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1 Introduction 
In the last 20 years the response of nonlinear dynamical 

systems to stochastic excitation has been extensively studied. 
The diffusion processes approach to this problem leads to the 
Kolmogorov equations, which have, until now, been explicitly 
solved only in a few simple cases. For linear systems the 
transition probability density function can be obtained by a 
variety of methods [ l ,  21, whereas in the nonlinear case only 
some specific one-dimensional systems have been exactly 
solved so far [3]. An honest survey of the developments in this 
area can be found in [3, 41. In recent years the use of ap- 
proximate techniques in the treatment of random vibrations 
has become increasingly popular [5-71. It is expected that in 
the next decade this trend will continue as computing costs 
decrease. 

Our present knowledge of the steady-state response of 
nonlinear systems to white noise excitation is also far from a 
state of maturity [3]. The exact steady-state probability 
density for any one-dimensional nonlinear system, if it exists, 
has been found. Some specific nonlinear dynamical systems 
of higher dimensions have been considered [3], but in general 
very little is known. If the steady-state probability density of a 
dynamical system exists and can be found, then it may be 
possible to obtain the approximate nonstationary response by 
perturbation analysis [8]; the exact procedures to be used are 
dependent on the system under consideration. The purpose of 
this paper is to construct the exact steady-state probability 
density of a class of nonlinear dynamical systems subjected to 
stochastic excitation. It will also be shown that some 
previously published results [3] are particular cases of our 
present investigation. 

2 Construction of Steady-State Solution 
Consider the autonomous dynamical system in R2" whose 

behavior when subjected to white noise excitation is described 
by the following equation 

x;(O) = y,. 

for 1 = 1, 2, . . . . , n, where w, ( t )  are independent Wiener 
processes with zero means and E(dw, ( t )dw,  ( t ) )  =2D6,dt. 
The functions g, (x l  , x3,  . . . . , assumed to arise from 
a potential function V(xl  , x3 , . . . . , xZn- 

and H is defined by 

where 
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I, J 
At the present stage we further assume that 

( i )  f ,  H, Vhave continuous second-order derivatives, H r O  
and there exists an H,, > O  such that f ( H )  rO if H>H, .  In 
addition, 

(ii) There exists a constant L such that 
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where the vector x is defined by (4) and the arguments of the 
functions on the left-hand side are those components of x 
previously indicated. 

These restrictions will be relaxed later on. The preceding 
assumptions are such that the Lipschitz conditions for system 
(1) are satisfied. A little manipulation with L and the Lip- 
schitz constants reveals that assumptions (i) and (ii) are 
sufficient to guarantee the following result of Ito [3, 91: there 
exists an almost everywhere continuous solution of system (1) 
which is a homogeneous Markov process, the solution being 
unique up to a stochastic equivalence. Moreover, when an 
invariant distribution exists, the unique steady-state 
probability density p(x)  may be obtained from the stationary 
form of the Fokker-Planck equation where ap/at =O. The 
previous statement expresses the equivalence under very mild 
restrictions of the stochastic differential equations approach 
and the diffusion processes approach [lo], a topic that has 
been rigorously examined by mathematicians. Hence we will 
have constructed the only steady-state probability density 
from the stationary Fokker-Planck equation subsequently, 
under assumptions ( I ]  and (ii). 

We have been interpreting the dynamical system (1) using 
Ito calculus [lo]. It is immaterial whether system (1) is 
regarded in the sense of Ito or in the sense of Stratonovich 
[ l l ,  121 since in this particular case the so-called Wong and 
Zakai [13] corrections terms to the drift vector are identically 
zero. It is for this reason that assumption (1) need only hold 
on every finite domain. (Suppose S  is a system where con- 
ditions ( i )  only hold on every finite region. Define a sequence 
of systems S ,  in the following way: S ,  is the restriction of S  
on the closed ball B(0, n), and f, H, V are assigned suitable 
constant values outside B(0, n). As n - m, S ,  tends to S  and, 
for the type of systems considered in this paper [13, 141, the 
solution of S ,  converges to the solution of S .  (We have not 
discussed condition (if) because it will later be removed.) Let 
p (x, t l y ) dx be the probability of the system (1) in the range 
(x, x+ dx) at time t given that it is initially at y.  The associated 
system of Fokker-Planck equations has the form 

As previously explained, the steady-state density is governed 
by the following system of linear partial differential equations 

First we observe that if p (x) satisfies the following conditions 
it will certainly be a solution of (7) 

