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The steady two-dimensional radial flow of viscous fluid
between two inclined plane walls

By L. RoseNaEAD, Pr.D., D.Sc.
University of Liverpool

(Communicated by @. I. Taylor, F.R.S.— Received 2 October 1939)

This paper considers the steady two-dimensional radial flow of viscous

fluid between plane walls which either converge or diverge. A general
solution is obtained in terms of elliptic functions and the various mathe-

matically possible types of flow are discussed.

1. INTRODUCTION AND SUMMARY

In this paper we consider the steady radial two-dimensional flow of viscous
fluid between plane walls which either converge or diverge. The investiga-
tions on this subject were started by Jeffery (1915) and they have proved to
be the starting-point for a number of researches by other authors, notably
Hamel (1916), Harrison (1919), Karman (1922), Tollmien (1931), Noether
(1931) and Dean (1934). These investigations deal with specialized aspects
of the question and do not contain a systematic treatment of the general
problem. It has been known since 1915 that a general solution is possible
in terms of elliptic functions. In spite of this, however, the only case which is
quoted in text-books and manuals is that which is, in effect, the degenerate
case of the elliptic functions (see, for example, Goldstein 1938, p. 109).

The following investigation was started in the hope that it would lead to
a clear picture of the change in flow associated with increasing Reynolds
number, R. It was stimulated by the statement which is given by Goldstein
(1938, p. 106). The following is a summary of the statement: For inflow the
magnitude of the velocity is a maximum in the centre of the channel and
diminishes uniformly to zero at the walls. With increasing Reynolds number
the velocity profile always remains of this same type but becomes flatter and
flatter in the middle dropping very rapidly to zero at the walls. For divergent
flow with increasing Reynolds number the state of affairs is quite different.
At small Reynolds numbers the magnitude of the velocity is & maximum in
the middle of the channel and it decreases uniformly towards the walls.
With increasing Reynolds number the flow becomes more and more con-
centrated in the centre of the channel until finally, at some critical value
of R, regions of inflow appear on either side of the region of outflow. With

[ 436 ]
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a larger outward flux than that associated with this critical value of R
three solutions are possible, with the backward flow near one wall or the
other, or near both walls. It seems possible that at still larger values of R
the number of possible solutions also increases.

The above statement must, however, be modified in the light of the
following investigation, the principal results of which are given below. At
this stage it becomes necessary to define more closely what is meant by
“outflow” and “inflow”. In most previous investigations the Reynolds
number R was defined to be of the form [ | uy,, |/v, where | was some repre-
sentative length, » the coefficient of kinematic viscosity, and | up,, | was the
maximum magnitude of the velocity in the flow. As we are now dealing with
velocity profiles which contain both outflow and inflow the above definition
of R cannot be used, for it makes no distinction between the Reynolds
number in the case | Upmax. outwards | = %os | Ymax. nwaras | = %, and in the case
| %max. outwards | = %1 | Ymax. tnwards | = %o- We therefore define the Reynolds
number of the flow as Q/2v, where @ is the volume of fluid passing from the
narrower end of the channel to the wider end, in unit time, between two
planes which are at unit distance apart and are perpendicular to both the
channel walls. A positive value of R will correspond to average outflow and
a negative value of R to average inflow.

In the following investigation it was found advantageous, for purposes of
mathematical simplicity, to use the Weierstrassian % function as much as
possible but to transform to the Jacobian elliptic function for purposes of
numerical calculation.

The principal results are as follows: For every pair of values of « and R
the number of mathematically possible velocity profiles of radial motion is
infinite (see § 4). The profiles may or may not be symmetrical with respect to
the central line of the channel. If 7 > a > {7 pure outflow is impossiblc, and
there is a range of values of small Reynolds number in which pure inflow is
impossible. The effect of increasing R in outflow is to exclude, progressively,
more and more of the simpler types of flow. No such exclusion is introduced
when | R | is increased in inflow. With increasing Reynolds number in pure
inflow, and with small values of &, the velocity profile exhibits all the well-
known characteristics of boundary layers near the walls, and an approxi-
mately constant velocity across the rest of the channel. In pure outflow the
flow becomes more and more concentrated in the centre of the channel as
R is increased, until finally regions of inflow occur near the walls.

The analysis described below gives the mathematically possible types of
flow but does not indicate which type of flow is actually assumed by the
fluid. Considerations of stability would probably show that many of the
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types of flow are unstable, but the present state of the theory of the stability
of fluid motion does not seem to offer much hope that information will be
obtained along these lines in the near future. It should be noted that in an
actual experiment boundary conditions are imposed not only by the friction
at the walls but also by the pressure conditions at the inlet and outlet ends
of the channel. The following investigation may be considered as one which
determines the proper pressure distributions over the ends which allow of
steady laminar radial motion. If in an experiment the pressure distribution
is not one of those obtained below, the flow may be neither steady, laminar
nor radial. In normal experiments the pressure distribution over the ends
approximates most closely to those required for pure inflow and outflow, so
that these types are more likely to have been observed than are the other
ones.

It is possible, however, to obtain a fairly plausible picture of the change of
flow by the help of speculative assumptions. If we make the assumption
that “If the pressure conditions over the inlet and outlet ends are not
rigidly applied, that is, if the pressure profile can be assumed to be loosely
self-adjusting, then the velocity profile will be that one which has the smallest
number of crests and troughs”, it is possible to deduce a simple systematic
sequence of chang=. In inflow the velocity profile would always be of the
symmetrical pure inflow type, and in outflow the sequence of change with
increasing R is as shown in figure 4. It is assumed, also, that the non-
symmetrical types, and also those which, even though they have inflow
along the central line, give a positive value for ¢, would not manifest them-
selves in experiment. This speculation can be pressed still further to provide
information as to the stability of the various types of flow (see p. 467).

2. LIST OF SYMBOLS AND ELEMENTARY PROPERTIES OF
SOME OF THE PRINCIPAL FUNCTIONS

22 is the angle between the walls.

