 5.66 (p < 0.001) RE: SMD = 1.16, I2 = 67%, 95%CI = [0.62, 1.71],
Z = 4.21 (p < 0.001)

RBC RE: SMD = 4.39, I2 = 98%, 95%CI = [−1.40, 10.18], Z = 1.49 (p = 0.14) RE: SMD = 4.39, I2 = 98%, 95%CI = [−1.40, 10.18],
Z = 1.49 (p = 0.14)

Albumin P/S RE: SMD = −1.07, I2 = 94%, 95%CI = [−1.74, −0.40], Z = 3.12 (p = 0.002) RE: SMD = −3.04, I2 = 99%, 95%CI = [−6.39, 0.31],
Z = 1.78 (p = 0.08)

Bilirubin P/S RE: SMD = 0.50, I2 = 0%, 95%CI = [0.31, 0.69], Z = 5.05 (p < 0.001) RE: SMD = 0.40, I2 = 0%, 95%CI = [0.10, 0.70],
Z = 2.64 (p = 0.008)

B6 P/S RE: SMD = −0.86, I2 = 91%, 95%CI = [−2.07, 0.35], Z = 1.39 (p = 0.16)

B12 P/S RE: SMD = 0.67, I2 = 55%, 95%CI = [0.21, 1.12], Z = 2.87 (p = 0.004)

Folic Acid P/S RE: SMD = −0.45, I2 = 94%, 95%CI = [−1.63, 0.74], Z = 0.74 (p = 0.46)

Homocysteine P/S RE: SMD = 0.98, I2 = 0%, 95%CI = [0.62, 1.34], Z = 2.81 (p < 0.001)

B6, vitamin B6; B12, vitamin B12; CAT, catalase; CI, confidence interval; GPx, glutathione peroxidase; GSH,
glutathione; MDA, malondialdehyde; P/S, plasma or serum; RBC, red blood cell; RE, random model; SMD,
standardized mean difference; SOD, superoxide dismutase.
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controls in plasma/serum or RBC. (A) Significant difference in MDA was found in plasma/serum (RE:
SMD = 0.89, I2 = 61%, 95%CI = [0.58, 1.20], Z = 5.66, p < 0.001) but not in RBC. In plasma/serum, there
were significant differences found in albumin (B) (RE: SMD =−1.07, I2 = 94%, 95%CI = [−1.74,−0.40],
Z = 3.12, p = 0.002), bilirubin (C) (RE: SMD = 0.50, I2 = 0%, 95%CI = [0.31, 0.69], Z = 5.05, p < 0.001),
B12 (D) (RE: SMD = 0.67, I2 = 55%, 95%CI = [0.21, 1.12], Z = 2.87, p = 0.004), and homocysteine (E) (RE:
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standard mean difference.
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Figure 4. Different levels of antioxidants and pro-oxidants in plasma/serum or RBC between male
alcohol-dependent patients and healthy male controls. (A) There are significant differences in SOD
activity between male alcohol-dependent patients and healthy male controls in plasma/serum (RE:
SMD = 0.30, I2 = 0%, 95%CI = [0.11, 0.48], Z = 3.10, p = 0.002) and RBC (RE: SMD = −2.21, I2 = 97%,
95%CI = [−3.59, −0.82], Z = 3.13, p = 0.002). (B) There are significant differences in GPx activity
between male alcohol-dependent patients and healthy male controls in plasma/serum (RE: SMD
= 0.27, I2 = 0%, 95%CI = [0.09, 0.46], Z = 2.86, p = 0.004) and RBC (RE: SMD = −0.89, I2 = 91%,
95%CI = [−1.64, −0.15], Z = 2.36, p = 0.02). (C) Significantly different level of MDA was found in
plasma/serum (RE: SMD = 1.16, I2 = 67%, 95%CI = [0.62, 1.71], Z = 4.21, p < 0.001) but not in RBC.
(D) Significantly different level of bilirubin was found in plasma/serum (RE: SMD = 0.40, I2 = 0%,
95%CI = [0.10, 0.70], Z = 2.64, p = 0.008). CI, confidential interval; GPx, glutathione peroxidase;
MDA, malondialdehyde; RBC, red blood cell; RE, random effect mode; SD, standard deviation; SMD,
standard mean difference; SOD, superoxide dismutase.
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3.4. Sensitivity and Publication Bias Analysis