Since (8) constitutes a linear first-order system of partial 
differential equations, we may solve them by the method of 
characteristics [15]. The subsidiary equations are 

for which two independent integrals are 

p = constant (10) 

and 

where ki is a constant depending on x2,, j =  1, 2, . . . . , n, 
j# i. The system of equations (1 1) is equivalent to 

Thus the general solution for (8) is of the form 

P= 4 ( H )  (13) 

where 4 is an arbitrary function. Since p and its first partial 
derivatives vanish as Ix I - co, equations (9) imply 

Substituting (13) into (14), we have 

d 4  
h , ( ~ ~ ~ )  [ D ~  +f(H)$] + O  i =  1,2, . . . . ,n (15) 

Assuming that none of h, is identically zero, it follows that 

where A is a normalizing constant. Hence the steady state 
density is given by 

where the denominator is a 2n-fold integral. It can be easily 
checked that the expression defined in (16) satisfies all the 
requirements for a probability density function and therefore 
it represents the unique steady-state density of the coupled 
nonlinear dynamical system (I), under the assumptions ( I ]  and 
(if). 

The assumption (ii) is a rather severe growth restriction on 
the class of systems under consideration. It should be 
removed if our results are to be of practical use. To this end 
we recall the concept of well-behaved solutions (see Ap- 
pendix). Now it can be shown that under assumption (i) the 
solution (16) is a well-behaved solution of the stationary 
Fokker-Planck equation (7). Since it has been shown that a 
well-behaved solution of the stationary Fokker-Planck 
equation is unique [8, 161, we have the following result. 

Theorem. The solution (16) is the unique steady-state 
solution of the dynamical system (1) subjected only to con- 
ditions (i). 

It should be noted that the last theorem can also be 
established by using only the diffusion processes approach 
(i.e., a direct interpretation of the solution of the stochastic 
differential equation (1); using Ito calculus is not required). In 
this case (see the Appendix) some caution is needed to furnish 
a rigorous argument because the hard machinery needed 
comes from the theory of partial differential equations [8]. It 
is clear that assumption (i) is sufficient but not necessary and 
thus can be relaxed. In order to keep physically interpretable 
conditions, this will not be done in this paper. 
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3 Applications and Further Discussion 
We shall apply the theorem established in the previous 

section to some classical oscillator problems, mentioning 
possible extensions when appropriate. 

Example 1. The motion of a Brownian particle in a 
constant force field with dissipation of Rayleigh type [I, 171 
may be described by 

x + P x + g = w ( t )  ( 1  7) 

where E ( w  (S) w ( t )  ) =2D6(t-s) . The associated Fokker- 
Planck equation is 

We assume that there is a reflecting barrier at x = 0 ,  so that the 
particle does not disappear toward x =  - o.. We may consider 
the present system as a particular case of (1) and make the 
following identifications: 

g1 = g  
Then H =  1/2x2 +gx and the unique steady-state density as 
given by (16) is - 

for xrO,  - CQ e x <  o.. This is the well-known barometric 
distribution [I]. 

Example 2. Consider the following self-excited oscillator 
corrupted by white noise 

x-€(1 -x2  -x2)x+x= ~ ( t )  (20) 

where E>O. This can be written in the equivalent form 

Hence by taking h, = x 2 ,  gl = x l ,  we have H=1/2 
~ , ~ + 1 / 2 x ~ ~ ,  f =  - ~ ( 1 -  2H), and the steady-state density is 
given by 

where C =  j"j" exp(~ /DH( l -  H )  )dxldx2. It is easy to 
check that the function (22) is a well-behaved solution of the 
associated Fokker-Planck equation. It is also easy to see that 
all circles on the x,x2 plane with centers at the origin are loci 
of constant probability for the steady-state distribution. 
Moreover the steady-state density attains a maximum when 
H =  1/2 corresponding to x1 + x z Z  = 1, and decreases ex- 
ponentially on either side of the unit circle. If we now examine 
the deterministic oscillator obtained by omitting the last term 
on the right-hand side of (21), we will find by a standard 
analysis using the Poincart-Bendixson theorem [ I S ]  that the 
unit circle is the unique limit cycle for the deterministic 
oscillator. 

The information given in the last paragraph suggests that 
the nonstationary response of the system (21) in the neigh- 
borhood of the limit cycle may be obtained by perturbation 
techniques. This has been done by one of us for the case of 
weak damping and weak excitation [8], when e ,  D <  < 1. The 
approximate spectral density has also been obtained by the 
same means. 

