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T his paper considers th e  s tea d y  tw o-d im ensional radial flow  o f  v iscou s  
flu id  betw een  plane w alls w hich  e ith er converge or d iverge. A  general 

so lu tion  is ob ta in ed  in  term s o f  e llip tic  fu n ction s and  th e  various m a th e 

m atica lly  possib le ty p es o f  flow  are d iscussed .

1 . I n t r o d u c t i o n  a n d  s u m m a r y

In  this paper we consider the steady radial two-dimensional flow of viscous 

fluid between plane walls which either converge or diverge. The investiga

tions on this subject were started  by Jeffery (1915) and they have proved to  

be the starting-point for a num ber of researches by other authors, notably  

Hamel (1916), Harrison (1919), K arm an (1922), Tollmien (1931), N oether 

(1931) and Dean (1934). These investigations deal w ith specialized aspects 

of the question and do no t contain a system atic trea tm en t of the general 

problem. I t  has been known since 1915 th a t  a general solution is possible 

in term s of elliptic functions. In  spite of this, however, the only case which is 

quoted in text-books and manuals is th a t which is, in effect, the  degenerate 

case of the elliptic functions (see, for example, Goldstein 1938, p. 109).

The following investigation was started  in the hope th a t it  would lead to  

a clear picture of the change in flow associated w ith increasing Reynolds 

number, R .  I t  was stim ulated by the statem ent which is given by Goldstein 

(1938, p. 106). The following is a sum m ary of the statem ent: For inflow the 

m agnitude of the velocity is a m axim um  in the centre of the channel and 

diminishes uniformly to zero a t the walls. W ith increasing Reynolds num ber 

the velocity profile always remains of this same type b u t becomes fla tter and 

flatter in the middle dropping very rapidly to zero a t the walls. For divergent 

flow with increasing Reynolds num ber the  state  of affairs is quite different. 

At small Reynolds numbers the m agnitude of the velocity is a m axim um  in 

the middle of the channel and it  decreases uniform ly tow ards the  walls. 

W ith increasing Reynolds num ber the flow becomes more and more con

centrated in the centre of the channel un til finally, a t some critical value 

of R ,  regions of inflow appear on either side of the region of outflow. W ith

[ 4 3 6  ]

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 0

9
 A

u
g
u
st

 2
0

2
2
 



437

a larger outw ard flux th an  th a t  associated w ith  th is critical value of 

three solutions are possible, w ith the  backw ard flow near one wall or the 

other, or near bo th  walls. I t  seems possible th a t  a t still larger values of R  

the num ber of possible solutions also increases.

The above statem ent m ust, however, be modified in th e  light of the  

following investigation, the  principal results of which are given below. A t 

this stage it  becomes necessary to  define more closely w hat is m eant by 

“ outflow ” and “ inflow” . In  m ost previous investigations the  Reynolds 

num ber R  was defined to  be of the form l | wmax \/v, where l was some repre

sentative length, v the coefficient of kinem atic viscosity, and j wmax | was the  

m axim um  m agnitude of the velocity in the flow. As we are now dealing w ith 

velocity profiles which contain both  outflow and inflow the  above definition 

of R  cannot be used, for it m akes no distinction between the Reynolds 

num ber in the case | wmax.outwards I =  wo> I Mmax. inwards I =  u i> and in the case 

I wmax. outwards \ = u v\Mmax. inwards I = u o- We therefore define the Reynolds 
num ber of the flow as Qj2v ,where Q is the volume of fluid passing

narrower end of the channel to  the wider end, in u n it tim e, between two 

planes which are a t un it distance ap art and are perpendicular to  both  the 

channel walls. A positive value of R  will correspond to  average outflow and 

a negative value of R  to  average inflow.

In  the following investigation it  was found advantageous, for purposes of 

m athem atical simplicity, to  use the W eierstrassian p  function as much as 

possible b u t to transform  to  the Jacobian elliptic function for purposes of 

numerical calculation.

The principal results are as follows: For every pair of values of a  and R  

the num ber of m athem atically possible velocity profiles of radial m otion is 

infinite (see § 4). The profiles m ay or m ay not be sym m etrical w ith respect to 

the central line of the channel. I f  n  > a  > 'pure outflow is 

there is a range of values of small Reynolds num ber in which p u r e  inflow is 

impossible. The effect of increasing R  in outflow is to  exclude, progressively, 

more and more of the simpler types of flow. No such exclusion is introduced 

when | R | is increased in inflow. W ith increasing Reynolds num ber in pure 

inflow, and w ith small values of a, the velocity profile exhibits all the well- 

known characteristics of boundary layers near the walls, and an approxi

m ately constant velocity across the rest of the channel. In  pure outflow the 

flow becomes more and more concentrated in the centre of the channel as 

R  is increased, until finally regions of inflow occur near the walls.

The analysis described below gives the m athem atically possible types of 

flow b u t does not indicate which type of flow is actually assumed by the 

fluid. Considerations of stability  would probably show th a t m any of the

Steady flow of viscous fluid
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438 L. R osenhead

types of flow are unstable, b u t the present s ta te  of the theory of the stability  

of fluid motion does not seem to offer much hope th a t inform ation will be 

obtained along these lines in the near future . I t  should be noted th a t in an 

actual experiment boundary conditions are imposed not only by the friction 

a t the walls bu t also by the pressure conditions a t the inlet and outlet ends 

of the channel. The following investigation m ay be considered as one which 

determines the proper pressure distributions over the ends which allow of 

steady lam inar radial motion. I f  in an experim ent the pressure distribution 

is not one of those obtained below, the flow m ay be neither steady, lam inar 

nor radial. In  normal experiments the pressure d istribution over the  ends 

approxim ates most closely to those required for pure inflow and outflow, so 

th a t these types are more likely to have been observed th an  are the other 

ones.
I t  is possible, however, to  obtain a fairly plausible picture of the change of 

flow by the help of speculative assumptions. I f  we make the assum ption 

th a t “ I f  the pressure conditions over the inlet and outlet ends are not 

rigidly applied, th a t is, if the pressure profile can be assumed to be loosely 

self-adjusting, then the velocity profile will be th a t one which has the smallest 

num ber of crests and troughs” , it is possible to deduce a simple system atic 

sequence of change. In  inflow the velocity profile would always be of the 

symmetrical pure inflow type, and in outflow the sequence of change w ith 

increasing E  is as shown in figure 4. I t  is assumed, also, th a t the non- 

symmetrical types, and also those which, even though they  have inflow 

along the central line, give a positive value for Q, would no t m anifest th em 

selves in experiment. This speculation can be pressed still further to provide 

information as to the stability  of the various types of flow (see p. 467).

2 . L i s t  o f  s y m b o l s  a n d  e l e m e n t a r y  p r o p e r t i e s  o f

SOME OF THE PRINCIPAL FUNCTIONS 

2a  is the angle between the walls.