In the combined effect size estimation, the quantitative sensitivity analysis method
was not used, since there were not enough articles included for statistical assessment.
Instead, the one-by-one deletion method was used to perform the analysis. There was
no obvious change in the combined effect of all the indicators when removing one at a
time. However, in the case of OS biomarkers, the changes were significant when any one
parameter was removed. Similarly, due to the limited number of studies included in the
funnel plot (Figures S2 and S3), we could only qualitatively conclude that there might be
some degree of publication bias for some OS indicators. Finally, the risk of bias for each
article was assessed, as shown in Figures S4 and S5.

4. Discussion

Drinking alcohol is an integral part of most national cultures [56,57]. For example,
drinking may be regarded as a symbol of friendship and social unity. However, uncon-
trolled alcohol consumption is one of the top 10 risk factors for death worldwide [1].
However, studies have shown that no level of alcohol consumption is good for health:
that is, the safe drinking level is no drinking [58]. Drinking alcohol may have a variety
of harmful impacts, such as interpersonal violence [59], suicide and self-harm [60,61],
road accident [62,63], drowning [64], work injury [65,66], and serious socio-economic
burden as well. Alcohol is a commonly used psychoactive substance. Excessive con-
sumption can cause neuropathological symptoms [67], cardiovascular diseases [68], liver
diseases [69], intestinal diseases [70], liver cancers [71], and infectious diseases due to the
weakened immune system of the body [72]. The main component of alcoholic drinks is
ethanol, which has shown to exert oxidative damages to biological macromolecules via
acetaldehyde-DNA/RNA/protein adduct formation, thereby drastically inducing cellular
ROS production and systemic OS [14,19,22]. These toxic conditions can then lead to abrupt
changes in the levels of antioxidant enzymes and other forms of antioxidant molecules in
the body.

SOD plays a major role in antioxidant defense mechanisms [73], especially to protect
mitochondrial, cytoplasmic, and peroxisomal membranes [74,75] where it converts super-
oxide radicals into hydrogen peroxide (H2O2) molecules, which are then biochemically
degraded into water and oxygen by GPx and CAT [76,77], and also regulates the superox-
ide free radical level in the cell [78,79]. Animal experiments have revealed that the SOD
activity in erythrocytes of alcohol-fed rats is significantly lower compared with that of
sham-treated animals [80], which is consistent with the significant decrease in SOD activity
in erythrocytes of AD patients, especially males, in this study. The phenomena might be
explained by the fact that there is a large amount of cytoglobin in erythrocytes, which
has a function similar to SOD and can accelerate the disproportionation of superoxide
radicals with the catalytic efficiency of SOD [80]. Therefore, cytoglobins may inhibit the
enzymatic activity of SOD in RBC by competition due to the greater amount. Additionally,
alcohol consumption can lead to the reduction in zinc, which is an essential trace element
in the human body as well as an important cofactor of SOD and many critical transcription
factors [81]. Alcohol intake also causes deficiency of vitamin D in humans [82], leading to
suppressed mRNA expression and enzymatic activity of SOD1 [83]. Other studies have
reported that free radicals produced by ethanol metabolism can react with copper and
zinc SODs, resulting in their functional inactivation [84]. We noticed that the activity of
SOD in serum/plasma samples of AD patients was significantly increased, which might
be due to the large pool of toxic ROS and the resulting OS, caused by the degradation of
alcohol in the human body. This situation can induce the activation of antioxidant factors,
including SOD, to neutralize those free radicals. The hemolysis caused by RBC membrane
rupture may also be another reason for the increased SOD or GPx activity in serum/plasma
of AD patients. However, it has been shown that the SOD activity in serum/plasma [85],
synaptosomes [86], kidney, and liver [86] decreases during the long-term feeding of an alco-
hol diet to the experimental animals. This inconsistency may indicate that serum/plasma



Antioxidants 2022, 11, 1919 11 of 19

SOD activity in animal experiments may not represent the actual pathobiological scenario
in human AD patients, or it could be individualized effects. Furthermore, the activity of
SOD in plasma/serum is too low, and the measuring methodology should be essential for
precising detection.

