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We consider the vertex-weighted version of the undirected Steiner tree problem. In this problem, a cost is incurred 
both for the vertices and the edges present in the Steiner tree. We completely describe the associated polytope by 
linear inequalities when the underlying graph is series-parallel. For general graphs, this formulation can be 
interpreted as a (partial) extended formulation for the Steiner tree problem. By projecting this formulation, we 
obtain some very large classes of facet-defining valid inequalities for the Steiner tree polytope. 
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1. Introduction 

The vertex weighted Steiner tree problem in an undirected graph is the problem of  f inding 

a tree spanning a prespecified set of  vertices at m i n i m u m  cost where the cost of  a tree is 

equal to the sum of  the cost of  its edges and the cost of  the vertices spanned. In this paper, 

we consider  this problem from a polyhedral  point  of  view. 

In Section 2, we formalize the problem and one of  its variant,  and present an integer 

programming formulation.  Necessary and sufficient condit ions for the inequali t ies in ou t  

formulat ion to be facet-defining are presented in Section 3. In Section 4, we establish that 

the l inear  inequalit ies in out  formulat ion are sufficient to completely characterize the vertex 

weighted Steiner tree polytope if the under ly ing graph is series-parallel.  Our proof  does not 

explicit ly construct  a dual optimal solution as is typically done. Instead, we obtain some 

strong condit ions on when an inequali ty is facet-defining and we use the decomposabi l i ty  

of series-parallel graphs to reduce the graph to a cycle. In the last section, we invest igate 

the projection of  this extended formulat ion for the Steiner tree problem for a general  graph. 

From this projection, we obtain some large classes of  facet-defining valid inequali t ies  for 

the undirected Steiner tree polytope. Some of these inequali t ies are fairly complicated.  In 

particular, we present  inequali t ies whose coefficients take all values between 1 and any odd 

integer. 
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2. Problem statement and formulation 

2.1. Definitions 

A tree of an undirected graph G = ( V, E) is a subgraph ( U, F)  that is connected and acyclic. 

Given a set T _  V of terminals, a Steiner tree is a tree (U, F)  spanning T, i.e. T_c U. The 

vertices not in T are called Steiner L'ertices. Given a root vertex r ~ V, ( U, F)  is an r-tree if 

either U = 0  and F = 0  or, r ~  U and ( U, F)  is a tree. We shall often describe an r-tree by 

its edge set F. When F is non-empty, U is therefore the vertex set V(F)  = { i ~ V: (i, j )  ~ F 

for some j ~ V} spanned by F. However, this might lead to some confusion when F =  0 

since in this case U can either be { r} or the empty set. We shall specify U in this case. 

If w is a function defined on E (resp. V) then, for any subset F ~ E  (resp. Uc_V), we 

define w ( F )  = 12~, ~ FW« (resp. w (U)  = ~i  ~ uwi). For a subset S of V, let E(S)  denote the set 

of edges with both endpoints in S, let •(S) be the set of edges with exactly one endpoint in 

S and let G[S] denote the subgraph induced by S, i.e. the graph (S, E(S) ). For e~E,  ler 

G -  e denote the graph ( V, E \  { e } ) and, for t, ~ V, ler G - t' denote the graph G [ V', { i, } ]. 

More generally, let G - S  denote G[ V'x,S]. 

In this paper, we consider three optimization problems: 

Steiner tree problem. Given an undirected graph G = ( V, E) ,  a set T c V and a cost function 

c defined on E, find a Steiner tree ( U, F)  minimizing the cost c(F).  

Vertex-weighted Steiner tree problem. Given an undirected graph G = ( V, E) ,  a set Te_ V, 

a cost function c defined on E and a cost funct ionfdef ined on V, find a Steiner tree (U, F )  

minimizing the total cost c(F) +f(U).  

r-tree problem. Given an undirected graph G =  (V, E) ,  a root r ~  V, a cost function c 

defined on E and a cost funct ionfdef ined  on V, find an r-tree ( U, F )  minimizing the total 

cost c( F) + f(  U). 

Clearly, the Steiner tree problem is a special case of the vertex-weighted Steiner tree 

problem. Simply takeß = 0 for all i ~ V. Moreover, the vertex-weighted Steiner tree problem 

can be seen to be a special case of the r-tree problem by selecting some r ~  T and replacing 

B for i ~ T by some large negative number. 

Some formulations, reduction methods, lower bounding techniques, heuristics and pol- 

yhedral approaches have been proposed for variations of the vertex-weighted Steiner tree 

problem (see Segev [27],  Duin and Volgenant [ 12] and Chopra and Gorres [6] ). 

2.2. Formulation 

To every r-tree or Steiner tree ( U, F ) ,  we associate an incidence vector (x, y) defined by 

x« = 1 if e ~ F and 0 otherwise, and y /=  1 if i ~ U and 0 otherwise. For Steiner trees, we 

assume that Yi is defined only for the Steiner vertices i (the terminals are always present, 
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by definition). Let Svrc  {0, 1 } ICl + I vl denote the set of incidence vectors of  r-trees, Sec {0, 

1 } l el + I V~TI denote the set of incidence vectors of Steiner trees and Ssr= {x: (x, y) ~ Se for 

some y}. 

The r-tree problem can be formulated as the following integer program: 

Minimize ~ c«x« + ~ß_,f~y~ 
e ~ E  i E V  

subject to x(E) = y ( V - r ) ,  

x(E(S))~y(S-k), kESC_V, ISI>/2, 

yr~< 1, 

x« >~0, 

y~ ~7/,  

(1) 

(2)  

(3)  

(4)  

(5)  

vertex-weighted Steiner tree problem: 

minimize ~ c«x« + ~_ùfiYi 
e E E  i ~ V  

subject to x(E) = y ( N )  + 1Tl - 1, (6)  

x(E(S))<. . .y(SNN)+ISNT[-1,  S c  V, SNTVaO, (7)  

x(E(S)) <~y(S-k), k ~ S c N ,  (8)  

yi <~ 1, i cN,  (9)  

x«>~0, ecE,  (10) 

yi~/ / ,  i~N, ( l l )  

e~E, 

i~V, 

where S -  k = S \  { k }. The constraints (2)  are called generalized subtour elimination con- 

straints. For a particular value of S and k, we shall refer to (2)  as the (S, k)-inequality.  

When dealing with (S, k)-inequalities,  we assume that (S, k) va (V, r) .  In the special case 

in which S =  {i, k}, the constraint (2)  says that xik<~yi and, as a result, if y i = 0  we have 

xik = 0. The constraints Yi ~< Y,- (and, hence, yi ~< l ) can be obtained by subtracting ( 1 ) from 

the ( V, i)-inequality.  When r v a k, r ~ S and S va V, the (S, k), inequality can be obtained by 

adding yk<~yr to the (S, r)-inequality.  Therefore, in what follows, we shall restrict our 

attention in (2)  to pairs (S, k) such that k = r if r ¢ S va V. 

The validity of this formulation comes from Edmonds '  characterization of the spanning 

tree polytope [ 13 ]. Indeed, given a 0-1 vector y defined by y~ = 1 iff i E T, the constraints 

(2)  implythatx«=Oifeq~E(T) andthatx(E)S))~< IS I - 1  for 0 v a s _ r .  Moreover,  (1)  

implies that x ( E ( T )  ) = I TI - y r  and, hence, either both y and x have all components equal 

to 0 or Yr = 1. As a result, x is a convex combination of incidence vectors of trees spanning 

T. 

From the above formulation, we can readily obtain a formulation for the vertex-weighted 

Steiner tree problem by selecting r ~  T and imposing y r =  1 and Y~=Yr for all i G  T - r .  

Eliminating some of the redundant constraints, we obtain the following formulation for the 
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where N denotes the set of  Steiner vertices. This formulation can be considered an extended 

formulation for the Steiner tree problem (the E in Se in fact stands for extended). A similar 

extended formulation has been proposed and is being investigated by Lucena. 

In this paper, we focus our attention on the linear programming relaxations of the above 

integer programs obtained by relaxing the constraints (5) or (11). Let P~r --= {(x, y) 
E [~ I EI + I vI satisfying ( 1 ) - ( 4 )  }, let Pe = { (x, y)  ~ ~ l el + I V~TI satisfying ( 6 ) - ( 1 0 )  } and 

let Pst  = { x ~ ~ e: (x, y)  ~ Pe for some y }. 

