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Summary

The behaviour of the one-phase Stefan problem with nonlinear kinetic undercooling is studied.
This system is physically relevant in a number of contexts, in particular as the sharp-interface
(fast-reaction) limit of a variety of reaction–diffusion systems. The similarities and differences
with the linear kinetic condition (studied by Evans and King (2000)) are highlighted for both
one- and two-dimensional problems. Asymptotic results (both in time and in the Stefan number)
are obtained for the power-law form of the kinetic condition. Significantly, the one-dimensional
growth behaviour of the moving boundary is seen to be relatively insensitive to the precise form
of the nonlinear kinetic condition, and this in effect has hindered its experimental determination
in applications such as silicon oxidation. By contrast, the two-dimensional development of the
moving boundary around a mask edge depends strongly on the form of the kinetic condition and
consequently a method, similar to the Boltzmann–Matano method for determining nonlinear
diffusivities, is described to determine the kinetic undercooling relation from experiment.

1. Introduction

In Evans and King (1), the one-phase Stefan problem with kinetic undercooling was studied with
a linear kinetic condition at the moving boundary. A number of transformations and asymptotic
results (for small and large time and Stefan number) were presented in one dimension and for
a mask edge problem in two dimensions. Here we extend these results by considering a more
general nonlinear kinetic condition on the moving interface. The kinetic condition relates interface
undercooling to interface growth rate and nonlinear relationships are seen in the modelling of
certain heat and mass transfer problems involving non-equilibrium phase change. In crystal growth,
Kirkpatrick et al. (2) and Worster and Kerr (3) indicate that algebraic and exponential forms for
the dependence of the undercooling on the interface growth rate are commonly found from fits
with experimental data. Similar forms are reported in Crowley (4) for the additional applications of
pulsed annealing, cellular alloy solidification and solid fuel combustion. Importantly, as noted in (1),
the Stefan problem with kinetic undercooling is relevant to the penetration of solvents in glassy
polymers (5 to 9) and the oxidation of silicon (10, 11)). In the polymer application, a power-law
kinetic condition is usually imposed at the moving interface, whilst in silicon oxidation, although a
linear condition is most commonly adopted, similar nonlinear power-law forms have been suggested
by Blanc (12) and Hu (13) and equivalent formulations are pertinent to the description of many
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140 J. D. EVANS AND J. R. KING

other reacting systems. Although nonlinear bulk reaction kinetics are widely studied (in the form
of reaction–diffusion systems), nonlinear surface reaction models (which are formulated as sharp-
interface (moving-boundary) problems) are thus equally important and relevant (cf. (14)).

The above mentioned applications provide the motivation for the study of nonlinear kinetic
undercooling. A discussion of the underlying physics can be found in (2) for crystal growth, the
references cited in (4, pp. 650–656) for cellular alloy solidification and solid fuel combustion,
(13, 15) for silicon oxidation and (5) for polymer-solvent systems. In these applications, the
kinetic condition is typically regarded as a phenomenological relation and its precise form is often
claimed to be crucial in distinguishing distinct behaviours of the interface evolution (cf. (5)). When
definiteness is required, power-law and exponential relations are usually adopted (see equations (6)
and (7) below). Reference (14) provides a discussion of the relationship between bulk and surface
reaction kinetics in the fast-reaction limit, illustrating the relevance to a wide range of reacting
systems of the formulation studied below.

Although not pursued here, it is worth mentioning that in two or three space dimensions, surface
tension effects also become important. These are usually incorporated through a Gibbs–Thomson
relation, where the equilibrium temperature or concentration of the phase-change interface is related
to its mean curvature; see, for example, Schaeffer and Glicksman (16) or Umantsev and Davis
(17) for heat transfer problems and Mullins and Serkerka (18) or Langer (19) for mass transfer.
Generally, a linear dependence on the interface curvature is used, for example, (20 to 26). However,
Abergelet al. (27) and Scheid (28) consider a nonlinear (exponential) dependence, which follows
from the use of Nernst’s law for the kinetics of dissolution and growth of a solid phase in a solid–
liquid system.

The structure of the paper is as follows. In section 2 we address the one-dimensional problem,
recording the similarities and differences from the linear case considered in (1). A note is made
of the transformations that carry over and the generalizations of the asymptotic approximations for
small and large time as well as small and large Stefan number. In the case of a power-law kinetic
condition, the limiting asymptotic solution behaviour is derived for the two extreme limits of the
power-law exponent. Section 2 ends with an illustration of the numerical solution and a discussion
on the qualitative comparison with some of the asymptotic approximations derived. In section 3,
two-dimensional behaviour is examined through consideration of a mask edge problem. As in (1),
the reaction-controlled limit is considered and its large-time behaviour analysed for the power-law
kinetic condition, illustrating the generalization from the linear case and the contrasting results that
can be obtained as the power-law exponent is varied. In the Appendix, remarks are made considering
nonlinear diffusion with a more general regularization, incorporating surface tension, introduced on
the moving boundary.