GPx commonly refers to the members of glutathione isozyme families that use reduced
GSH as an electron donor to break down H2O2 or organic hydroperoxide into water or
corresponding alcohol [87]. The expressions of different subtypes of GPx in different
tissues of the human body have their specificities [88,89]. GPx enzymes coordinate with
several other signaling molecules to mediate the antioxidant defense processes and inhibit
inflammatory responses [88]. GPx plays an important role in promoting the repair of
vascular endothelial cells and functionally damaged neurotransmitters following the OS
injury and thus helps in delaying cellular aging [90]. Our results showed that the enzymatic
activity of GPx in RBCs of AD patients, especially males, was significantly decreased, which
was consistent with the findings of a previous study [79]. One possible explanation might
be the increased level of acetaldehyde under the OS condition and the resulting inhibition
of activities of both GSH and GPx. Other animal experiments have also supported the
fact that ethanol exposure can significantly increase the GPx activity of male Wistar rats in
the epididymis (21 days) [91] or liver tissues (63 days) [92], which were again consistent
with the results of our meta-analysis using human AD patients. Hemolysis-mediated RBC
breakdown might increase the GPx activity in serum/plasma of AD subjects. However,
the GPx activity in the liver of female mice was significantly decreased after 30 days of
ethanol exposure [93] and also in the kidney and liver of male rats [86], suggesting that
the effects of alcohol-induced GPx activity may vary in a tissue type and gender-specific
manner. Taken together, these factors may partly explain the non-statistically significant
changes in plasma GPx activities in AD patients in this study.

We found that the activities of SOD and GPx were enhanced in plasma/serum samples
and diminished in erythrocytes of AD patients, while these two enzymes often produced
synergistic effects on OS [94]. Therefore, it could be considered in the future as a combined
biomarker of OS levels in such patients. Although animal experiments have shown that
female and male animals may have different levels of OS during alcohol exposure and
that females are more susceptible to alcohol damage [95], due to the lack of sufficient
clinical data in female patients, we could not recapitulate that analysis. In the future, a
large number of studies are needed to explore whether this observation leads to a different
mechanism of OS management in female AD patients than in males.

CAT is a key enzyme in the metabolism of H2O2 and RNS. In our study, no significant
changes in CAT activity were found in serum/plasma or erythrocytes, possibly because
CAT could be involved in the oxidative metabolism of ethanol on the one hand [15,16],
and in the metabolism of H2O2 on the other hand, which may have a competitive inter-
relationship. In addition, studies have demonstrated that there are no adaptive changes
in CAT activity in the myocardium and brain of alcohol-fed rats [96,97], which seems to
indicate that alcohol may not affect CAT activity in humans.

MDA, a toxic by-product and one of the biomarkers of OS [98,99], is the most studied
product of polyunsaturated fatty acid (PUFA) peroxidation [100]. Our results showed
that the most severe lipid-peroxidation-mediated oxidative damages were found in the
serum/plasma and erythrocyte membranes of AD patients compared to that in control
subjects, which was in agreement with the increased MDA levels observed in the 60-day
alcohol-fed albino Wistar rats [79]. In vivo studies have further confirmed that OS-induced
lipid peroxidation causes the maximum damage to the erythrocyte membranes of alcohol-
exposed rats [79,101], which was in line with our previous results [102,103]. Notably, there
could be certain technical artifacts that could influence the above finding. First, hemolysis
might become activated during the isolation of erythrocytes from plasma/serum samples,
which could then increase the MDA level in the respective samples. Second, membrane
phospholipids could undergo rapid peroxidation during the preparation of tissue ho-
mogenates, resulting in the overestimation of MDA levels in the downstream analysis.
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Hence, it is necessary to take preventive measures to avoid any unwanted production
of aldehydes in the process of organelle separation [104]. Third, an inappropriate diet
(e.g., high protein or fat) can also lead to OS, manifested as an increased level of urinary
MDA [105,106]. Moreover, the level of MDA is associated with gender, age [107], vitamin
status, and smoking habits [108]. Considering the above possibilities, the MDA level may
be considered as the OS biomarker for evaluating the status of erythrocyte membrane
damage in AD patients.