Given a vector (x, y),  for fixed k, finding the most violated (S, k)-inequality can be 

reduced to a minimum cut problem (see Rhys [24] or Section III.3.7. in Nemhauser and 

Wolsey [ 21 ] ) and, hence, is polynomially solvable. The separation problem for the polytope 

PrT (o r  PF.) can thus be solved by a sequence of [V[ minimum cut problems. Therefore, 

using the ellipsoid algorithm, we can optimize in polynomial time over Prr (or Pe).  This 

implies that we can also optimize in polynomial time over PE. We are not aware of  any 

combinatorial algorithm to optimize in polynomial time over any of  these polytopes. 

3. Facets of conv(SrO 

In this section, we study some basic properties of  the convex hull of S~r, denoted by 

conv(Srr),  and we investigate which inequalities among ( 2 ) - ( 4 )  define facets of  

conv (Srr). For background material on polyhedral theory, we refer the reader to Nemhauser 

and Wolsey [ 21 ]. 

First, we show that, without loss of generality, we may restrict our attention to 2-connected 

graphs. Consider a connected graph G which is not 2-connected. Let v be a cut vertex of G 

and let G~ = ( VI, Et ), G2 = ( V2, E2) be such that V 1 U V 2 = V, V I (~ V 2 = { L' }, Ej U E 2 = E, 

El :¢: 0, E2 :¢: 0, Gl = G [  Vl ] and G2 = G[ V2]. We say that G~ and G2 form a 1-separation of 

G at vertex v. Let rj = r if r ~ V~ and rl = v otherwise. Similarly, let r2 = r if r ~ V2 and r2 = v 
otherwise. If  (x, y) is a vector in ~ I Er + I v l then let (xi, y/) be the restriction of  (x, y) to G/ 

( i =  1, 2). Notice that (x~y j) and (x 2, y2) have only one component in common, namely 

Yl'" 

Theorem 1. I f  v is a cut vertex o f  a graph G = ( V, E) then, with the above notation, 

conv(S~r) = { (x, y):  (x 1, y l) ~ conv(S~r) and (x 2, y2) ~ conv(S~.T) } 

where si~~ denotes the set o f  incidence c, ectors o f  ri-trees o f  Gi. 

Proof. If (x, y) is the incidence vector of  an r-tree then (x ~, y~) is the incidence vector of 

an r~-tree. Hence, 

conv(S,T) _{(x ,  y):  (x lyl) ~ conv(S)r)  and (x 2, y2) ~ conv(S~r) }. 

Conversely, if (U» F~) is an r~-tree of  G~ ( i =  1, 2) such that t,~U~ iff c '~ U2, then 

~This was communicated to us by L.A. Wolsey. 
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( UI O U2, FI O F2) is an r-tree of G. This follows from the definition of  ra, r» Now, consider 

an (x, y) such that (x I, y~) ~ conv(S JrT) and (x 2, y2) ~conv(S2T).  Then (x  i, yi)  can be 

seen as a convex combination of incidence vectors of rrtrees of G~ (i = 1, 2). Since, for 

i = 1 or 2, a fraction of exactly y, of these rrtrees contain v, these rrtrees can be recombined 

to give r-trees of  G. As a result, (x, y) can be seen as a convex combination of  incidence 

vectors of  r-trees of G. [] 

As a result, we shall focus our attention on 2-connected graphs. We shall now compute the 

dimension of conv (SrT). For this purpose, we need the following trivial result. 

Lemma 2. Let G be a 2-connected graph. Then, f o r  every distinct u, v, w ~ V there exists a 

path in G f rom u to w that does not pass through v. 

Proof.  u and ware  connected in G -  v since this graph is connected. []  

Proposition 3. Let  G = ( V, E)  be a 2-connected graph. Then: 

(i) The aß 'ne  hull Of SrT is { ( X, y): x(  E ) = y (  V -  r) }, i.e. the only valid equality fo r  SrT 

is ( 1 ) or a multiple o f  it. 

(ii) d im(conv(SrT))=  [V I + [E I - 1 .  

Proof.  (i) Assume that «x +/3y = y is satisfied by all (x, y)  ~ SrT. Since (0, 0), (0, er) ~ Srv 

where er is the rth unit vector, we have that y =  0 and /3r=0. Consider any edge e = 

(i, j)  ~ E with i =~ r. By Lemma 2, there exists a path P from r to j  that does not go through 

i. This path P is an r-tree. Another r-tree can be obtained by adding the edge e to P. Hence, 

we taust have 

B i + c o  ~0 .  (12) 

Since any two vertices, i, j ~  V - r  are connected by a path ( io=i ,  i t) ,  (i~, i2) ..... ( ik-1,  

ik = j )  that does not go through r, (12) implies that /3i0 = -o~i,,i~ = Ôi, = . . . . .  aik_,ik = 

B»k. Hence, there exists a scalar 6 such that/3~ = - 6 for all i ~ V -  r. By the same argument, 

a« = 6 for all e ~ E. Hence, ax + Ôy = y is a multiple of ( 1 ). 

(ii) follows from (i) by Proposition 2.4 on page 87 of Nemhauser and Wolsey [ 21 ]. []  

In the following three propositions, we establish which inequalities among ( 2 ) - ( 4 )  

define facets of conv (SrT). Notice that two inequalities of ( 2 ) - ( 4 )  cannot be obtained from 

orte another by adding a multiple of ( 1 ). This together with Proposition 3 implies that they 

cannot induce the same facet of conv(Srr) and that any other inequality among ( 2 ) - ( 4 )  

implied by these two inequalities cannot be facet-defining. This observation is important in 

the forthcoming Proposition 6. 

Propasition 4. Let G = ( V, E) be a 2-connected graph. Then x« >~ 0 defines a face t  o f  

conv(SrT) iff G -  e is 2-connected. 
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Proof.  If G -  e is not 2-connected, then it has a cut vertex, say v. Let Ga = (Va, Ej )  and 

G2= (V2, E2) be a 1-separation of G - e  at vertex L,. We assume that r ~  Vj. Clearly, the 

( V» v)-inequality is satisfied at equality by all solutions satisfying x« = 0. As a result, x« = 0 

defines a face of  conv (SrT) of  dimension strictly less than dito (conv (Srv)) - 1 and, hence, 

not a facet. 

Assume now that G - e is 2-connected. By Proposition 3, we know that the only equality 

satisfied by all r-trees of  G - e is x ( E -  e) = y (  V -  r) (or  a multiple of  it).  In other words, 

the only valid inequalities that are satisfied at equality by all r-trees with x« = 0 are equivalent 

to x« >~ 0 (i.e. they can be obtained from a multiple of x« ~> 0 by adding a multiple of ( 1 ) ). 

Hence, x« >~ 0 defines a facet of  conv (S~T). 

Propos i t ion  5. Let G =  (V, E) be a 2-connected graph. Then yr<~ 1 defines a facet  o f  

conv(Srr) .  

Proof .  By the same argument as in the proof of  Proposition 3, if a~c +/3y  = y is satisfied by 

all (x, y) ~ SrT with Yr = 1 then there exists 6 such that Ôi = - 6 for all i ~ V -  r, o~« = 6 for 

all e ~ E and/3r = y. Hence, these equalities can be obtained by combining y~ = 1 with ( 1 ). 

This proves that yr ~< 1 defines a facet of  conv(S,«) .  [] 

Propos i t ion  6. Let G = ( V, E) be a 2-connected graph. Then the (S, k )- inequali~ defines 

a facet  o f  conv( S~T) i f f  the following conditions are all satisfied: 

• G[S] is 2-connectedi f  [S] >~3; 

• G[S] is connec ted i f  IS[ = 2 ;  

• G -  S is connected; and 

e k = r  i f  r~S4= V. 

In order to prove this result, we need the following trivial lemma. 

L e m m a  7. Let G =  ( V, E) be a 2-connected graph. For any S c V  and ~ ~ S ,  let 

R (u)  = { L~ ~ S: there exists an S-path between u and v } where an S-path is a path with no 

intermediate vertex in S. Then ]R(u)  ] >/2. [] 

P r o o f  of Proposition 6. If S = { i, k} but G[S] is not connected then the (S, k)-inequality 

is y~ >~ 0 and is implied by the inequalities Yi >~ x« and x« >~ 0 for some e incident to i. 