2. The one-dimensional problem

2.1 Formulation

We consider here the one-phase Stefan problem with nonlinear kinetic undercooling at the free
boundary. The one-phase problem is a relevant approximation to the two-phase problem, when, for
one of the phases the conductivity (in the case of heat transfer) or the diffusion coefficient (in mass
transfer problems) is small relative to that of the other phase; in contexts such as silicon oxidation,
however, it should be stressed that there is no corresponding two-phase problem since the oxidant
reacts rapidly with the silicon whenever it encounters it. Following (1), in the one-dimensional case
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NONLINEAR KINETIC UNDERCOOLING 141

the problem may be stated in dimensionless form as:

in 0 < x < s(t)
∂u

∂t
= ∂2u

∂x2
, (1)

on x = s(t) λṡ(t) = F(u),
∂u

∂x
= −(u + λ)ṡ(t), (2)

on x = 0 u = 1, (3)

at t = 0 s = 0, (4)

where (adopting terminology appropriate to problems of heat transfer)u(x, t) denotes the
temperature in the liquid, which occupies the region 0� x � s(t), s(t) denotes the position
of the unknown moving boundary andλ = L/cU is the Stefan number, whereL is the latent
heat,c is the specific heat capacity of the liquid andU is a representative temperature scale. A
Dirichlet condition is posed on the fixed boundaryx = 0. The interpretation of this system in the
context of silicon oxidation and polymer-solvent systems is given in (1). Because we fixs(0) = 0,
there is no externally-imposed length scale and the scaling we adopt fixes the dimensionless kinetic
undercooling parameter to beλ; if s(0) is sufficiently large, however, kinetic undercooling effects
are negligible (cf. the discussion below of the large-time behaviour), but this is not the case for
many of the applications of concern here (notably silicon oxidation, where sub-micron lengthscales
pertain).

The nonlinear kinetic undercooling term is represented by the functionF , which is assumed to
have the following properties:

F(u) ∈ C1(0, 1], F ′(u) > 0 for u ∈ (0, 1], F(0) = 0. (5)

Only problems in which the moving boundary is advancing will be treated, the form of the second
condition in (2) requiring (as described in (1)) ṡ � 0; the casės < 0, when a different condition
holds in the one-phase limit that we are concerned with here, will be addressed elsewhere. The
commonly proposed forms are a power-law relation

F(u) = u1/n, n > 0, (6)

and exponential

F(u) = eku − 1, k > 0, (7)

with k a dimensionless constant. The power-law form withn = 1
2 has been proposed for certain

melts in crystal growth (2,3) and cellular alloy solidification (4). In silicon oxidation (12) suggests
n = 2 whilst (13, 15) suggest a more general power in the range 1� n � 2. In polymer-solvent
systems, Astarita and Joshi (5) suggest the range13 � n < 1

2. The exponential form is applicable
to solid fuel combustion (4) and may also be to some specific types of crystal growth (2). The
wide range of values for the powern indicates that the limits of bothn small andn large are worth
investigating to obtain a clear picture of the range of behaviour which can be exhibited.

The first condition in (2) can be rewritten as

u = G(λṡ(t)), (8)
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142 J. D. EVANS AND J. R. KING

whereG = F−1 also satisfies the properties in (5). For use in later sections, we define

a ≡ F(1) , b ≡ F ′(1) (9)

and where numerical computations are involved, the power-law form (6) will be chosen. Fasano
et al. (29) establish well-posedness and regularity of the moving boundary for (1) to (4) withF
satisfying (5). Corresponding results have been obtained by Andreucci and Ricci (30) when a
Neumann condition replaces the Dirichlet condition (3). The numerical scheme described in (29)
will be used to illustrate the asymptotic results of later sections. In the case of a linear kinetic term,
Gröger and Strecker (31) have shown existence and uniqueness for this problem in the context of
silicon oxidation.

In the corresponding two-phase non-equilibrium problems in one dimension, existence and
uniqueness results have been obtained in (32 to 35) for a linear kinetic undercooling term. In the
nonlinear case, Visintin (36) and Guan and Wang (37, 38) have demonstrated existence, with the
latter authors placing constraints on the growth of the functionF(u). In (33) results were obtained
for higher dimensions with surface tension also included.

2.2 Transformations and conservation laws

The transformation

v(x, t) = −
∫ s(t)

x
(u(x ′, t) + λ) dx ′, (10)

noted by Fasanoet al. (29), is applicable to the nonlinear kinetic undercooling case and gives what
can be viewed as a generalized one-phase ablation problem, namely

in 0 < x < s(t)
∂v

∂t
= ∂2v

∂x2
, (11)

on x = s(t) v = 0,
∂v

∂x
= λ + G(λṡ(t)), (12)

on x = 0
∂v

∂x
= 1 + λ, (13)

at t = 0 s = 0. (14)

By contrast, the Duvaut transformation, valuable for linear kinetics (see (1)), is of very limited
use in the current context. The conservation relation∫ s(t)

0
(u(x, t) + λ) dx +

∫ t

0

∂u

∂x
(0, t ′) dt ′ = 0 (15)

of course remains valid in the nonlinear case, but the result for the first moment becomes∫ s(t)

0
x (u(x, t) + λ) dx +

∫ t

0
G(λṡ(t ′)) dt ′ − t = 0, (16)

which is of limited value other than for linear kinetics.
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NONLINEAR KINETIC UNDERCOOLING 143