OV, OW are the lines of section of the walls with a representative plane
which is at right angles to the line of intersection of the walls.

OX is the bisector of OV and OW.

r,0,h are the cylindrical coordinates, where r is measured from O, @ is
measured from the central line OX, and 4 is measured in a direction
perpendicular to the representative plane.

1 is the distance along OX of a fixed point O'.

u, v, w are the velocity components in the directions of r, 8, h. (Since the
flow is radial » = w = 0.)
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p, i, v are the density, coefficient of viscosity, coefficient of kinematic
viscosity, of the fluid.

@ is the volume of fluid passing from the narrower end of the channel to the
wider end, in unit time, between two planes which are at unit distance
apart and are perpendicular to both walls. (@ may be either positive
or negative.)

F(0) = ru/2v,

f(6) = —H{F(0)+1} = p(0—0,). )

R is the Reynolds number = /2y =f F(0)d6. (N.B. A positive value of

R denotes average outflow and a negative one denotes average inflow.)
a,b,a,, 0, are constants of integration (a, b, o, are real and ¢, complex).
p is the pressure in the fluid at », 8, k. This is equal to

4‘” ‘ F(0) + e Y + constant.

©(0) is the Weierstrassian elliptic function defined by the equation

£'(0)* = 40° — g2 0 — g5,
where the invariants g, and g; are respectively equal to (4 —a) and
(8 — 3a— 3b).
ey, €3, €5 are the roots of the cubic 4s% —g,s — g, = 0. If the roots are all real,
they are chosen in such a way that e, >e,>e;. If the roots are not all
real, then since g, and g, are real, two of the roots must be complex,
and in this case they are chosen so that

=A+iB, e;=—-24, e3=A—iB,
where A and B are real.
ga = —4(ege3+e5e, +e1€y) = 2(ef +ef +€f).
g3 = 4e,¢5€4.
H? = (eg—e,) (ea—e3) = 942+ B? when the roots are complex.
4 is the discriminant of the cubic 45— g,s — g, = 0. It is equal to

16(ey —e3)2 (e5—ey)% (e, —€5) = g3 — 27¢3.

Wy, W,, wg are the half-periods of the @ function. If 4 is positive, that is, if
all the roots of the equation 4s®—g,s—g, = 0 are real, then the real
period is defined to be 2w, and the imaginary period is defined to be
2wy. If A is negative, that is, if only one root is real, then the real period
is defined to be 2w,, the other two periods being conjugate complex
numbers:

2w, = 2(C—1iD), 2w,=—4C, 2wz = 2(C+:1iD),
where C and D are real.
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K, E are the complete elliptic integrals of the first and second kinds.
k = \/{(eg—e5)/(e, — ¢5)} is the modulus of the elliptic integrals.
ky = \/{(e;—€5)/(e;— ¢5)} is the complementary modulus = J(A—=k2).

E(u) is the incomplete elliptic integral of the second kind = f : dn?udu.

Z(u) is the Jacobian Zeta function. It is defined by the equation
Z(u) = E(u)—uE/K.
X = e, —e;. When ¢,,¢,, ¢, are real, X >0.
ys Tas Tare-- Y€ the positive roots, in ascending order of magnitude, of the
equation
sn2(pyX) = {(1+4) X — 1}/3%2X.
They are connected by the relations
g =20, -1y, 3= 20+,
Ny = 40y —7y, 15 = 4w, 7, ete.
When 6, = wg and ey, ¢,, ¢5 are real, then

8= F‘F(n)dn >0,
0

7 =2 Fm)dn<o.

LY

3. THE EQUATIONS OF MOTION AND CONTINUITY

We are considering the steady radial motion of an incompressible viscous
fluid in the region between inclined plane walls in the absence of external
forces. The flow is two-dimensional, the representative plane being per-
pendicular to the channel walls. In this plane the co-ordinates are r,0,
where ris the distance from O, the intersection of the walls, and @ is measured
from the central line OX (cf. figure 1). The channel walls cut the repre-
sentative plane in the lines OV, OW (6 = F ). The co-ordinate perpendi-
cular to this plane is k. The flow diverges from, or converges to, the line
represented by r = 0. The components of velocity in the directions of
r,0,h are u,v,w. With the assumptions made above it can be seen that
v = w = 0. The equation of continuity is

ou u
E+;=0, (3-1)

where % is a function of r and 6 only. This equation can only be satisfied if
‘= 2vF(0)[r, (3-2)
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where F(6) is a function of @ only. The total flux of fluid, per unit length of

z axis, is ) where
@ @

Q= | rudd=2v| F(b)do. (3-3)

The Reynolds number of the flow, R, can be defined by the equation

(-4
R=0Q/2v= F(0)de. (3-4)
et
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'\a Using the form of u suggested by (3-2), these become
= _4F*  10p  20°F”
3
o op 4uvF’
2 --B @9
o
= where the accents denote differentiation with respect to €. From (3-8) we
2 h
8 see that
4y
p =15 FO)+p, (), (39)

where p,(r) is a function of » only. If this form is inserted in (3:7), we get

r38p1_ 2 ” 2

Vol. 175. A. 29
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The left-hand side of (3-10) is a function of r and the right-hand side is a
function of 6. They are both therefore equal to a constant which, from the
nature of the expressions, must be real. Putting this constant equal to
—ar?, we find

Py = ‘3‘“—2 + const., (3-11)

and 2F"+4F*+8F +a = 0. (3:12)
Multiplying (3-12) by F’ and integrating, we obtain

F2+4F3 4+ 4F*+aF = constant = b, say. (3-13)
In this equation put F(0) = —{3f(0)+ 1}, (3-14)
and (3-13) becomes S(0)2 = 4f3—gsf— g3, (3:15)
wlhiere gz = }(4—a), ‘l (316)

gs = #7(8—3a—3b).|

From the definition of F(f) and from (3-12) and (3:13) it should be noted
that a and b, and hence also g, and g,, are real. Further, « may be either
positive or negative, but & must be positive, for , and hence F (/) is zero at
the walls and b is therefore equal to the value of F'(#)* when ## = + a. The
solution of (3-15) is

J(0) = p(0—0,), (3-17)

where 0, is a constant of integration which may, possibly, be complex. The
solution of the problem under consideration is therefore

\

2p
u=—"{30(0—0,)+1}, .
where the invariants of the @ function are given by (3:16). This solution is
subject to the following limitations:

; (3:18)
p=— —’flr' {3p(6—6

(1) 0, must be a constant which makes « real and non-infinite for all values
of 0 in the range 2> 0> —a.

