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Abstract

We study, in one space dimension, the heat equation with a random potential
that is a white noise in space and time. This equation is a linearized model for
the evolution of a scalar field in a space-time dependent random medium. It has
also been related to the distribution of two dimensional directed polymers in a
random environment, to the KPZ model of growing interfaces and to the Burgers
equation with a conservative noise. We show how the solution can be expressed via
a generalized Feynman-Kac formula. We then investigate the statistical properties:
the two-point correlation function is explicitly computed and the intermittence of
the solution is proven. This analysis is carried out showing how the statistical
moments can be expressed through local times of independent brownian motions.
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1 Introduction

We consider the linear stochastic partial differential equation (SPDE)

Bbu(x) = Z A=) + $u(=)ne(z) (1.1)

where ¥, = ¥(z), t 2 0, is a scalar field in R!, A the Laplacian, v a positive constant
and 7, = n(z) is a 2-parameter white noise, i.e.

E (7:(z) n0(2")) = 6(t — t')é(= — =) (1.2)

Equation (1.1), often called the stochastic heat equation, is a linearized model for the
evolution of a scalar field in a space-time dependent random medium [13]. The parameter
v has then the interpretation of the viscosity coefficient. The choice of the white noise as
random potential corresponds to consider those regimes with very rapid variations, the
type of turbulent flows.

A traditional way to investigate the evolution of the field 1, is to study its moments.
This method is important not only because is constructive but also because the moments
themselves have a physical meaning, which is often more important than that of the
individual solution. Molchanov [13] studying the moments of the solution of equation
(1.1) on a lattice, (¢,z) € R* x Z¢, shows that the field ¢; has an intermittent behavior.
From a qualitative point of view intermittent random fields are characterized by the
appearance of sharp peaks which give the main contribution to the statistical moments.

Our analysis extends the general picture in [13] to the equation (1.1) and improve
some quantitative results. In the continuum case, the random potential is singular and a
rigorous analysis of (1.1) is not completely trivial. In particular white noise gives gives
the same weight to all scales, without introducing any characteristic length or time. The
physical requirement behind this choice is that the solution of (1.1), which is supposed to
describe macroscopic phenomena, should not be too sensitive with respect to fluctuations
occurring at arbitrary small scales. Due to the singularity of white noise, our results are
however restricted to one space dimension.

In this paper we construct the solution of the Cauchy problem associated to equation
(1.1) via a generalized Feynman-Kac formula. The initial data are in a set in which
also distributions are enclosed. In particular we are interested to initial functions which
are either localized (8§ type initial conditions) or spatially homogenous (constant initial
conditions). For the former case the stochastic evolution has the effect of smoothing the
singularity: we prove that for any t > 0 the process ¥(z) is continuous in the space
variable regardless of the initial data.

The Feynman-Kac expression allows us a rather complete analysis of the statistical
properties of the solution. The 2 points correlation function is explicitly computed. We
then study asymptotic (in time) properties of the solution. In particular we focus on
translation invariant initial data, i.e. we assume () = cost., and evaluate the moments
of the process 1y(z). This result establishes the solution of equation (1.1), following
the definition given by Molchanov [13], has an intermittent behavior. The key point is a
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representation of the statistical moments in terms of local times for independent brownian
motions. This representation permits to carry out the computations and obtain explicit
formulae.

Equation (1.1) arises in several other physical problems: it is satisfied by the partition
function of a directed polymer in a two dimensional random medium described by the
random potential 5 [11]. It is furthermore related to the random growth of interfaces
and to the Burgers equation with noise: introducing (Cole-Hopf transformation) k,(z) :=
vlog iy(z) it satisfies

Bihu(z) = S Ahy(z) + %(a,,ht(w))2 + vmi(z) (1.3)

which is the so called KPZ equation [10] proposed as a (non linear) random model of
growing interfaces. Here hy(z) is the height of the interface and » the surface tension.
By differentiating (1.3) and defining u,(z) := —0:hy(z) we get Burgers equation with
conservative noise

Buy(z) = gAut(z) — 8 (w(2)? + vmi(=)) (1.4)

which has been largely studied in the physical literature as a simplified model in complex
phenomena such as turbulence, intermittence, and large scale structure. A satisfactory
mathematical theory of equations (1.4) and (1.3) is however still lacking. See Remark
3 after Theorem 2.2 for a further discussion. The relationship of (1.4) to (1.1) is also
exploited in [8], where white noise analysis techniques are used. The less singular problem
of Burgers equation with non conservative space-time white noise is studied in (2, 6].