2.3 Asymptotic behaviour for small and large times

For small time, the asymptotic results

s(t) = a
t

λ
− a2b

2

(
1 + 1

λ

)
t2

λ2
+ O(t3), (17)

u(x, t) = 1 −
(

1 + 1

λ

)
a x + O(t2) for x = O(t), 0 < x/t < a/λ, (18)

are readily deduced, wherea andb are defined in (9). The large-time behaviour is given by

s(t) ∼ 2α
√

t + s1(t), (19)

u(x, t) ∼ 1 − erf
(
x/2

√
t
)

erf(α)
+ u1(x, t) ast → ∞, (20)

wheres1(t) = o(
√

t) andu1 = o(1) ast → ∞ are the correction terms. At leading order the kinetic
term is negligible, so that the dominant behaviour in (19), (20) is given by the Neumann solution to
the classical Stefan problem, withα given by the only positive root of the transcendental equation

√
παeα2

erf(α) = 1/λ. (21)

If

F(u) ∼ u1/n asu → 0 (22)

then the first correction terms can be calculated explicitly whenn < 2 giving

s1(t) ∼ −βt (1−n)/2, (23)

u1(x, t) ∼ t−n/2 fn(η) ast → ∞, (24)

with

η = x

2
√

t
, fn(η) = (

(λα)n − λαβ
)

e(α2−η2)/2

(
U (

√
2η)V (0) − V (

√
2η)U (0)

U (
√

2α)V (0) − V (
√

2α)U (0)

)
,

β =λn−1αn


 α

(
U (

√
2α)V (0) − V (

√
2α)U (0)

)
+ √

2
(

U ′(
√

2α)V (0) − V ′(
√

2α)U (0)
)

α
(
U ′(

√
2α)V (0)−V ′(

√
2α)U (0)

)
+λ(α2 + 1 − n)

(
U (

√
2α)V (0)−V (

√
2α)U (0)

)

,

where

U (ξ) = Dn−1(ξ), V (ξ) = �(1 − n)

π
(cos(πn)Dn−1(ξ) + Dn−1(−ξ)) ,

with Dn−1(ξ) being a parabolic cylinder function. These terms are independent of the earlier
evolution and we note the simplification which occurs whenn = 1, wherebys1 = −1 and
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144 J. D. EVANS AND J. R. KING

u1 = O(t−1) rather thanO(t− 1
2 ) due toβ = 1 holding in this case, so thatf1(η) ≡ 0; which

is not a coincidence, the result following most directly from the Baiocchi transformed version of

the problem (which is available only in the casen = 1). Whenn > 2 we haves1 = O(t− 1
2 ) and

u1 = O(t−1), it only being possible to determine the coefficients of these terms numerically; they
depend on the initial data if (4) is generalized and correspond to translations oft in the leading-order
solution (so still correspond to the classical Stefan problem).

2.4 The limits of small and large Stefan number

2.4.1 Large Stefan number. In the limit of large Stefan number (λ → ∞), we rescalet = λτ

and expand in inverse powers ofλ. The leading-order problem is quasi-steady and, writing

s(τ ) = s0(τ ) + O (1/λ) , u(x, τ ) = u0(x) + O(1/λ), (25)

the solution can be written parametrically in terms ofp(τ ), given by

τ = 1

2

(
1

p2
+ 1

a2

)
− G(p)

p2
+

∫ a

p

G(p)

p3
dp (26)

(with, sinceG(a) = 1, p = a at τ = 0), in the form

u0 = 1 − px , s0 = 1

p
− G(p)

p
. (27)

When (6) applies, we havea = 1 and (26) becomes

τ =




1

2

(
1

p2
− 1

)
− ln p, n = 2,

1

2

(
1

p2
− 1

)
+ (n − 1)

(n − 2)

(
1 − pn−2

)
, n 	= 2.

(28)

These leading-order terms have previously been obtained by Hu (13) and King (39) in the context
of silicon oxidation and Cohen and Erneux (9) for solvent penetration in polymers.

2.4.2 Small Stefan number. In the limit of small Stefan number (λ → 0), there are two relevant
timescales, the first beingt = O(λ2) and with the second depending on the behaviour ofF(u) for
smallu.

Introducing the scalings

t = λ2t̂, x = λx̂, s = λŝ,

and posing

u ∼ û0(x̂, t̂), ŝ ∼ ŝ0(t̂) asλ → 0,

on the first of these timescales we obtain at leading order the zero Stefan number problem:

in 0 < x̂ < ŝ0(t̂)
∂ û0

∂ t̂
= ∂2û0

∂ x̂2
, (29)

on x̂ = 0 û0 = 1, (30)

on x̂ = ŝ0(t̂) ŝ′
0 = F

(
û0

)
,

∂ û0

∂ x̂
= −û0ŝ′

0, (31)

at t̂ = 0 ŝ0 = 0, (32)
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NONLINEAR KINETIC UNDERCOOLING 145

where the prime denotesd/dt̂ . In the reformulation corresponding to (11) to (14), the moving-
boundary conditions read

on x̂ = ŝ0(t̂) v̂0 = 0, ŝ′
0 = F

(
∂v̂0

∂ x̂

)
, (33)

representing a generalization of the classical Stefan problem involving a nonlinear Stefan condition.
While the system (29) to (32) cannot be solved analytically, asymptotic behaviours for small and
large time may be obtained. Ast̂ → 0 we have

ŝ0(t̂) = a t̂ − 1
2 a2 b t̂2 + O(t̂3), (34)

u0(x, t̂) = 1 − a x̂ + O(t̂2) for x̂ = O(t̂), 0 < x̂/t̂ < a, (35)

while ast̂ → +∞ we have a singular perturbation problem with two regions, whereby