Bilirubin is a potent scavenger of ROS and RNS/NO [109,110]. It can modulate
the levels of pro-inflammatory cytokines, thereby inhibiting the migration/infiltration of
activated immune cells to the lesion sites [111]. Experiments in albino male Wistar rats
chronically treated with an alcohol diet for 28 days [112] or 60 days [113], as well as 30 days
of alcohol exposure to ICR mice [114], consistently demonstrated a significant increase
in the total plasma/serum bilirubin levels, which were in line with our observations in
the present study. Bilirubin inhibits the glucuronidation of ethanol via the competitive
binding with UDP-glucuronosyltransferase 1A1 [115]. Hence, it is considered an in vivo
protective factor [116,117] against the pathological onset of cardiovascular diseases and type
2 diabetes in AD patients. Vitamin B12 (cobalamin) deficiency is a common cause of various
neuropsychiatric symptoms [118,119]. Elevated serum B12 levels might be indicative
of many serious underlying health complications such as solid tumors, liver cirrhosis,
hepatic carcinoma, and chronic renal failure [120,121]. In this study, significantly elevated
vitamin B12 levels suggest serious hepatotoxicity in individuals with uncontrolled alcohol
consumption, resulting in the dysfunctional vitamin B12 metabolism [121,122], which
could be reflected in the dramatic elevation of plasma/serum vitamin B12 levels. Therefore,
vitamin B12 could be used as a biomarker to predict the status of liver lesions in this subset
of patients [123]. Homocysteine is a sulfur-containing amino acid, and its metabolism is
related to the cellular concentrations of folic acid and vitamin B12 [124]. Animal studies
using the AD mice model have shown that chronic drinking can significantly increase the
level of plasma homocysteine [125,126], which was consistent with our results. Excessive
homocysteine can impair various physiological mechanisms, especially the amino acid
metabolism pathways [127]. Moreover, it can induce neuronal damage by stimulating
the N-methyl-D-aspartate (NMDA) receptor activity and overproduction of toxic free
radicals, leading to neurodegenerative conditions, brain atrophy, and withdrawal seizures
in susceptible individuals [128]. Serum albumin plays potential roles in anti-inflammatory,
antioxidant, anticoagulant, and anti-platelet aggregation mechanisms [129,130]. A mice
study exhibited a significant decrease in the serum albumin level after 2 days of alcohol
exposure [131]. Similar effects have also been observed in adult Wistar rats following 28
days of alcohol exposure [132]. Taken together, findings from these acute and chronic
alcohol exposure studies were consistent with our results, suggesting that reduced albumin
levels could be a risk factor for cardiovascular diseases [129], liver diseases [133], and
kidney diseases [134]. Thus, changes in albumin levels in AD patients may have certain
clinical implications in the diagnosis, treatment, and rehabilitation strategies.

