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Abstract

We propose a new 3D model of the human body that is

both realistic and part-based. The body is represented by a

graphical model in which nodes of the graph correspond to

body parts that can independently translate and rotate in 3D

and deform to represent different body shapes and to cap-

ture pose-dependent shape variations. Pairwise potentials

define a “stitching cost” for pulling the limbs apart, giv-

ing rise to the stitched puppet (SP) model. Unlike existing

realistic 3D body models, the distributed representation fa-

cilitates inference by allowing the model to more effectively

explore the space of poses, much like existing 2D pictorial

structures models. We infer pose and body shape using

a form of particle-based max-product belief propagation.

This gives SP the realism of recent 3D body models with the

computational advantages of part-based models. We apply

SP to two challenging problems involving estimating human

shape and pose from 3D data. The first is the FAUST mesh

alignment challenge, where ours is the first method to suc-

cessfully align all 3D meshes with no pose prior. The second

involves estimating pose and shape from crude visual hull

representations of complex body movements.

1. Introduction

Inference of human body shape and pose from im-

ages [19], depth data [28, 39], 3D scans [3, 10, 20, 32],

and sparse markers [23] is of great interest. There are two

main classes of 3D body models in use. The first repre-

sents 3D body shape and pose-dependent shape variation

with high realism (Fig. 1(a)) [4, 7, 14, 20, 28]. Such mod-

els are described using a relatively high dimensional state

space, combing shape and pose parameters, making infer-

ence computationally challenging [31]. The second class of

models is based on simple geometric parts connected in a

graphical model (Fig. 1(b)) [34, 35]. This approach breaks

the global state space into smaller ones allowing each part’s

parameters to be estimated independently from data. Such

models connect the parts via potential functions and infer-

ence is performed using message passing algorithms such

(a) (b) (c)
Figure 1. 3D Body Models. (a) A SCAPE body model [7] real-

istically represents 3D body shape and pose using a single high-

dimensional state space. (b) A graphical body model composed

of geometric primitives connected by pairwise potentials (image

reproduced from [35]). (c) The stitched puppet model has the re-

alism of (a) and the graphical structure of (b). Each body part is

described by its own low-dimensional state space and the parts are

connected via pairwise potentials that “stitch” the parts together.

as belief propagation (BP). These models are advantageous

for inference but have a crude geometric structure that does

not make it possible to recover body shape and that does not

match well to image evidence.

Here we propose a new stitched puppet (SP) model that

offers the best features of both approaches in that it is

both part-based and highly realistic (Fig. 1(c)). The SP

model is learned from a detailed 3D body model based

on SCAPE [7]. Each body part is represented by a mean

shape and two subspaces of shape deformations, learned us-

ing principal component analysis (PCA), that model defor-

mations related to intrinsic body shape and pose-dependent

shape changes. These shape variations allow SP to capture

and fit a wide range of human body shapes. Each part can

also undergo translation and rotation in 3D. As with other

part-based models, the parts form a graph with pairwise po-

tentials between nodes in the graph. The SP potentials rep-

resent a “stitching cost” that penalizes parts that do not fit

properly together in 3D to form a coherent shape. Unlike

the SCAPE model, parts can move away from each other
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but with some cost. This ability of parts to separate and

then be stitched back together is exploited during inference

to better explore the space of solutions.

Unfortunately, the state space for each part includes con-

tinuous random variables representing the part shape and

the 3D pose of the part and cannot be easily discretized to

apply discrete BP as in pictorial structures models. This

is similar to previous 3D part-based models [34] that use

inference with continuous random variables. To deal with

this, we leverage recent advantages in optimization for dis-

tributed models with continuous variables in high dimen-

sional spaces. Namely we perform max-product belief

propagation using D-PMP, a particle-based method that has

been shown to work well for the similar inference problem

of 2D human pose estimation [26].

We apply SP to two challenging 3D inference problems.

First, we use it to infer the pose and shape of people in the

FAUST dataset [10]. FAUST contains high-resolution 3D

scans of people with different body shapes in a wide vari-

ety of poses. The goal is to align all the body scans so that

points on each scan are in full correspondence with all other

scans. The pose variation, noise, self contact, and missing

data make the dataset challenging, and our approach is the

first to successfully align the full dataset and report quanti-

tative results. Second, we use SP to fit body shape and pose

to low-resolution visual hulls with a wide range of poses.