û0 ∼ erfc
(

x̂/2t̂
1
2

)
for x̂ = O(t̂

1
2 ), (36)

and

û0 ∼ G(ŝ′
0) exp

(−ŝ′
0ẑ

)
for ẑ = O(1/ŝ′

0), (37)

whereẑ = x̂ − ŝ0(t̂). Matching these two expressions implies for (22) that

ŝ0(t̂) ∼ 2
√

t̂ σ
(
ln t̂

)
ast̂ → ∞, (38)

whereσ
(
τ̂
)

satisfies

σe−τ̂ /2 ∼
(√

πσeσ2
)−1/n

asτ̂ → ∞, (39)

so that

σ =
(

nτ̂

2

) 1
2
(

1 − (n + 1) ln τ̂

2nτ̂
− (n + 1) ln(1

2n) + ln π

2nτ̂

)
asτ̂ → ∞. (40)

The second timescale depends upon the value ofn in (22). The casen = 1 in (6) has already
been considered in (1); for arbitraryn > 0 this generalizes as follows.

The appropriate second timescale ist̄ = O(1), where

t = λ2(1−1/n) ln(1/λ) t̄, s = λ1−1/n ln(1/λ) s̄.

There are two regions which need recording. The boundary layer is

x = λ1−1/n ln
1
2 (1/λ) x̄,

with

u ∼ erfc
(

x̄/2t̄
1
2

)
. (41)

The interior layer about the moving boundary has

x = ln
1
2 (1/λ) s̄(t̄; λ) + z̄

ln
1
2 (1/λ)

, u ∼ λ ū0(z̄, t̄),

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

am
/article/56/1/139/1836811 by guest on 21 August 2022



146 J. D. EVANS AND J. R. KING

the moving boundary conditions yielding

ū0 = (
1 + (

s̄′
0

)n)
e−(s̄′

0)z − 1

with the prime now denotingd/dt̄ . Matching with (41) then requires

s̄ ∼ 2t̄
1
2

(
1 − ln ln(1/λ)

4 ln(1/λ)
− ln

(√
π

(
1 + t̄−n/2

))
2 ln(1/λ)

)
asλ → 0, (42)

consistent with (40) as̄t → 0+.

2.5 The limits of small and large n

2.5.1 Small n. Here we briefly describe the asymptotic behaviour in the limitn → 0 in (6).
There are two timescales to discuss, the scalings on the first,T = O(1), being

u = 1 − nU, t = nT, x = nX, s = nS,

so that the leading-order problem takes the quasi-steady form

in 0 < X < S0(T )
∂2U0

∂ X2
= 0,

on X = 0 U0 = 0,

on X = S0(T ) λ
d S0

dT
= e−U0,

∂U0

∂ X
= (1 + λ)

d S0

dT
,

so that

U0 = P(T )X,
d S0

dT
= 1

λ
e−P S0 = P

(1 + λ)

from which it follows thatP andS0 are given by

1

2P2

(
1

2
+ ln

(
1 + λ

λ

)
− ln P

)
= T

(1 + λ)
+ λ2

4(1 + λ)2
, S0 = − 1

P
ln

(
λP

1 + λ

)
. (43)

The expansion (17) is reproduced by (43) in the limitT → 0+ (given that for (6) we havea =
1, b = 1/n), while asT → +∞ it follows that

P ∼ (1 + λ)
1
2 ln

1
2 T

2T
1
2

, S0 ∼ T 1/2 ln
1
2 T

(1 + λ)
1
2

, (44)

which is almost of the Neumann similarity form.
It follows from (44) that the second timescale is exponentially long, with scalings

u = u(η, τ ), S = 2n− 1
2 T

1
2 σ(τ), (45)

where

η = n
1
2 X/2T

1
2 , τ = n ln T, (46)
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NONLINEAR KINETIC UNDERCOOLING 147

implying that

in 0 < η < σ(τ) 4n
∂u

∂τ
− 2η

∂u

∂η
= ∂2u

∂η2
,

at η = 0 u = 1,

at η = σ(τ) λe−τ/2nn− 1
2

(
σ + 2n

dσ

dτ

)
= u1/n,

du

dη
= −2(u + λ)

(
σ + 2n

dσ

dτ

)

so at leading order forτ = O(1) we obtain

in 0 < η < σ0(τ ) −2η
∂u0

∂η
= ∂2u0

∂η2
,

at η = 0 u0 = 1,

at η = σ0(τ ) u0 = e−τ/2,
du0

dη
= −2(u0 + λ)σ0,

representing a Neumann similarity solution which is slowly evolving in time. Hence

u0 = 1 − A(τ )erf(η),

with A andσ0 given by

√
πσ0eσ2

0 erf(σ0) = (1 − e−τ/2)

(λ + e−τ/2)
,

A = (1 − e−τ/2)

erf(σ0)
,


 (47)

matching with (44) asτ, σ0 → 0+ and implyingσ0 → α asτ → +∞, consistent with (19) to (21).
It is worth remarking that in this limit (43) and (47) provide a complete analytical description of the
evolution.