If  G [ S] ( I S [ >~ 3 ) is not 2-connected then it has a cut vertex t,. Let G~ = (S~, El ), G2 = ( S»  

E2) be a l-separation of G [ S] at vertex v. Let kl = k if k ~ Sj and kj = v otherwise. Similarly, 

let k2 = k if k ~ $2 and k2 = c otherwise. The (S, k)-inequali ty can be obtained by summing 

up the (S~, k~ )-inequality and the (S»  k2)-inequality. Hence, the (S, k)-inequality does not 

define a facet of  conv(S~T). 

If  G -  S is not connected than let VI be the vertex of a connected component of  G -  S. 

Without loss of generality, assume that r ~ S U  Vj. Let V2 = V ~ ( S U  V~). The (S, k)-ine- 

quality can be obtained by summing up the (SU V~, r)- inequali ty and the (SU V» k)- 
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inequality and subtracting (1) .  Hence, the (S, k)-inequali ty does not define a facet of 

conv(Srr) .  

If  r G S v~ V and k ~ r then the (S, k)-inequali ty can be obtained by summing up the (S, 

r)- inequali ty and the inequality Yk ~<Y,-. As previously mentioned, this latter inequality can 

be obtained by subtracting ( 1 ) from the ( V, i)-inequality.  Again, the (S, k)- inequali ty does 

not define a facet of conv(Srr) .  

On the other hand, assume that G[S] is 2-connected if J SJ >~ 3 and connected if ]SI = 2, 

G - S is connected and k = r if r G S =# V. We shall prove that the only valid inequalities 

satisfied at equality by all (x, y) G S,r with x ( E ( S )  ) = y ( S - k) are equivalent to the ( S, k) - 

inequality. Assume that ocr + /3y  = 3/for all (x, y) G SrT with x ( E ( S )  ) = y ( S -  k). We break 

the proof into three parts. 

Case 1: r ~ S .  Since (0, 0) and (0, er) must satisfy cex+/3y= y, we have 

y = 0  and ~r  = 0 .  (13)  

Let e = (i, j )  G E ( S )  with i4:k. By Lemma 2, there exists a path P~ in E(S)  f r o m j  to k 

that does not pass through i. Ler P2 be an S-path from r to some 1G S. By Lemma 7, we can 

assume that Ig:i. Let P3 be a (possibly empty)  path connecting l to P~ in E(S)  without 

going through i. Clearly, F = P j t)P2 t,_)/0 3 is an r-tree (Figure 1 ( a ) )  whose incidence vector 

satisfies x ( E ( S )  ) = y ( S -  k). Adding e to F, we still have such an r-tree. Hence, % +/3i  = 0. 

Since G [ S - k ]  is connected, by looking at all edges e= (i, j )  G E ( S )  with i ¢ k ,  we find 

the existence of a scalar % such that 

« « = a s  f o r e G E ( S )  (14) 

and 

Bi = - a s  f o r i G S - k .  (15) 

Let e =  (i, j )  with i ~ S  a n d j G S .  Let Pl  be a path from i to r in E(V'xS) .  The existence 

of  this path follows from the assumption that G - S is connected. Let P2 be a path f r o m j  to 

I 

+ 

e 

i 

i 

© 

(a) (b) 

Fig. 1. r-trees in the proof of Case 1. 
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k in E(S) .  Consider the r-trees F~ = P~ and F2 = P I U P2 t )  { e } (Figure 1 (b ) ) ,  Both r-trees 

satisfy the iS, k)-inequality at equality and, hence, ooc+ 13y = 3'. Using (14) and (15),  we 

get 

e~e=-13  ~ f o r e ¢ 6 ( S ) .  (16) 

Now let e = (i, j )  ¢ E ( S )  with rg= iq~S (bu t j  might be in S). By Lemma 2, there exists 

a path P~ f romj  to r that does not pass through i. Since G[S] is connected, we may assume 

that I P~ C3 6(S)  I ~< 2. If  P~ intersects S then connect it to k by edges in E(S)  (Figure 2). 

The resulting r-tree F satisfies the iS, k)-inequality at equality and so does FU {e}. Hence, 

o l « + / 3 i = 0  for e = ( i , j ) ~ k E ( S )  withrvaiq~S. (17) 

Since G -  r is connected, any vertex i4 = r is connected to some e d g e f i n  a(S) by a path in 

E( V -  r) \ E ( S ) .  Combining (17) w i th (16 ) ,  we get 

and 

c~« = - /3k  f o r e ~ E \ E ( S )  (18) 

B i = ~ k  f o r i e V \ S \ { r } .  (19) 

Therefore, from (13),  (14),  (15) ,  (18) and (19),  we see that c~c+/3y= ycan be derived 

from x ( E ( S )  ) -- y ( S -  k) and ( 1 ) by subtracting/3a, times x(E)  - y( V -  r) = 0 from «s +/3k 

times x ( E ( S ) ) - y ( S - k ) = 0 .  This means that the (S, k)-inequality defines a facet of 
conv(S,«). 

Case 2: r=k.  In this case, Sg= V (otherwise we have ( 1 ) ). Since (0, 0) and (0, e,.) must 

satisfy ~.x +/3y = y, we have y =  0 and/3, = O. 

B ( ~  oR 

Fig. 2. Another p~tree in the proof of Case I. 

(a) 

~s 
(b) 

Fig. 3. r-trees in the proof of Case 2. 
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i ~ 

Fig. 4. r-tree in the proof of Case 3. 

Let e = (i, j )  ~ E(S) with i 4= r. Using Lemma 2, let Pj be a path in E(S)  f romj  to r that 

does not go through i. Since both P~ and P~ U {e} are r-trees (Figure 3 (a ) )  satisfying 

x ( E ( S )  ) = y ( S -  r), we taust have ol« +/3; = 0. 

Since G[S-r] is connected, this implies the existence of a~ such that a « =  «., for all 

e ~ E ( S )  and fli= - c~, for all i ~ S - r .  

Let e = (i, j )  fEE(S) with ifES. Ler P~ be a path f romj  to r that does not go through i. 

Since G[S] is connected, we may assume that ]Pt A 6(S) I ~< 1. Again, since both Pl and 

PI U {e} are r-trees (Figure 3(b) ) satisfyingx( E( S) ) = y ( S -  r), we must have % + J~i = 0. 

Since G - S  is connected, there exists c~g such that % = ce~ for all e fE E(S)  and fl;= - ce  s 

for all i fE S. 

Therefore, we see that a x + / 3 y  = 7  can be derived from x ( E ( S ) )  = y ( S - r )  and (1).  

This means that the (S, r)-inequality defines a facet of conv (S,«). 

Case 3: S = V and k 4= r. In this case, the (S, k)-inequality is equivalent to Yk ~< Yr. 

Since (0, 0), taust satisfy txx+/3y= 7, we have 7 = 0 .  

Ler e= (i, j )  GE  with ifE {r, k}. Let Pj be a path from r to k that does not go through i. 

Ler P2 be a path frornj to PI that does not go through i, Since both Pj U P2 and Pi U P2 U { e } 

are r-trees (Figure 4) satisfying Yk =Yr, we taust have 

ol« +/3; =0 .  (20) 

L e t f b e  any edge. Since G is connected, there exists a path P~ from r to k that uses f. 

Comparing the incidence vector of Pj with (0, 0) and using (20),  we find that 

ar +/3r +/3k = 0 for a l l f~  E. Hencel/3; =/3r +/3k for all i ¢ V~ { r, k}. Therefore, cec +/3y = 7 

can obtained by subtracting/3~+/3k times x ( E )  - y ( V - r )  = 0  from /3, times y r - y k = O .  

This means that the ( V, k)-inequality defines a facet of conv (SrT). [] 

4. Polyhedral characterization for series-parallel graphs 

Definition 1. A graph G is series-parallel if it does not contain any subgraph homeo- 

morphic 2 to the complete graph Ka on 4 vertices. 