Such data is commonly extracted from multi-camera cap-

ture systems and most previous pose estimation methods

that use detailed body shape assume that the body shape is

known a priori from a 3D scan [15, 18] or is refined given a

good initialization [12]. Here we show that SP can robustly

fit body shape and pose given low-resolution and noisy data,

without a good initialisation.

The SP code is available for research purposes [1].

2. Related Work

Representing 3D shape and pose. Geometric descrip-

tions of 3D object shape in terms of parts represent some

of the earliest models in vision [24, 25]. Simple geometric

models are widely used to represent and track the human

body [11, 16, 33], but richer models made from deformable

parts of various types are also used [27, 29, 36, 37]. These

approaches, however, are fairly crude approximations to hu-

man body shape. To address this, Corazza et al. [15] take

a body scan of a known subject and chop the 3D mesh into

rigid parts. They then build an articulated kinematic tree

model and fit it to visual hulls via ICP [9]. We go beyond

this to estimate the body part shapes directly from data and

to model the interconnection between parts, including their

pose-dependent shape variation. Rodgers et al. [32] also use

a human-like part-based model with fixed shape for pose es-

timation from 3D range scan data.

More detailed and realistic models of body shape can

be learned from training data of aligned 3D scans of peo-

ple [4, 7, 12, 14, 20, 28]. For example, the SCAPE

model [7] factors mesh deformations due to different body

shapes from those dependent from pose. SCAPE mod-

els have been fit to multi-camera image data [12], Kinect

data [39], mocap markers [23], and high resolution 3D

scans [10]. Fitting such a model is difficult because search

has to happen in a high-dimensional space of body shape

and pose; e.g. Bălan et al. [12] fit SCAPE to image data but

require a good initialization from another method.

Part-based models: 2D. Much of the motivation for

part-based models comes from work on 2D pictorial struc-

tures (PS) [6, 17]. These methods dominate 2D human de-

tection and pose estimation, but are less widely used in 3D.

PS models typically represent the body parts by simple rect-

angles in 2D. A notable exception is the deformable struc-

tures model [41], which is a 2D part-based model with more

realistic part shapes and pose-dependent deformations. The

SP model is similar in spirit to this, but in 3D and with

higher realism.

Part-based models: 3D. Distributed inference in 3D us-

ing part-based models is more challenging than with 2D

models since it is not practical to discretize the state space

of poses, making efficient discrete optimization methods

inappropriate. Sigal et al. [34] introduce the loose-limbed

model, a 3D version of PS, and use non-parametric BP for

inference. Their body parts are represented by simple ge-

ometric primitives with six shape parameters that are set

manually. We use a similar number of shape parameters,

but optimize over them. We also use a more sophisticated

inference method [26]. There have been several more recent

attempts to extend 2D pictorial structures models to enable

3D inference [5, 8, 13], but none of the methods attempt to

estimate detailed body shape.

3. Model

The Stitched Puppet (SP) model is a part-based 3D

model of the human body parameterized by pose, intrin-

sic shape, and pose-dependent shape deformations. Intrin-

sic shape is the body shape that varies between people due

to gender, age, height, weight, fitness, etc. Pose-dependent

shape deformations capture shape changes due to muscle

bulging and soft tissue motion. The model is composed of

16 body parts: head, torso, shoulders, upper arms, lower

arms, upper legs, lower legs, hands and feet (see color cod-

ing in Fig. 1(c)). The SP model is a tree-structured graphical

model in which each body part corresponds to a node, with

the torso at the root. Each part is represented by a trian-

gulated 3D mesh in a canonical, part-centered, coordinate

system. Let i be a node index, with i ∈ [0..15]. The node

variables are represented by a random vector:

xi = [oT
i , rTi , dT

i , sTi ]
T , (1)



where oi is a 3D vector representing the location of the cen-

ter of the part in a global frame and ri is a three-dimensional

Rodrigues vector representing the rotation of the part with

respect to a reference pose. The reference pose is the pose

of the part in the template mesh (Fig. 2(a)). The parts also

have two vectors of linear shape coefficients, di and si, that

represent pose-dependent deformations and intrinsic body

shape, respectively. Learning these shape deformation mod-

els, using PCA, is described below.