O V , OWare the fines of section of the walls w ith a representative plane 

which is a t right angles to  the fine of intersection of the walls.

O X  is the bisector of OV  and OW .

r, 0, h  are the cylindrical coordinates, where r  is m easured from O, 0  is 

measured from the central fine OX ,  and h is measured in a direction 

perpendicular to the representative plane. 

r0 is the distance along O X  of a fixed point O'.

u ,  v, w  are the velocity components in the directions of r, 6, h. (Since the 
flow is radial v =  w  =  0 .)
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p , f i , v  are the  density, coefficient of viscosity, coefficient of kinem atic 

viscosity, of the  fluid.

Q is the  volume of fluid passing from the narrow er end of the channel to the 

wider end, in u n it tim e, between two planes which are a t u n it distance 

ap a rt and are perpendicular to  bo th  walls. ( m ay be either positive 

or negative.)

F(0 )  =  ruJ2v,

m  = - ±{ F ( d )  + l}  = p ( d - d 0).

R  is the Reynolds num ber =  Q / 2 v  =  f  F{6) dd.  (N.B. A 
J  — a

R  denotes average outflow and a negative one denotes average inflow.) 

a, b, cc0, 6 0 are constants of in tegration  ( , 6, a 0 are real and 60 complex). 

p  is the pressure in the fluid a t r, 6, h. This is equal to

7 ?  F (0 ) +  ̂  +  constant.

p{6 )  is the W eierstrassian elliptic function defined by the equation

P W  =  4 p 3- ^ 2p - ^ 3,

where the invariants g2 and 

^ ( 8  — 3a — 36).

ex, e2, e3 are the roots of the cubic 4s3 — g2s — g3 — 0. I f  the roots are all real, 

they  are chosen in such a way th a t ^  e2 ^  e3. I f  the roots are no t all 

real, then  since g2 and g3 are real, two of the roots m ust be complex, 

and in this case they  are chosen so th a t

— A. + i R ,  e2 =  — 2 — i B ,

where A  and B  are real. 

gr2 =  - 4 ( e 2e3 + e3 e1 + e1e2) = 2(e| + el + e§). 

g3 =  4e1e2e3.

H 2 — (e2 — ex) (e2 — e3) — 9 A 2 +  B 2 when the

A  is the discrim inant of the cubic 4s3 — g2s — 0 . I t  is equal to

16(e2 -  e3)2 (e3 -  ex)2 (ex -  e2)2 =  21 g2.

fox, (o2, (j)3 are the half-periods of the p  function. I f  A  is positive, th a t is, if 

all the roots of the equation 4s3 — — 0 are real, then  the real

period is defined to be 2ojx and the im aginary period is defined to be 

2 (o3.If A  is negative, th a t is, if only one root is real, then the real period 

is defined to be 2oj2, the other two periods being conjugate complex 

numbers:

2 (ox =  2 ( C - i D ) ,  2 co2 =  -4 (7 , 2

where (7 and D  are real.

Steady flow of viscous fluid  439
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440 L . R osenhead

K ,  E  are the complete elliptic integrals of the first and second kinds. 

k  = J{(e2 — e3)/(e1 — e3)} is the modulus of the elliptic integrals.

&i =  V{(ei - e2)/(ei - es)} is the complem entary modulus =
ru

E(u) is the incomplete elliptic integral of the second kind = I dn

Z (u )  is the Jacobian Zeta function. I t  is defined by the equation

Z (u )  =  E{u )  —

X  — ex — e3. W hen ev e2,e3 are real, X  ̂0 . 
t/1, 7}2, 7]3, . . .  are the positive roots, in ascending order of m agnitude, of the 

equation
s n 2(7j*jX) =  {(1 + k * ) X -  l}/3k*X .

They are connected by the relations

V i  =  2 o ) 1 —  7]l f  =

V\ = 4oji -  Vi>Vs = 4(01 +  e t

W hen 60 — o)3 and els e2, e3 are real, then

S  = 2J  F(0 ,

fV 1
T  — 2  j F{<  0 .

J Vi

3 .  T h e  e q u a t i o n s  o f  m o t i o n  a n d  c o n t i n u i t y

We are considering the steady radial m otion of an incompressible viscous 

fluid in the region between inclined plane walls in the absence of external 

forces. The flow is two-dimensional, the representative plane being per

pendicular to the channel walls. In  this plane the  co-ordinates are r, 6, 

where r is the distance from O, the intersection of the walls, and 6  is measured 

fropa the central line O X  (cf. figure 1). The channel walls cut the  repre

sentative plane in the lines OV,  O W  + a).  The co-ordinate perpendi

cular to  this plane is h. The flow diverges from, or converges to, the  line 

represented by r — 0. The components of velocity in the direct

r, 6, h  are u,  v, w.  W ith the assumptions made above it can be seen th a t 

v — w  — 0. The equation of continuity is

du u  

d r ^  r
=  0, (3-1)

where u is a function of r and 0  only. This equation can only be satisfied if

u  =  2vF(6) /r ,  (3*2)
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where F (0 )  is a function  o f 0  on ly. T he to ta l flux of-fluid, per u n it length  o f  

z  axis, is Q where

Q  =  f  rudO  =  2 v (  
J —a J —a.

The R eynolds num ber o f  th e  flow, R ,  can be defined b y  th e equation

R  =  Q \2v  =  f  F {6 )d 6 .  (3-4)

S te a d y  f lo w  of v is c o u s  f l u i d  441

_____

The equations o f  m otion are

d u  dp  1 dh i\
(3-5)

dp  2 /i du  

d d ^  r  d d '
(3-6)

U sing th e form o f u  suggested by (3*2), these becom e

4 v*F2 1 dp  t 2v2F "  

r8
(3-7)

dp

+  r2 *
(3-8)

where the accents denote differentiation w ith  respect to  6. From  (3*8) we 
see th at

p  =  ^ (3-9)

where p x(r) is a function o f r  only. I f  th is form is inserted in (3-7), w e g e t

v*{2F " +  4F* +  8F ) . (3 1 0 )

Vol. 175. A. 29
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442 L. R osenhead

The left-hand side of (3-10) is a function of r  and the right-hand side is a 

function of 6. They are both therefore equal to  a constant which, from the 

nature of the expressions, m ust be real. P u tting  this constant equal to

— av2, we find

P i  =  +  const-> 

and 2F"  + 4 F 2 + S F  + a  =  0. 