Duffin [ 11 ] has shown that a 2-connected graph G = (V, E) is series-parallel iff it can 

2Gt is homeomorphic to G2 if Gt can be obtained from G2 by subdividing edges. 
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be obtained from the graph consisting of two parallel edges on two vertices by subdividing 

edges (series operation) and duplicating edges (parallel operation). In fact series-parallel 

graphs are often defined in this way. Duffin also showed that, given an edge e e E ,  this 

construction can be performed in such a way that e does not participate in any series or 
parallel operation (e is therefore one of the two initial edges). By looking at the last parallel 

operation in the construction of a 2-connected series-parallel graph, we obtain that these 
graphs can be decomposed into cycles: 

Lemma 8. Let G be a 2-connected series-paraIlel  graph that is not a cycle. Then there 

exist G i = ( Vj, El)  and G2 = ( V» E2) such that Vi ~ ~ = {a, b}, Vi U V2 = V, El A E2 = O, 

El U E2 = E  and G2 is a cycle on V2 (see Figure 5). MoreoL~er, replacing G 2 by a simple 

path, we obtain a 2-connected series-parallel  graph that requires one f ewer  parallel oper- 

ation. [] 

By the remark preceding the lemma, the decomposition just described can be performed 

in a way that any prespecified edge e belongs to Ej. In particular, this implies that we may 

assume that r e V~. 
Many combinatorial optimization problems that are NP-hard on general graphs are poly- 

nomially solvable on series-parallel graphs because of the decomposability of these graphs 

(see e.g. [2, 3, 5, 9, 10, 25, 28, 30, 31] ). This is formalized in various ways by Arnborg 

and Proskurowski [2], Arnborg, Lagergren and Seese [3 ] and Takamizawa, Nishizeki and 
Saito [ 28 ]. Not surprisingly, the Steiner tree problem (Wald and Colbourn [ 30 ] and Rardin 

et al. [ 23 ] ), its vertex-weighted version and the r-tree problem are all polynomially solvable 

on series-parallel graphs. Simple decomposition-based algorithms similar to those in Tak- 
amizawa et al. [28] can indeed be developed. 3 These algorithms can even be implemented 

in linear time (series-parallel graphs can be decomposed in linear time, see e.g. Wagner 

[29]).  

The fact that most combinatorial optimization problems are polynomially solvable on 

series-parallel graphs suggests that it might be possible to obtain simple explicit descriptions 

of the corresponding polytopes by linear inequalities. Results of this kind were obtained for 

Fig. 5. Decomposition property of series-parallel graphs. 

3Such an algorithm for the r-tree problem is in fact hidden behind the proof of the forthcoming Theorem 9. 
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various combinatorial optimization problems defined on series-parallel graphs: stable set 

problem (Boulala and Uhry [ 5], Mahjoub [ 18 ] ), directed Steiner tree problems (Prodon 

et al. [22], Goemans [ 14], Schaffers [26] ), 2-connected and 2-edge-connected subgraph 

problems (Cornuéjols et al. [9],  Coullard et al. [ 10], Mahjoub [ 19] ) and the traveling 

salesman problem (Coullard et al. [ 10] ). Martin et al. [20] propose a general technique 

to derive from dynamic programming algorithms complete characterizations of  most com- 

binatorial optimization polytopes (including the Steiner tree polytope) on series-parallel 

graphs. However, their characterizations use auxiliary variables and are therefore not in the 

space of the natural variables. In this section, we obtain a complete polyhedral characteri- 

zation of both the r-tree polytope and the vertex-weighted Steiner tree polytope on series- 

parallel graphs. 

T h e o r e m  9. I f  G is series-parallel  then PrT = conv (SrT). 

By Theorem l, we know that it is sufficient to prove Theorem 9 for 2-connected graphs. 

For that purpose, we use a non-algorithmic proof technique communicated to us by Pochet 

and Wolsey. This technique is essentially equivalent to showing that any facet is defined 

by one of the inequalities in the proposed linear inequality system (see Loväsz [ 17] for an 

illustration for the matching polytope).  

T h e o r e m  10. Let P = { x ~ ~": A - x  = b , A <~x <~ b ~ } and let S = P N ~_". Assume that f o r  

each inequality ax <~ b in A <~ x <~ b <~, there exists £ ~ S such that aS < b. For  a cost funct ion 

c, let ~ be the set o f  optimal solutions to min { cx: x ~ S}. 

Then P = c o n v ( S )  iff, f o r  any cost funct ion c, either c = uA f o r  some row uector u or 

t h e r e e x i s t s a n i n e q u a l i t y a x < ~ b a m o n g  {A ~x<~b <~} s u c h t h a t a x * = b f o r a l l x * ~ & .  [] 

From now on, given a cost function, (c, f ) ,  ~'  denotes the set of incidence vectors of 

minimum cost r-trees of G. 

The fact that all inequalities in PrT satisfy the technical condition of Theorem 10, namely 

that they are satisfied strictly by the incidence vector of some r-tree, follows from Proposition 

3. 

In order to apply Theorem 10, we prove the following result: 

L e m m a  11. Let i be a degree 2 L,ertex o f  a graph G with i ~ r. Let e = ( i, j )  and e' = ( i, j '  ) 

be the two edges incident to i. If, f o r  some cost funct ion ( c, f )  , no ( S, k)- inequali ty  with 

I S I = 2 is satisfied at equality by all solutions in &', then c« = c,, and f i  + c,, <~ O. 

Proof.  By assumption, there exists an (x, y) ~ ~' such that Yi > xt,. Hence, Yi = 1 and xt, = 0. 
Since i is connected to r, we must have x« = 1. Replacing Yi by 0 and Xe by 0, we obtain the 

incidence vector (x' ,  y ' )  of another r-tree whose cost cx' + fy '  is at least as much as the cost 

of (x, y) by optimality of (x, y).  H e n c e , f  + c,. <~ O. Similarly, 

f, + c,., ~< 0. (21) 
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By assumption, there also exists an (x, y) ~ ~ '  such that » > x t .  Hence, y1 = 1 and x t = 0 .  

Two cases can happen. If  yg = 0 then replacing yi by 1 and x« by 1, we obtain another r-tree 

(x ' ,  y '  ) such that cx' +fy '  >~ cx +fy.  Hence, f + c« >~ 0. Together with (21 ), this implies that 

co, 4 co. If  y~ = 1 then the fact that i is connected to r implies that xt, = 1. Replacing x«  by 

0 and x« by 1, we obtain another r-tree. Comparing the cost of  these r-trees, we find that 

Ce, <~ Ce. So, in any case, we have co, ~< Ce. By symmetry, we also have that c« ~< co,. Hence, 

C e ~ Ce,. [ ]  

Our proof  of Theorem 9 proceeds by induction on the number of parallel operations 

needed in the construction of  G. For the base case, we have: 

Proposition 12. I f  G = (V, E) is a cycle then P~T= conv(S~T). 

Proof .  The proof is based on Theorem 10. Consider any cost function ( c , f ) .  If  some (S, 

k)-inequali ty with IS I = 2 is satisfied at equality by all solutions in G then we are done. 

Otherwise, by Lemma 11, we know that there exists "I such that Ce = "I for all e ~ E and 

B + "I4 0 for all i ~ V -  r. In this case, the cost of any r-tree ( U, F )  4: (0, 0) is given by 

f r +  ~]i~u r ( f +  "I). S i n c e f . +  "I~<0 for all iG V -  r, the cost of an optimal r-tree is given 

by min{0, f r + ~ i ~ v  r ~ ' + " I ) } .  I f f ~ + " I < 0  for some i ~ V - r  then y i=yr  for every (x, 

y) ~ G, i.e. the ( V, i)- inequali ty is satisfied at equality for every (x, y) ~ fr. I f f  + "I = 0 for 

all i ~ V - r  then the cost of an optimal r-tree is given by min{0,fr}. We have three cases: 

1. I ffr  > 0 then every optimal solution satisfies x« = 0 for any e ~ E. 

2. I ffr  < 0 then every optimal solution satisfies yr = 1. 

3. Iff~ = 0 then the cost function ( c , f )  is a multiple of the equality constraint ( 1 ). 

Therefore the result follows from Theorem 10. [] 

We are now ready to prove Theorem 9. 

Proof of Theorem 9. By Theorem 1, we may restrict our attention to 2-connected ser ies-  

parallel graphs G = (V, E).  As previously mentioned, the proof is based on Theorem 10 

and proceeds by induction on p, the number of parallel operations needed in the construction 

of  G. The case p = 0 was treated in Proposition 12. 