From model variables to meshes. Given a set of node

variables xi, the mesh vertices for the part i are generated

as follows. First, we use the intrinsic shape parameters si to

generate a deformed template mesh with the desired intrin-

sic shape (Fig. 2(b)):

qi = Bs,isi + ms,i, (2)

where ms,i is a vector of 3D vertices of part i in a local

frame with origin in the part center corresponding to a part

with mean intrinsic shape across all training body shapes.

Bs,i is the matrix of PCA basis vectors of size 3Ni × ns,

where ns = 4. As described below, the PCA subspace for

the intrinsic shape, Bs,i, is learned over meshes in a tem-

plate pose, where we assume there are no pose-dependent

deformations. ms,i is a column vector of 3Ni vertex coor-

dinates, where Ni is the number of vertices of the part i.

Unlike SCAPE [7], where shape deformations are transfor-

mations operating on triangles, SP is much simpler1. Since

each body part has its own coordinate system, the deforma-

tions can be applied directly to vertices in this coordinate

frame. The resulting vector qi represents the vertex coordi-

nates in the local frame of the mean part deformed to repre-

sent the desired intrinsic body shape.

We next apply pose-dependent deformations to the mod-

ified template, qi (Fig. 2(c)):

pi = Bp,idi + µp,i + qi, (3)

where Bp,i is the matrix of PCA basis vectors for the pose-

dependent deformation model of part i, µp,i is the mean

of the pose-dependent deformations in the training set with

respect to the template, and the resulting pi represents the

local coordinates of the part after shape deformations have

been applied. Now, given the part center oi and the Ro-

drigues vector ri, a rigid 3D transformation is applied to

the vertices in local frame pi to convert them into a global

coordinate system, p̃i (Fig. 2(d,e)).

Learning the model. We learn SP from instances of

a SCAPE model; the details of SCAPE are not important

here and we refer the reader to [7]. Specifically, we use

1Unlike SCAPE, SP has no need for a least-squares optimization to

stitch triangles into a coherent mesh. This has significant computational

advantages and results from the fact that part shapes are defined in their

own coordinate systems.

Figure 3. SP parts. Examples of training samples for SP for the

parts head, right upper arm, left hand, right upper leg. Parts are

independent meshes in local coordinate systems.

the model from [23]. What SCAPE gives us, and why we

use it, is a set of training meshes in a wide range of body

shapes and poses that are in complete correspondence and

are segmented into parts. The SCAPE model we consider

has a template mesh in a “T-pose,” and is segmented into 19

parts. For SP we take the same template mesh but segment

it into fewer parts; in particular, we treat the torso as a single

part (Fig. 4), merging the upper torso and the pelvis.

To create training data, we sample a set of 600 poses

from motion capture data2 and for each pose we generate 9

more by adding small amounts of noise to the part rotations.

This gives 6000 SCAPE meshes in different poses for train-

ing. We also generate 600 samples of bodies with different

intrinsic shapes in the template pose by sampling from the

SCAPE body shape model. From this set of samples, where

we only vary body shape, we learn the intrinsic shape model

of our parts. Note that we learn separate models for men and

women. Also note that in SP the intrinsic shape and pose-

dependent deformations are independent as in SCAPE. We

did not consider dependencies among them as the training

samples come from a model that assumes independence.

We define the SP mesh topology as a “chopped” version

of SCAPE, where each part is an independent mesh with a

locally defined assignment of vertices to faces (Fig. 3). For

neighboring body parts, we duplicate the vertices that are

in common, creating a set of “interface points” that should

match when the parts are stitched together.