Multiplying (3*12) by F '  and integrating, we obtain

F ' 2 + ^ F 3 + 4 F 2 + a F  =  constant =  6, say. (3-13

In  this equation p u t F(d)  =  — (3 /(0 )-f 1}, 

and (3T3) becomes / '(# )2 =  4/ 3 — <72/ - < /3, (3*15)

where 02 =  K 4 -«)> } ,0
- ( 3 - lb )

— <>V(3 3d 36). J

From the definition of F[6)  and from (3T2) and (3T3) it should be noted 

th a t a and 6, and hence also g2 and g3, are real. Furth

positive or negative, bu t 6 m ust be positive, for u,  and hence F(0)  is zero a t 

the walls and 6 is therefore equal to the value of F ' ( 6 ) 2 when + a. The 

solution of (3-15) is
m  = p ( 0 - d o),(3-17)

where d0 is a constant of integration which m ay, possibly, be complex. The 

solution of the problem under consideration is therefore

u — — {3p (d  — dQ) + 1}, J

P ~  ~ ~ ^ T (3P ( ^ “ #o) +  !} + + constant,

(3-18)

where the invariants of the §) function are given by (3-16). This solution is 

subject to  the following lim itations:

(i) 0$ m ust be a constant which makes u  real and non-infinite for all values 

of 0 in the range a . ^ 0 ^  — a.

(ii) u  m ust be zero a t the walls, th a t is a t ± Hence F (6 )  =  0, or 
f ( 0 )  = — 1 when 0 = + a.

In  the following investigation we assume th a t the walls do no t actually  

reach the point r = 0 , b u t fall short of it, so th a t the singularities which

there are avoided.
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Steady flow of viscous fluid 443

4 .  T h e  v e l o c i t y  p r o f i l e  

S in ce /(a ) =  / (  — a) =  -  | ,  we have

p ( a - 6 0) =  0).

This equation can only be satisfied if

<x -d0 =  ±(<x + 60) + 2mojx +  2 (ra, n  int

and this gives —
l =

or a  I

In  special cases both these possibilities may be satisfied a t the same time. 

Since the flow depends upon p ( $ — 0O)and not upon 60, the

generality in making 60 lie w ithin the fundam ental period parallelogram . 

This is equivalent to restricting d0 to one or other of the values 0, oq, 

d0 cannot be zero, for then u  would be infinite a t =  0 . L ater in this section 

it is shown th a t two cases arise. In  the first case, oq and are complex 

conjugate num bers and a, being real, can only have the values In  the 

second case cq is real and oj3 is imaginary, so th a t here a  can only be p u t 

equal to moq.

These possibilities m ust be considered in conjunction w ith the fact th a t 

p { 0  — 0Q) m ust be real for all values of 6. The investigation m ust here be 

separated into two sections:

(I) The roots of the cubic

±s * - g 2s - g 3 =  0

are not all real. This corresponds to the case when the discrim inant A  is 

negative. Since g2 and g3 are real, one of the roots m ust be real, e2 say, and 

the others, ex and e3, m ust be conjugate complex numbers. We pu t

ex = A  + iB ,  e2 = —2A ,  e3 — A  — iB ,

where A  and B  are real. The discrim inant A is equal to — 64  where

H  = +V(9 A*+

o)l and o)3 are the roots of the equation

P M  = ei an4 P M  c8.
29-2

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 0

9
 A

u
g
u
st

 2
0

2
2
 



444 L. R osenhead

Since e1 and e3 are conjugate complex num bers and since g2 and are real, 

one solution of these equations can be p u t into the form

= C - i D ,  (o2 = -  2C,

where C  and D  are real. These values are no t unique, since, for

=  - C - i D ,  (o'2 =  2 a>'z = C

is another set of values for which e1 and ez are conjugate complex num bers. 

This second form, and other possible ones, are ju st a lternative ways of 

describing the fundam ental period parallelogram  shown in figure 2. They 

introduce no feature th a t is not contained by the chosen values of &>ls oj2 

and o)z, and they can, therefore, be neglected. I f  0 < 1, then  along the

fines A T C  [ z — A. 4(7], B T D  [z = 2u)

z  — 
D

. s  = p ( z )  ; 0, a n d  gz rea l.

assumes all real values from — oo to  + oo twice over. These then  are the only 

fines w ithin the period parallelogram on which s assumes real values. Along 

A T C  the variable is real so th a t we m ust here identify 60 w ith o)2, which is 

the only real half-period. Further, the range of 6 is and if

2a  > 4 C, i.e. 2a  > | 2w2 | , the range will contain a t least one point congruent 

w ith the point of zero argum ent, where p ( z )  is infinite. This m ust be avoided 

and hence the solution here is

f ( d )  = p ( 0 - a > 2), (4-1)

where | (o2| > a  and where, in order to satisfy the boundary condition, 

e2< — I t  should be noted also th a t this is the only type of solution under

(I), for if a  were to  be equal to an integral multiple of co2 the range c c ^ O ^  — a
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Steady flow of viscous fluid 445

would contain a t least one poin t a t  which the  velocity would be infinite. 

The solution under (I) is therefore

f ( d )  =  p ( 0 - a > 2 =  e2 +
(̂ 2 *h) (̂ 2 e3)

P ( d ) ~ e 2
- 2 A  +

H 2

p ( d )  + 2A

2A  1 _  I
1 + cn(2 O^jH)

(4-2)

where and o)2 =  K/*JH  (see Milne-Thomson 1931, pp. xi and

xiv). The boundary condition is

or

cn(2 ct^H)
3JT — (64 — 1) 

3H  +  (64  — 1)

sn2(aA/fiT) d n 2(âJH)  6̂ 4 — 1

c n 2(ot<JH) = ~ 3 H ~

(4-3)

(4*3a)

In  order th a t  th is should have a solution ^  1, which is the condition

On the central line f ( 0 )  — e2 =  — 

(64  — 1) which is positive. On account of the nature of p ( d  — oj2) we see th a t 

F (d )  has a positive value on the central line and decreases monotonically 

tow ards the walls where its value is zero. The case considered under (I) 

always, therefore, represents outflow which is sym m etrical w ith respect to  

the central line.

(II) We have discussed the case in which 0. L et us now discuss th a t 

in which A > 0. This, since g2 and g3 are real, corresponds to  the case in which 

all the roots of the cubic
±s3- g 2s - g 3 0

are real. Let them  be denoted by el5 e2, e3 chosen in such a way th a t 

e1> e 2> e3. (The degenerate cases, in which two or three of the roots are 

equal, will be discussed separately. They correspond to  = 0.)

In  the non-degenerate cases one of the periods, 2ojx say, is perfectly real, 

and one, 2oj3 say, is perfectly imaginary (see W hittaker and W atson 1920, 

p. 444). The period parallelogram is then as shown in figure 3. Along the 

four fines A P B  (z =  A .2^ ) ,  A S D  (z = A .2w3), P T R  (z = o)1 + X.2oj3), 

S T Q  (z = o)3-t-A.2<u1), where 0 ^ A < 1, the W eierstrassian function p ( z )

takes all real values from — 00 to  + 0 0  twice over, so th a t these are the only 

fines w ithin the period parallelogram on which p ( z )  assumes real values.

