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Summary

The behaviour of the one-phase Stefan problem with nonlinear kinetic undercooling is studied.
This system is physically relevant in a number of contexts, in particular as the sharp-interface
(fast-reaction) limit of a variety of reaction—diffusion systems. The similarities and differences
with the linear kinetic condition (studied by Evans and King (2000)) are highlighted for both
one- and two-dimensional problems. Asymptotic results (both in time and in the Stefan number)
are obtained for the power-law form of the kinetic condition. Significantly, the one-dimensional
growth behaviour of the moving boundary is seen to be relatively insensitive to the precise form
of the nonlinear kinetic condition, and this in effect has hindered its experimental determination
in applications such as silicon oxidation. By contrast, the two-dimensional development of the
moving boundary around a mask edge depends strongly on the form of the kinetic condition and
consequently a method, similar to the Boltzmann—Matano method for determining nonlinear
diffusivities, is described to determine the kinetic undercooling relation from experiment.

1. Introduction

In Evans and KingJ), the one-phase Stefan problem with kinetic undercooling was studied with
alinear kinetic condition at the moving boundary. A number of transformations and asymptotic
results (for small and large time and Stefan number) were presented in one dimension and for
a mask edge problem in two dimensions. Here we extend these results by considering a more
general nonlinear kinetic condition on the moving interface. The kinetic condition relates interface
undercooling to interface growth rate and nonlinear relationships are seen in the modelling of
certain heat and mass transfer problems involving non-equilibrium phase change. In crystal growth,
Kirkpatrick et al. (2) and Worster and Kerr3] indicate that algebraic and exponential forms for

the dependence of the undercooling on the interface growth rate are commonly found from fits
with experimental data. Similar forms are reported in Crowlgyf@r the additional applications of
pulsed annealing, cellular alloy solidification and solid fuel combustion. Importantly, as nofigd in (

the Stefan problem with kinetic undercooling is relevant to the penetration of solvents in glassy
polymers 6to 9) and the oxidation of silicon1Q, 11)). In the polymer application, a power-law
kinetic condition is usually imposed at the moving interface, whilst in silicon oxidation, although a
linear condition is most commonly adopted, similar nonlinear power-law forms have been suggested
by Blanc (12) and Hu (3) and equivalent formulations are pertinent to the description of many
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140 J. D. EVANS AND J. R. KING

other reacting systems. Although nonlinear bulk reaction kinetics are widely studied (in the form
of reaction—diffusion systems), nonlinear surface reaction models (which are formulated as sharp-
interface (moving-boundary) problems) are thus equally important and relevarf4igf. (

The above mentioned applications provide the motivation for the study of nonlinear kinetic
undercooling. A discussion of the underlying physics can be foun@)ifo¢ crystal growth, the
references cited ind( pp. 650—656) for cellular alloy solidification and solid fuel combustion,

(13, 15) for silicon oxidation and §) for polymer-solvent systems. In these applications, the
kinetic condition is typically regarded as a phenomenological relation and its precise form is often
claimed to be crucial in distinguishing distinct behaviours of the interface evolutiorbf:fWhen
definiteness is required, power-law and exponential relations are usually adopted (see equations (6)
and (7) below). Referencd4) provides a discussion of the relationship between bulk and surface
reaction kinetics in the fast-reaction limit, illustrating the relevance to a wide range of reacting
systems of the formulation studied below.

Although not pursued here, it is worth mentioning that in two or three space dimensions, surface
tension effects also become important. These are usually incorporated through a Gibbs—Thomson
relation, where the equilibrium temperature or concentration of the phase-change interface is related
to its mean curvature; see, for example, Schaeffer and Glicks&@®mo{ Umantsev and Davis
(17) for heat transfer problems and Mullins and Serkerk®) ©r Langer (9) for mass transfer.
Generally, a linear dependence on the interface curvature is used, for ex&tpte?6). However,
Abergelet al. (27) and ScheidZ8) consider a nonlinear (exponential) dependence, which follows
from the use of Nernst's law for the kinetics of dissolution and growth of a solid phase in a solid—
liquid system.

The structure of the paper is as follows. In section 2 we address the one-dimensional problem,
recording the similarities and differences from the linear case considerddl. i\ (note is made
of the transformations that carry over and the generalizations of the asymptotic approximations for
small and large time as well as small and large Stefan number. In the case of a power-law kinetic
condition, the limiting asymptotic solution behaviour is derived for the two extreme limits of the
power-law exponent. Section 2 ends with an illustration of the numerical solution and a discussion
on the qualitative comparison with some of the asymptotic approximations derived. In section 3,
two-dimensional behaviour is examined through consideration of a mask edge problem.1As in (
the reaction-controlled limit is considered and its large-time behaviour analysed for the power-law
kinetic condition, illustrating the generalization from the linear case and the contrasting results that
can be obtained as the power-law exponent is varied. In the Appendix, remarks are made considering
nonlinear diffusion with a more general regularization, incorporating surface tension, introduced on
the moving boundary.