Suppose we have proved the theorem for some p and consider a graph requiring p + 1 

parallel operations. By Lemma 8, there exist Gj = (V~, E~) and G2 = (V» E2) such that 

V~ (3 V2 = {a, b}, V~ U V2 = V, El O E z = 0 ,  El U E 2 = E  and G 2 is a cycle on V» G 2 can be 

seen as the union of two paths between a and b. Let V21 and V22 be the intermediate vertices 

of these two paths and ler E2~ and E22 be the edges of these two paths. Moreover, we may 

assume that r ~  VI, i.e. r ~  (V21U V22). 

Let ( c , f )  be any cost function and ler ~¢' be the corresponding set of optimal solutions. 

We would like to show that either there exists an inequality among ( 2 ) - ( 4 )  which is 

satisfied at equality by all solutions in ~ or ( c , f )  is a multiple of (1) ,  i.e. there exists 7 

such that Ce = 3' for all e ~ E, fr = 0 and ./'~ = - • for all i ~ V -  r. By Lemma 1 1, we know 

that we may assume that ( c , f )  is such that there exist yj and "i2 with co= ")'i for all e~E2t  

andf~ + "It ~< 0 for all i ~ V21 (1 = 1, 2). This latter fact means that, whenever Ya = 1 or y» = 1 
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for some (x, y) ~ ~', we incur no increase in cost by linking any vertex in ~ j  U ~/~22 to either 

a or b using edges in E» Therefore, for any solution (x, y) ~ eß, the contribution of G2 to 

the cost of (x, y),  defined by 

c= lE f~+ E ««, 
iEV»: 57--1 eEE2: .v«--I 

is equal to: 

1. Coo=0 ify«,=y» = 0; 

2. Clo=fù+~i~v2 ,  @ + % )  + ~2i~v= @ +  Y2) i f y ù =  1 ,y»=0 ;  

3. C01 =fb~-Z i~v21  Q~I-~-"Yl) -[- ~äi~ v22 (f/t ~- ')/2) i f y « =  0, y»=  1; 
4. C I l =f~ +fb + Y~i ~ v2, ( f  + YJ ) + Ei ~ v22 ( f  + Y2) if y« = 1, y» = 1 and a and b a r e  con- 

nected through Gl; 

5. C2~ = f ,  +f» + min( y,, Y2) + F,i~v~, ( f +  Y,) + ~2i~v,~(f+ Y2) if y~,= 1, y»=  1 and a 
and b are connected through G» 

Letting 6 = F,i~ v2, ( f  + % ) + E~~ v~~ @ + 5'2) and assuming without loss of generality that 

yl<~Y2, we obtain that Coo=0, C m = f , + &  C m = f » + &  C1~l = f , + f » + 6 ,  
C~l = f , + f »  + 6 +  %. S ince f  + yt~<0 for all iG V2l ( / =  1, 2), we have that 6~<0. In order 

to reduce G to a graph which requires only p parallel operations, we "simulate" G2 by a 

path between a and b. The actual construction depends on whether 6 = 0 or not. 

Case 1: 6 = 0 .  6 = 0  implies thata¢~ = - y« for all iG V2t and l =  1, 2. Let G' = (V', E ' )  be 

the graph obtained from G by replacing G2 by an edge e' between a and b (see Figure 6). 

We assume that the vertices and edges in Gn are referred in the same way in G and G'. The 

cost of the vertices and edges in GI are unchanged while e' is assigned a cost of  Tl- Let N" 

be the set of optimal solutions corresponding to this new problem. 

Edge e simulates G 2 in the following sense. Given any r-tree F of  G, we can obtain an r- 

tree of G' of smaller or equal cost by simply removing F C3 E2 and replacing it by e' if F 

contains one of the two paths in G2 between a and b. Conversely, given any r-tree F '  of  G',  

we can obtain an r-tree F of G of the same cost by letting F = F '  if e'¢EF' and 

F = F ' \ { e  } U E21 if e ' ~  F ' .  In other words, 

{(x I , y l ) :  (x, y) ~~¢ '} -  {(x l , y l ) :  (x, y) ~ ~ ' } ,  (22) 

where the superscript 1 indicates the restriction to Gj. 

By the inductive hypothesis, either there exists an inequality among ( 2 ) - ( 4 )  for G'  

which is satisfied at equality by all solutions in ~¢" or the cost function is a multiple of  the 

C' G' 

Fig. 6. Graph G' for Case 1. 
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constraint (1) corresponding to G'. In the latter case, we distinguish between two cases. If 

3'2 = Yl then the original cost function was a multiple of the constraint ( 1 ) corresponding 

to G and so we are done. If  "/2 > YJ then the ( V'x, V22, r)-inequality is satisfied at equality by 

all (x, y) GG. 

Therefore, we assume that there exists an inequality among ( 2 ) - ( 4 )  for G'  which is 

satisfied at equality by all solutions in ~~'. 

• Ifx«, does not appear in this inequality then the same inequality is satisfied at equality 

by all solutions in ~'. This follows from (22). 

• If the inequality is xt, >~ 0 then the ( Vl, r)-inequality is satisfied at equality by all 

solutions in G. 

• Finally, if the inequality is an (S, k) -inequality (with { a, b } G S) then the (S U V» k)- 

inequality is satisfied at equality by all solutions in G' .  

Therefore, in any case, we either have an inequality among ( 2 ) - ( 4 )  for G which is 

satisfied at equality by all solutions in ~' or the cost function is a multiple of the constraint 

( 1 ) corresponding to G. 

Case 2 : 6  < 0. ~ < 0 implies thatf~ + Y/< 0 for some s G V2t and 1 = 1 or 2. As a result, any 

solution (x, y) G G  with y,,= 1 or y»=  1 (or both) satisfies y~,= 1 since otherwise the 

contribution in G 2 of  (x, y) can be decreased. In other words, yj <~ y, for all (x, y) G J and 

all j G V2 U { a, b }. This means that s plays a role of root in G» 

Let G' = ( V', E '  ) be the graph obtained from G by replacing G2 by an additional vertex 

L,' linked to a and b by the edges e' a n d f  ' respectively (see Figure 7). The cost of the 

vertices and edges in G1 are unchanged while e' a n d f  ' are assigned a cost of y~ and v' is 

assigned a cost of 6 -  y~. Let ~ '  be the set of optimal solutions corresponding to this new 

problem. S ince f ,  +co, = f ,  +Cr '  = 6 < 0 ,  whenever ( x , y )  G(Y' with y« = 1 ( o r y » =  1), we 

have that y,. = 1. 

Again, this path that replaces G2 simulates it in the sense that 

{(xJ, y l ) :  ( x , y )  G ~ } = { ( x l ,  y l ) :  (X, y) GG'} .  (23) 

By the inductive hypothesis, either there exists an inequality among ( 2 ) - ( 4 )  for G' 

which is satisfied at equality by all solutions in ~" or the cost function is a multiple of the 

constraint ( 1 ) corresponding to G'. This latter case is impossible sincef.,  + co, < 0. 

Fig. 7. Graph G' for Case 2. 
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So assume that there exists an inequality among ( 2 ) - ( 4 )  for G' which is satisfied at 

equality by all solutions in cY'. 

• If  none of x,., xt-, and y,. appear in this inequality then the same inequality is satisfied 

at equality by all solutions in ¢'. 

• If the inequality is xt, >/0 (resp. Xt" ~> 0) then this means that any (x, y) ~ G '  satisfies 

yù = 0 (resp. y» = 0). Indeed, ifyù = 1 and xt, = 1 then we taust have y,. = 1 and Xt" = 1. We 

obtain a contradiction by interchanging xt, with xp since the resulting solution is still optimal 

and has xt, = 1. But (23) now implies that y a = 0  (resp. y » = 0 )  for all (x, y) GG. Hence, 

x,. = 0 (resp. xj-= 0) for all (x, y) ~ cY where e (resp.J) is any edge in G incident to a (resp. 

b). 

• If the inequality is an (S, k)-inequality with •SJ = 2  and v' ~ S  (i.e. it is one of  the 

following xt, <~y,. xf, ~ y , .  xt, <~yù, xt, ~<y») then any (x, y) ~ G with y«, =Y5 = 1 satisfies 

xt, =xt,  = 1. As a result, any (x, y) ~ ~ "  with y~, =y» = 1 has a path between a and b in Ge 

in which all edges have weight l. Hence, the (V» s)-inequality is satisfied at equality by 

all optimal solutions in G. 