2.5.2 Large n. We again consider the power-law relation (6) and now investigate the limitn →
∞. Here the moving-boundary condition

on x = s λṡ = u1/n

essentially implies in the limitn → ∞ that one of the two possibilitiesu = O(1) > 0, λṡ ∼ 1 or
λṡ < 1, u = o(1) occurs. In consequence the leading-order formulation should be split into two
stages, as follows. Fort < tc we have the linear problem

s0 = t/λ (48)

in 0 < x < t/λ
∂u0

∂t
= ∂2u0

∂x2
,

on x = 0 u0 = 1,

on x = t/λ
∂u0

∂x
= −(u0 + λ)/λ,




(49)
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148 J. D. EVANS AND J. R. KING

tc being determined from (49) viau0(tc/λ, tc) = 0, with u0(t/λ, t) > 0 for t < tc. For t > tc one
instead has the classical Stefan problem

in 0 < x < s0(t)
∂u0

∂t
= ∂2u0

∂x2
,

on x = 0 u0 = 1,

on x = s0(t) u0 = 0,
∂u0

∂x
= −λṡ0,




(50)

with the initial condition being given att = tc by the solution to (49) at that time; fort > tc it is
required thaṫs0 < 1/λ (so that−∂u0/∂x is greater than one atx = s0 for t < tc and less than one
for t > tc). This scenario is conveniently illustrated by considering the further limit of largeλ when
we obtaintc ∼ λ with

s0 ∼ t/λ, u0 ∼ 1 − x for t < λ,

s0 ∼ (2t/λ − 1)
1
2 , u0 ∼ 1 − x/s0 for t > λ ;

}
(51)

for (49) to (50) we havės0, aswell ass0, continuous att = tc.
The smooth transition between (49) to (50) proceeds as follows. The behaviour of (49) is analytic

at t = tc becauseu0(t/λ, t) = 0 has no special status in that formulation so, in particular,

at x = t/λ u0 ∼ K (tc − t),
∂u0

∂x
∼ −1 − K

λ
(tc − t) ast → t−c (52)

for some positive constantK . The transition scalings take the form

t = tc + τ

n
, x = s(t) + z

n
, s(t) ∼ s(tc) + 1

n
ṡ(tc)τ + 1

n2
S(τ ),

with s(tc) ∼ tc/λ, ṡ(tc) ∼ 1/λ andu ∼ (−z + U (τ ))/n for someU (τ ); including appropriate
correction terms using (52) in the matching (but omitting details), we obtain from the moving-
boundary conditions that

λ
d S

dτ
= ln U, λ

d S

dτ
+ 1

λ
U = − K

λ
τ,

so that

ln U + 1

λ
U = − K

λ
τ .

Hence

U ∼ K (−τ), λS ∼ − ((−τ) ln(−τ) + (ln K − 1)(−τ)) asτ → −∞,

together with

U ∼ e−K τ/λ, S ∼ − K τ2

2λ2
asτ → +∞ ;

for t > tc, u is exponentially small atx = s(t).
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Fig. 1 Illustration of the evolution of the moving boundarys(t) determined by the numerical solution of
(1) to (4) with (6) for the values ofn as shown

2.6 Numerical solutions

Here we illustrate numerically certain features of the system (1) to (4) using the power-law form (6)
for the kinetic condition. The explicit front-tracking scheme based on the method of lines considered
in Fasanoet al. (29), is used to solve the system numerically.

Figure 1 illustrates the monotonic variation of the position of the moving boundary with the
exponentn with the Stefan number fixed atλ = 1. The small- and large-time asymptotics for each
n are qualitatively similar to the linear casen = 1 shown in (1). The relative insensitivity of the
growth of the boundary withn is a feature worth noting and has been a contributory factor in the
difficulty in determining the oxide growth law in silicon oxidation.

Figure 2 shows for the small fixed valuen = 0·1 of the algebraic exponent the variation of the
boundary growth with the Stefan numberλ. Also shown for eachλ are the small-n asymptotics on
the two dominant timescales, namely (43) and (45) with (47). The asymptotic approximation (43) on
the shorter timescale is valid after a short initial transient ofO(n/λ) which becomes progressively
longer asλ decreases, as illustrated by the departure of the asymptotic approximation from the full
numerical solution at small times.

Figure 3 illustrates the boundary growth for large exponentn = 10 with varying values ofλ; the
rather abrupt switch att = tc described in section 2.5.2 is clearly demonstrated.
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150 J. D. EVANS AND J. R. KING

Fig. 2 Illustration of the evolution of the moving boundarys(t) with the power-law kinetic term (6) in the
casen = 0·1 for the Stefan numbersλ = 0·01, 0·1, 1, 10 and 100. For eachλ the solid line represents the full
numerical solution, whilst next to it, the asymptotic approximations on the two dominant timescales for small

n are shown, namely (43) by the dotted lines and (45) with (47) by the dashed lines