2. Theone-dimensional problem
2.1 Formulation

We consider here the one-phase Stefan problem with nonlinear kinetic undercooling at the free
boundary. The one-phase problem is a relevant approximation to the two-phase problem, when, for
one of the phases the conductivity (in the case of heat transfer) or the diffusion coefficient (in mass
transfer problems) is small relative to that of the other phase; in contexts such as silicon oxidation,
however, it should be stressed that there is no corresponding two-phase problem since the oxidant
reacts rapidly with the silicon whenever it encounters it. Followijgia the one-dimensional case
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NONLINEAR KINETIC UNDERCOOLING 141

the problem may be stated in dimensionless form as:

. au 9%

in0 < x < s(t) TR 1)
. ou .

onx = s(t) AS(t) = F(u), P —(u+ A)s(), (2)

onx=0 u=1, 3)

att =0 s=0, (4)

where (adopting terminology appropriate to problems of heat transfer)t) denotes the
temperature in the liquid, which occupies the region<Ox < s(t), s(t) denotes the position
of the unknown moving boundary and = L/cU is the Stefan number, whele is the latent
heat,c is the specific heat capacity of the liquid abdis a representative temperature scale. A
Dirichlet condition is posed on the fixed boundary= 0. The interpretation of this system in the
context of silicon oxidation and polymer-solvent systems is gived)nBecause we fis(0) = 0,
there is no externally-imposed length scale and the scaling we adopt fixes the dimensionless kinetic
undercooling parameter to ke if s(0) is sufficiently large, however, kinetic undercooling effects
are negligible (cf. the discussion below of the large-time behaviour), but this is not the case for
many of the applications of concern here (notably silicon oxidation, where sub-micron lengthscales
pertain).

The nonlinear kinetic undercooling term is represented by the funétjomhich is assumed to
have the following properties:

F(u) € C1(0,1], F’(u) > 0foru e (0, 1], F(0) = 0. (5)

Only problems in which the moving boundary is advancing will be treated, the form of the second
condition in (2) requiring (as described ih)) $ > 0; the cases < 0, when a different condition

holds in the one-phase limit that we are concerned with here, will be addressed elsewhere. The
commonly proposed forms are a power-law relation

Fu=u"", n>0, (6)
and exponential
Fu=e4-1 k>0, 7)

with k a dimensionless constant. The power-law form with= % has been proposed for certain
melts in crystal growthZ, 3) and cellular alloy solidificationd). In silicon oxidation {2) suggests
n = 2 whilst (13, 15) suggest a more general power in the rang€ h < 2. In polymer-solvent
systems, Astarita and JosHi) (suggest the rang§ <n< % The exponential form is applicable
to solid fuel combustion4) and may also be to some specific types of crystal gro®th The
wide range of values for the powetindicates that the limits of both small andn large are worth
investigating to obtain a clear picture of the range of behaviour which can be exhibited.

The first condition in (2) can be rewritten as

u=G(s(t)), (8)
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142 J. D. EVANS AND J. R. KING

whereG = F~1 also satisfies the properties in (5). For use in later sections, we define
a=F@Q, b=F'( 9)

and where numerical computations are involved, the power-law form (6) will be chosen. Fasano
et al. (29) establish well-posedness and regularity of the moving boundary for (1) to (4)kvith
satisfying (5). Corresponding results have been obtained by Andreucci and Bigavijen a
Neumann condition replaces the Dirichlet condition (3). The numerical scheme descrilal in (
will be used to illustrate the asymptotic results of later sections. In the case of a linear kinetic term,
Groger and Streckei3() have shown existence and uniqueness for this problem in the context of
silicon oxidation.

In the corresponding two-phase non-equilibrium problems in one dimension, existence and
unigueness results have been obtainedBitg 35) for a linear kinetic undercooling term. In the
nonlinear case, Visintin3g) and Guan and Wang@{, 38) have demonstrated existence, with the
latter authors placing constraints on the growth of the fundiidm). In (33) results were obtained
for higher dimensions with surface tension also included.