We cannot identify 0Q w ith wl5 for the argum ent of p ( 0  — 60) would then 

be represented by points on A P B .  Along this fine p ( d - 0 o) is always
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446 L. R osenhead

positive, and it  would therefore be impossible to  satisfy the boundary 

con d ition /(a ) =  p(oc — d0) — — Hence, since a  and 

ing possibilities arise:

(i) d0 = o)3. The boundary condition is

p ( a - ( o 3) =  -  i  (4-4)

In order that this condition m ay be satisfied it  is essential that

^2  ^ ®3> (4*5)

for the argument of p ( a  — a)3) is a point on the line S T Q  o f fig

this line the value of p (z )  lies betw een e2 and e3. I f  (4*5) is satisfied, then  

(4-4) m ay be used to  determine a. The number o f values o f a  satisfying (4-4) 

is infinite. This will be referred to  later in  this section.

2 ** u(i)%

5*—oo

$—00
A  $  =  4 - 0 0

z= 0

2—10̂ +2(00
s^ex
R

T z*=—co2

s=e2

P
Z=U)X
s=ex

C z = -2& i2

Q 2(t)x+Ct)2

$=+oo
z=2co1

F i g u b e  3 . «  =  p ( z )  ; A  > 0 ,  and g3 real.

(ii) 00 = o)2. The boundary condition is

=  p{(oc aq) (4*6)

Here again e2 ^ —$> e 3 and there is no unique solution o f (4*6).

(iii) a  =  (2 n  + 1) wl5 where n  is any positive integer. From a considerat

o f the values o f p ( 6  -0O) in the range cl ^Q>  - a i t  is clear th at the imaginary

part o f 0O must be equal to  o)3 and th at e2> - \ ^ e 3. I f  we put

O0 =  a,0 +  (o3> (4 . 7 )

where oc0 is real, the equation for oc0 becomes

p{(oc0- o ) i ) - ( o 3}  =  - i . (4*8)

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 0

9
 A

u
g
u
st

 2
0

2
2
 



447

(iv) a  = 2 n(ovwhere n  is any positive integer. Again we see th a t  d0 m us

be of the form suggested by (4-7) and th a t  e2 ^  |  ^  e3. The equation for oc0

is here

P{a o — ^ 3} ~  “' S’ (4’̂ )

The obvious sim ilarity between the boundary  conditions (4-4), (4*6), 

(4-8) and (4-9) suggests th a t the four special cases are in tim ately  connected. 

This is so, as the following m ethod shows. P u t

X  =  el — e3, and 

X  and k 2X  are always positive. In  term s of 2 and X  we have 

e1 =  i ( 2 - k * ) X ;  e2 = \ ( 2 k 2-\)X;e3 =  - i ( l  +  P ) Z ;  Wl =  (4-11)

Steady flow  of viscous fluid

where K  is the complete elliptic integral of the first kind, and k  is the  

modulus of the elliptic integral. The condition e2 ^  |  ^  e3 now becomes

(2k2— 1) - 1 ^  - ( 1+ F ) X .

This condition assumes different forms according as k 2 is less th an  or greater 

than  4. Expressed more precisely the condition (4-5) is:

W h en , 2 < i ,

and when k 2 ^ \ , c o ^ X ^
1

T + ¥ 2\

(4-12)

The fundam ental boundary equation, th a t  is, the one from which all the 

others can be obtained, is taken  to be (4-4). Consider the  equation

p(7) -  (o3) = e3 + (e2 -  e3) sn2 {7jyj (e1 -  e3)}

=  \ X  {3k2sn2 (VJ X )  - l - k 2} =  -

This can be p u t into the form

sn 2 ( y j X )  = { ( l + k 2) X - l } / 3 k 2X .  (4-13

The conditions laid down in (4T2) are ju st those which ensure th a t (4-13), 

considered as an equation for 7/, has real solutions. L et t/x, t/2, ..., etc. be

the positive roots of (4T3) in ascending order of m agnitude. They are con

nected by the relations

772 =  2 Mx-V!,7/3 =  2<e>1 +  7/1/

Vi  =  4 w i  -  (4-14)
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448 L . R osenhead

The smallest root, tjx, is less th an  o)1 ( =  A fter these prelim inary con

siderations the subdivisions (i), (ii), (iii) and (iv) made above m ay be w ritten  

as

(i') d0 =  w,. .
In  all cases the flow is sym m etrical about the central line =  0 for 

p ( 0  — (o3) =  p (  — 0 — o)3). In  particular the  value of F(6)  when =  0 is 

-  (1 +  3e3) which is {(1 +  k 2) X -  1} and is therefore positive. Hence there is 

always outflow along the central line.

a  can have any of the values 7jx, t)2, tj3> etc.

I f  a  =  y v  the flow is pure outflow as shown in figure 4a.

F i g u r e  4. V e lo c ity  profiles corresponding to  (i') o f  § 4.

I f  a  = rj2, the central outflow is bounded by regions o f inflow as in figure 46. 

I f  a  =  7jz, the central outflow has one region of inflow and one of outflow 

on either side as in figure 4c.

I f  a  =  7/4, the  central outflow has two regions of inflow and one of outflow 

on either side as in figure 4 d.

Etc.
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Steady flow of viscous fluid 449

(ii') 6q = g)2.

In  all the  cases the  flow is sym m etrical abou t the central line for 

p { 6  — (o2) =  p (  — 0 — a)2). The value of 0) is — (l +  3e2) which is equal to  

{(1— 2k2) X  — 1} and is therefore negative. Hence there is always inflow 

along the central line.

a  can have any of the values o)1 — rjv  +  7}v  +  ij2, aq +  f/3,

F i g u r e  5 . V e lo c ity  profiles corresponding to  (ii') o f  § 4.

I f  a  = (i)1— the flow is entirely inflow as shown in figure 5

I f  a, = o)1+ 7)x, the central inflow is bounded on either side by a region of 

outflow as in figure 56.

I f  a  =  o)1 +  ^2> the central inflow has one region of outflow and one of inflow

on either side as in figure 5c.

I f  a  =  + 7/3, the central inflow has two regions of outflow and one of

inflow on either side as in figure 5d.

Etc.

(iii') and (iv') a  = (2 n +  1) ^  or a  =  2

In  all cases the flow is unsym m etrical w ith respect to the central line.
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450 L. R osenhead

I f  a. = a>v  then = ac0 + <a3 where a„ = ± K  -  ?i) and the flow is as

in figure 6a or 6 a ' . There are no other types.
I f  a  =  2w„ then 0O =  a„ + w3 where a„ =  + Vi “ id the flow is as shown in

figure 66 or 66'. There are no other types.
I f  a  = 3(ovthen 60 =  <x0 + w3 where a 0 =  ± K  + ^ )  and the flowis as

in figure 6c or 6c'. There are no other types.