3. Two-dimensional problems

3.1 Formulation of the mask edge problem

To illustrate multi-dimensional behaviour, we consider a two-dimensional mask edge problem in
which the moving boundary encroaches over a mask. Such scenarios are of particular practical
relevance in the silicon oxidation context; see, for example, (10, 40). The initial-boundary-value
problem we study is

in 0 < y < f (x, t), −∞ < x < +∞ ∂u

∂t
= ∂2u

∂x2
+ ∂2u

∂y2
,

on y = 0, x < 0 u = 1 ,

on y = 0, x > 0
∂u

∂y
= 0 ,

on y = f (x, t)
∂u

∂n
+ vn(λ + u) = 0, u = G(λvn) ,




(53)
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Fig. 3 Illustration of the evolution of the moving boundarys(t) with the algebraic kinetic term (6) in the case
n = 10 for various values of the Stefan numberλ

y=f= x, t)

y=0

Fig. 4 A configuration sketch for the two-dimensional mask edge problem

wherevn is the outward normal velocity of the moving boundary and∂/∂n denotes the derivative
in the outward normal direction, so that

vn = ∂ f

∂t

/ (
1 +

(
∂ f

∂x

)2
) 1

2

,
∂u

∂n
=

(
∂u

∂y
− ∂ f

∂x

∂u

∂x

) / (
1 +

(
∂ f

∂x

)2
) 1

2

.
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The surfacey = 0 is covered by an insulating mask forx > 0, while the surface temperature is
held fixed forx < 0. The configuration is illustrated in Fig. 4. As in (1), of the infinite number of
solutions that are possible whenf (x, 0) = 0 for sufficiently largex , there are two that are of most
interest. We start in section 3.2 by discussing the small-time behaviour of the solution which arises
on taking the limitε → 0 of the case in which there is a uniform initial layerf (x, 0) = ε2, with
0 < ε 
 1, andu(x, y, 0) = 0. This layer provides a ‘crack’ along which diffusion can take place
and the moving boundary initially propagates extremely rapidly over the masky = 0, x > 0. We
then discuss in section 3.3 the small-time behaviour of a second type of solution for which there is
no such crack. As in (1), these two solutions represent the extremes of an infinite family of possible
solutions; such non-uniqueness issues arise much more generally when the moving boundary meets
a fixed one, it being necessary to prescribe a suitable (for example, contact-angle) condition at such
apoint for the problem to be correctly specified.

3.2 ‘Reaction-controlled’ behaviour

Wewrite

x = ε2x̂, y = ε2 ŷ, f = ε2 f̂ , t = ε2t̂,

and forx̂ = O(1), t̂ = O(1) we have

u ∼ 1, f̂ ∼ f̂0(x̂, t̂)

with

∂ f̂0
∂ t̂

= a

λ


1 +

(
∂ f̂0
∂ x̂

)2



1
2

, (54)

f̂0 = 1 at t̂ = 0,

so that

f̂0 = 1 + a t̂

λ
. (55)

The more important region is beneath the mask, withX̂ ≡ ε x̂ = O(1), X̂ > 0, in which

u ∼ u0(X̂ , t̂),
∂u

∂ ŷ
∼ ε2

(
∂u0

∂ t̂
− ∂2u0

∂ X̂2

)
ŷ

and, writing f̂ ∼ f0(X̂ , t̂), the moving-boundary conditions yield (cf. (1))

λ
∂ f0
∂ t̂

= ∂

∂ X̂

(
f0

∂u0

∂ X̂

)
− ∂

∂ t̂
( f0u0) , G

(
λ

∂ f0
∂ t̂

)
= u0, (56)

so that matching with (55) gives the nonlinear evolution equation

∂

∂ t̂

(
f0

(
λ + G

(
λ

∂ f0
∂ t̂

)))
= ∂

∂ X̂

(
f0

∂

∂ X̂

(
G

(
λ

∂ f0
∂ t̂

)))
, (57)
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subject to

at t̂ = 0 f0 = 1,
∂ f0
∂ t̂

= 0,

on X̂ = 0 f0 = 1 + a t̂

λ
,

as X̂ → +∞ f0 → 1.




(58)

The leading-order behaviour of (57), (58) for any suitablet is given aŝt → +∞, for X̂ = O(t̂
1
2 ),

by the (compactly supported) similarity solution

f0 = t̂ g(X̂/t̂
1
2 )

with, whenF takes the power-law form (6),g(η) being given by the free-boundary problem

g

(
1 + λn−1

(
g − η

2

dg

dη

)n)
− η

2

d

dη

(
g

(
1 + λn−1

(
g − η

2

dg

dη

)n))

= λn−1 d

dη

(
g

d

dη

(
g − η

2

dg

dη

)n)
,

on η = 0 g = 1/λ,

at η = η0 g = dg

dη
= 0.




(59)

For ε = 0, f (x, t) ∼ t g(x/t
1
2 ) as t → 0+, with g(η) given by (59), provides the small-time

behaviour of one of the extreme solutions to (53), namely the one with zero contact angle. The local
behaviour asη → η−

0 takes the form

g ∼ n

n + 1

(
λη0

2

)(1−n)/n

(η0 − η)(n+1)/n ; (60)

this can be exploited in solving (59) numerically, as follows. We write

η = η0(1 − ξ), g = η
2
n
0 λ(1−n)/n h,

and specifyη0 to give an initial-value problem forh(ξ), with h(1) = 1/
(
λη2

0

)1/n
then being used to

determineλ for that value ofη0. Figure 5 illustrates the functiong for a selected range of values of
n at four values representative of small, intermediate and largeλ. At each value ofλ the contrasting
behaviour in the change in convexity of the function with the exponentn is demonstrated. Figure
6 illustrates the relative insensitivity in the variation of the position of the free boundaryη0 at each
value ofλ to the value of the exponentn.