2.2 Transformations and conservation laws

The transformation
s(t)
v(X, 1) = —/ (u(x’, t) + 1) dx’, (10)
X

noted by Fasanet al. (29), is applicable to the nonlinear kinetic undercooling case and gives what
can be viewed as a generalized one-phase ablation problem, namely

v 92v
in0 < x < s(t —=—, 11
< X < s(t) P 2 (11)

v .
onx = s(t) v =0, X L+ G(s()), (12)
v

onx =0 — =1+4, 13
X o + (13)
att =0 s=0. (14)

By contrast, the Duvaut transformation, valuable for linear kinetics (¥pgei¢ of very limited
use in the current context. The conservation relation

s(t) t Ju
/ (u(x,t) + ) dx +/ —(O,thdt’=0 (15)
0 0 0X
of course remains valid in the nonlinear case, but the result for the first moment becomes
s(t) t
/ X (U(x, t) + A1) dx + / GAstH))dt' —t =0, (16)
0 0

which is of limited value other than for linear kinetics.

220z 1snBny |z uo 3senb Aq |1.89€81/6E |/1/9G/21o1e/Wwewb/woo dno-oiwspese)/:sdyy woly papeojumod



NONLINEAR KINETIC UNDERCOOLING 143

2.3 Asymptotic behaviour for small and large times

For small time, the asymptotic results

t ab 1\ t? 3
S(t):ax—7<1+x>p+o(t ), (17)
ux,t) =1— <1+ %) ax+ O(t?) forx = O(t), 0 < x/t < a/A, (18)
are readily deduced, wheaeandb are defined in (9). The large-time behaviour is given by
S(t) ~ 2a+/t + s1(1), (19)
f(x/24/t
ux,t) ~1— M +ui(x,t) ast — oo, (20)
erf(a)

wheres; (t) = 0(4/t) andu; = o(1) ast — oo are the correction terms. At leading order the kinetic
term is negligible, so that the dominant behaviour in (19), (20) is given by the Neumann solution to
the classical Stefan problem, withgiven by the only positive root of the transcendental equation

Jrae erf(@) = 1/x. 21)

F(u) ~ ul/" asu — 0 (22)
then the first correction terms can be calculated explicitly winen2 giving

si(t) ~ —ptd="/2, (23)

ui(x,t) ~t™"2f,(n)  ast — oo, (24)

with

fa(m) = ((he)" — 1) a@?=n?)/2 <U V2V (0) — V(v2U (0) )

X
T2 U(V20)V(0) — V(+v20)U (0)

o (VZV©O - V20U ©) + V2 (U'V20V 0 - V' (VZ)U )
B=A""a ,
a(U/(ﬁa)V(O)—V/(ﬁa)U (0)) FA@2+1-n) (u (V2a)V (0)—V (v2a)U (0))

ra-
U (&) = Dn_1(6), vig = tE-n

(cosmn)Dn-1(§) + Dn-1(—§)) .

with Dn_1(¢) being a parabolic cylinder function. These terms are independent of the earlier
ewlution and we note the simplification which occurs when= 1, wherebys; = —1 and
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144 J. D. EVANS AND J. R. KING

up = Ot 1) rather thanO(t*%) due tog = 1 holding in this case, so thdt () = 0; which

is not a coincidence, the result following most directly from the Baiocchi transformed version of
the problem (which is available only in the case= 1). Whenn > 2 we haves; = O(t‘%) and

u; = O(t™1), it only being possible to determine the coefficients of these terms numerically; they
depend on the initial data if (4) is generalized and correspond to translatibivstbe leading-order
solution (so still correspond to the classical Stefan problem).

2.4 Thelimits of small and large Sefan number

2.4.1 Large Sefan number. In the limit of large Stefan numbei (— o©), we rescald = At
and expand in inverse powersxafThe leading-order problem is quasi-steady and, writing

s(r) = so(r) + O (1/2), u(x, 7) = Uo(x) + O(1/2), (25)
the solution can be written parametrically in termgtf), given by
101 01 G(p) & G(p)
(with, sinceG(a) = 1, p =aatt = 0), in the form
1 G
Up=1-— px, =—— —. 27
0 p o o (27)
When (6) applies, we have= 1 and (26) becomes
%(%—1>—Inp, n=2,
r = P (28)

1/1 (n-1) n_2
-|=-1 1-— 2.
2<p2 >+(n—2)( pr2). n#
These leading-order terms have previously been obtained bg3)afd King @39) in the context
of silicon oxidation and Cohen and Erne®j {or solvent penetration in polymers.

2.4.2 9mall Sefan number. In the limit of small Stefan numbei(— 0), there are two relevant
timescales, the first beirig= O(12) and with the second depending on the behaviouF @f) for
smallu.