To study rigorously the stochastic heat equation, we realize the white noise as the

(generalized) derivative of a Wiener process: nt = 0,B,. We can thus rewrite equation
(1.1) as

&y = gAgbtdt + ¥.dB, (1.5)

Since it contains a non trivial diffusion, the stochastic differential Yd B, presents the well
known ambiguities. The correct choice is not a trivial point. In [2], for example, a similar
equation, where the random potential is the space integral of white noise, has been studied
and it is shown how, in order to obtain that the Cole-Hopf transform of 1, gives a solution
of Burgers equation, the stochastic differential has to be interpreted in the Stratonovich
sense. In the present case, as the random potential is more singular, the situation is more
complicated. The Feynman-Kac formula for the linear equation (1.5) when the stochastic
differential is interpreted in the Stratonovich sense is not well defined. However after a
simple renormalization - the Wick exponential - a meaningful expression is obtained. This
renormalized Feynman-Kac formula solves equation (1.5) when the stochastic differential
is interpreted in the Ito sense. When the Cole-Hopf transformation is performed this
implies a Wick renormalization of the non linear term in equations (1.4) and (1.3), see
3, 5].

We note equation (1.5) in any dimension, with a noise regular in the space variable,
has been studied in [16], where the stochastic differential is interpreted in the Stratonovich



sense and, more recently, in [15] with both interpretations of the stochastic differential.
In the latter paper also the white noise case in one space dimension is discussed.

The paper is structured as follows. In the next section we introduce the mathematical
apparatus and state precisely our results. In particular we review in some detail what is
meant by intermittence and recall the basic definitions and properties of local times.

In section 3 we prove the Feynman-Kac formula; this allows us to establish an existence
and uniqueness theorem for the Cauchy problem for the stochastic heat equation. We also
prove some smoothness result for the realizations of the process. The representation in
term of local times is introduced and used in a technical point.

Section 4 is devoted to the proof of the statistical properties; here the representation
in terms of local times plays a more fundamental role: using known results on their
distribution, the proofs are reduced to straightforward computations.

2 Preliminaries and Results

Wiener process and stochastic integrals

Let B;, t > 0, be the cylindrical Wiener process on L?*(R,dz). It is realized as a
distribution valued continuous process, i.e. the probability space (2, F,P) is given by
Q = C(R*;8'), here &' is the Schwartz space of distribution on R, F is the o-algebra
generated by the cylindrical sets and P is the gaussian measure with correlation function

E (B:(f)Bu(9)) =t At'(f,9) (2.1)

where f,g € S are test functions, @ A b = min{a,b} and (-,-) is the scalar product in
L*(R,dz). We denote by F; the natural filtration of B, i.e. the minimal o-algebra such
that s — B, is F; measurable for all s € [0, ¢].

Let X, t > 0 a L*(R,dz) valued, F, adapted continuous process such that for any
t>0

E[ "ds (A, \) < 0o (2.2)

we can then define the Ito integral of A, with respect to the Wiener process as

./: (A, dB,) := g/o‘ (As, €:) dB,(e;) (2.3)

where {e;} is an orthonormal basis in L*(R,dz) and thus {B,(e;)} are independent one-
dimensional Wiener processes; the series is convergent, in LZ(P), by (2.2).

We need a regularized version of B;, which is defined as follows. Let h € CP(R)
an even positive function such that fdz h(z) = 1. Introduce, for k > 0, the mollifier
6x(z) := k h(kz) and define Bf(z) := B;(6x(z — +)). Its correlation function is

E (B} (2)B; (z') =t At Crp(a — ') Chont 1= B % B (2.4)
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where » denotes convolution in space; if £ = s’ we use the notation Cx:=Crr
For « finite Bf is a nice (i.e. C(R) valued) process, our results will be obtained
letting x — oo and showing we have meaningful expressions also in the limit.

In the Feynman-Kac formula, as we will see, it appears a stochastic curvilinear integral
that we now define for the regularized process Bf. Let s — ¢, be a Holder continuous
function from [0,00) to R and s; =2™"it, i =0,---,2" be a partition of [0, t], introduce

Myn(t) = 30 (Br,, () — Bi(e)) (2.5)
It is not difficult to verify that M™(t) is a Cauchy sequence in L%(P); its limit defines
M(t) = nh_'nclo MZ™Mt) , tel0,0) (2.6)

which is, under P, a continuous gaussian process and a F, martingale.
If s = 9, is another function the cross variation of Mj(t) and MZ(t) is

, t
(M7, M5)e = [[ds Ce(ips —7.) (27)

We note that, since Bf(z) is Lipschitz in z, this construction is a particular case of
the general theory developed in [7].

Remark. In [2] an analogous stochastic curvilinear integral was defined for the Brownian
sheet, in that case it was proven to be meaningful for the non regularized process. This
does not hold with this more singular noise: the variance of M3(t)is tC(0) which diverges
when £ — oco. As we shall see, this is the reason why the Feynman-Kac formula for the
linear equation (1.5) with the Stratonovich stochastic integral needs a renormalization.