Given the part segmentation of the training meshes, we

take each part and transform it to a canonical coordinate

system (Fig. 3). The vertices in this frame for each part

form one training example. We compute the mean shape as

the mean location of each vertex, subtract this, and perform

PCA. For the pose-dependent shape deformations we learn

16 independent PCA models, Bp,i, one for each part. We

2The data was obtained from http://mocap.cs.cmu.edu. The database

was created with funding from NSF EIA-0196217.
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Figure 2. Stitched Puppet model. To generate an SP we start with the template body (a), which is segmented into parts. To each body

part, defined in a local frame with origin in its center, we apply (b) intrinsic shape deformations, (c) pose-dependent deformations, (d,e)

part rotation and translation that bring the parts in a global frame where the 3D model is defined.

Figure 4. Part deformation spaces. The torso PCA models for

pose-dependent deformations (left) and intrinsic shape deforma-

tions (right) are shown. In both figures: rows correspond to the

first three principal components from top to bottom; the center

mesh in each row is the mean shape and the left and right meshes

correspond to ± 3 standard deviations from the mean.

use 5 shape basis vectors to represent the pose-dependent

deformations of each part, except for the torso which has

12. The range of shapes of the torso varies much more than

the other parts due to the flexibility of the spine (Fig. 4, left).

To model intrinsic shape, we apply PCA over the full

body, obtaining a single matrix of PCA components, Bs, of

size 3
∑

i=0:15 Ni × ns. For intrinsic shape we use 4 basis

vectors for each part. Groups of rows in the shape basis ma-

trix correspond to different body parts and define the PCA

component matrix, Bs,i, for each body part. This approach

means that, if each node in SP has the same intrinsic shape

coefficients si, this corresponds to a coherent body shape.

This, however, is not enforced by SP during inference and

parts can take on different shapes as needed.

Pairwise potentials. We define the SP model as a tree-

structured graphical model with Gaussian potentials. Im-

plicit in the idea of SP are stitching potentials to glue parts

Figure 5. Stitching parts. Parts can be thought of as being con-

nected by springs between the interface points. When the model

fits together seamlessly, this stitching cost is zero. During infer-

ence, the parts can move apart to fit data and then the inference

method tries to infer a consistent model.

together. These potentials cannot be learned from the train-

ing set, since the training parts are already stitched to-

gether. Consequently, we define them manually to allow

body parts to be loosely connected (Fig. 5); cf. [34]. We de-

fine the stitching potentials as a weighted sum of squared

distances between the interface points of adjacent parts:

Ψij(xi, xj) =

exp(−
1

‖uij‖1

∑

k=1..Nij

uij(k)‖p̃i,Iij(k)
(xi)−p̃j,Iji(k)

(xj)‖
2).

There are Nij interface points between part i and part j.

Let Iij(k) and Iji(k) denote the index of the k-th interface

point on part i and part j, respectively. p̃i(x) indicates the

part points in the global frame after applying parameters x

for each part. uij(k) defines a stitching weight that is set to

0.8 for points that are allowed to stretch more, like the front

of the knee or the back of the elbow, and is 1.0 otherwise;

uij is a vector of these weights.

Generating instances of the SP model. It is useful

to propose bodies during inference and for this we use a

simple proposal process, illustrated in Figure 2. We define

multivariate Gaussian distributions over the pose-dependent

deformation variables and relative rotations of neighboring



Figure 6. Example SP bodies. Several bodies generated using

SP. Note the realism of the 3D shapes. Note that sampling for

inference creates disconnected models that are not stitched.

parts:

Φij(rij , di, dj) = N (rij , di, dj ;µij ,Σij), (4)

where rij is the relative rotation of part j with respect to part

i, and di and dj are PCA coefficients for the pose-dependent

deformation models of part i and j, respectively. We learn

these functions from the training set with pose variations,

for each combination i, j of connected parts.

To generate an instance of the SP model, we first sam-

ple a vector of intrinsic shape variables si (we sample with

a Gaussian distribution over the PCA coefficients given the

variance estimated by PCA). The intrinsic shape variables

are replicated for each node and are used to generate body

parts for the template mesh with the desired intrinsic shape

(Fig. 2(b)). We then sample a vector of pose-dependent de-

formation variables for the torso. These define the pose of

the torso: since the SP torso includes the pelvis, poses in

which the torso is bent or twisted with respect to the pelvis

are modeled as pose-dependent deformations (Fig. 4, left).