• Otherwise, the inequality is an (S, k)-inequality with J S[ >~ 3 and tJ' ~ S. By Proposition 

6, we can assume without loss of generality that G[S] is 2-connected, implying that a, 

b ~ S. Let l = k if k 4: t,' and 1 = s if k = C. Then tbe (S - u' U V» l)-inequality is satisfied at 

equality by all optimal solutions in cY. 

Therefore, in any case, we either have an inequality among ( 2 ) - ( 4 )  for G which is 

satisfied at equality by all solutions in ¢: or the cost function is a multiple of the constraint 

( l ) corresponding to G. This completes the proof of the result. [] 

By replacing some inequalities by equalities in the linear description of a polyhedron, we 

do not create new extreme points. As a consequence, such an operation maintains the 

integrality of  a polyhedron. Therefore, by imposing to PùT that y~= 1 and yi=y,, for all 

i ~ T -  r, we obtain a complete characterization of  vertex-weighted Steiner trees for series- 

parallel graphs. 

Corol lary  13. If G is series-parallel then Pe = conv(Se) .  []  

5. Projeetion of PE 

In Section 2.2, we defined Pst as the projection of  Pe onto the x variables. In this section, 

we show that Pst has a very rich polyhedral structure. 

To obtain a (partial) description of PsT- in terms of  linear inequalities, we use the 

projection method introduced by Balas and Pulleyblank [4] (see also Liu [ 16] ). For this 

purpose, we consider the polyhedral cone W associated with ( 6 ) - ( 9 )  : 



172 M.X.  G o e m a n s  / The  S te iner  tree po ly tope  

W = ~ ( p ,  q, r): ~_ù ps+ ~_ù qs, k -rs=O,  i~N,  
S: i ~ S .  S n T ¢ O  (S. k): i ~ S - - k ,  k ~ S ~ N  

ps>~O, S-¢V, SNT4=O, 

qs, k>~O, k~Sc_N, 

q >tO, i ~ N }  

where Ps corresponds to (7) (of to (6) if S = V), qs, k corresponds to (8) and ri corresponds 

to (9).  Wcan easily be seen to be a pointed cone. Given any iP, q, r) ~ W, a valid inequality 

for Pst can be constructed by summing up the inequalities (6),  (7),  (8) and (9) multiplied 

by the corresponding Ps, qs. k or rs. The resulting projected generalized subtour elimination 
inequality is 

%xt  >~/3 (24) 
e ~ E  

where 

C~e = -- ~ PS -- ~ qs.k, (25) 
S: e ~ E ( S ) .  SNT~-O (S, k): e ~ E ( S ) ,  k ~ S c N  

1 3 = -  ~ ( [ S N T [ - l ) p s -  ~ r s .  (26) 
S: S N T ~ O  i ~ N  

Moreover, all valid inequalities for Pst arise in this way (see Liu [ 16] ). Therefore, it 

"suffices" to obtain the set of extreme rays for the cone W in order to describe Pst by a 

system of linear inequalities in the natural set of variables. 

A projected generalized subtour elimination inequality is valid for a specific graph G. 

However, Chopra and Rao [7] in their study of the Steiner tree polytope have obtained 

lifting theorems that allow to derive facet-defining valid inequalities for a graph G' from 

facet-defining valid inequalities for a minor G of  G'. We refer the reader to Section 4.1. or 

[ 7 ] for details. 

In order to reduce the dimension of the cone W, we may restrict our attention to those 

variables corresponding to the facet-defining valid inequalities among ( 6 ) - ( 9 ) .  Another 

reduction in dimension follows from the following observation. W is symmetric in all 

variables of the form PNu M where 0 4: M « T, in the sense that all these variables appear in 

the same constraints with the same coefficients. Similarly, for a fixed L c N ,  W is symmetric 

in all variables of  the form either PL u M where 0 ¢ M ~ Tor  qL u { k }, k where k ~ N~L. As a 

result, for any extreme ray, at most one variable for each of these equivalent classes is 

nonzero. This means that we may simply consider the following cone obtained by selecting 

a representative for each equivalence class: 



M.X. Goemans / The Steiner tree polytope 173 

( 
W' = ~ ( r , s , t ) :  ~ sz.=t+ri, i~N, 

k .  LCN: i ~ L  

sL »-O, LC_N, 

ri >~0, iEN~.  

Here sL denotes any variable of the form PLUM (M_cT, M ¢ T  if L=N) or qLu{k}, k 
( k ~ N \ L )  and t denotes - p v. The cone W' has a gigantic number of  extreme rays. Although 

extreme rays of  W' do not necessarily define facets of  Pst or even of  conv(Ssr) ,  we shall 

see shortly that many do. In the rest of this section, we shall describe some special subclasses 

of projectecl generalized subtour elimination constraints. 

5.1. Steiner partition facets 

The Steiner partition facets for the Steiner tree polytope conv(Ssr)  were introduced by 

Chopra and Rao in [7].  We show that these inequalities are in fact projected generalized 

subtour elimination constraints and are therefore valid for Ps» Consider a Steinerpartition 
of V, i.e. a partition {Vj . . . . .  Vb} of V where Vi (3 T=~ 0 for i = 1 . . . . .  k. Let 6( V~ . . . . .  Vb) 

denote the set of  edges having endpoints in two distinct members of the partition. The 

Steiner partition inequality is 

x(6(Vl ..... V»)) >~k-  1. (27)  

This inequality corresponds to the ray of  W obtained by letting qs. h = 0 for all (S, k), ri = 0 

for all i ~ N and 

[ -1 ,S=V,  
p , = ~ l ,  s ~ l v ,  ..... Vhl, 

[ 0 ,  otherwise. 

Indeed, (p, q, r ) ~ W  and, using (25) and (26) ,  we verify easily that a e = l  if e G  

6( V~ . . . . .  V«) and 0 otherwise, and tha t /3=  k -  1. Chopra and Rao [7] give necessary and 

sufficient conditions for (27) to define a facet of conv (Ssr) .  

5.2. Odd hole facets 

The odd hole facets were also introduced by Chopra and Rao [7] .  These inequalities are 

parameterized by an odd integer k and are defined on a graph Gh = ( V» Eh) with terminal 

set Th = { u0 .. . . .  uk ~ } and Steiner vertex set Vb\Th = { vo . . . . .  vb- j }. The edge set Ek consists 

of  the edges of the form (u» vi), (u»  t'i + ~ ), ( L'» L'i + ~ ) for i = 0 . . . . .  k -  1 with the convention 

that L'h = t'~» The odd hole inequality is 

x(Ek) >~ 2 ( k -  1). (28)  
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This inequality corresponds to the ray of  W obtained by letting qs, k = 0 for all (S, k), r~ = 0 

for all i ~ N and 

I 
- 2 ,  S=V,  

Ps = 1, S= {ui, zi, vi+l } for i = 0  .. . . .  k -  1, 

10 ,  otherwise. 

If  we consider a graph G = ( V» E) obtained from Gk by adding edges then the above ray 

corresponds to the inequality 

x(E~) + 2x(E\Ek) > ~ 2 ( k -  1). 

This inequality is shown to be a lifled version of the odd hole inequality in Chopra and Rao 

[7] .  It defines a facet of conv(SsT) (Chopra and Rao [7] ). 

5.3. Combinatorial design facets 

We now describe a new class of valid inequalities for Pst (and, hence, for conv(Ssr)) 
which, among many others, include the lifted odd hole inequalities. This class of combi- 
natorial design valid inequalities is obtained by looking at rays (p, q, r) of  W satisfying qs, 
» = 0  for all (S, k), r i = 0  for all i ~ N  and ps=O for all S=g V with ISNTI >~2. In other 

words, the only nonzero components of (p, q, r) are of the form Ps with ISC~TI = 1 or 

S=V. 
Consider a graph G = (V, E) with V = TU N where T =  { u~ . . . . .  u/} and N = {el . . . . .  eh,}. 

Ler { N / j =  1 . . . . .  l} be subsets ofN.  Define Ti= {Ui~ T: vi~Nj} for i =  1 .. . . .  k. Define also 

the k×l  matrix A = [aij] where agj= 1 if uj~T~ (or u~~Nj) and 0 otherwise. We impose 

two condifions on A, i.e. on the collection of subsets { Nj: j = 1 . . . . .  l } of N. 

Assumpt ion  1. rank(A) = I. 

Assumption 2. The vector 

e =  . ~ ~ k  

belongs to the cone generated by the columns of A, i.e. there exists x~IR~+ such that 

Ax=e. 