(ii) « must be zero at the walls, that is at # = + 2. Hence F(#) = 0, or
f(@) =—%whenf = +a.

In the following investigation we assume that the walls do not actually
reach the point r = 0, but fall short of it, so that the singularities which occur
there are avoided.
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4. THE VELOCITY PROFILE
Since f(a) = f(—a) = —}, we have
P(a—0,) = pa+0,).
This equation can only be satisfied if
a—0y = + (@ +0,) + 2mw, + 2nwg  (m,n integers),

and this gives -0 ]

In special cases both these possibilities may be satisfied at the same time.
Since the flow depends upon @(f —6,) and not upon 6, there is no loss of
generality in making @, lie within the fundamental period parallelogram.
This is equivalent to restricting , to one or other of the values 0, w,, w,, w,.
6, cannot be zero, for then » would be infinite at @ = 0. Later in this section
it is shown that two cases arise. In the first case, w, and w, are complex
conjugate numbers and a, being real, can only have the values mw,. In the
second case w, is real and w, is imaginary, so that here o can only be put
equal to mw,.

These possibilities must be considered in conjunction with the fact that
©(0—0,) must be real for all values of 6. The investigation must here be
separated into two sections:

(I) The roots of the cubic

48 —gy8—g3 =0

are not all real. This corresponds to the case when the discriminant 4 is
negative. Since g, and g, are real, one of the roots must be real, e, say, and
the others, e; and e;, must be conjugate complex numbers. We put

e=A+1B, e;=—24, e3=A—iB,
where A4 and B are real. The discriminant 4 is equal to —64B2H* where
H = +,/(942%+ B?).
o, and w, are the roots of the equation

Plwy) =€, and  ©(w;) = e;.
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Since e, and ¢, are conjugate complex numbers and since g, and g, are real,
one solution of these equations can be put into the form

w, = C—iD, w,=-2C, wz=C+iD,
where € and D are real. These values are not unique, since, for example,
w,=—C—iD, wy=2D, wy=C—iD

is another set of values for which e, and e, are conjugate complex numbers.
This second form, and other possible ones, are just alternative ways of
describing the fundamental period parallelogram shown in figure 2. They
introduce no feature that is not contained by the chosen values of w,, w,
and w,, and they can, therefore, be neglected. If 0 <A <1, then along the
lines ATC [z = A.4C], BTD [z = 2w, +1A.4D], s, which is equal to @(z),

Z=2w3

=0
s-+ooA

=20,

Ficure 2. 8= f(z); 4<0, g, and g, real.

assumes all real values from — oo to + oo twice over. These then are the only
lines within the period parallelogram on which s assumes real values. Along
ATC the variable is real so that we must here identify #, with w,, which is
the only real half-period. Further, the range of 0 is a>6> —a, and if
20> 40, i.e. 2a> | 2w, |, the range will contain at least one point congruent
with the point of zero argument, where ((2) is infinite. This must be avoided
and hence the solution here is

f(0) = p(0—w,), (41)

where |w,|>a and where, in order to satisfy the boundary condition,
e, < — 4. It should be noted also that this is the only type of solution under
(I), for if & were to be equal to an integral multiple of w, therange x> 6> —a
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would contain at least one point at which the velocity would be infinite.
The solution under (I) is therefore

Bl —oysaa=eie=6) . o4, H'

.f(a) - @(0 wa) = eﬁ+ 2 p(la) —262 E = 2A+KJ(0)+2A
_ 1—cn(260,H) sn®(0,/H)dn*6,/H) -
=idal 1+cn(20JH) et en®(0\H) | %

where k* = % (1 +%) and w, = K/,/H (see Milne-Thomson 1931, pp. xi and

xiv). The boundary condition is

_3H—(84-1)
en(2avH) = 35 64-1) ea)
sn*(ay/H)dn*(aH) 64 -1 ;
or on*(ayH) =g (4:3a)
In order that this should have a solution 64 > 1, which is the condition
€< — 3.

On the central line f(f) =e, = —24 and F(0) is therefore equal to
(64 — 1) which is positive. On account of the nature of (€ — w,) we see that
F(0) has a positive value on the central line and decreases monotonically
towards the walls where its value is zero. The case considered under (I)
always, therefore, represents outflow which is symmetrical with respect to
the central line.

~ (II) We have discussed the case in which 4 <0. Let us now discuss that
in which 4 > 0. This, since g, and g, are real, corresponds to the case in which

all the roots of the cubic
453 —go8—gs = 0

are real. Let them be denoted by e, e, e; chosen in such a way that
e, >e,>¢e3. (The degenerate cases, in which two or three of the roots are
equal, will be discussed separately. They correspond to 4 = 0.)

In the non-degenerate cases one of the periods, 2w, say, is perfectly real,
and one, 2w, say, is perfectly imaginary (see Whittaker and Watson 1920,
p. 444). The period parallelogram is then as shown in figure 3. Along the
four lines APB (2= A.20,), ASD (2 =A.2w;), PTR (z = w,+A.2w,),
STQ (z = w3+A.2w,), where 0<A <1, the Weierstrassian function (z)
takes all real values from —o0 to +co twice over, so that these are the only
lines within the period parallelogram on which ¢(z) assumes real values.