Introducing the scalings

t =%, X = AR, s =8,
and posing
u~ Qo(%, 1), 8§~ &(D) asi — 0,

on the first of these timescales we obtain at leading order the zero Stefan number problem:

. A g 9200
in0 < X t — = , 29
<X <&M PTERPTY (29)
onX =0 Go=1, (30)
ad
onx = §() % =F (o). aﬁo = ~lo%, (31)

atf =0 % =0, (32)
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NONLINEAR KINETIC UNDERCOOLING 145

where the prime denoted/df. In the reformulation corresponding to (11) to (14), the moving-
boundary conditions read

9%

on g = &) fo =0, § = F(alf), (33)
representing a generalization of the classical Stefan problem involving a nonlinear Stefan condition.
While the system (29) to (32) cannot be solved analytically, asymptotic behaviours for small and
large time may be obtained. As— 0 we have

o =af—3a?bf?+ o3, (34)
up(x,f) =1 —ax+ O(? forx = O(f), 0 < %/f < a, (35)
while asf — +oo we have a singular perturbation problem with two regions, whereby
Gg ~ erfc(f(/Zf%) for X = O(f%), (36)
and
o ~ G(§) exp(—%2) for 2= 0(1/%)), (37)
wherez = X — §(f). Matching these two expressions implies for (22) that
%@ ~ 2vto (inf) asf — oo, (38)
whereo () satisfies
A -1/n
oe 2 ~ (ﬁae"z) ast — oo, (39)
so that
1
2\ 2 DInt  (+DInEn) +In
o= (ME)7 (1o EDINE _FDINGH AT o L (40)
2 2nt 2nt

The second timescale depends upon the valueinf(22). The case = 1 in (6) has already
been considered ifl); for arbitraryn > 0 this generalizes as follows.
The appropriate second timescalé is O(1), where

t = 223V n1/0) §, s= A" n@/r) s,
There are two regions which need recording. The boundary layer is
x = 237 YN nZ 1/ %,
with
u ~ erfc ()‘(/2_%) . (41)

The interior layer about the moving boundary has

1 o Z
X =In2(1/0)S(t; 1) + —/—

, U~ Ado(z, D),
Inz(1/)
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146 J. D. EVANS AND J. R. KING

the moving boundary conditions yielding
o = (1+ (8)") & ®? -1
with the prime now denotingd/df. Matching with (41) then requires

s ~ o (l _Inin@/x) In (V7 (1+E72))

AIn(1/) 2In(1/%) ) asi -0, (42)

consistent with (40) a— 0*.

2.5 Thelimitsof small and largen

2.5.1 9mall n. Here we briefly describe the asymptotic behaviour in the limit> 0 in (6).
There are two timescales to discuss, the scalings on theTiestO(1), being

u=1-—nU, t =nT, X =nX, s=nS,

so that the leading-order problem takes the quasi-steady form

. 92U
in0< X T —— =0,

<X < (M) e
onX =0 Uo =0,

dS _u dUg dS
on S(T) a7 e 9, 7% (+)dT’
so that
d 1 P
Uo = P(T)X, 9% _1.rs

dT ~ & )

from which it follows thatP and & are given by

1 /1 14 T 22 1 AP
—(z+In{——)—-InP| = , =—=In{——). 43
2P2<2+n< N ) " > (1+x)+4(1+x)2 = Pn<1+x> (43)

The expansion (17) is reproduced by (43) in the lifhit—> 0T (given that for (6) we hava =
1, b = 1/n), while asT — +oo it follows that

1 1 1
A+12Inz2T TY2InzT
~ S~ —, (44)

P 1 ’ 1
2T 2 A+ 1)z

which is almost of the Neumann similarity form.
It follows from (44) that the second timescale is exponentially long, with scalings

u=u®m, 1), S=2n"3T30(r), (45)
where

n=nzX/2T2, r=nnT, (46)
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NONLINEAR KINETIC UNDERCOOLING 147

implying that
. au du 94U
iNn0<n<o(r) InN——-—2n—=—,
ot an  In?
atn =0 u=1,
d du d
atn =o(z) 2e"2n73 (o +2n=2 ) = u¥/n, — — 2u+n(o+2n2
dz dn dz
so at leading order for = O(1) we obtain
. dUp BZUO
in0 < n < op(t) _UWZS—UZ7
atn =0 Up = 1,
du
atn = oo(t) Up = e”/z, 0 _ —2(Ug + Moo,

dn
representing a Neumann similarity solution which is slowly evolving in time. Hence
uop = 1— A(v)erf(n),

with A andog given by

_ o T/2
ﬁooe"gerf(ao) = w,
(A +e7/2) (47)
_(1-e?
~ erf(op)

matching with (44) as, oo — 0" and implyingeg — o ast — +o0, consistent with (19) to (21).
It is worth remarking that in this limit (43) and (47) provide a complete analytical description of the
ewlution.