Formulation of the Cauchy problem and Feynman-Kac formula
Let us introduce the heat kernel

Gu(z) = \/%exp{—%} (2.8)

On the initial datum 1)y we assume it is a positive Borel measure on R such that, defining

Gex o (<) = [ do(y) G(= ~ v) (2.9)
it satisfies
sup sup Vi G, o(z) < 00 (2.10)
t€(0,T] zeR

for any T > 0. This allows a singularity of order ¢-1/2 as ¢ — 0+ and permits a delta type
initial condition. However the application (¢, z) Gi*xtho(z) is smooth, e.g. differentiable,
for any t > 0, z € R.

In the study of the statistical properties we will focus on the cases of the Lebesgue
and Dirac measures.

We now formulate the Cauchy problem for the stochastic heat equation (1.5), as an
Ito equation, in a convenient mild form.




Definition 2.1 Let ¢; = ¥:(z),t > 0 a continuous, F; adapted process such that for any
T>0

t 3
sup sup ds/o ds' /dy dy' Gio(z —y)’Goep(y — ¥')* E (¢,'(y')2) <oo (211)

te(0,T] zeR YO

it is a solution of the stochastic heat equation if for any t > 0

t
be=Gerot [ Gx$idB, P —as. (2.12)

where
¢ ¢
/0 Gey +$4dB, (z) := /0 (Gi-s(z — Y1, dB.) (2.13)
is the Ito integral defined in (2.3).

We remark that, even if the initial datum 1) is a measure, we have formulated the
stochastic heat equation for processes which are, for any ¢ > 0, function valued and satisfy
(2.11). We will actually prove that the solution is C°(R) valued as ¢ > 0.

The initial datum 1), is satisfied in distribution sense. In fact, using (2.11) and (2.12),

it can be verified that if 1, is a solution of the stochastic heat equation, for any f € C°(R)
and uniformly bounded

lim [dz f(z)p(z) = / dio(z) f() (2.14)

t—0+
where the limit is P — a.s.

We first define precisely the Feynman-Kac formula at the level of the regularized
Wiener process By. Let b,, s € [0,t] the brownian bridge, with diffusion coefficient v,
between y and z; i.e. the gaussian process with mean y + (¢ — y)st™! and correlation
function I'(s',s) = vt~ 's'(t — s) for ' < s. In particular by =y , b, = z. We denote by
P; = the law of b; we write P 'z when we want to indicate explicitly the dependence on
v. We stress b is mdependent on the cylindrical Wiener process B.

Let finally

dPt, = [ dio(y) Gu(= — v) dP},, (2.15)

The expectations with respect to dP} ., and dP?, are denoted by E 5 i and E2 | respec-

tively. They are not to be confused w1th the expectation with respect to P, denoted by
E.

Let us consider the regularized form of equation (2.12)

t
¥ =Cixtho+ [ GuyxydB; (2.16)

its solution can be expressed, as it is shown in the next section, by the following generalized
Feynman-Kac formula

¥; () = B Exp{ M (t)} (2.17)
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where M;*(t) is defined pathwise dP!, — a.s. by (2.6) and

Exp (MO} = oxp (M)~ 3 (065,30, = oxp (M50 - 1e0u0)) 219)

in the martingale terminology is the Girsanov exponential of Mg or the Wick exponential
in the language of quantum field theory. In our contest both of these representations
are useful. The diverging term C,(0) provides the aforementioned renormalization on the
Feynman-Kac formula and a meaningful expression is obtained in the limit k — oo.

Theorem 2.2 Foranyt >0, z € R, Yr(z), defined in (2.17), is a Cauchy sequence in
L*(P), denoting by 1, = Pi(z) its limit we have

(i) For allp > 1, ¥ (z) — 94(z) in LP(P) and P — a.s. The convergence is uniform for
z € R and for t on compact subsets of (0, ).

(i) ¢ is the unique solution of the stochastic heat equation as formulated in Definition
2.1.

(11r) For (t,z) € (0,00) x R, (t,z) — 9y(z) is P — a.s. Holder continuous. The Hélder
ezponent is @ < 1/2 in space and a < 1/4 in time.

(v) For any (t,z) € (0,00) x R, ¥y(z) >0 P — a.s.

The key point in the proof of the Theorem is to establish that ¥¢(z) is a Cauchy

sequence. The important statement (4v) is essentially contained in Mueller [14] to which
we will refer.

Remark 1. We have considered, for notational simplicity, deterministic initial data, how-

ever our results are easily extended to random initial data.

Remark 2. We have considered positive initial data because in the physical problems

we have outlined one is mostly interested in positive solutions of (2.12); however, as the

equation is linear, the solution with signed initial datum general can be constructed by

superposition.