We cannot identify 6, with w,, for the argument of @(6—6,) would then
be represented by points on APB. Along this line @(6—6,) is always



Downloaded from https://royalsocietypublishing.org/ on 09 August 2022

446 L. Rosenhead

positive, and it would therefore be impossible to satisfy the boundary
condition f(x) = fo(x—0,) = — 4. Hence, since o and w, are real, the follow-

ing possibilities arise:
(i) 0y = ws. The boundary condition is
Pla—wg) = —4. (4:4)
In order that this condition may be satisfied it is essential that

€= — 263: 4:5
2

for the argument of ((x — w;) is a peint on the line ST'Q of figure 3, and along
this line the value of @(z) lies between ¢, and e;. If (4-5) is satisfied, then
(4-4) may be used to determine . The number of values of « satisfying (4-4)
is infinite. This will be referred to later in this section.

z=w,+2wy
2=Clwg $=¢,
D R c 1’—2(02
S=—00
sy 8 T|z=—w, 0 z=2wtw,
s=033 S=¢, S=0,
§=-00 B
§=+00 P S=+00" > =20
2-04 2=, 1
s=¢,

F1Gure 3. 8= (@(2); 4> 0, g, and g, real.

(i) € = w,. The boundary condition is

Pla—w,} = plla—w,) - w5} = — 1. (4-6)
Here again ¢, > — } > ¢; and there is no unique solution of (4:6).

(iii) & = (27 + 1) w,, where n is any positive integer. From a consideration
of the values of ()(f — ,) in the range & > 0 > — a it is clear that the imaginary
part of 6, must be equal to w, and that €;> —1>e, If we put

0y = oty + g, (4:7)
where «, is real, the equation for «, becomes

@{(“o—wl)‘ws} =—1. (4-8)
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(iv) @ = 2nw,, where n is any positive integer. Again we see that #, must
be of the form suggested by (4:7) and that e, > — } > e;. The equation for

is here
oy —wg} = —1. (4-9)

The obvious similarity between the boundary conditions (4-4), (4:6),
(4:8) and (4-9) suggests that the four special cases are intimately connected.
This is so, as the following method shows. Put

X =¢—e; and k2X =e,—e, (4-10)
X and 42X are always positive. In terms of k* and X we have
e, =32-4)X; e=32k2-1)X; eg=—3(1+F)X; 0, =KX, (411)
where K is the complete elliptic integral of the first kind, and k is the
modulus of the elliptic integral. The condition ¢, > — } > e; now becomes
(22 -1)X>—-1>—(1+4k) X.

This condition assumes different forms according as k? is less than or greater
than }. Expressed more precisely the condition (4-5) is:

When k%< 1, X>

1 = 1
1—-2k2" 1+k2’]

S (4-12)
and when 42>}, oo>X>1—+k—2.J

The fundamental boundary equation, that is, the one from which all the
others can be obtained, is taken to be (4-4). Consider the equation

(71— wg) = ey+ (eg— €g) sn* {1y/(e, — €3)}
= }X {3k2sn? (pyX)— 1 — &2} = —}.

This can be put into the form
sn? (nyX) = {(1+4k*) X —1}/3k2X. (4:13)

The conditions laid down in (4-12) are just those which ensure that (4-13),
considered as an equation for 7, has real solutions. Let ,, 7, 73, ..., etc. be
the positive roots of (4:13) in ascending order of magnitude. They are con-
nected by the relations

N = 20, =17y, N3 =20+,

Ny = 40y =1y, N5 = 40+, (4-14)
ete.
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The smallest root, 7,, is less than o, (= KX—+). After these prelimina.ry.con-
siderations the subdivisions (i), (ii), (iii) and (iv) made above may be written

as

(i') 0, = ws. .

In all cases the flow is symmetrical about the central line # = 0 for
(60— w,) = P(—0—wy). In particular the value of F(0) when 6 =0 is
— (1 + 3eg) which is {(1+4?) X — 1} and is therefore positive. Hence there is
always outflow along the central line.

« can have any of the values 7y, 7;, 73, etc.
If a = 7,, the flow is pure outflow as shown in figure 4a.

Ficure 4. Velocity profiles corresponding to (i) of § 4.

If a = 7,, the central outflowis bounded by regions of inflow as in figure 45.

If @ = 7, the central outflow has one region of inflow and one of outflow
on either side as in figure 4c.

If @ = 9, the central outflow has two regions of inflow and one of outflow
on either side as in figure 44.

Ete.
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(ii") 6y = w,.

In all the cases the flow is symmetrical about the central line for
P(0—wy) = p(—0—w,). The value of F(0)is —(1+3e,) which is equal to
{(1—2k?) X —1} and is therefore negative. Hence there is always inflow
along the central line.

a can have any of the values w, —7,, @, + 7y, @+ 7y, ©1+ 93, .-

c

Ficure 5. Velocity profiles corresponding to (ii’) of § 4.

If & = w, —17,, the flow is entirely inflow as shown in figure 5a.

If @ = w, +17,, the central inflow is bounded on either side by a region of
outflow as in figure 5b.

If & = w, + 7,, the central inflow has one region of outflow and one of inflow
on either side as in figure 5¢.

If o = w, + 74, the central inflow has two regions of outflow and one of
inflow on either side as in figure 5d.

Ete.
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(iii’) and (iv’) a = (2n+1)w, or @ = 2nw,.
In all cases the flow is unsymmetrical with respect to the central line.
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If & = w,. then f, = o+ wy where oz, = & (w, —7,) and the flowis as shown

in figure 6a or 6a’. There are no other types. : .
If @ = 2w,, then 6, = &y + w; where ay= 17, and the flow is as shown in

figure 6b or 6b’. There are no other types. :
Ifa = 3w,,then f, = a,+ wywherea, = + (@, +7,) and the flowis as shown

in figure 6¢ or 6¢’. There are no other types.
Ete.