Etc.

F i g u r e  6 . V elo c ity  profiles corresponding t o  (in ') an d  (iv ') o f  § 4.

5 . T h e  d e g e n e r a t e  c a s e s

The degenerate cases of the W eierstrassian function, when two or three 

roots of the fundam ental cubic are equal, are of in terest in th a t  the solutions 

can be expressed in term s of functions which are more fam iliar th an  the
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elliptic functions. In  addition they  provide useful pointers to  the general 

theory. These cases correspond to A  =  0 and can be considered under th ree 

heads.

(i) ex = e2 = e3.

Since ex +  e2 +  e3 =  0, the values of 

for f { 6 )is
f ' { 0 f =  4 /3. 

Transform  th is to  the  form involving F(0 ) ,  by m eans of the  relation 

f ( d )  =  — 1{F(6)  +  1} and it becomes

F ' ( d ) 2 = - ±{ F + l } z .  (5.2)

This equation cannot have a physical in terp reta tion  in connexion w ith the

present problem  for it  makes F ' ( 6 ) 2 negative a t the walls

F(0 )  =  0.

(ii) e2 = e3 — — \ e x, where ex is positive.

The differential equation for f ( 0 ) is

f ' W  =  4 ( / - e 1) ( / + | e 1)2, (5

and the differential equation for F { 6 ) i

F \ 0 f  =  -  f  (F  + 1 +  3ej) ( F + l — f  ej)2. (5-4)

This too can have no solution capable of physical in terpretation , for it  makes 

F '(^)2 negative where F  =  0, except in the one case where ex = f . The only 

solution then  is F  =  0 which corresponds to  no m otion between the walls.

(iii) ex = e2 = — \ e 3, where ex is positive.

The differential equation f o r f ( 6 )  is

m *  =  4 ( / —e ,)* ( /+ 2 «,), (5-5)
and th a t for F(0)  is

F ' ( 6 )2 = | ( F  + 1 +  3ex)2 -  1 (5-6)

As long as (^ei ~  1 )> 0  this does no t produce an inconsistency a t points 

where F  =  0. P u t §ex— \  =  A where A is positive. E quation (5-6) becomes

J Ifl 1
_ _ = ± _ (^  + A + 3)(A - J ).. (5-7)

I f  we assume th a t dF j d d  is positive a t we m ust take the positive sign

in equation (5-7). This means th a t as 6 decreases below a, the value of F

Steady flow of viscous fluid
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452 L. R osenhead

decreases below its value a t 6 = cc,which is zero. I f  we t

in (5-7) we are considering the case where F(cc — e )  is negative, e being a small 

angle. Since F  is zero a t 6 =  ± a  there m ust be a t le

range, 6 = 6' say, where dF \ d d  =  0 . A t this 

and from (5’7) we see th a t a t 6 = 6'the value of F  m ust b

solution of (5*7), however, which satisfies the boundary condition a t 6 = ct 

is, however,

tanh' 1(3(^T))*_ (i ^ )  (e~ a) = tanh~‘( t l T § )  • (5'8)

I f  in this we p u t F  = —J(A -f- 3), we find th a t 6' — oo which is impossible.

We are therefore compelled to take the negative sign in (5-7) and the 

solution is

tanh“‘ (siTTX))*+ (n r ) *  (9 ~ a) = tanh_1(8 T T § )1

From  equation (5*7) it  is clear th a t dF / d 6  is zero when A, and in this 

position

(scr^ A ))*  •

By sym m etry 6' m ust be zero so th a t

4
(5 -1 0 )

I t  should be noted also th a t the m axim um  value of F  is A, and this occurs a t 

6 = 0. I f  we p u t A =  (2H  — 1), where H > \ ,  equations 

become
F{6)  = { 2 H - 1 ) - 3 H  tan h 2 6 JH ,  ’

a  *JH =  tan h -1
\  3 ')■

(5 -1 1 )

The equations (5* 11) correspond to  the case usually described in text-books 

and manuals (see Goldstein 1938, p. 109, equation (63)), if H  is assumed to 

be so big th a t 1 /H can be neglected.

I t  can therefore be seen th a t the cases corresponding to  positive A and 

negative A represent fundam entally different types of flow. We note th a t

21A =  {(4 —a)* + 8 —3a —3& }{(4-a)* -8  +  3a + 3&} = ( 4 - a ) 3- ( 8 - 3 a -3 6 )2

(5*12)

in term s of the constants a and b introduced in equations (3*12) and (3-13).
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We note also th a t 6 m ust be positive as explained ju s t after equation (3-16).

A  is negative for all values of 6.

I” (4 — a)* +  8 — 3a is negative,

|( 4  — a)? — 8 + 3a is positive.

|"(4 — a)® + 8 — 3a is positive.

^(4 — a )5 — 8 +  3a  is positive.

Hence A is negative and the flow is always pure outflow if 

(i) a  >3, 

or (ii) 3 > a  and 3 6 > 8  — 3a +  (4 — a

In  addition, A  is positive and the flow m ay be either pure inflow, or m ay 

contain regions of inflow and outflow, if

(iii) 3 > a  and 8 — 3a + (4 — a)} > 36 > 0. (5-14)

6. T h e  c a s e  a  =  0

The previous analysis shows th a t, m athem atically a t  any rate , the 

velocity profile of the two-dimensional flow between inclined plane walls 

may have m any forms. Many of these are, m ost probably, unstable to slight 

disturbances so th a t they will no t have been observed in experim ent. I t  is 

interesting however to investigate the possibility of the existence of similar 

velocity profiles in the flow between plane parallel walls. The following 

analysis shows, however, th a t as a  -> 0 the velocity profiles change and, as 

a limiting form, assume the parabolic shape which emerges from the well- 

known theoretical investigation of the flow of viscous fluid between plane 

parallel walls.

Let O' be a point on the line OX of figure 1, d istan t r0 from O. Through O' 

draw a line cutting OF and OW  in F ' and IF'. We p u t O 'F ' and O 'W '  each 

equal to h  and in the subsequent limiting process we keep O', F ', W '  fixed 

in space and allow r0 to tend to infinity. Introduce new variables and y  

defined by the equations

r = r0 + x ,  ( . (6*1)

x  and y  will rem ain finite while r and r0 tend to infinity and 6 tends to zero. 