Remark 3. By the results in Theorem 2.2, we can construct, as a C°(R) valued process,
¢(z) := vlog ¢(z) which describes the interfaces growth in the KPZ model (1.3). Analo-

gously the random field for the Burgers equation with conservative noise can be rigorously
defined, as a distribution valued process, by

u(f) i=v [da f'(z) log (a) (2.19)

where f is a test function. However, as the non linear terms in the equations (1.3)
and (1.4) involve ill defined operations between distributions, those equations have not a
rigorous meaning when the cutoff is removed.

Local times and statistical properties

We recall the basic definitions and properties of the local times; for a comprehensive
discussion see e.g. [17], a book that will be quoted when we need specific results. Given a
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continuous semimartingale X and @ € R there exists an increasing process L2(X), called
the local time of X in a, such that

X~ al = 1%~ o| + [ " sgn(X, — a) dX, + L(X) (2.20)

where sgn(z) =1if £ > 0 and sgn(z) = —1if z < 0.

The process L{(X) can be described informally as f; §(X, — a)d({X, X),, where §(-)
is the Dirac’s delta function. The following approximation result is instead rigorously
proven

L3(X) = Jim = ["1aro(X) d(X, X), (2.21)

e—0t £

where 1, is the characteristic function of the set 4 and the limit is almost surely.

We will consider only the local times of the brownian bridge and of the brownian
motion; in these cases d(X, X), = vdt. For notation convenience we define the local times
using the measure dt in (2.21), so that our local times are »~! the usual ones; thus the
local times Lj(X) measures (with respect to Lebesgue) the time that X has spent in a.
Finally we use the notation L,(X) := LY(X).

The motivation for introducing the local times in our contest lies in the following
Proposition which gives a useful representation for the statistical moments of the field 1,.
It is the key point in our analysis on the statistical properties.

Proposition 2.3 Letb, = (8,---,b7), s € [0,t], n independent brownian bridges between
¥ =(y1," ,yn) and . Then

E (¢:(z)") = /f[dfﬁo(yi) Gi(z — y:) - E:;';;t (CZ;<,- L‘(b‘"p)) (2.22)

The 2 point correlation function is given, fort < t', by

E (¢u(z)du(2)) = /d¢°(y) dpo(y') dz Gz — y) Gu(2' — ') Gu_e(2) EZ"Z—Vy,:v:’—-::+z;t (eLt(b))
(2.23)

Let us introduce the notation
2

B(¢) = \/% / iody ¥ (2.24)

for the gaussian distribution.

In the interesting cases in which the initial data is either the Lebesgue or Dirac mea-
sure, Proposition 2.3 has the following corollaries.

Corollary 2.4 If 1o is the Lebesque measure, we have

B(e)h(a) = [ s Bl 5w o (/) (2.25)




Corollary 2.5 If 1y is the Dirac measure in 0, we have

S S R
E(¢t(m)¢t(z )) - 27”,te /(;ds Varut \/33(1—3)

v

z—z)3 1., — t 11—
R (1 + mt(l-s) e @ ( £ )) (2.26)

In particular

E (#(2)?) = 27r1,,t 5 (1 + \/;rge# & ( 2‘7)) (2.27)

Moment Lyapunov exponents and Intermittence

Before stating our result we briefly review the moment approach to intermittence in
space-time dependent random media [1, 4, 13].

Let the process ¢¢(z) be homogenous and ergodic with respect to translation of the
space variable; its moments (one point correlation functions)

Ma(t) 1= E (pe(2)") (2.28)

does not depend on z. The n-moment Lyapunov exponent can be defined if the limit

1 n(t
Yo 1= tlim —%—) (2.29)
is finite. The process ; is intermittent if the strict inequalities
1 1
71<-2-72<...<-T:7n<... (2.30)

are satisfied.

To explain the rationale behind this definition, let o € (1,72/2) and consider the
following random set

Bio = {z : pi(z) > e} (2.31)
The ergodic theorem ensure that the volume density of this set

o Vol(Bean {l2] < R})
P = A Nl (2] < B])

(2.32)

exists and it is given by P {¢;(z) > exp{at}}. By Chebyshev inequality we then have
Pra = P{pi(z) > exp{at}} < e"™E (pi(z)) ~ e~(@—m) (2.33)
The notation ~ denotes logarithmic equivalence, i.e.

log () —logg(t) _
t

() ~ g(t) = lim 0 (2.34)




For large ¢ the density of the set B,, is thus exponentially small.
The second moment can be written as

ma(t) = E (¢}(2)) = E (¢}(z) 15,.) + E (¢%(2) 1R\5,..) (2.35)

where 1p, , is the indicator of the set B;,. The second term in (2.35) does not exceed
exp{2at}, furthermore exp{2ta} < exp{~,t}, hence

ma(t) ~ E (¢}(=) 1,..) (2:36)

Therefore the second moment is generated almost entirely by the sharp fluctuations of the
field p,(z) concentrated in the set B,,, whose density, as we saw above, is exponentially

small.