Ficure 6. Veloeity profiles corresponding to (iii’) and (iv’) of § 4.

5. THE DEGENERATE CASES

The degenerate cases of the Weierstrassian function, when two or three
roots of the fundamental cubic are equal, are of interest in that the solutions
can be expressed in terms of functions which are more familiar than the
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elliptic functions. In addition they provide useful pointers to the general
theory. These cases correspond to A4 = 0 and can be considered under three
heads.

(i) e, = €3 = e5. :
Since ¢, + €, + €5 = 0, the values of e,, e,, ¢; are each zero and the equation
for f(0) is
J'(0) = 4f°. (51)

Transform this to the form involving F(0), by means of the relation
f(0) = —3{F(0)+ 1} and it becomes

F'(0)2 = —4{F +1)5. (5-2)

This equation cannot have a physical interpretation in connexion with the
present problem for it makes F'(f)* negative at the walls, that is where
F() = 0.

(ii) ey, = ey = — }e,, where ¢, is positive.
The differential equation for f(0) is
J(0) = 4(f—e)) (f+1er)’, (5-3)

and the differential equation for F(0) is
F'(0)% = —4(F +1+3¢,) (F+1—3e,)2. (5:4)

This too can have no solution capable of physical interpretation, for it makes
F'(6)? negative where F' = 0, except in the one case where ¢, = . The only
solution then is ' = 0 which corresponds to no motion between the walls.

(iii) e, = e, = — }e,, where ¢, is positive.
The differential equation for f(6) is
J'(0)F = 4(f—e;)* (f+2¢,), (5+5)
and that for F(0) is
F'(0)2 = $(F +1+3¢,)?(6e,—1—F). (5-6)

As long as (6e,—1)> 0 this does not produce an inconsistency at points
where F = 0. Put 6¢; —1 = A where A is positive. Equation (5-6) becomes

1
= 1_L73(2F+/\+3)(/\—F)'~ (57)

If we assume that d F/d0 is positive at 6 = «, we must take the positive sign
in equation (5-7). This means that as ¢ decreases below «, the value of F
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decreases below its value at # = a, which is zero. If we take the positive sign
in (5-7) we are considering the case where F(a—¢€) is negative, € being a small
angle. Since F is zero at # = + o there must be at least one point in the
range, @ = 0’ say, where dF/df = 0. At this position F must be negative,
and from (5:7) we see that at § = 6’ the value of F' must be —}(A+3). The
solution of (5:7), however, which satisfies the boundary condition at § = a
is, however,

tanh‘l(:}(lzi /\))i —-(l ;A)* (@—a) = tanh“‘(z((/\l:_f)))‘. (5-8)

If in this we put F = —}(A+ 3), we find that 6’ ——co which is impossible.

We are therefore compelled to take the negative sign in (5:7) and the
solution is

g (2 00 - () o

From equation (5'7) it is clear that d F/d6 is zero when F = A, and in this
position : ;
2 2A
| s Sl -1 e I
™ (1+A) taak (3(1+A)) :

By symmetry ¢’ must be zero so that

a= (%X)* tanh—! (3(1—2‘:}/{5)* ‘ (5-10)

It should be noted also that the maximum value of ¥ is A, and this occurs at
0 =0. If we put A = (2H—1), where H >}, equations (5-9) and (5-10)
become
F)=(2H—-1)—-3H ta.nh’&JH,l
2H-1 (5-11)
T)

aJH = tanh-l(

The equations (5:11) correspond to the case usually described in text-books
and manuals (see Goldstein 1938, p. 109, equation (63)), if H is assumed to
be so big that 1/H can be neglected.

It can therefore be seen that the cases corresponding to positive 4 and
negative 4 represent fundamentally different types of flow. We note that

274 = {(4—a)t +8— 30— 3b} {(4—a)l— 8+ 3a+3b} = (4—a)®— (8— 3a— 3b)?
(5-12)

in terms of the constants @ and b introduced in equations (3-12) and (3-13).
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We note also that b must be positive as explained just after equation (3-16).
Further

(i) fa>4, A is negative for all values of b.
o ((4 —a)t 4 8 — 3a is negative,

Ll 1(4—a)' — 8+ 3a is positive.
(i) IE 8>, ‘[(4 —a)! + 8 — 3a is positive.

| (4—a)t - 8+ 3a is positive.
Hence 4 is negative and the flow is always pure outflow if
(i) a>3,

(5:13)
or (ii) 3>a and 3b>8—3a+(4—a)'.j

In addition, 4 is positive and the flow may be either pure inflow, or may
contain regions of inflow and outflow, if

(iii) 3>a and 8-3a+(4—a)t>3b>0. (5-14)

6. THE CASE ¢ = 0

The previous analysis shows that, mathematically at any rate, the
velocity profile of the two-dimensional flow between inclined plane walls
may have many forms. Many of these are, most probably, unstable to slight
disturbances so that they will not have been observed in experiment. It is
interesting however to investigate the possibility of the existence of similar
velocity profiles in the flow between plane parallel walls. The following
analysis shows, however, that as a— 0 the velocity profiles change and, as
a limiting form, assume the parabolic shape which emerges from the well-
known theoretical investigation of the flow of viscous fluid between plane
parallel walls.