F u rther u,  the velocity, m ust remain finite. From  (3-18) we see th a t

Steady flow of viscous fluid  453

)* • ]

(5-13)

Further

(i) I f  a ^ 4 ,

(ii) I f 4 > a > 3,

(iii) I f  3 > a,

+  0 .V
2 y u  a/iv 

r0 + x  +  2(r0 + x ) 2
( 6 -2 )
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454 L . R osenhead

The first term  tends to zero but the second and th ird  term s are a t our dis

posal since a  and C  are arb itrary . Hence

p J c + v ) . ^ x+ ^
\  2 r t f  2r%

(6-3)

The quan tity  + *S a r^^tra r3'T an<  ̂ m ay be l)ut e(lual to  an

arb itrary  constant. The expression (aju is also 

value of r0 the m agnitude of a  can be adjusted  to m ake the ratio  finite. P u t 

(aju,v/2rl) equal to P  where P  is finite. Then, neglecting term s which tend  to 

zero as r0 tends to  infinity, we have

P  =  Pq - P x . (6-4)

I f  P  is positive then a -> 2P r \h i v ,  which is very big. Hence from condition 

(i) of equation (5-13) the flow is pure outflow. Further, after some m anipula

tion, it can be shown th a t the velocity profile tends to

(6-5)

where u 0 = P h 2j2/n. I f  P  is negative, the flow remains of the same type b u

reversed in direction.

I f  the limiting process is carried out in any other m anner, the angle 

tends to zero in such a way th a t the two walls collapse and become identical. 

In  such a limiting process all types of velocity profile m entioned previously 

are possible.

7. T h e  R e y n o l d s  n u m b e r  w h e n  is  n e g a t i v e  o r  z e r o  

The Reynolds num ber as defined in (3-4) is

B  — f  F (d ) d 6  — f {3/(0) + =  — 2a  + 3 f f {d )dO .
J —a J a J a

When A is negative the flow is always pure outflow and

m  =

cn (2aJ
Z H - 6 A  + 1 

3H  +  6H — 1 ’

w 2 =  K / J H ,

k 2 = ±(H  + 3 A ) /H .

(7-1)
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Steady flow of viscous fluid 455

I t  can be shown th a t

I ~ * f  (0 )dd  = 4 A x  — 2 H i( xVHsf l ^ ~ n- l d v
J« Jo cn 2t/

= 4.4 a  -  2 w \  +
L c n V  Jo

= 4Ha -  2 ocH + 2H* 8ncc l̂H d n ^ H  +  4
cn ol^H

= 2 o ^ 2 A - H  + 2 H ^ - % ( l 8 A - 3 ) *  + (7-2)

where E (u )  is the Jacobian  elliptic integral of the second kind, Z (u )  is the 

Jacobian zeta function defined by the relation

E
Z(u )  = E (u )  —

A

and E  and K  are the complete elliptic integrals of the first and second kinds. 

From  these formulae we therefore find

R  = 2 x ( 6 A - 3 H  + 6 H ^ - l j - 2 ( l 8 A - 3 ) l + l 2 H l Z ( o

Using the last of the relations given in (7-1), this becomes

6 ^  + 4k2 -  5) — 1 j — 2n/3 

I t  m ight be noted too th a t F( 0), which gives a measure of th

central line, is given by the relation

F(0)  = 6A  — 1 = (4k2— 2 ) H  — 1(7-4)

The central velocity and the Reynolds num ber are thus expressed in term s 

of two param eters, k 2 and H .  The evaluation of the Reynolds num ber 

sponding to any pair of values of these param eters, and of the appropriate 

value of a  given by the second of the equations in (7 -1), was effected with the 

aid of two tables of elliptic functions published by Milne-Thomson (1931, 

1932). The results of the evaluation are included in table 2.

The type of flow corresponding to the degenerate case described in (5 T 1) 

is the limiting case of (7-3) corresponding to = 0. Here = 1 and

R  = -  2a (H  + 1) +  2^

F(0)  =  2H  — 1. 

2 o t’ H

(7-5)
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456 L . R osenhead

8. T h e  R e y n o l d s  n u m b e r  w h e n  is  p o s i t i v e

Here again it  can be shown th a t all the  characteristics of the fluid motion 

can be described in term s of two param eters, and X . I t  has been shown,

however, th a t m any different types of flow are associated wdth each pair of 

values of k 2 and X . The type is determ ined by the  value of a  which is chosen 

from the infinite set of values which are available as solutions of the boundary 

condition. (Physically, however, no t all these values are permissible, for a  

m ust be less th an  i t . )  The exact dependence of the  type of flow upon the  

choice o f a  can be seen from conditions (i'), (ii'), (in/), (iv') of § 4. As can be 

seen from the diagrams of the  types of flow, the two fundam ental ones are 

those which correspond to  pure outflow and to  pure inflow. The associated 

values of the Reynolds num ber can be determ ined, and  it  can be seen th a t 

the Reynolds num bers of the  o ther types of flow are sums of integral 

multiples of these fundam ental quantities.

Referring to  conditions (i') and (ii') m entioned above we see th a t  if  a  =  

the flow is entirely outflow and th a t  if a  =  o)1 — 7j 1 the  flow is entirely inflow. 

The corresponding values of the  Reynolds num ber are 8  and T  where

rv i i
8  =  2 j  F(ij)drj>0, =  2J 

and where rj1 is the smallest positive roo t of the  equation 

sn2 (ij<JX) =  {(1 +  k 2) X  -  i}/3FX ..

The other term s in equations (8-1) are defined by equations which have been 

derived previously b u t which, for purposes of convenience, are here repeated :

(ox =  x x - * ,

F{rf) =  -  3e3 -  3(ea -  e3) sn2 {rj(ex -  e3)*} - 1

=  3X dn2 (V'JX) — (2 — &2) X — 1.

From  these relations it  can be proved th a t

S  =  6X* Z(9,VX) +  2i?1J x ( 3 ~ - 2  +  p j - l j ,  

S  + T  =  2 X X - » |x ( 3 ^  -  2 +  42) _  l j .
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Steady flow of viscous fluid  457

The R eynolds num bers o f the various types o f flow are then:

Type figure 4 R  = S , T ype figure 4 c R  = 3S

5a R =  T , 5c R  =  2 S  +  3 T ,

46 R  =  S  + 2 T , 4d R  =  3 $  +  4T ,

56 R =  T  +  2 S , 5 d
etc.

R  =  4 $  +  3 jT,

Type figures 6 a  and  6 a ' R =  S + T ,

66 and 66' R  =  2 S  +  2 T ,

6c and 6c' R  =  3$  +  3T,

etc.

Values of S  and T  are given in table 1 for different values of k 2 and

The table covers the  dom ain A  ̂0 and gives the  lim its of X  c

to  each value of k 2. The cases k 2 = 1-0 and k 2 =  0-0 are critical ones and have

been considered as lim iting cases of 1 -- e  and k 2 =  eas e -> 0.