In the same way, choosing a parameter sequence {an} such that

1 1
—Tn < Qpn < ——7n 2.37
n S g +17 (2.37)
a hierarchical succession of sets
Bt,cq D) Bt,ag D Bt,a:, IDIERE (2-38)

is obtained. Each of these sets is a collection of small islands, the distribution of which
is exponentially small. Repeating the same argument for the second moment it is easy to
understand how every moment is generated by the values that the process @i(z) assumes
in the corresponding set of the hierarchy. This shows how the strict inequalities (2.30)
1mply the presence of a peculiar local structure, hence the name intermittence.

We now discuss the moment Lyapunov exponents for the stochastic heat equation.
We consider deterministic translation invariant initial data, i.e. we assume 1o to be the
Lebesgue measure. For such initial datum we can state the following theorem.

Theorem 2.6 The n-moment of y,(z) is given by

21
E (¢1(z)") = 2 exp {"(%—) t} 3 ( %t) (2.39)
v
In particular the n-moment Lyapunov is
1 2

Remark. In the directed polymer case one is interested in a delta initial condition o = 8o

and in evaluating the moments of ¢, := fdz1,(z), see [12]. They are still given by formula
(2.39).

The cylindrical Wiener process By(z) is homogenous and ergodic with respect to trans-
lation of the space variable and we are considering homogenous and ergodic initial datum
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with respect to spatial translations, so the process ¥i(z), being a functional of Bi(z), is
homogenous and ergodic. We can thus conclude, on the base of Theorem 2.6 that, for
each (positive) value of the parameter v, the process ¥,(z) has an intermittent behavior.

As we remarked in the introduction, the stochastic heat equation has been extensively
studied on a lattice [13]. The discrete case has some differences from the continuous one.
The renormalization term C(0) is finite and no regularization is needed in constructing
the solution. All the Lyapunov exponents (n > 2) are estimated as functions of ~2, of
which there is not an explicit expression but only the qualitative behavior as a function
of the viscosity v: it tends to one in the limit ¥ — 0 and to zero in the limit ¥ — oo. In
the continuum case instead, the moment Lyapunov exponents diverge in the limit v — 0.

We note formula (2.40) has been obtained in [9) showing the n — th moment Lyapunov
exponent is given by the lowest eigenvalue of a n body Schrédinger operator with a two
body delta potential; the result (2.40) is obtained when the self-interactions are ignored.
Our approach is instead purely probabilistic: the use of local times permits an exact and
rigorous calculus of the statistical moments, from which the Lyapunov exponents are then
obtained as leading order. Furthermore the discussion about the stochastic differential
and the renormalization on the Feynman-Kac formula gives a clear mathematical meaning
to the physical hypotheses of ignoring self-interactions.

In the physical Literature [9, 12] the free energy of a directed polymer in a random
environment is obtained from (2.40) via the replica method. The exact formula (2.39)
shows explicitly the problems connected with the analytic continuation: the argument of
® becomes imaginary for n € (0,1).

3 Feynman-Kac formula

This section is devoted to the proof of Theorem 2.2. We first show the Feynman-Kac
formula (2.17) is meaningful when x — oco. We next prove the limiting process is the
unique solution of the stochastic heat equation. Finally we establish the Holder continuity
of the trajectories. The representation in term of local times is introduced and used to
obtain the necessary bounds on the moments of Yy

The first step in the proof of Theorem 2.2 consists in verifying that ¢ (z), defined in
(2.17), is a Cauchy sequence in L?*(P). Let dP?, be an independent copy of the measure
dP},. We have

E (¥5(2) - /' (=))”
= B¢ BLE [(Exp{M}(t)} — Exp{My (£)}) (Exp{Mp(t)} Exp{My (¢)})] (3.1)

since M;¥(t), under P, is a gaussian variable, the expectation can be explicitly computed;
recalling (2.7) we get

B (41(2) = 90'@)" = BLEE, [ef 400t geffencuctnty g et
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= [#ho() dtoy') Gal — 4) Gufe — )
EP:2 [ej:dac.‘(b.)  9ekidi Cr®)) ej:d:C‘,(b.)] (3.2)

v 0t

as b, — b; is, in law, the brownian bridge from y — 3’ to 0 with diffusion coefficient 2v.
Let

Li®) = [ “ds C.(b,) (3.3)

The proof that the right hand side of (3.2) converges to 0 as x, k' — oo will be completed
after the next two Lemmata which provide the necessary bounds on L{(b). They are
based on elementary properties of the local times.

Lemma 3.1 Let L,(b) as defined in (2.21). For any p € [1,0), there ezists a constant
¢ > 0 such that for allt € [0, o)

sup || Lg(b) — Lt(b)“u(dpb y < ct/4 R/ (3:4)
ZER. z,0;5t

Proof.