In other words, there exists d ~ Z +  and a vec to r /3~  2U+ with A ~ = d e  and gcd(/3~ .. . . .  

~» d) = 1. A ~ß = de can also be written as 

~., [3j=d (29) 
UJ ~ 7) 

for all i : 1 . . . . .  k. 

For e ~ E, define 
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] ~J' e e E ( N ) ,  
j: e~~E(Ni) 

d~= ~j, e=(v»U/ )  with vi ~ N~, 

k O, otherwise. 

In particular, de=O if e ~ E ( T ) .  For e =  (vr,, Vq)GE(N), d~ can also be expressed as 

Theorem 14. The combinatorial design inequality 

(d-, ic)x« >.d(1- l) 
e~E 

is a valid inequalityJor PST. 

(30) 

proof.  Consider the vector (p, q, r ) ~  W with qs. k = 0  for all (S, k), ri=O for all i~N,  
Pv= - d, Ps = fla if S = { u:} tO Nj fo r j  = 1 ..... l and Ps = 0 otherwise. By defnition of  d:, it 
is easily verified that this vector generates (30). [] 

In the following theorem, we show that if E contains enough edges then (30) defines a 

facet of  conv(Ssr) (and hence also of Pst). 

Theorem 15. If  
(i) G[ T] = (T, E(T) ) is 2-connected; 

(il) {(vi, uj): v i E ~ f o r s o m e j  = 1 ..... l} c a ( T ) ;  and 
(iii) Gj=  G[Nj] is connected f o r j =  1 ..... 1; 

then the inequality (30) defines a facet ofconv(Ssr) .  

Proof.  Consider an inequality ax >~ b valid for SsT such that 

{XESsT: ~ ( d - d e ) x e = d ( l - 1 ) ) ~ { x E S s r : a x = b } .  
e~E 

We show that this implies that ax>~ b is a multiple of (30).  

Claim I. There exists a r  such that a« = av for all e ~ E(T)  and b = (l - 1 ) aT. 
ProofofClaim 1. Suppose a:-4=ag for f, g ~ E ( T ) .  Consider a cycle C in G[T] that goes 

throughfand g. The existence of  this cycle follows from condition (i). Augment C to obtain 

a spanning tree on G[T] plus one additional edge in C. By r emov ing fo r  g, we obtain two 

spanning trees (T, 77,/) and (T, T u) of G[T]. Since any spanning tree in G[T] has l -  1 

edges and since de = 0 for e ~ E(7 ) ,  the incidence vector x of any spanning tree on G [ T] 

satisfies (30) at equality. Hence, it also satisfies ax = b. Therefore, ~« ~ ~a« = 32 ~ T a« = b, 

implying that a /=  au. Let a r = te:: Also, b = [ 7~:[ ar = (I - 1 ) ce» 
Claim 2. Le t j  < { 1 ..... l}. There exists te: such that a« = a: for all e ~ { (v» uä) : v/E N:}. 

Proof of Claim 2. Let (vp, v « ) ~ E ( ~ ) .  Consider a Steiner tree in which (Vp, v«) is 

present, the vertices in T/, are linked to vp, the vertices in Tq\Tp are linked to Vq and the 

vertices in T~ ( T» to Te) are connected to vertices in T» tO T« by edges in E(T) .  
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This Steiner tree satisfies (30) at equality since 

( d - d , . ) +  y' (d-/3,) + d[ T'x (T,, U L) I 
u,- ~ (Tp U 7 ) )  

=d-d,.,,,,,,+d[TpOL[- y" /3r- ~ /3r+ ~ ~r+d[T"k(TpC) Tq)] 
u,. ~ Tp ur ~ Tq ut ~ Tp F~ Tq 

= d ( l +  1) - d ù , , i , - d - d + d , , , , , ~  

= d ( l -  1), 

by (29) and the definition of  d , . ù .  Hence, it taust also satisfy ax = b. This also holds if we 

replace ( Vp, uj) by (v«, uj). Hence, aù, ~: = a, «,~:. 

By choosing (L,, Vq) from a spanning tree of G I N  j] ( G I N  j] is assumed to be connected 

by condition (iii)),  we obtain that a« is constant for e ~ { ( v,, uj) : ui ~ Nj }. 

Claim 3. F o r j ~  { 1 ..... l}, da:= ( d -  ~j) aT. 

P r o o f o f C l a i m  3. Fix i in { 1 ..... k}. Consider a Steiner tree in which L'i is linked to all 

vertices in Ti and the vertices in T',T: are connected to Tl. through edges in E ( T ) .  This 

Steiner tree satisfies (30) at equality since 

(d-~ù)+dlT~TiI=«IT~I- ~ /~,+dlT~T,l=d(Z-l) 
ltt Œ Ti Ur ~ 7"s 

by (29). Hence, it also satisfies a x =  b implying that 

og + ( 1 - -  l T i l ) a T = ( l - -  l ) a T  (31) 
tt i E Ti 

where we have used Claims 1 and 2. Rearranging (31),  we obtain that, for any i in 

{1 ..... kl, 

~] (eT--«j)=aT, 
tU@7) 

or A T  = aTe where -yj = a r -  o 9. Since A has full rank, we obtain that 

a r  - o 9 = ~ j a T / d  

i.e. daä= ( d -  ~ßi)aT, proving the claim. 

Claim 4. For e ~ E(  N ) ,  da«= ( d - d e ) a T .  

P r o o f  o f  Claim 4. Let e = (vp, Cq) ~ N. Using the same construction as in Claim 2, we 

obtain a Steiner tree satisfying ax = b, i.e. 
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(l--1)OlT=a"+ E ~~+ (1- IT,, u L  I)°~T 
~U ~ Tl' tO Tq 

= a « +  y" d - - ~ J a T + ( l - - ] T ,  U L I ) a  r 
d 

u i ~ T I, U Tq 

OL T 

=aù + / a T - -  7 E ]3i 
u i ~ T p U T q  

=Oe +leg T -- (aT/d)  ( d + d - d « )  

= a «  + ( 1 - 2 + d e / d ) a T  

implying that da« = ( d -  d~) a T. 

Claim 5. Let e = (v» uj) ~ 6(T) .  If Uj~ T~ then ae = %- 

Proof  of  Claim 5. Consider the Steiner tree in which v~ is linked to ic,. U {u y} and the 

vertices in T' ,(T~U {uj}) are connected to TiU {Ui} by edges in E(T) .  This Steiner tree 

satisfies (30) at equality and, hence, satisfies ax=b .  Comparing it to the Steiner tree 

constructed in the proof of Claim 3, we see that a« = aT. 

In summary, we have proved that av = (d  - d,.) a r / d  for all e ~ E and b = ( 1 - 1 ) a v. This 

proves that the inequality (30) defines a full-dimensional face of conv(Ssr).  [] 

The conditions in Theorem 15 although sufficient are not necessary. For example,  any 

lifled odd hole inequality is in fact of the form (30) but many of them, although facet- 

defining, fail the conditions of Theorem 15. 

By looking at rays of W with Ps 4= 0 for some S with IS (3 T I >~ 2, we obtain some even 

larger classes of valid inequalities. However, we don ' t  have some simple conditions as in 

Theorem 15 for these inequalities to be facet-defining. 

Block design facets 

We obtain a large subclass of (30) by considering a collection of subsets {Ti: i =  1 . . . . .  k} 

that constitutes a balanced incomplete block design (BIBD)  (see e.g. Anderson [ 1 ] ). In 

the notation of  design theorists, a BIBD, or a (u, k, A)-design, is a collection of subsets 

(cal led blocks) of cardinality k of a set S of cardinality u such that every pair of  elements 

of  S occur in exactly A subsets. In out setting 4, S is T, u is l, k is going to be d, and A is an 

additional parameter. From now on, we shall consider (l, d, A)-designs. In an (l, d, A)- 

design, the number of blocks, represented by k in our case, can be seen to be equal to 

A l ( l -  1 ) / ( d ( d -  1)) .  

If {Tfi i =  1 . . . . .  k} is a (l, d, A)-design then clearly Assumption 2 is satisfied since we 

can choose al l /3j ' s  to be 1. Moreover, assumption 1 is also satisfied since the incidence 

matrix A of any BIBD satisfies rank(A) > rank(ATA) = l and hence has full tank. This is a 

basic result in design theory (see e.g. pp. 17-18 in [ 1 ] ). The valid inequalities of the form 

4The notation for designs is in fact fairly standard but, unfortunately, does not correspond to what we have been 
using so rar! 
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W 

? 
Fig. 8. The inequality Y~«~x,, ~> 18 is a facet-defining block design inequality corresponding to a (7, 3, l )-design. 