Let O’ be a point on the line OX. of figure 1, distant r, from O. Through O’
draw a line cutting OV and OW in V' and W’. We put O'V’" and O’ W’ each
equal to h and in the subsequent limiting process we keep O, V', W’ fixed
in space and allow r, to tend to infinity. Introduce new variables z and y
defined by the equations

r=ret+z, (ro+x)0=y. (6-1)

z and y will remain finite while » and r, tend to infinity and @ tends to zero.
Further «, the velocity, must remain finite. From (3-18) we see that
2w auv

P= ro+x+2(ro+x)2+c' (5:2)




Downloaded from https://royalsocietypublishing.org/ on 09 August 2022

454 L. Rosenhead

The first term tends to zero but the second and third terms are at our dis-
posal since @ and C are arbitrary. Hence

v, @\ apy Sauy o 6
p_>(c+2r§) 2r3't+ 21k T —vine (6-3)
The quantity (0 +‘f)/—::) is arbitrary and may be put equal to p, an
=70

arbitrary constant. The expression (auv/2r3) is also arbitrary, and for any
value of 7, the magnitude of @ can be adjusted to make the ratio finite. Put
(auv/2r3) equal to P where P is finite. Then, neglecting terms which tend to
zero as r, tends to infinity, we have

P = po— Pu. (6-4)

If P is positive then a — 2Prj/uv, which is very big. Hence from condition
(i) of equation (5-13) the flow is pure outflow. Further, after some manipula-
tion, it can be shown that the velocity profile tends to

"2

u= uo(l —92), (6°5)

where u, = Ph*/2u. If P is negative, the flow remains of the same type but is
reversed in direction.

If the limiting process is carried out in any other manner, the angle «
tends to zero in such a way that the two walls collapse and become identical.
In such a limiting process all types of velocity profile mentioned previously
are possible.

7. THE REYNOLDS NUMBER WHEN / IS NEGATIVE OR ZERO

The Reynolds number as defined in (3-4) is
R=| F@)do= J B0 +1}d0 = —2a+ 3| f(0)do.

When 4 is negative the flow is always pure outflow and

sn?(0H) dn® (0H)
en® (0H) g

_3H-64+1 (7-1)

=3H164-1" -

w, = K/\JH,

k* = }(H +34)/H.

f(0)=pO0—w,) =—24+H

en (20 /H)
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1t can be shown that

[=e *VHgn*y dn*y
— 44— 2H? e
f10)do = 44a—2H fﬂ iy dn

_ 4Aa—2H*[s“”d’ Py 215(77)]

=440 —2oH +2H?

/
sna‘/Haql-;ia"H+4H*E(a\/H)

= 2a|:2A ~H+ 2H7€| —2(184 —3)t + 4H Z(aJH), (7-2)

where E(u) is the Jacobian elliptic integral of the second kind, Z(u) is the
Jacobian zeta function defined by the relation

Z(u) = E(u) —%u,
and E and K are the complete elliptic integrals of the first and second kinds.
From these formulae we therefore find

BR= Za(ﬁA —3H + 6}15— l) —2(184 — 3) + 12H} Z(a JH).

Using the last of the relations given in (7-1), this becomes

B 2:1{[1(61% + 4kt — o) =3 : — 23 {H(4k?*— 2)— 1)} + 12H* Z(ayH). (7°3)
It might be noted too that F(0), which gives a measure of the flow on the
central line, is given by the relation

F(0)=64—1 = (4k2—2)H —1. (7-4)

The central velocity and the Reynolds number are thus expressed in terms
of two parameters, £? and H. The evaluation of the Reynolds number corre-
sponding to any pair of values of these parameters, and of the appropriate
value of « given by the second of the equations in (7-1), was effected with the
aid of two tables of elliptic functions published by Milne-Thomson (1931,
1932). The results of the evaluation are included in table 2

The type of flow corresponding to the degenerate case described in (5-11)
is the limiting case of (7-3) corresponding to 4 = 0. Here k* = 1 and

R = —2a(H +1)+2/(6H - 3),)

F(0) = 2H 1. | )
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8. Tue REYNOLDS NUMBER WHEN 4 IS POSITIVE

Here again it can be shown that all the characteristics of the fluid motion
can be described in terms of two parameters, ¥ and X. It has been shown,
however, that many different types of flow are associated with each pair of
values of k2 and X. The type is determined by the value of « which is chosen
from the infinite set of values which are available as solutions of the boundary
condition. (Physically, however, not all these values are permissible, for a
must be less than 7.) The exact dependence of the type of flow upon the
choice of a can be seen from conditions (i’), (ii’), (iii’), (iv’) of §4. As can be
seen from the diagrams of the types of flow, the two fundamental ones are
those which correspond to pure outflow and to pure inflow. The associated
values of the Reynolds number can be determined, and it can be seen that
the Reynolds numbers of the other types of flow are sums of integral
multiples of these fundamental quantities.

Referring to conditions (i’) and (ii’) mentioned above we see that if & = 7,
the flow is entirely outflow and that if &« = w, —, the flow is entirely inflow.
The corresponding values of the Reynolds number are S and 7' where

8= f"'F(n)dvpo, T = 2| Fy)dy <o, (81)
0

I
and where 7, is the smallest positive root of the equation

sn? (9yX) = {(1 + k%)X — 1}/3k2X.

The other terms in equations (8-1) are defined by equations which have been
derived previously but which, for purposes of convenience, are here repeated:

w, = KX,
F(y) = - 33— 3(ey — eg) 8% {(e; —eg)t} — 1
=3Xdn?(9/X)—-(2—k2) X —1.

From these relations it can be proved that
\ ) ’ E
§ = 6X3 201,y X)+ 27| X(35 2+ 12) - 1},

S+T = 2KX-*{X(3I£§ —2+k=)_1}.
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The Reynolds numbers of the various types of flow are then:

Type figure 4a R = 8, Type figure 4¢ R = 38+ 27,
ba R=T, 6c R=28+3T,
4b R = S+2T, 4d R = 38+47,
5b R=T+28, 56d R =48+3T,

ete.

Type figures 6a and 6a’ R = S+T,
6b and 6b° R =28+2T,
6c and 6¢" R =38+37,

ete.

Values of § and 7' are given in table 1 for different values of % and X.
The table covers the domain 4 > 0 and gives the limits of X corresponding
to each value of k. The cases k* = 1-0 and k? = 0-0 are critical ones and have
been considered as limiting cases of ¥* = 1—¢ and ¥* = ¢ as € 0.