By scaling we have, in law, L,(b) = tl/le(z) where b,, s € [0,1] is the brownian
bridge between z¢7'/2 and 0. On the other hand, introducing h := hxh and recalling the
definition of Cy, we have

t - 1 -~ -
LY () = & / ds R(rb,) & $1/2 4112, / ds R(t/%8,) (3.5)
0 1)

Let us recall the occupation time formula, [17], ch. VI, 1.6, which states that for any
positive Borel measurable function f, the following identity holds dP},, —a.s.

/ “ds f(b,) = [da 13(6) £(a) (3.6)

Using the identity (3.5), the occupation time formula (3.6) and recalling the normal-
ization fda h(e) =1, we have

1 LE(®) — Lt(b)“Lr(de‘o;') =t

£1/2 / da B(t"/2ka) L3(b) — Ly(b)

L»(dP®

< ¢ [dak(@)|L30 1) - Ly(h)

LP(dP,bg-l/z,ou)
< ot / da R(a) (a(t/2k) )} = e/t 12 (3.7)

where, in the last inequality, we used the L? Hélder continuity of exponent 1/2 of the
local time of the brownian bridge, [17] ch. VI, 1.8. O

Lemma 3.2 For anyp > 0, T > 0 there ezists a constant ¢ > 0 such that, for any x > 0

sup E}, (e”L:(b)) <ec (3.8)
zeR ,tef0,T)

11
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Proof.

Retaining the notations introduced in the previous Lemma, by scaling and the occu-
pation time formula (3.6), we have

" I -~ a(tt/3 )1
Eg,o;t (epL' (b)) = E::—llz,o;x (exp {Pt’ /da h(a) Ly () (b)})

a(t1/2 )1

< B g, [dah(a)ertt B ®) 3.9
zt ,0;1

where we used Jensen inequality.
The bound (3.8) is then proven once we show there exists ¢; > 0 such that for each
A€ [0,A]
sup Eg,O;I (e'\Lr(b)) <qg (3.10)
a,zeR B
The intuition about the local times suggests that the supremum in (3.10) is attained
for a = 2 = 0, a computation shows that then the expectation is finite. We prove below
this fact introducing appropriate stopping times and reducing to the local time in 0 for
the brownian bridge from 0 to 0.
Let us introduce, for the brownian bridge b starting from z and arriving in 0 at time
1, the stopping time T, := {inf¢ : b, = a} and denote by P, . its distribution. Using the
strong Markov property and the additivity of the local time we have

a 1 o 1 ~ .
E:,o;l (eALl(b)) =/; PG,Z(dt) E:,O;l—t (eALl—'(b)) = A Pa.z(dt) Eg,a;l—t (eALl_'(b)) (3°11)

in the last identity we used the time reversal property of the brownian bridge, i.e. if b,,
s € [0,7] is a brownian bridge from a to 0 then b, := br—,, is, in law, a brownian bridge
from 0 to a. _

We now introduce, for the brownian bridge b starting from 0 and arriving in a at time
1 —t, the stopping time T, := {infs:d, = a} and denote by f’a,t its distribution.

We can then write (3.11) as

a 1 1-¢t _ -~ « -
E:.O;l (eALl(b)) = /(; Pa"(dt)/o P.,_t(ds) Ez.a;l—t—. (e”’l-t—'(b))
1 1-¢t
= /0 P.,,,(alt)/0 P, .(ds) Eg’o;l (ex¢_1-z_.L,(b)) (3.12)

the last identity being obtained by translation and scaling.
The right hand side of (3.12) can now be bounded using the following result, see [17]
ch. XII, 3.8. If b,, s € [0,1] is a brownian bridge (with diffusion coefficient ) from 0 to

0, then, in law, Ly(b) = /27, where 7 is an exponential random variable with mean v~
0

Proof of Theorem 2.2.
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We conclude the proof that 9f(z) in (2.17) is a Cauchy sequence in L(P). By Lem-
mata 3.1 and 3.2, we have

EZ 2; o fo'd. Culbs) _ fidsC, (b))
t t t
< Jediascasn | ofiasc,uion ” / ds Cr(b,) — / ds Cr (b))
S Cs I 0 L2(dPy 3 )
< a(kAr)t (3.13)

where c; is independent on y,3y' € R, t € [0, T)].
Recalling (3.2) and the hypotheses (2.10) on 1y, we have thus proven

E (45(z) - ¢:’(z))2 < [Gextho ()2 (K AK) T < c(kAK)T (3.14)

uniformly for z € R and ¢ in compact subsets of (0, o).