We then assign a global rotation and generate the torso mesh

in the global frame. Recursively in the tree, starting at torso,

for each node i: we get the pose-dependent deformation

variables of the parent, dpa(i); we condition the pairwise

Gaussian Φpa(i)i with dpa(i), and marginalize the relative

rotation vector rpa(i)i. This gives a Gaussian distribution

over di; we sample this conditional distribution to get part

deformations, and generate the part mesh in the local frame.

The effect of the part deformations applied to each body

part is shown in Figure 2(c). We finally compute the ro-

tation and translation that stitch the parts together at their

interface (Fig. 2(d,e)) using the orthogonal Procrustes algo-

rithm. Figure 6 shows samples of bodies generated using

this procedure. Note, this process does not prevent penetra-

tion of parts. During inference, when we generate samples,

we add noise to the part locations, creating disconnected

bodies.

4. Method

Consider the task of aligning SP to a 3D mesh S. We

optimize the following energy:

E(x, S) = Estitch(x) + Edata(x, S), (5)

where x = [x0, ..x15] are the model’s variables. The energy

is the sum of a stitching term and a data term.

Stitching term. The stitching term is the cost for discon-

nected parts, plus a penalty for penetration, Estitch(x) =

∑

i=0..15

∑

j∈Γ(i)

αij(− log(Ψij(xi, xj)) +Qij(xi, xj)),

where Ψij(xi, xj) is the stitching potential and Qij is a

penalty for intersecting parts. For the latter, we use a simple

test on the location of the part centers, setting Qij to zero if

||oi − oj ||2 is more than 0.05, and 1.0 otherwise. This pre-

vents body parts of similar shape overlapping in 3D. This is

important so that two parts do not try to explain the same

data. More sophisticated penalty terms could be also used.

Data term. The data term varies depending on the prob-

lem and here we consider fitting SP to 3D data. Specifically

we fit it to high-resolution scan data and low-resolution vi-

sual hull data. We define a matching cost between the 3D

model and the 3D data as the distance between model ver-

tices and data vertices, S, plus a penalty for differences in

the normal directions:

Edata(x) =
∑

i=0..15

βi(Di(xi, S) +Rij(xi, S)), (6)

where

Di(xi, S) =
1

Ni

∑

k=1..Ni

(di,k(S)
2 + b)γ (7)

and

di,k(S) = min
vs∈S

‖p̃i,k(xi)− vs‖2 (8)

is the distance from the model’s point p̃i,k(xi) to the data.

We take b = 0.001 and γ = 0.45. The term Rij(xi, S) pe-

nalizes cases where the normal at a point on the model and

the normal at its closest data point have opposite direction.

We define Rij(xi, S) = η
∑

k=1..Ni
I(θi,k > 3

4π). Here I is

the indicator function, θi,k is the angle between the normal

at p̃i,k and the normal at vi,k, where vi,k is the minimizer

for di,k(S) and η = 0.005.

Note that the energy (Eq. 5) does not include a regular-

ization term over pose parameters. We did not find this nec-

essary for our experiments, and indeed we consider the ab-

sence of a pose prior an advantage for estimating unlikely

poses. If the data is noisy or highly ambiguous a pose prior

could be added to the graphical model.

Optimization. To minimize the energy we use the D-

PMP algorithm [26], a particle-based method for MAP es-

timation in graphical models with pairwise potentials. In

contrast to Markov Chain Monte Carlo methods, where par-

ticles represent distributions, in D-PMP particles represent

locations of modes of the posterior. This implies that, even

if the model is very high dimensional, it is not necessary



to use a large number of particles. D-PMP is an iterative

method where BP is applied at each iteration over the set

of particles. At each iteration, particles are resampled with

the aim of creating new particles in better locations. A key

component of the algorithm is the selection step. During

resampling, the number of particles is doubled in order to

place particles in new locations without removing any of

the current ones. Then, a selection step based on preserving

the BP messages is applied. During resampling, different

strategies can be considered. Typically new particles are

created by sampling the prior, with random walks from the

current particles, or exploiting data-driven proposals [26].