TABLE 1. VALUES OF k2. AND X WHEN 4>0
I(a) i*=1-0; 0=>X>05; K= c0.

X T @y s T
0-500 0-000 0 0-000 )
1-:000 0-658 (oo} 0-832 —
1-100 0-666 o0 0-997 — @
1-500 0-657 w0 1-613 —
4-000 0-503 5] 4-136 —
9-:000 0-360 0 7-082 — 0

16-000 0-277 0 9-870 —
25-000 0-224 (v} 12-600 — 0
36-000 0-188 o 15-278 — o
X >100 (say) 1-146X 3 0 2-607X1% —

I(b) k*=1—e¢, where ¢ is small; c0>X>0-5(1+ }¢); Kas} log, (16/¢).
When X is very big

Downloaded from https://royalsocietypublishing.org/ on 09 August 2022

Sa2-607X3, M 1-146 X1,
T~{3-393—log, (16/¢)} X4, w,~s{} log (16/6)} X4,
I(c) *=08; 0=>X>0-556; K = 2:2572.
X M ©y S /4
0-556 0-000 3-030 0-000 —4-826
1-000 0-648 2-257 0-659 —3-519
1-440 0-673 1-881 1-323 —3-101
4-000 0-529 1-129 3:854 —2-804
9-000 0-383 0-752 6-705 —2-251
25-000 0-240 0-451 12-:010 —4-6562
100-000 0-122 0-226 24-732 —8-627
X =100 (say) 1-230X-% 2-257X 2-499X1 —0-846X#

Vol. 175. A. 30
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TasLE 1 (continued)

I(d) k*=0-5; 0=X=>0:667; K = 1-8541.

X M Wy S /4
0:-667 0-000 2:271 0000 — 2-466
1-000 0-635 1-854 0-407 —1-573
1-690 0731 1-426 2:015 — 1-563
3-240 0:-672 1-030 2:991 —0-476
9-:000 0-490 0-618 6472 —0-082
X =200 (say) 1-854 X} 1-854 X} 2-542X4 0:000

I(e) k2=04;5=X=>0-7T14; K=1-T775.

X N )y S 44
0714 0-000 2-103 0-000 —1-918
1-000 0-631 1-778 0-324 —1-171
3-610 0-758 0-936 3:339 —0:059
5:000 0-795 0-795 4467 0:000

I(f) k*=0-2; 1-667 > X >0-833; K = 1-6596.

X M Wy S 41
0-833 0-000 1818 0-000 —0-910
1-000 0-623 1:660 0-161 —0-521
1-667 1-286 1-286 1-250 0-000

I(g) k*=¢ (small); 1+2c=2X>1—¢; K = n(l+ fe).

X U0 @y S
| 0-000 (1 + 3e) 0-000 — dme
1-:000 0:615 (app.)  im(1+1e) 0-800e —2:371¢
1+ 2¢ a(l— ie) im(l— Je) $me 0

I(R) B*=0;X=1; K=3}n.
X B N S T
1 0 - im m 0-000 0:000

The results of the above table were then analysed in the following way.
Tables were made giving corresponding values of @ and R for different types
of flow. Table 2 gives these values for the symmetrical outflow (cf. figure 4a).
The values for symmetrical inflow (cf. figure 5a) are given in table 3.
Corresponding values of & and R were plotted, as shown in detail in figure 7.
Each value of £* which was considered gave rise to a curve. These curves
mapped out regions in which pure outflow and pure inflow were respectively
possible. From these it is clear that, corresponding to each value of «, there
is a range of values of R in which the type of flow considered is possible.
Similar regions were mapped out for different types of flow, and the
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appropriate ranges in which they are possible are shown in table 4. Some of
the limits were read off from graphs and are therefore subject to error—but
the general run, and the order of magnitude, of the limits are as tabulated.
The limits of the ranges of the symmetrical types of flow are plotted in
figure 8. Those for the non-symmetrical types are shown in figure 9. Anumber
of deductions can be made from these figures, and, in addition, the forms of
the curves give rise to a number of speculations as to the stability of the
various types of flow.

afhalf-angle between planes)

A
=T o N g el Sk
T pt1-e(870)
P a08(50) k=02(4>0)
pure’  zi-04(320): 1} k=0-4(4>0)
inflow 2 :)\‘,': h’-O‘5(A’0)
o bt O‘*.,\' £L08(A>0)
................. 1=0(A>0) k’-l -0(4>0)
e T Stttk il - = S RTIaR A
5 0 30 -20 - 30 40 50
-50 —40 30 20 10 k’oswm
=06(4>0)
hE05(A>0)

Ficure 7. Ranges of R for pure inflow and for pure outflow.

i &t (halfangle between planes)

S -

o=

Limit of 5a
.

__~Limit of 44
T Limit of 4¢
o Limit of 5¢

; A : ) : Limit Of"irl -> .. y ‘\’“Limit of 35

=50 -40 =30 -20 -0 g 10 20 30 40 50
Ficure B. Ranges of R for different types of symmetrical flow. [Note. ** Limit of 4a”
should be interpreted as the “* Upper limit of the Reynolds number for which flow of
the type shown in figure 4a is possible.” Similar interpretations should be made of
the other inscriptions. All the curves tend asymptotically to zero according to the
law (constant)/R.|
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In order to make a rapid survey of the velocity profiles at large Reynolds
numbers the characteristics of the flow can be compared with two hypo-
thetical cases, (i) a flow in which the velocity is constant across a circular arc,
centre 0, spanning the walls, and (ii) a flow which is “parabolic” in form
across the same arc. In this paragraph the main interest centres on ““pure
outflow”’ and on “pure inflow”. The other types of flow are not without
interest but it is doubtful whether they will have been observed in normal

A & (half-angle between planes)

Limit of 65
Limit & Gﬂﬂn / and 62' /leit of 6¢ a{‘lg

/

o=

1 1 1 1 A 1 1 I I

-50  -40 =30 =20 10 0 10 20 30 40 50

Fieure 9. Ranges of R for different types of non-symmetrical flow.
[Note. See legend below figure 8.]