T a b l e  1. V a l u e s  o f  A:2 a n d  X  w h e n  ^  0

I  (a) k2 =  1*0 ; o o ^ X ^  0-5; K  =  oo*

X Vi 0)l S T

0-500 0-000 00 0-000 — 00
1-000 0-658 00 0-832 — 00
1-100 0-666 00 0-997 — 00
1-500 0-657 00 1-613 — 00
4-000 0-503 00 4-136 — 00
9-000 0-360 00 7-082 ~  00

16-000 0-277 00 9-870 — 00
25-000 0-224 00 12-600 — 00
36-000 0-188 00 15-278 — 00

X  ̂  100 (say) 1 1 4 6 X -* 00 2-607X* — 00

I  (6 ) k2 =  1 - e ,  w here e is  sm a ll; o o 2 s X > 0 -5 ( l  +  £e); lo g , (16 /e).

W hen  X  is v ery  b ig

S ^ 2 -6 0 7 X * , 5/1^ ; l-1 4 6 X - *,
Tax (3-393 -  lo g , ( 16/e)} X *, f t h M i  log  ( 16/e)} X -» .

1 (c )  &a =  0-8; o o jsX ^ O -5 5 6 2-2572.

X Vi S T

0-556 0-000 3-030 0-000 -4-826
1-000 0-648 2-257 0-659 -3-519
1-440 0-673 1-881 1-323 3-101
4-000 0-529 1-129 3-854 ■2-804
9-000 0-383 0-752 6-705 2-251

25-000 0-240 0-451 12-010 4-652
100-000 0-122 0-226 24-732 8-627

X  ^  100 (say) 1-230X -* 2-257X -* 2-499X1 0-846X *

Vol. 175. A . 30
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4 5 8 L . R o s e n h e a d

T a b l e  I  ( c o n t i n u e d )

1 (d )  k 2 0-5;8 \V H \v 9 C
i = 1-8541.

X Vi 0Jt S T

0-667 0-000 2-271 0-000 - 2 - 4 6 6

1-000 0-635 1-854 0-407 -  1-573

1-690 0-731 1-426 2-015 -  1-563

3-240 0-672 1-030 2-991 - 0 - 4 7 6

9-000 0-490 0-618 6-472 - 0 - 0 8 2

X ^  200 (say) 1-854X -* 1-854X -1 2-542X i 0-000

I (e)  k 2 =  0-4; 5 3 s X ^ 0 -7 1 4 ;  K1-7775.

X Vi ('h T

0-714 0-000 2-103 0-000 -  1-918

1-000 0-631 1-778 0-324 -  1-171

3-610 0-758 0-936 3-339 - 0 - 0 5 9

5-000 0-795 0-795 4-467 0-000

I  ( / )  k 2 --- 0-2; 1-667 3* X  3* 0-833; K  =  1-6596.

X Vi 0J1 S T

0-833 0-000 1-818 0-000 - 0 - 9 1 0

1-000 0-623 1-660 0-161 - 0 - 5 2 1

1-667 1-286 1-286 1-250 0-000

I  (g ) k 2 — e (sm a ll); 1 +  2e >  X  ^  1 - e ;  K  =  \ n ( l  +  \e ) .

X Vi s T

l  — e 0-000 W  +  ie ) 0-000 -  § 7 7 6

1-000 0-615 (app.) i n ( 1 +  i e ) 0-800e — 2-371e

1 +  2e \ n ( l  — fe ) i * ( l  - i e ) 0

1 ( h )  k 2 =  0 ; X =  1 ; K  =

X Vi 0)x S T

1 0 - > \ n i n 0-000 0-000

The results of the above table were then  analysed in the following way. 

Tables were made giving corresponding values of a  and for different types 

of flow. Table 2 gives these values for the sym m etrical outflow (cf. figure 4 a). 

The values for symmetrical inflow (cf. figure 5a)  are given in table 3. 

Corresponding values of a  and R  were plotted, as shown in detail in figure 7. 

Each value of k2which was considered gave rise to a curve. These c

mapped out regions in which pure outflow' and pure inflow were respectively 

possible. From  these it is clear th a t, corresponding to each value of a, there 

is a range of values of R  in w'hich the type of flow considered is possible. 

Similar regions were m apped out for different types of flow, and the
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459

appropriate ranges in which they  are possible are shown in table 4. Some of 

the limits were read off from graphs and are therefore subject to  error—b u t 

the general run, and the order of m agnitude, of the limits are as tabu la ted . 

The limits of the ranges of the sym m etrical types of flow are p lo tted  in 

figure 8. Those for the non-sym m etrical types are shown in figure 9. A num ber 

of deductions can be m ade from these figures, and, in addition, the forms of 

the curves give rise to a num ber of speculations as to the stab ility  of the 

various types of flow.

Steady flow  of viscous fluid

ot(half-angle between planes)

pure /  

inflow

r^A 2=l-e(A>0)

-5 0  - 4 0  -30

A 2- 0-8( A » 1j j :  i'
A1- 0-4 (AH))) 

A = 0(A>0)

"=l6"

=

A =0-2(A>0) 
A2=0-4(A>0)

;A o -5(a >o ) 

A~0-8(A>0) 
A=10(A>0)

A-0-8(A>0) 3 
v A = 0-6 (A>0) 

A = 0-5(A>0)

F i g u r e  7. R a n g e s  o f  It fo r p u re in flow  a n d  fo r  p u re o u tflo w .

F i g u r e  8. R a n g es  o f  R fo r d iffe ren t ty p e s  o f  sy m m e tr ic a l flow . [\Vote. “  L im it o f  4 a ” 

sh o u ld  be in te rp re te d  a s  th e  “ U p p e r  lim it o f  th e  R e y n o ld s  n u m b e r  fo r w h ich  flow  o f  

th e  ty p e  sh o w n  in  figu re  4 a  is p o ss ib le .” S im ila r in te rp re ta t io n s  sh o u ld  b e  m a d e  o f  

th e  o th e r  in sc rip tio n s . A ll th e  cu rv e s  te n d  a s y m p to tic a l ly  to  zero  ac co rd in g  to  th e  

law  (c o n s ta n t) /# .]

3 0 - 2
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464 L . R osenhead

In  order to  make a rapid survey of the  velocity profiles a t  large Reynolds 

numbers the characteristics of the  flow can be compared w ith two hypo

thetical cases, (i) a  flow in which the velocity is constant across a circular arc, 

centre 0 ,  spanning the walls, and (ii) a flow which is “ parabolic” in form 

across the same arc. In  this paragraph the  m ain in terest centres on “ pure 

outflow” and on “ pure inflow” . The other types of flow are no t w ithout 

interest b u t i t  is doubtful w hether they  will have been observed in norm al

|  a  (half-angle between planes)

Limit of 6b 
j  and 6 Limit of 6c and 

[_________

R

F i g u r e  9 . R an ges o f  R  for d ifferent ty p e s  o f  n o n -sym m etrica l flow . 