We initialize particles by generating SP sample bodies

with mean intrinsic shape. Each particle represents a body

part, and is a vector of node variables. To place the samples

in the global frame, we set the position of the torso at the

origin, in an upright posture, but with random orientation

about the vertical axis. To provide a rough alignment with

the input 3D data, we also align it to the origin of the global

frame by computing the mean of the input data points. We

add a small amount of random noise to the location of each

particle, obtaining disconnected sets of body parts. Figure 7

(left) shows the set of initial particles in an example where

the optimization uses 30 particles. During optimization, we

use an adaptive scheme for assigning the weights α and β in

the energy. In a first stage we set the weights in a way that

lowers the influence of the distal parts (lower limbs, hands

and feet), to which we assign small weights for the stitch-

ing and the data terms. In a second stage we increase these

weights to bring in more influence from the distal parts. At

a final stage we apply a greedy PMP algorithm (also used

in [26]), where at each iteration all the particles are resam-

pled with random noise around the current best location.

This has the effect of refining the solution.

Resampling and refinement. At each iteration, for each

node i in the graphical model (body part), and for each par-

ticle x
(s)
i , we resample particles as follows. With probabil-

ity 0.5 we sample a new particle x̂
(s)
i with a random walk

from x
(s)
i . The sampling is performed over all the node

variables or only over the pose-dependent deformation vari-

ables d
(s)
i , with equal probability. Alternatively, we gener-

ate a new particle as a proposal from a neighbor node. First,

we select a neighbor j for the node i, then a random parti-

cle from node j, x
(t)
j . We use x

(t)
j to condition the pairwise

Gaussian between node j and node i, Φji(rji, dj , di). With

probability 0.5 the conditioning variables are the pose de-

formation variables d
(t)
j , otherwise we also condition the

pairwise Gaussian with a random relative angle uniformly

sampled within joints limits. We sample pose-dependent

deformation variables from the conditional Gaussian, and

obtain d̂
(s)

i . We then set the intrinsic shape parameters

ŝ
(s)
i = s

(t)
j . The location and orientation are computed as
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Figure 8. Local Levenberg-Marquardt (LM) optimization. Av-

erage alignment error for a subset of the FAUST training set plot-

ted for different numbers of local LM optimization steps. We use

4 in our experiments.

those that stitch the mesh of x̂
(s)
i to the mesh of the neigh-

bor’s particle x
(t)
j . After each particle is resampled, we run a

few steps of Levenberg-Marquardt (LM) optimization over

the location, rotation and pose-deformation parameters to

locally improve alignment to the scan data. Since this lo-

cal optimization is applied only to the generated particle, it

has the effect of making it disconnected from its neighbor.

The local LM optimization aids convergence and improves

accuracy. Figure 8 shows the average alignment error over

a subset of the FAUST training set for different numbers of

LM iterations; we use 4 iterations below.

5. Experiments

We apply SP to a problem of mesh alignment, specifi-

cally to the FAUST challenge [10], and to the problem of

estimating shape and pose from 3D meshes reconstructed

with shape-from-silhouette. For both experiments we use

the same set of parameters for the energy.

Mesh alignment in the FAUST challenge. Mesh reg-

istration involves putting two 3D meshes into correspon-

dence, and is a fundamental problem that has received a

lot of attention [38]. Previous work focuses on the generic

case of two meshes of any object type. Here we consider

model-based registration of humans, which is an important

problem for building 3D models of humans like the one

we develop here. Much of the previous work in human

mesh registration assumes known or estimated landmarks

[40] or a known pose [4]. In FAUST, ground-truth scan-

registration data is generated by accurate texture matching.

The goal of the challenge is to find correspondences be-

tween scans of people of different gender and shape, in var-

ious poses. There are two sub-challenges: the intra-subject

requires the alignment of scans of the same person in two

different poses. The inter-subject requires alignment across

different people, who may be of different gender. Our ap-

proach is model-based: we first align all the scans to SP, and



iter. 1 iter. 2 iter. 3 iter. 5 iter. 16
Figure 7. D-PMP optimization. Example of inference with 30 particles for 60 iterations. From left to right: initial particles; scan (red) and

current best solution (light blue) at iteration 1, 2, 3, 5; the particles at iteration 11; the scan and best solution at iteration 16 and the final set

of particles. Note that at the end the particles are all very similar as we run a greedy algorithm that resamples all the particles around the

current best solution.

then exploit the model to link vertices across scans, creat-

ing the required correspondences. We run our method with

160 particles for 240 iterations, for 3 different random ini-

tializations, among which we select the result with lowest

energy. Our final results give an average error of 1.57 cm

for the intra-challenge and 3.13 cm for the inter-challenge.