Fig. 9. The inequality )Et,x,./> 9 is a facet-defining block design inequality corresponding to a (4, 3, 2)-design. 

(30) arising from BIBDs will be called block design inequalities. As seen in Theorem 15, 

for any BIBD, these inequalities are facet-defining if certain conditions on the edge set are 
met. 

The existence of many designs has been established (see [ 1 ] ). One of the most wellk- 

nown class of BIBDs consists of (l, 3, 1 )-designs, which are called Steiner triple systems. 
These systems exist for all l=-I or 3 (mod 6), 1>~3 (see [1] ) .  In Figure 8, we have 

represented a facet-defining valid inequality corresponding to the Steiner triple system with 

l = 7. The class offinite projectiL,eplans is another class of BIBDs. A finite projective plane 

of order n is a (n2+n+ 1, n +  1, 1)-design (n>~2) and their existence has been proved 

whenever n is the power of  some prime number. Many more BIBDs exist. In Figures 9 and 

10, we have represented some facet-defining valid inequalities that arise from small BIBDs. 

Facets with many different coefficients 
We show now that the Steiner tree polytope conv(SsT ) has some very complicated facet- 

defining valid inequalities. The block design inequalities that we have just described, 
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o~ e 

.... .... 

2 

3 

4 

Fig. 10. The inequality Y~o~,.r,, >/28 is a facet-defining block design inequality corresponding to a (8, 4, 3)-  

design. 

although fairly complex, have at least a strong combinatorial flavor. We shall describe, for 

any odd integer n = 2m + 1 (m >~ 3), combinatorial design inequalities having coefficients 

1, 2 . . . . .  n. A slightly different construction can be done for even n. We already know that 

these inequalities are facet-defining for graphs for which E is suitably chosen (Theorem 

15). 

Our graphs have n = 2 m + l  Steiner vertices co . . . . .  t'2,,, and n = 2 m + l  terminals 

uo .. . . .  u2,,. The collection of  subsets { Ti: i = 0 .. . . .  2m } is given by: 

{0, 2rn}, i = 0 ,  

=.~ {i, 2 m + l - i } ,  l ~ i ~ < m ,  

Ti / { 0 ,  2 m - i ,  i}, m +  1 ~ i~<2rn -  1, 

[ { 0 ,  1, m - l , m } ,  i=2m.  

We first claim that this collection of  subsets satisfies Assumption 1, i.e. the incidence matrix 

A cotTesponding to this collection is invertible. Indeed, let Eo . . . . .  E2m be the rows by A. 

2Zi=2 Ei+E, , , -E , , ,+~- '~ '2 ' " - J  • from E2,,, and sub- Subtracting ( 2m - 2 ) Eo + 3Ei + .... i ~.~-. , i~m+2~i 

tracting Eo + E2,,,- ~ from E~ for m + 1 ~< i ~< 2m - 1, we obtain an upper-triangular matrix 

with all diagonal entries being except the last one which is - (2m + 1 ). Moreover,  Assump- 

tion 2 is also satisfied since we can select d = n,/3o = 1 and/3 i = j  f o r j  = 1 . . . . .  2m. 

The combinatorial design inequality associated with {7",.: i = 0  .. . . .  2m} is 

Y~e~e(n-d, . )x ,~>~n(n-1) .  If e=(t ' i ,  Uj)with ui~Ti  and l < ~ j < 2 m = n - 1  then 

n - d e = n - j  which can take all values between l and n -  1. Moreover, for e E E ( T ) ,  
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n -  d e = n. Therefore, for E suitably chosen (e:g. a complete edge set), the coefficients of 

this facet-defining inequality have all values between 1 and n. 

Relationship with bidirected formulation 
So far, we have not discussed any relationship between PST and other formulations for the 

Steiner tree problem (except for the fact that the Steiner partition inequalities and odd hole 

inequalities are valid for PST). For a recent survey of formulations, see Goemans and Myung 

[ 15]. Since any Steiner tree can be directed away from a terminal vertex r, the undirected 

Steiner tree problem can be formulated as a bidirected problem. This observation readily 

gives another extended formulation for the problem (Wong [32] ). Let 

Q E = { z : z ( ~ - ( S ) ) > ~ I ,  S:rf~,S(qT4=O, (32) 

Ze>~O, e~E»} (33) 

where 3 (S) denotes the set of arcs incoming to S and E» is the st of bidirected arcs (we 

disregard the arcs incoming to r). Let QST= {x: xii=z~j+zji for all (i, j )  G E  and some 

z ~ QE}. In [ 15 ], Goemans and Myung prove that QST is the dominant of Ps» i.e. QST = {x': 

x' >~ x for some x ~ PST}. (In fact, they also show a stronger result, namely they completely 

characterize by linear inequalities the set { z: x ~ PST where xij = z~j + z~i for all ( i, j )  ~ E}.) 

Most of the valid inequalities for PST (or conv(SsT) ) we have derived in this section have 

nonnegative coefficients, and are therefore valid for its dominant. In other words, these 

valid inequalities could have been obtained by projecting QE onto the x variables. Although 

this projection seems in general more complicated, we shall illustrate how obtain the class 

of  combinatorial design inequalities (30) from Qe. Let r = u~. Multiply (32) by 

{ d - ~ i ,  S={u;} ,  j = 2  ..... l, 

~j, S={Ui}UN » j = 2  ..... l, 
0, otherwise, 

and (33) by 

l 
~l, e=(uj ,  vi), r ~ T i - u j ,  
~, e=(u~ ,v i ) ,  r~T i \Th ,  

[ 0 ,  otherwise, 

and add up all these inequalities. We claim that the resulting inequality E«~E,,a«w« >1 b 
satisfies a« = d -  d~, and b = d ( l -  1 ) where, for an arc e, d« represents the value of its 

undirected counterpart. This immediately establishes the validity of (30) for Qsr. 
To show that the resulting inequality is of the required form, first notice that 

b = El= 2 [ (d- /3~)  +/3i] = d( l  - 1 ). To compute a«, we consider several cases. 

• I f e =  (u~, Ui) ~E»(T)  (hence, uj#r)  then a«= ( d -  ~j) + ~ j = d = d - d « .  
• I f e  = ( v» uj) (hence, UJ =# r) and vi ~ Ni then a« = d - / 3 ;  = d - d,» 

• I f e =  (v» UJ) (hence, Uj4:r) and vi¢~N~ then a,,= ( d -  ig;) + ~ j = d = d - d «  
• If e = (uj, ui) with vi ~ NJ then, for r ql ( Ti \  { Ui} ), we have 
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a« =u~ ~ (T~u j  })/3k = d - / 3 j  = d - d e  

and, for r ~ (T i \  { U/} ), we have 

a« = ~'. Ôk + Öl = d -  fij = d - d e .  
,k~(v,\Tuj, r}) 

• I r e =  (uj, «i) with vi~N~ then, for r¢£ Tl, we bave 

a« = ~_, f i k = d = d - d «  
Uk ~ Ti 

and, for r ~ Ti, we have 

a« = y" fik + fil = d = d - d ~ .  
ùk~(r,\{r}) 

• I r e =  (vb, vi) ~E»(N)  then, for r~  (Ti\Th),  we have 

~ « =  E ~~=d- E ~~=d-4 
Uk ~ ( T i \ T h )  Uk Œ ( Ti A Th) 

and, for r ~  (Ti\T~),  we have 

a« = ~_, fit + iß, = d - d e .  
ù,~«,\«,,~{r})) 
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6. Open problem 

We would like to conclude by mentioning that, to this date, a complete characterization of 

the undirected Steiner tree polytope for series-parallel graphs is still unknown. Chopra and 
Rao [ 8 ] have conjectured that the Steiner partition inequalities and the odd hole inequalities 

are sufficient to describe the dominant of this polytope. We have given an extended for- 

mulation for the undirected Steiner tree problem on series-parallel graphs and have shed 

some light on the projection. However, in the case of series-parallel graphs, most of the 
generalized subtour elimination constraints do not define facets. A technique to eliminate 

such rays of W is therefore needed. 
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