2.5.2 Largen. Weagain consider the power-law relation (6) and now investigate the imit
oo. Here the moving-boundary condition
onx =s A =ul/n

essentially implies in the limih — oo that one of the two possibilitias = O(1) > 0, A$ ~ 1 or
A8 < 1,u = o(1) occurs. In consequence the leading-order formulation should be split into two
stages, as follows. Fdr< t; we have the linear problem

dug 92

iNn0<Xx<t/A —Ozﬂ,
ot ax2

onx=0 uo = 1, (49)
dUp

onx =t/x — = —(Up + A)/A,

aX

220z 1snBny |z uo 3senb Aq |1.89€81/6E |/1/9G/21o1e/Wwewb/woo dno-oiwspese)/:sdyy woly papeojumod



148 J. D. EVANS AND J. R. KING

tc being determined from (49) viag(tc/A, tc) = 0, withug(t/A,t) > Ofort < t.. Fort > tc one
instead has the classical Stefan problem

. dUp 82U0
in0 < X t —_— =
<X <% at Ix?
onx =0 ug = 1, (50)
onx = S(t) up=0 duo _ A8
=% 0=0, ax S0,

with the initial condition being given dt = t; by the solution to (49) at that time; for> t it is
required thaty < 1/ (so that—dug/dx is greater than one at= s fort < t¢ and less than one
fort > tc). This scenario is conveniently illustrated by considering the further limit of langlhen
we obtainte ~ A with

~t/A, Up~1-—xX fort < A,
So~t/ 0 < } (51)

so~(2t/k—1)%, Uup~1-—x/sg fort>a;
for (49) to (50) we havep, aswell assp, continuous at = tc.

The smooth transition between (49) to (50) proceeds as follows. The behaviour of (49) is analytic
att = t; becauselg(t/A, t) = 0 has no special status in that formulation so, in particular,

au K
atx = t/a Ug ~ K (te — 1), a—;~—1—7(tc—t) ast > t-  (52)

for some positive constait. The transition scalings take the form
fmtet D x=s)+ 2. st) ~ sto) + S5t + —S(r)
=lc H’ = ﬁ’ c H c)T ? T),
with s(tc) ~ tc/A, 8(tc) ~ 1/A andu ~ (—z + U(z))/n for someU (7); including appropriate

correction terms using (52) in the matching (but omitting details), we obtain from the moving-
boundary conditions that

ds ds 1 K
A— =1InU, A—+-U=——r1,

d a " x x e

so that
InU + XU = ——T
Hence
U~K(-1), AS~—((—1)In(=1)+(nK —1)(-7)) ast — —oo,
together with
K 2
U~eKi/A s~ _Trz ast — +o00;

fort > t¢, u is exponentially small at = s(t).
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NONLINEAR KINETIC UNDERCOOLING 149

102} 7

1073

1 . ) . . : .
04103 1072 101t 10 10t 107 10° 10t

Fig. 1 lllustration of the evolution of the moving boundas§t) determined by the numerical solution of
(2) to (4) with (6) for the values afi as shown

2.6 Numerical solutions

Here we illustrate numerically certain features of the system (1) to (4) using the power-law form (6)
for the kinetic condition. The explicit front-tracking scheme based on the method of lines considered
in Fasancet al. (29), is used to solve the system numerically.

Figure 1 illustrates the monotonic variation of the position of the moving boundary with the
exponentn with the Stefan number fixed at= 1. The small- and large-time asymptotics for each
n are qualitatively similar to the linear case= 1 shown in (). The relative insensitivity of the
growth of the boundary with is a feature worth noting and has been a contributory factor in the
difficulty in determining the oxide growth law in silicon oxidation.

Figure 2 shows for the small fixed valme= 0.1 of the algebraic exponent the variation of the
boundary growth with the Stefan numberAlso shown for each are the smallk asymptotics on
the two dominant timescales, hamely (43) and (45) with (47). The asymptotic approximation (43) on
the shorter timescale is valid after a short initial transienDofi/A) which becomes progressively
longer as\ decreases, as illustrated by the departure of the asymptotic approximation from the full
numerical solution at small times.

Figure 3 illustrates the boundary growth for large expomest 10 with varying values of; the
rather abrupt switch dt= t; described in section 2.5.2 is clearly demonstrated.
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150 J. D. EVANS AND J. R. KING

103
—— Full numerical solution

ot | T Asymptotic approx. (43)

————— Asymptotic approx. (45) with (47)

10! }

10°

s(8)

107!