Example 3. A class of generalized Van der Pol-Rayleigh 
oscillators subjected to white noise excitation is described by 
the equation [3] 

x + f ( H ) l t + g ( x ) = w ( t ) x ( O ) = y , x ( O ) = y  (23) 
where E( (dw ( t )  ) 2 ,  = 2D dt. The equivalent first-order 
system is 

where H =  1/2x22 + S$g(nd{ is a measure of the system 
energy. In this case the associated Fokker-Planck equation is 

The steady-state solution as given by (16) is 

where C-I = j> j?,exp (- 1 / D j ~ ( f l d f l d x l d x 2 .  If the 
system (24) possesses limit cycles, then the steady-state density 
(26) will have relative peaks on these limit cycles, with ex- 
ponential decay away from the limit cycles. The nonstationary 
response in the neighborhood of a limit cycle may be obtained 
by perturbation techniques, the particular methods used are 
dependent on the form of f (H) .  Moreover, asymptotic 
matching on regions enclosed by two adjacent limit cycles 
may be used in some cases to determine a uniform ap- 
proximation. This is the subject of a subsequent paper. 

4 ~ Conclusion 
In this paper the exact steady-state probability density 

function of a class of stochastic dynamical systems has been 
constructed. The construction has been justified by two 
alternative procedures. The result has been tested in some 
classical oscillator problems. When the steady-state density is 
known, the possibility of using perturbation techniques to 
compute the nonstationary response has been pointed out. In 
fact, a multiple-scale analysis has been used by one of us in an 
earlier paper [8] to derive the approximate nonstationary 
response of a specific oscillator. The conditions (0 made in 
this paper are sufficient but not necessary. Some of the 
smoothness requirements may be relaxed. to handle specific 
problems. 
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A P P E N D I X  

Many problems in mechanics and related fields involving 
the response of dynamical systems to stochastic excitation can 
be modeled by stochastic differential equations of the form 

m 

h ( t )  = a ( t , x ( t )  ) d t+  u k ( t , x ( t )  ) d w k ( t )  
k =  1 

x ( t o ) = y  (27) 
where x ,  a, ukeRrn for k =  1, 2 ,  . . . . , m,  and the w k ( t )  for 
k =  1, 2, . . . . , m are independent Wiener processes, with 
E(dw,  ( t ) d w j  ( t )  ) =6,dt. It can be shown that the response in 
this case is a Markov process. In appropriate circumstances 
[3, 91, the transition probability density function satisfies the 
Fokker-Planck equation in a region D 

with initial condition 

lim p (x , t  l y , s ) = 6 ( ~ - y )  
f - S  

The coefficients a, ,  b, are derived in the following way: a,  are 
the components of a ( t ,  x) and 

m 

b~ = C u,k (t,x)u,k ( t , x )  
k =  l 

(29) 

where urs, r =  1, 2, . . . . , m, are the components of us ( t ,  x) 
defined in (27). A well-behaved solution of the Fokker-Planck 
equation (28) is defined in the following way: 

( I )  If p, is a solution of the stationary Fokker-Planck 
equation Lp = 0 ,  then it is well-behaved if 

on the boundary aD of the region D, where n, are the com- 
ponents of the outward normal to aD. If D is an infinite 
domain, then (30) should be taken in a limiting sense. 

(11) If p is a solution of the time-dependent Fokker- 
Planck equation, it is well behaved if equations (30) are 
satisfied with p, replaced by p ,  and for all solutions p, of the 
stationary equation Lp = 0, 

3 

for all t  >0 ,  with the convergence being uniform in t  if D is an 
infinite domain. 

The following has been established [8, 161. 

Theorem 
Well-behaved solutions to the Fokker-Planck equation are 

unique. Under some mild restrictions [8] the well-behaved 
solution p of the time-dependent Fokker-Planck equation 
converges in L1 to a function of p, as t - w  andp, is exactly a 
solution obtained by solving that stationary equation L, = 0 .  

Because of the exponential nature of p defined in (16) and 
the conditions (i), it is easy to check that the solution (16) 
satisfies (30) and is thus the unique well-behaved steady-state 
solution. By assuming that the time-dependent solution of 
(28) is well behaved [8] ,  a self-consistent diffusion processes 
approach based on the Fokker-Planck equation may be 
developed to derive the same results as in Section 2.  In this 
case the intermediate use of assumption (IZ) is not needed. 

832 1 Vol. 49, SEPTEMBER 1982 Transactions of the ASME 