The authors of the benchmark report average errors on the

intra-subject test of 28.3 cm for MÖBius voting [22] and

12.0 cm for Blended Intrinsic Maps (BIM) [21], which are

two model-free registration techniques. The methods ac-

tually performed worse than this since they did not return

any results for 6 and 12 cases, respectively. At the time

of this publication no performance numbers are available

for model-based methods, apart from the average errors for

the method used to build the ground truth data (without the

appearance term that was used to create the ground truth).

These errors are 0.07 cm and 0.11 cm for the intra-subject

and inter-subject tasks, respectively. Figure 11 shows ex-

ample results, and Figure 10 illustrates an example that pro-

duced some of the highest errors. We found that the major

source of error is due to self contact. For example, when the

hands are touching and vertices of one hand are assigned to

the other hand (Fig. 10), this creates large errors where the

mesh to be aligned has hands very far away. More examples

can be seen on the FAUST webpage [2]. Figure 9 shows the

estimated intrinsic shape for different subjects.

Pose and shape from visual hull. We perform a further

experiment on a different type of 3D data to illustrate that

our method can deal also with very noisy, approximate, 3D

information. We consider a set of frames from the MPI08

dataset [30], from which we extracted the visual hull. We

then aligned SP, independently on each frame. We used the

same set of parameters we defined for the initial stage of

the optimization for the previous experiment, with the dif-

ference that we only perform the first stage, as we found

that our settings for the refinement stages were decreasing

the quality of the solution. This is no surprise given the

different quality of the input data. In the data term we did

not use the penalty for mismatched normals. We run our

Figure 9. Intrinsic body shape estimation. Comparison between

scan (red) and estimated intrinsic shape (light blue).

method with 200 particles for 120 iterations, for 3 different

random initializations, independently for each frame. Fig-

ure 12 shows a subset of the results. We show the sequence

up to the frame where our model performed correctly. Af-

ter the last frame the actor turns upside down and our al-

gorithm failed to align to the data, giving preference to a

standing position. This is due to our initialization proce-

dure, where we only initialize torso parts in vertical po-

sitions. A straightforward solution is to generate samples

in any orientation, but this would require a significant in-

crease in the number of particles, with a waste of compu-

tation time. One solution would be to track the pose over

time. For this experiment there is no ground truth.



Figure 11. Alignment on FAUST. We show the test scan in red and SP in light blue.

Figure 12. Alignment to visual hull data. We show the visual hull data in red and SP in light blue.

Figure 10. FAUST errors. One of the worst results, on the intra-

subject challenge, is due to a mistake in associating scan points

to the model when there is self-contact. (left and middle) Color-

coded correspondences between the two poses; note that in the

pose on the left, points on the left and right hands are confused. For

the pose in the middle, the hands are far apart, thus the resulting

correspondence errors are high (right, where red is high error).

6. Conclusions and Future Work

The stitched puppet combines benefits of highly realistic

body models like SCAPE with those of part-based graph-

ical models. As such, the SP model provides a bridge be-

tween the literature on part-based human pose inference and

graphics-like models of human body shape.

Estimating accurate 3D human shape and pose is chal-

lenging, even with high-resolution 3D scan data. We

demonstrate that SP effectively explores the space of hu-

man poses and shapes using a form of non-parametric be-

lief propagation without needing a pose prior. Our results

on FAUST and on noisy voxel data suggest that SP can

be applied to problems in human pose estimation. To es-

timate pose and shape from depth data, a loopy version

of the model might be necessary to account for body self-

occlusion. Note that the solution we find using distributed

inference could be used to initialize a refinement stage using

the SCAPE model. While we have described SP in the con-

text of human body modeling, the idea can be more widely

applied to modeling other animals or man-made shapes.

Part deformations need not be learned and adding affine

deformations would allow parts to independently “stretch”

during inference, fitting a wider range of shapes.
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