From the L?(P) convergence and Lemma 3.2 we get also

1e(2) ||l L2py < € G * 9o (2) (3.15)

where c is independent on t € [0,T], z € R.
From the above estimate we have

‘/:ds ‘/O'ds' /dy dy' Gt_,(:c _ y)z G‘_‘,(y _ yr)z E ('¢),'(yl)2)
< o fds [[5 [dydy Cuos(e =) Cuosly— ¥ = Grehly) (3.0

where we used assumption (2.10) and the positivity of .
The bound (2.11) follows then from (3.16) noting that G,(z)? = (47t)"1/2G,/,(z) and
using the semigroup property of the heat kernel.

We prove the other statements of the Theorem.

(i) Let n an even integer; the L™*(P) norm of 9¥(z) can be computed analogously to

(3.1). Let b= (b1 -b") n independent brownian bridges between y; and z in time ¢. Let
LE(b — V) := [ dsC (b — ¥7), we have

E (¢/(z)") = / H«wo (5) Gz — 3i) - Bl (S B <o (317)

where, by Lemma 3.2 and condition (2.10), c is independent on £ > 0, z € R and ¢ in
compact subsets of (0, co).

Let p > 1, by the Cauchy-Schwartz inequality

“¢t (z) - ¢t( )

NOREAOIH

—1
e (318)

c(z)—Pf (:r.)

LP('P) (p)
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which converges to 0 by the LZ(P) convergence and the uniform bound (3.17). From
LP(P) convergence of 9 and Lemma 3.2 it follows the bound (3.15) also in LP(dPB ):

1%:(z) || p(apey < ¢ Gy % 9o (z) (3.19)

To prove the P — a.s. convergence, we note that, by the Borel-Cantelli lemma, is
enough to show that, for some p > 1, a > 0, there exists ¢ > 0 such that for any £ > 0,
z € R and ¢ in compact subsets of (0, co)

1

nl-{-a

E[$f(z) - du(z)" < ¢ (3.20)

The bound (3.20) holds for p = 6 with & = 1/2. This can be proven computing, as in
(3.1) and (3.2), the L(P) norm of 9§ (z) —4,(z). It can be written as a sum of many (i.e.
2%) terms; they can be associated in such a way that each of them contains the product
of at least three factor of the form [exp{L}(b' — b))} — exp{L.(b' — ¥’)}]. Proceeding as
in (3.13) and using again Lemmata 3.1 and 3.2 the bound (3.20) is then obtained. We
omit the tedious algebraic details.

(ii) The bound (2.11) has already been proven. To conclude % is the solution of the
stochastic heat equation, we first verify that 9 in (2.17) is the solution of (2.16).

From definitions (2.17) and (2.15), using the Markov property for the brownian bridge,
we have

[} Geax 3Bz (2)
- ./ot / dipo(2) dy G.(z — y) Ge-u(y — =) E} ., (Exp{M{(5)}) dB=(y)

[ [ao(2) Gule — =) ., (Exp ()} dB(3) (3.21)

where we used the expression for the transition probability of the brownian bridge.

By the definition of the stochastic curvilinear integral (2.5), dB(b,) equals dM(s).
Recalling that £xp{M;’(s)} is the Girsanov exponential (2.18), the stochastic integral in
(3.21) is easily computed obtaining

[ @wo(2) Gz — =) BE, (Exp{ME()} — 1) = ¥5(z) — Gux o (2) (3.22)

which proves the claim.

As 9Y7(z) converges to ,(z) uniformly for ¢ in compact subsets of (0,00), z € R,
(t,2) — u(z) is P — a.s. continuous. Thus for ¢ > 0 the process 9 is, by construction,
F: adapted, continuous and C°(R) valued. Since 9 satisfies (2.16) and converges to 1,
once we show

=0 (3.23)
13(P)

K00

lim ” / "GisodB, () — / "Gyy#97dB" (2)
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we can conclude %, satisfies, P — a.s., equation (2.12).
To prove (3.23) let us consider first

t 2 t
E([ Geur (b= #1)dB, (@) = [ds [ayGurlz — 9P B(0) - 9:G)}  (3:29)
using (3.2), Lemmata 3.1, 3.2 and (3.15), it can be bounded by

k¥ ‘/:ds /dy Gi-o(z — y)*[G. * %o (¥)]? L 2 K3 /Otds[s(t - s)]-%Gt *Po(z) <3 K3

(3.25)
where we used the hypothesis (2.10) on .
On the other hand
t 2
E([ Geovr (B, - dB7) (2))
0
t
- E /0 ds (Gees(z — 0%, (1= 8 + Crc — 6,) Geu(z — )057) (3.26)

we consider just the term with (1 — §,), the other one is analogous. It can be bounded by

¢
[ ds [aydy’ [Gi-sfa = v 6ty — ¥) @) 2y 195) = #50 llzsco
+Giemo(z — ¥) 8y — V) |95 W)y |Geca(z — y) = Geca(z — )] (3.27)
The first line vanishes in the limit £ — oo by Lemma 3.2 and the L*(P) convergence

(uniform in z) of ¥f(z). For the second line we note that, by dominated convergence
theorem, we can pass to the limit inside the time integral and conclude it converges to 0.