L " 1 L 1

1073 1072 101 100 10! 102 103 10*

Fig. 2 lllustration of the evolution of the moving boundasgt) with the power-law kinetic term (6) in the
casen = 0-1 for the Stefan numbers = 0-01, 0-1, 1, 10 and 100. For eachthe solid line represents the full
numerical solution, whilst next to it, the asymptotic approximations on the two dominant timescales for small
n are shown, namely (43) by the dotted lines and (45) with (47) by the dashed lines

3. Two-dimensional problems
3.1 Formulation of the mask edge problem

To illustrate multi-dimensional behaviour, we consider a two-dimensional mask edge problem in
which the moving boundary encroaches over a mask. Such scenarios are of particular practical
relevance in the silicon oxidation context; see, for exampe@, 40). The initial-boundary-value
problem we study is

gu _ 9%u 9%

in 0<y< f(x,t), —00 < X < 400 at_axz—i—a—yz,

ony=0 x<0 u=1,

U (53)
ony=0, x>0 — =0,

ay

au

ony= f(xt) N

+un(+w =0 u=G(w),
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_ ~ 7
102 —— A=0-01 =10 /

107

100 5

s(0)

101

102}

10<¢ 1072 101 100 101 102 10° 104

Fig. 3 lllustration of the evolution of the moving boundasit) with the algebraic kinetic term (6) in the case
n = 10 for various values of the Stefan number

y-f(x, 1

Fig. 4 A configuration sketch for the two-dimensional mask edge problem

whereuy, is the outward normal velocity of the moving boundary ajdn denotes the derivative
in the outward normal direction, so that

1 1
_O S (1Y) au_ (o _atouy ff (01N
LT ox ’ an  \ay  ax ax X '
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The surfacey = 0 is covered by an insulating mask far > 0, while the surface temperature is
held fixed forx < 0. The configuration is illustrated in Fig. 4. As ih)( of the infinite number of
solutions that are possible whérix, 0) = 0 for sufficiently largex, there are two that are of most
interest. We start in section 3.2 by discussing the small-time behaviour of the solution which arises
on taking the limite — 0 of the case in which there is a uniform initial lay&tx, 0) = €2, with
0 < € « 1, andu(x, y, 0) = 0. This layer provides a ‘crack’ along which diffusion can take place
and the moving boundary initially propagates extremely rapidly over the paslO, x > 0. We
then discuss in section 3.3 the small-time behaviour of a second type of solution for which there is
no such crack. As inlj), these two solutions represent the extremes of an infinite family of possible
solutions; such non-uniqueness issues arise much more generally when the moving boundary meets
a fixed one, it being necessary to prescribe a suitable (for example, contact-angle) condition at such
apoint for the problem to be correctly specified.

3.2 ‘Reaction-controlled’ behaviour

We write
X = €°X, y:ez)?, f =2f, t=¢

and fork = O(1), f = O(1) we have

un~1, f ~ fo(x,©)
with
1
afo a a fo ?\?
0
—=—11 — , 54
ot A +<3x) (54)
fo=1 atf=0,
so that
R af
=14 . 55
0 + = (55)

The more important region is beneath the mask, Witk eX = O(1), X > 0, in which

u~u X, , — ~ _—— —
o(X, B T ( o 8X2> y
and, writing f ~ fo(X, f), the moving-boundary conditions yield (cf)}
afo 0 auo) 9 ( 3f0>
A—=—| fo— | — = (foup), GA— ) = up, 56
pr 8X<08X af(00) oF 0 (56)

so that matching with (55) gives the nonlinear evolution equation

d afo d d afo
it (0 (++2 (5¢))) = 5 (o3 (2 (5¢)) )
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subject to
afo
att = fo=1 — =0,
0 ot
N af
on X=0 f0=1+7, (58)

as X — +oo fo — 1.

The leading-order behaviour of (57), (58) for any suitahie given as — +oo, for X = O(f%),
by the (compactly supported) similarity solution

fo = £ g(X/£%)

with, whenF takes the power-law form (6§(n) being given by the free-boundary problem

naf,_ndg\"\ _nd n1(,_ ndg)"
9(1“ (g 2dn)> 2dn(g<1“ (g 2 dn

., d/ d ndg\"
g 65 - 32))
dy \Jan \®~ 2y (59)
onn=0 g=1/A,
d
n

Fore = 0, f(x,t) ~ tg(x/t%) ast — 0T, with g(n) given by (59), provides the small-time

behaviour of one of the extreme solutions to (53), namely the one with zero contact angle. The local

behaviour asy — 7, takes the form

n N0 (1-n)/n
9~ - 1 (7) (no — )™/ (60)

this can be exploited in solving (59) numerically, as follows. We write

2
n=no(l— &), g=ng AE"V/"h,

and specifyng to give an initial-value problem fdu(&), with h(1) = 1/ (Ang)l/n then being used to
determine for that value ofyg. Figure 5 illustrates the functiog for a selected range of values of
n at four values representative of small, intermediate and large each value of. the contrasting
behaviour in the change in convexity of the function with the expondatdemonstrated. Figure
6 illustrates the relative insensitivity in the variation of the position of the free boungay each
value ofa to the value of the exponent

As A — oo, the scalings

.