As λ → ∞, the scalings

g = ĝ

λ
, η = η̂

λ
1
2

, η0 = η̂0

λ
1
2

(61)
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Fig. 5 The solutiong(η) to (59) for selected values ofn in the power-law kinetic term (6) for each of the
casesλ = 100, 10, 1 and 0·1

give to leading order

ĝ0 − η̂

2

dĝ0

dη̂
= d

dη̂

(
ĝ0

d

dη̂

((
ĝ0 − η̂

2

dĝ0

dη̂

)n))
,

at η̂ = 0 ĝ0 = 1,

as η̂ → η̂−
0 ĝ0 ∼ n

n + 1

(
η̂0

2

)(1−n)/n (
η̂0 − η̂

)(n+1)/n
,




(62)

but an explicit solution seems to be available only forn = 1; the scalings are useful, however, in
indicating howη0 decays withλ.
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Fig. 6 A numerical plot of the position of the free boundaryη0 in (59) with the Stefan numberλ for selected
values ofn with the power-law kinetic term (6)

For λ → 0 the rescalingg = ĝ/λ holds in the outer regionη = O(1), in which ĝ ∼ ĝ0(η) with
the ‘zero Stefan number’ solution̂g0 satisfying

ĝ0

(
ĝ0 − η

2

dĝ0

dη

)n

− η

2

d

dη

(
ĝ0

(
ĝ0 − η

2

dĝ0

dη

)n)
= d

dη

(
ĝ0

d

dη

(
ĝ0 − η

2

dĝ0

dη

)n)
,

on η = 0 ĝ0 = 1,

as η → +∞ ĝ0 → 0,




(63)

with ĝ0 > 0 holding for all finiteη. The far-field behaviour of (63) can be shown to be
ĝ0 ∼ A0 ηα e−βη2

as η → +∞, (64)

where

α = −2n + 5

n + 1
, β = 1

4n
, (65)

andA0(n) is a constant which must be determined as part of the solution to (63). The scalings in an
interior layer at the moving boundary are then

η = ln
1
2 (1/λ) S(λ) + z

ln
1
2 (1/λ)

, g ∼ G0

λ(n−1)/n ln(1/λ)
, (66)
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where

S(λ) = 2

(
1 + n(α + 2) ln ln(1/λ)

4 ln(1/λ)
+ n (ln(A0/n) + α ln 2)

2 ln(1/λ)

)
(67)

gives from (64) the matching condition

G0 ∼ n e−z/n as z → −∞. (68)

From (66) it follows thatG0(z) satisfies the autonomous equation

− d

dz

(
G0

(
1 +

(
−dG0

dz

)n))
= d

dz

(
G0

d

dz

(
−dG0

dz

)n)
,

which represents a travelling wave balance in (57), so that (68) and the moving-boundary conditions
yield

G0 =
∫ −z

0

(
eξ − 1

)1/n
dξ for z < 0, η0 ∼ S(λ) ln

1
2 (1/λ). (69)

The small- and large-λ asymptotics can qualitatively be seen in the numerical results of Fig. 6 where
the weak dependence ofη0 on n is evident; quantitative comparison leads to curves that are almost
indistinguishable (then = 1 case is shown in (1, Fig. 6)). Moreover, the small-λ behaviour is
numerically seen to be more sensitive ton than the large-λ behaviour, in agreement with (69), (67)
and (61), (62).

3.3 Small-time behaviour—no initial ‘crack’

Here we note the other extreme case in which the moving boundary meets the mask at an angle
of 1

2π , in which casey = 0, x > 0 may correspond to a line of symmetry rather than a physical
boundary. The small-time behaviour is then of the same form as in the linear kinetic undercooling
case given in (1, section 6.3), being governed by the hyperbolic evolution equation (54) except that
the Stefan numberλ in that analysis is replaced byλ/a. The solution may be recorded as follows:

f̂0 =




at̂

λ
if x̂ < 0,

at̂

λ

(
1 −

(
λx̂

at̂

)2
) 1

2

+
if x̂ > 0.

3.4 Other limits

TheG term in (53) is negligible for larget , so the behaviour ast → +∞ is as outlined in (1). For
λ → ∞, the scalingst = λ t̂ , vn = v̂n/λ apply, so that the∂u/∂t term is negligible, giving a Hele-
Shaw problem with a nonlinear kinetic undercooling boundary condition. This limit is particularly
appropriate to the case of silicon oxidation, (62) providing a concise description of the shape of
the resulting ‘bird’s beak’ (cf. (10)). We return to such matters below. The behaviour asλ → 0 is
relatively insensitive to the form ofG (cf. section 2.4.2) and we do not go into details.
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4. Discussion

As is clear from (17), (19) and Fig. 1, the growth behaviour in one dimension is rather insensitive
to the precise form ofF(u) and this has hindered the experimental determination ofF(u). By
contrast, it is evident from Fig. 5 that profiles of two-dimensional growth under a mask edge
depends strongly on the form ofF(u). It is therefore worth describing a technique (analogous to
the Boltzmann–Matano method for determining nonlinear diffusivities; see Tuck (41), for example)
for enabling the kinetic undercooling relation to be deduced from the experimental determination
of two-dimensional interfaces in the reaction-controlled regime (for example, by high pressure
oxidation; see Powellet al. (42), for instance). For brevity, and because of its relevance to silicon
oxidation, we consider only the limit caseλ → ∞, in which the leading-order problem is quasi-
steady, so in dimensional form we have