Ficure 10

experiment. I am, however, indebted to Mr H. B. Squire, M.A., of the Royal
Aircraft Establishment, Fa.rnborough for a suggestion that at low Reynolds
numbers, at any rate, it might be possible to reproduce some of the types of
flow by means of apparatus represented schematically in figure 10. By means
of suitable apparatus it might be possible to obtain slow steady motion in
long parallel channels between plane thin walls. At the walls the velocity
would be zero. The outer walls of the set of channels could be connected to
slowly converging walls and in the ensuing motion, which would be laminar
at small Reynolds numbers, there would be vaguely defined layers of zero
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velocity separating streams of fluid moving in opposite directions. It is
probable, however, that many of these composite types of flow are unstable.
This will be referred to later. Returning however to the cases of pure inflow
and outflow and to the hypothetical cases mentioned above, if the velocity
is constant across a span it can be shown that R/aF(0) is equal to 2, and if
the velocity profile is of the form

the value of R/aF(0) is 1}. These numbers can be compared with those
occurring in the notes at the feet of some of the columns in tables 2 and 3.
In table 2, relating to outflow, &R increases uniformly from 0 to 4-713 as
R/ F(0) decreases from 1-33 to 0-91, the Reynolds number being large.
Hence for a constant small value of «, the flow changes from the parabolic
form, and becomes more and more concentrated in the centre of the channel,
as R increases. As R increases still further the value of du/df becomes zero
at the walls and changes sign. This changes the type of flow from that shown
in 4a to that in 4b. For large Reynolds number in inflow, however, the value
of R/aF(0) is approximately 2, suggesting a fairly constant velocity across
the span dropping very rapidly to zero at the walls. As the Reynolds number
is decreased the region in which the flow is approximately constant becomes
smaller and finally disappears. This phenomenon has been commented on,
and in greater detail, by other investigators, but not from the above point
of view.

When the flow changes from the comparatively simple ones discussed in
the preceding paragraph we must turn to figures 8 and 9 for a general survey.
A representative example will explain the variation of flow with increasing
Reynolds number. Let us consider the case @ = 0-3 radian. When R = — o0
all types of flow are possible, except, of course, the pure outflow of type 4a.
[N.B. We shall specify each type by the number of the diagram in which it
occurs.] This means that the maximum and minimum velocities can be
adjusted at will in any one of the types to make the total flux equal to 2»
times the required Reynolds number. This state of affairs continues right up
to and including R = 0. In the range 0 < R < 16-5 all types of flow, except of
course the pure inflow of 5a, are possible. If R increases beyond this limit,
then there must be a change of type of flow only if the original type was that
of 4a. Other types of flow would continue unchanged. Beyond R = 165
the type 4a is not possible. Similarly beyond 18-8 all types of flow except
4a and 45 are possible. And so on! In addition, non-symmetrical types of
flow are possible, and, where they occur, a mirror image of the flow with
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respect to the central line gives a second possible flow, as, for example, in
figures 6a and 6a’.

It can be seen quite readily that the state of affairs is extremely compli-
cated. The above mathematical analysis only yields information as to the
types of flow which are possible but gives no help on the question as to which
is the type actually assumed by the flow when R and  are given. It might
be noted here that in a normal experiment boundary conditions are imposed
not only by the friction at the walls but also by the imposed pressure condi-
tions over the inlet and outlet ends of the channel. The above investigation
may be considered as one which determines the proper pressure distributions
over the ends which allow of steady laminar radial flow. Ifin an experiment
the pressure distribution is not one of those obtained above, the flow may be
neither steady, laminar nor radial. It might be noted too that the imposed
pressure conditions in experiment are closer to those implied by the pure
outflow and inflow than those implied by the other types, so that pure out-
flow and pure inflow are more likely to occur than are the other types. It is
clear also, from figure 8, that if x> }7 pure outflow is quite impossible—
whatever the Reynolds number may be—and that there is a range of small
Reynolds number within which pure inflow is impossible.

C'onsiderations of stability are undoubtedly the dominant ones in deciding
the type of flow assumed by the fluid. On the other hand, the present state
of the theory of stability of fluid does not seem to offer much hope that in-
formation will be obtained along these lines. It is possible, however, to make
a fairly plausible assumption here which will have the effect of systematizing
our picture of the way in which the velocity profile changes with increasing
Reynolds number. The assumption is that ** If the pressure conditions over
the inlet and outlet ends are not rigidly applied—that is, if the pressure-
profile can be assumed to be loosely self-adjusting—then the velocity-
profile will be that one which has the smallest number of crests and troughs ™.
If this assumption is accepted, and if we leave out of consideration the non-
symmetrical velocity profiles and those which have inflow along the central
axis and yet give a positive total flux outwar ds, then the sequence of changes
is as follows. For inflow the velocity profile is always that of figure 54. For
outflow the velocity profile passes through the sequence of changes shown
in figure 4. If these types of flow are possible for the whole range of Reynolds
number, there seems to be no plausible reason why the othervelocity profiles,
that is, those in figures 5b,¢.d. ete., and in figure 6, should ever manifest
themselves, unless they can be produced by rigidly imposed pressure condi-
tions at the ends of the channel.

This sequence of speculations can be pressed still further, and one can
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surmise as to the stability of the various types of flow. If at any angle « there
is a rapid variation of the type of flow for a small change in the Reynolds
number, it seems legitimate to suggest that the particular type of flow is un-
stable in the region of the Reynolds number in question. For example, when
ais 02, and R is about 24, a small increase in R produces a rapid transition
from type 4@ to type 46 and then to type 4¢. This type of instability seems to
manifest itself for all types of outflow but not for inflow.
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