Among the several limitations of this study, the small number of the included articles
was a major drawback, which led to the fact that the individual OS-related biomarkers used
in our meta-analysis could not be analyzed and corrected for the quantitative publication
bias but could only be analyzed from the funnel plot. We speculate that most of the reported
indicators may have publication bias, which could be attributed to multiple factors, such as
(1) the enrolled studies were published over a long period (1993–2019) and (2) both DSM
and ICD scales have undergone significant improvement in their diagnostic standards
(DMS-III/IV/V and ICD-10/11). The alcohol abuse and alcohol dependence were combined
into alcohol use disorder in DSM-5; therefore, we may exclude some recent research due to
the searching strategy. However, there are some differences in status between alcohol abuse
and alcohol dependence, which may affect oxidative stress status. First, alcohol abuse (ICD-
10-F10.1) patients are those who have suffered physical or mental harm because of alcohol
use, but some of these patients may not meet the diagnosis of alcohol dependence (ICD-10-
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F10.2). Second, alcohol-abuse syndrome did not have an emphasis on repetitive drinking as
the cause, whereas alcohol-dependence syndrome had an emphasis on repetitive drinking
as well as dependence leading to illness. The mechanism of the changes in antioxidant
levels in alcohol-abuse patients at the time of admission (onset) may be different with
alcohol-dependent patients; for example, the former may be a manifestation of acute
physiological stress, while the latter is a manifestation of long-term alcohol effects on the
body. Third, there is possible heterogeneity in patient enrollment due to the alterations
in the pathological standards. The inconsistency between the male and female ratios in
some studies (particularly in some articles that studied only male patients) and different
geographical regions may also contribute to the existence of publication bias. Therefore,
we chose to use the combined effect size estimation method based on the results of the
heterogeneity tests. In this case, the use of the RE model (I2 > 50%) might have amplified the
publication bias of the small sample size study due to the application of the equal-weight
method [135,136]. Although sensitivity analyses showed relatively good stability of the
effect sizes of OS biomarkers, the small number of studies, the differences in the quality
of individual samples, and the use of the RE model might also lead to the poor quality of
results in this study. Additionally, the level of OS in female patients could not be studied
due to the inclusion of articles focusing mostly on male patients. Future investigations
should be conducted involving both genders at equal ratios to eliminate the possibility of
gender bias.

In summary, to obtain in-depth pathological information about the altered levels of
OS markers in AD patients, special attention should be given to the number of studies
and sample sizes with statistical significance, excluding other confounding factors (e.g.,
smoking, diabetes, etc.) and designing experimental plans with scientific rigor, including
age- and gender-matched controls, as well as other possible factors.

5. Conclusions

Scientific research on OS biomarkers is useful to provide an objective basis for clinical
rehabilitation for AD subjects. Through the meta-analysis of published articles on the levels
of OS in AD patients, we found that there may be a fatal level of OS in such patients, which
might have caused serious health consequences. Amongst them, antioxidant enzymes
such as SOD and GPx exhibited opposite trends in serum/plasma and RBC samples of
AD patients, which could be used as the marker for characterizing OS in this subset of
patients, especially in men. However, we should pay more attention to the changes in some
critical antioxidant factors such as albumin, vitamin B, and homocysteine to prevent several
chronic and irreversible degenerative diseases, including liver diseases, cardiovascular
diseases, and metabolic syndromes, as well as neuropsychiatric disorders.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antiox11101919/s1, Figure S1: Comparing the levels of an-
tioxidants of alcohol-dependent patients and healthy controls. There was no significant differ-
ence found in CAT activity (A) and GSH level (B) in RBC, or in B6 (C) and folic acid (D) in
plasma/serum. In males, there was also no significant difference found in CAT activity (E) in RBC or
albumin (F) in plasma/serum between alcohol-dependent patients and healthy controls. B6, vitamin
B6; CAT, catalase; CI, confidential interval; GSH, glutathione; RBC, red blood cells; SD, standard
deviation; Figure S2: The funnel plot of antioxidants and pro-oxidants. (A) SOD; (B) CAT; (C) GPx;
(D) GSH; (E) MDA; (F) albumin; (G) bilirubin; (H) vitamin B6; (I) vitamin B12; (J) folic acid; (K) homo-
cysteine. B6/B12, vitamin B6/B12; CAT, catalase; GPx, glutathione peroxidase; GSH, glutathione;
MDA, malondialdehyde; RBC, red blood cells; SE, standard error; SMD, standard mean difference;
SOD, superoxide dismutase. Figure S3: The funnel plot of antioxidants and pro-oxidants in male.
(A) SOD; (B) CAT; (C) GPx; (D) MDA; (E) albumin; (F) bilirubin. CAT, catalase; GPx, glutathione
peroxidase; MDA, malondialdehyde; RBC, red blood cells; SE, standard error; SMD, standard mean
difference; SOD, superoxide dismutase; Figure S4: Risk of bias summary: review authors’ judgements
about each risk of bias item for each included study; Figure S5: Risk of bias graph: review authors’
judgements about each risk of bias item presented as percentages across all included studies.
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