∂2u

∂x2
+ ∂2u

∂y2
= 0 ,

on y = 0
∂u

∂y
= 0 ,

on y = f βvn = −D
∂u

∂n
, u = �(vn),

where� is the nonlinear kinetic undercooling relation that we wish to measure (with�(0) = 0),
D is the oxidant diffusivity andβ is the number of oxidant molecules reacting with unit volume of
silicon (orρL in the context of heat conduction, whereρ is density andL is the latent heat). The
corresponding dimensional form of (57) is

β
∂ f

∂t
= D

∂

∂x

(
f
∂u

∂x

)
, u = �

(
∂ f

∂t

)

so, writing

u = u(x/t
1
2 ), f = tg(x/t

1
2 ), v = g − 1

2
η

dg

dη
, (70)

we obtain the system

βv = D
d

dη

(
g

du

dη

)
, v = g − 1

2
η

dg

dη
, u = �(v). (71)

Measuringf (x, t) at a givent enablesη(v) andg(v) to be obtained from (70) and, since for relevant
�(v) the solution to (71) is compactly supported, withg = 0 for η � η0 and

asη → η−
0 g

du

dη
→ 0, v → 0, g → 0, (72)

it follows from (71) that

φ(v) = β

Dg(v)

(
vη(v) −

∫ v

0
η(v′)dv′

)
dη(v)

dv
, (73)

whereφ(v) = �′(v); the expression (73) thus in principle enables�(v) to be deduced from
an experimental profile; it can also be used analytically in an inverse approach wherebyη(v) is given
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(with η(v) andg(v) satisfyingη(0) = η0, g(0) = 0 with (1/2(g − v))(dg/dv) = (1/η)(dη/dv)

and the corresponding�(v) deduced; the simplest example of this is

η = η0 − Kv

for constantK , in which case

g = Kv2/η0, φ = Kβη0/2D, � = Kβη0v/2D,

reproducing the linear kinetic undercooling law studied in [1].
The applicability or otherwise of this technique, based on (73), can be assessed if the interface

f (x, t) can be measured as a function of time and its level of consistency with the self-similar
form in (70) quantified (which requires the experimental conditions to lie in the reaction-controlled
regime with the maximum oxide thickness being much greater than it was initially). We emphasize
(cf. Fig. 5) that our results illustrate the rather pronounced sensitivity off on the kinetics, so the
proposed method is expected to be effective in practice in extracting the required information from
suitable experimental data and the procedure should be significantly more robust than the fits to
one-dimensional behaviour pursued in (12,13,15), for instance.

A natural extension of the work presented in this paper is to investigate the two-phase problem.
This would be of particular relevance in heat transfer applications (both melting and solidification),
where the one-phase approximation may be viewed as artificial. (We emphasize, however, that
this is not the case in many mass transfer problems, the silicon oxidation and polymer penetration
problems in particular being intrinsically one-phase, since the oxidant or solvent is unable to diffuse
significantly into the second phase (cf. (14)).) However, many of the approaches discussed here are
expected to carry over.
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APPENDIX A

Slender evolution equation with nonlinear diffusion

Here we briefly note the generalization to (56) which arises when the diffusion problem in (53) is made
nonlinear and a rather general regularization is adopted on the moving boundary; we thus consider

ε2 ∂u

∂ t̂
= ∂

∂ ŷ

(
D(u)

∂u

∂ ŷ

)
+ ε2 ∂

∂ X̂

(
D(u)

∂u

∂ X̂

)
,

on ŷ = 0, X̂ > 0
∂u

∂ ŷ
= 0 ,

on ŷ = f̂ (X̂ , t̂) D(u)

(
∂u

∂ ŷ
− ε2 ∂ f̂

∂ X̂

∂y

∂ X̂

)
+ ε2(λ + u)

∂ f̂

∂ t̂
= 0, u = �(λv̂n, σ κ̂),




(A1)

where

v̂n = ∂ f̂

∂ t̂
/


1 + ε2

(
∂ f̂

∂ X̂

)2



1
2

, κ̂ = − ∂2 f̂

∂ X̂2
/


1 + ε2

(
∂ f̂

∂ X̂

)2
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correspond to the normal velocity and curvature of the moving boundary, so that (through�) (A1) incorporates
general regularizing effects due to both kinetic undercooling and surface energy (with parameterσ ). The
generalization of (56)1 is then readily derived in the form

∂

∂ t̂
((λ + u0) f0) = ∂

∂ X̂

(
f0D(u0)

∂u0

∂ X̂

)
, (A2)

independent of the regularization, with the higher-dimensional version taking the form

∂

∂t
((λ + u) f ) = ∇· ( f D(u)∇u) . (A3)

Similarly, (56)2 is replaced by

u0 = �

(
λ

∂ f0
∂ t̂

, −σ
∂2 f0
∂ X̂2

)
(A4)

and, in higher dimensions, (A3) is supplemented by

u = �

(
λ

∂ f

∂t
, −σ∇2 f

)
. (A5)

We conclude by mentioning that, somewhat remarkably, the novel evolution system (A2), (A4) admits for any
D and� similarity solutions of the form

u0 = U (X̂/(±t̂)
1
2 ), f0 = (±t)G(X̂/(±t̂)

1
2 ),

which are of interest in applications (cf. (70)). Thet1 behaviour of f is characteristic of reaction-controlled

behaviour in they-direction, whereasx scales witht
1
2 , characteristic of diffusion control.
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