0
) n = 1 no == 1 (61)
A2 5
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Fig. 5 The solutiong(n) to (59) for selected values afin the power-law kinetic term (6) for each of the
cases. = 100, 10, 1 and 01

give to leading order

4G _d ( d ((  idg)
o= 57 ~ar (% (2 357) )

atn=0 do=1, (62)

A\ (1-n)/n
N e A n 10 N A\ (N+1)/n
asn — nq do ~ (E) (770 - 77)( )/ ,

but an explicit solution seems to be available only for= 1; the scalings are useful, however, in
indicating howng decays withh.
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Fig. 6 A numerical plot of the position of the free boundagyin (59) with the Stefan numberfor selected
values ofn with the power-law kinetic term (6)

For A — Othe rescalingg = §/A holds in the outer region = O(1), in which § ~ §o(n) with
the ‘zero Stefan number’ solutidiy satisfying

(o ndG\" nd .  nd@\\_d /. d/  ndfo\
go(Qo 2d77) 2dn<go<go 2 dn _dngdn Yo 2 dn
onn=0 o =1,
asn— +oo §o— O,

(63)
with §o > 0 holding for all finite. The far-f|§ld behaviour of (63) can be shown to be
Go ~ Aone”? as n — +oo, (64)
where
2n +5 1
T Thr F=an (65)

and Ag(n) is a constant which must be determined as part of the solution to (63). The scalings in an
interior layer at the moving boundary are then

Go

1
n:lnz(l/x)s(/\)er, 9 e DM/’

(66)
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where
B N+ 2) Inin(1/A») n({n(Ag/n) +aln?2)
SH) =2 (l + 41n(1/1) 21In(1/1) ) 67
gives from (64) the matching condition
Go~ne #" as z — —oo. (68)

From (66) it follows thatGp(z) satisfies the autonomous equation

(o () - R )

which represents a travelling wave balance in (57), so that (68) and the moving-boundary conditions
yield

Go= [ (-t for 20 w0~ SyinEA/). (69)
0

The small- and large-asymptotics can qualitatively be seen in the numerical results of Fig. 6 where
the weak dependence @ on n is evident; quantitative comparison leads to curves that are almost
indistinguishable (then = 1 case is shown inl{ Fig. 6)). Moreover, the small- behaviour is
numerically seen to be more sensitivantthan the largex behaviour, in agreement with (69), (67)
and (61), (62).

3.3 S9mall-time behaviour—no initial ‘ crack’

Here we note the other extreme case in which the moving boundary meets the mask at an angle
of %n, in which casey = 0, x > 0 may correspond to a line of symmetry rather than a physical
boundary. The small-time behaviour is then of the same form as in the linear kinetic undercooling
case given in], section 6.3), being governed by the hyperbolic evolution equation (54) except that
the Stefan number in that analysis is replaced bya. The solution may be recorded as follows:

3.4 Other limits

The G term in (53) is negligible for largg, so the behaviour as — +oc is as outlined in ). For

A — oo, the scalings = A f, vy, = /A apply, so that théu/at term is negligible, giving a Hele-
Shaw problem with a nonlinear kinetic undercooling boundary condition. This limit is particularly
appropriate to the case of silicon oxidation, (62) providing a concise description of the shape of
the resulting ‘bird’s beak’ (cf.X0)). We return to such matters below. The behaviouk as 0 is
relatively insensitive to the form d& (cf. section 2.4.2) and we do not go into details.
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4, Discussion

As is clear from (17), (19) and Fig. 1, the growth behaviour in one dimension is rather insensitive
to the precise form of (u) and this has hindered the experimental determinatioR @f). By
contrast, it is evident from Fig. 5 that profiles of two-dimensional growth under a mask edge
depends strongly on the form &f(u). It is therefore worth describing a technique (analogous to
the Boltzmann—Matano method for determining nonlinear diffusivities; see A1gkfor example)

for enabling the kinetic undercooling relation to be deduced from the experimental determination
of two-dimensional interfaces in the reaction-controlled regime (for example, by high pressure
oxidation; see Powelit al. (42), for instance). For brevity, and because of its relevance to silicon
oxidation, we consider only the limit cage— oo, in which the leading-order problem is quasi-
steady, so in dimensional form we have