[N o te . See legen d  b elow  figure 8 .]

F i g u r e  1 0

experiment. I  am, however, indebted to  Mr H . B. Squire, M.A., of the R oyal 

A ircraft Establishm ent, Fam borough, for a suggestion th a t a t low Reynolds 

numbers, a t any rate, i t  m ight be possible to  reproduce some of the  types of 

flow by means of apparatus represented schem atically in figure 10. By means 

of suitable apparatus it  m ight be possible to  obtain  slow steady m otion in 

long parallel channels between plane th in  walls. A t the  walls the  velocity 

would be zero. The outer walls of the  set of channels could be connected to  

slowly converging walls and in the ensuing motion, which would be lam inar 

a t small Reynolds numbers, there  would be vaguely defined layers of zero
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velocity separating stream s of fluid moving in opposite directions. I t  is 

probable, however, th a t  m any of these composite types of flow are unstable. 

This will be referred to  later. R eturning however to  the cases of pure inflow 

and outflow and to  the  hypothetical cases m entioned above, if  th e  velocity 

is constant across a span i t  can be shown th a t  0) is equal to  2, and  if

the velocity profile is of the  form

u  =

the value of R/aF( 0) is 1^. These num bers can be com pared w ith  those 

occurring in the notes a t  the  feet of some of the columns in tables 2 and 3. 

In  table 2, relating to  outflow, a R  increases uniform ly from 0 to  4*713 as 

R/otF(0)  decreases from 1*33 to  0*91, the  Reynolds num ber being large. 

Hence for a constant small value of a ,  the  flow changes from the  parabolic 

form, and becomes more and more concentrated in the  centre of the  channel, 

as R  increases. As R  increases still fu rther the value of du f lO  becomes zero 

a t the  walls and changes sign. This changes the  type of flow from th a t  shown 

in  4a  to  th a t in  46. For large Reynolds num ber in inflow, however, th e  value 

of RjccF{0) is approxim ately 2, suggesting a fairly constant velocity across

the span dropping very rapidly to  zero a t  the walls. As the Reynolds num ber 

is decreased the  region in which the flow is approxim ately constant becomes 

smaller and finally disappears. This phenom enon has been com m ented on, 

and in greater detail, by  other investigators, b u t no t from the above point 

of view.

W hen the  flow changes from the com paratively simple ones discussed in 

the preceding paragraph we m ust tu rn  to  figures 8 and 9 for a general survey. 

A representative example will explain the variation of flow w ith increasing 

Reynolds num ber. L et us consider the case a  =  0*3 radian. W hen =  — oo 

all types of flow are possible, except, of course, the pure outflow of type 4a. 

[N.B. We shall specify each type by the num ber of the diagram  in which it 

occurs.] This m eans th a t the maximum and minimum velocities can be 

adjusted a t will in any one of the types to make the to ta l flux equal to  2v  

times the required Reynolds num ber. This s tate  of affairs continues righ t up 

to and including R  =  0. In  the range 0 < < 16*5 all types of flow, exce

course the pure inflow of 5a, are possible. I f  R  increases beyond this lim it, 

then there m ust be a change of type of flow only  if the original type was th a t 

of 4a. O ther types of flow would continue unchanged. Beyond R  =  16*5 

the type 4a is no t possible. Similarly beyond 18*8 all types of flow except 

4a and 46 are possible. And so on! In  addition, non-symmetrical types of 

flow are possible, and, where they occur, a m irror image of the flow with

Steady flow  of viscous fluid  465
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respect to the central line gives a second possible flow, as, for example, in 

figures 6 a  and 6 a '.
I t  can be seen quite readily th a t the sta te  of affairs is extrem ely compli

cated. The above m athem atical analysis only yields inform ation as to the 

types of flow which are possible bu t gives no help on the question as to which 

is the type actually assumed by the flow when R  and a  are given. I t  m ight 

be noted here th a t in a normal experim ent boundary conditions are imposed 

not only by the friction a t the walls bu t also by the imposed pressure condi

tions over the inlet and outlet ends of the channel. The above investigation 

may be considered as one which determines the proper pressure distributions 

over the ends which allow of steady lam inar radial flow. I f  in an experim ent 

the pressure distribution is not one of those obtained above, the flow may be 

neither steady, lam inar nor radial. I t  m ight be noted too th a t the imposed 

pressure conditions in experim ent are closer to those implied by the pure 

outflow and inflow than  those implied by the other types, so th a t pure o u t

flow and pure inflow are more likely to occur than  are the other types. I t  is 

clear also, from figure 8, th a t if a  > \ n  pure outflow is quite impossible— 

w hatever the Reynolds num ber m ay be—and th a t there is a range of small 

Reynolds num ber within which pure inflow is impossible.

Considerations of stability  are undoubtedly the dom inant ones in deciding 

the type of flow assumed by the fluid. On the other hand, the present s ta te  

of the theory of stability  of fluid does not seem to offer much hope th a t in 

form ation will be obtained along these lines. I t  is possible, however, to  make 

a fairly plausible assum ption here which will have the effect of system atizing 

our picture of the way in which the velocity profile changes w ith increasing 

Reynolds number. The assum ption is th a t ' ‘ I f  the pressure conditions over 

the inlet and outlet ends are not rigidly applied—th a t is, if the pressure- 

profile can be assumed to be loosely self-adjusting—then the velocity - 

profile will be th a t one which has the smallest num ber of crests and troughs 

I f  this assumption is accepted, and if we leave out of consideration the non- 

sym m etrical velocity profiles and those which have inflow along the central 

axis and yet give a positive to ta l flux outw ards, then  the sequence of changes 

is as follows. For inflow the velocity profile is always th a t of figure For 

outflow the velocity profile passes through the sequence of changes shown 

in figure 4. I f  these types of flow are possible for the whole range of Reynolds 

number, there seems to be no plausible reason why the other velocity profiles, 

th a t is, those in figures 5 b , c , d ,  etc., and in figure 6, should ever m anifest 

themselves, unless they can be produced by rigidly imposed pressure condi

tions a t the ends of the channel.

This sequence of speculations can be pressed still further, and one can
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Steady flow of viscous fluid 467

surmise as to  the stab ility of the various types of flow. I f  a t  any angle a  there 

is a  rap id  variation  of the type  of flow for a small change in the  Reynolds 

num ber, it seems legitim ate to  suggest th a t  th e  particu lar type of flow is u n 

stable in the region of the  Reynolds num ber in question. For exam ple, when 

a  is 0-2, and R  is abou t 24, a small increase in R  produces a rap id  transitio

from type 4 a  to  type 46 and then  to  type  4 c. This type  of instab ility  seems to  

m anifest itself for all types of outflow b u t no t for inflow.
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