9%u 9%
e T =0
ony=20 a_u: ,
ay
au
ony="f ﬂvnz—Da—n, U= ®(vp),

where® is the nonlinear kinetic undercooling relation that we wish to measure @@ = 0),

D is the oxidant diffusivity angB is the number of oxidant molecules reacting with unit volume of
silicon (or pL in the context of heat conduction, whesas density and_ is the latent heat). The
corresponding dimensional form of (57) is

af 9 ( 8u> <8f>
B—=D—(f—], u=9o | —
ot ax \ ax ot
S0, writing
1
U= ux/t?), f =tg(x/td), v=g-— —nd—g, (70)
2 'dn
we obtain the system
d du 1 dg
=D— |9 =g- N4 = O (v). 71
Bv dn (gdn), v 2" dn’ u= () (71)

Measuringf (x, t) at a givert enables;(v) andg(v) to be obtained from (70) and, since for relevant
@ (v) the solution to (71) is compactly supported, with= 0 for n > ng and

du

asn — ng ga -0, v>0, g—0, (72)
it follows from (71) that
_ B v dn)
¢(v) = Do) (vn(v) —/0 n(v )dv) . (73)

where¢(v) = @®'(v); the expression (73) thus in principle enabteév) to be deduced from
an experimental profile; it can also be used analytically in an inverse approach whérgtsygiven
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(with n(v) andg(v) satisfyingn(0) = no, g(0) = 0 with (1/2(g — v))(dg/dv) = (1/n)(dn/dv)
and the corresponding(v) deduced; the simplest example of this is

n=mno— Kv
for constantK, in which case

g = Kv?/no, ¢ = Kpno/2D, @ = Kfnov/2D,

reproducing the linear kinetic undercooling law studied in [1].

The applicability or otherwise of this technique, based on (73), can be assessed if the interface
f (x,t) can be measured as a function of time and its level of consistency with the self-similar
form in (70) quantified (which requires the experimental conditions to lie in the reaction-controlled
regime with the maximum oxide thickness being much greater than it was initially). We emphasize
(cf. Fig. 5) that our results illustrate the rather pronounced sensitivitly ofi the kinetics, so the
proposed method is expected to be effective in practice in extracting the required information from
suitable experimental data and the procedure should be significantly more robust than the fits to
one-dimensional behaviour pursued 12,(13, 15), for instance.

A natural extension of the work presented in this paper is to investigate the two-phase problem.
This would be of particular relevance in heat transfer applications (both melting and solidification),
where the one-phase approximation may be viewed as artificial. (We emphasize, however, that
this is not the case in many mass transfer problems, the silicon oxidation and polymer penetration
problems in particular being intrinsically one-phase, since the oxidant or solvent is unable to diffuse
significantly into the second phase (cf4)).) However, many of the approaches discussed here are
expected to carry over.
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APPENDIX A

Sender evolution equation with nonlinear diffusion

Here we briefly note the generalization to (56) which arises when the diffusion problem in (53) is made

no

nlinear and a rather general regularization is adopted on the moving boundary; we thus consider

au a au a au

2 2

€ — = — DU—A + € 7S Du 7S .
ot 8y< ()3y) ax( ()ax)

) 3
on§=0, X>0 a—;:o, (A1)

A du  ,of ay 2 of .
on y= f(X, DW|——-€¢-——=)+e“A+u— =0, u= ®ovn, ok),
y (X, 9) (w 3y axax) ( )af (AUn )
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correspond to the normal velocity and curvature of the moving boundary, so that (thby@4th) incorporates
general regularizing effects due to both kinetic undercooling and surface energy (with parajetere
generalization of (56)is then readily derived in the form

9 K ug
5 (A +ug) fo) = P~ (foD(Uo) af()’ (A2)

independent of the regularization, with the higher-dimensional version taking the form

aa—t 4+ W) f) = V- (FDWVU). (A3)
Similarly, (56) is replaced by
afo 3%t
Uup=o(r—, — ~ Ad
0 ( it o2 (A4)

and, in higher dimensions, (A3) is supplemented by
u:®<k%,—avzf>. (A5)

We conclude by mentioning that, somewhat remarkably, the novel evolution system (A2), (A4) admits for any
D and® similarity solutions of the form

Up = U(X/(&D)2), fo = (EHG(X/(£D)2),

which are of interest in applications (cf. (70)). Ttlebehaviour off is characteristic of reaction-controlled
1
behaviour in they-direction, whereag scales witht 2, characteristic of diffusion control.
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