Together with (3.25) this implies (3.23).

We finally prove uniqueness in the class of processes in Definition 2.1. Since the
equation is linear it is enough to show that any solution of (2.12) with 0 initial datum is
identically 0. For such a solution we have

E ((=)) = [ ds [dy Cuoslz — 1) B (v.(0)7) (3.28)

Iterating (3.28) and using the condition (2.11) we get

t n—1
supE (Ye(x))’ = sup [doy--- [ don [y dyaGuoss (2 — 1)’
zeR zeR /0 0

=+ Gapy—sn(Yn-1 — yn)zE (¢0n(yn)2)
t Sn—
< csup [ ds;-- / adsn_z /dy1 oo dyn_s Gt_u(z _ y1)2
zeR Y0 0
v G‘n—a—ln_z (yn—3 - '.‘/11—2)2 (329)

which converges to 0 as n — oo.
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(i)
We first show the Hélder continuity of ¢ — 3,(z). Thanks to the bound (3.15), it can
be easily verified that for any £ > 0, § > 0 exists ¢ such that for any h>0,z€R
t+h 1
<chit (3.30)
L3(P)

Gt+h~—s * ¢’adBa (z) - ‘/ot Gt—a * ¢ch¢ (z)

By an application of the Burkholder-Davis-Gundy inequality, see e.g. [17], IV 4.2, and
using (3.19) instead of (3.15), the same bound can be proven also in L*(P). We omit
the details, see however [2] for an analogous estimate. Using the equation (2.12) and the
Kolmogorov theorem the P — a.s. Holder continuity follows.

The following bound is proven with the same argument as above. For any p > 1,
t >0, 6 > 0 exists c such that forany >0,z € R

This implies that z — 1,(z) is P — a.s. Holder continuous with exponent a < 1/2.

/ "G % 2dB, (2 + B) — / e xudB.(z)] < chb (3.31)

Ly P)

(iv) Let first note that a comparison principle holds. Let i, ¢ = 1,2, be the solution
with initial datum 4§; from the linearity of the equation and the Feynman-Kac formula
we have that 95 < 92 (as measures) implies

V(t,z)€(0,00) xR 9}(z) <9i(z) P —a.s. (3.32)

For initial conditions which are absolutely continuous with respect to Lebesgue and
whose density is continuous and with compact support the strict inequality v,(z) > 0 is
proven in Muller [14] up to an explosion time which is infinite by our results.

Using Mueller’s result and the comparison relation (3.32), statement (iv) is proven for
initial data with continuous density with respect to Lebesgue. General initial data are
then reduced to this case thanks to the Markov property and the fact that they became
continuous in space in an arbitrary small time. O

4 Statistical Properties

In this section we prove the explicit formulae for the correlation functions and the inter-
mittent behavior of the solution we constructed. Proposition 2.3, which allows to express
the moments of %, in terms of local times, is a straightforward consequence of the ma-
chinery already developed. Corollaries 2.4 and 2.5 follow then from known results on the
distribution of local times. Finally Theorem 2.6 exploits elementary properties of the
local times: the n-th moment is computed reducing it to the evaluation of an exponential
moment for the local time of a single brownian motion.

Proof of Proposition 2.9
For any integer n, by Theorem 2.2, (1)

E (%:(2)") = lim E (}(z)") (41)
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Introducing n independent copies of b and computing the expectation with respect to P
we have

B() = [ ITabo(o0) Cle -3 - Ey,t(exp{z [[as 0.5 - b’)}) (+2)

i<j

By Lemmata 3.1 and 3.2, the right hand side of (4.2) converges to
/ IT olu) Gule — ) - Bl (X ) (4.3)

which proves (2.22). The proof of (2.23) is analogous. O
Proof of Corollaries 2.4 and 2.5

If 1) is the Lebesgue measure we can express the correlation functions in terms of local
time of brownian motions. Let 3,, s > 0 the brownian motion, with diffusion coefficient

v, starting from z; denote by dP? its law. Realizing the brownian bridge as conditional
brownian motion, we have

ape* = [dy Gz - y) AL, (4.4)
By (2.23) we can thus express the correlation function as
E(la)du(=) = BEZ, (20) =BG (47®)

= E&? (exp {(21/)—% ng_:')/m(ﬁ)b (4.5)
where the last identity is obtained by scaling.
Let £ := (z — z')/v/2v, introduce the stopping time T} := inf{s : B, = ¢} and denote

by P¢(ds) its law. By the strong Markov property and the additivity of the local time we
have

Ej! (e(zu)-”’ Lf(a)) = / t Py(ds) Ej ()77 -l

- 2/d e -5 /Dmdy Gios(y) @™ (4.6)

V2rsd

where we used the explicit expression for Pg(ds), [17], ch. III, 3.7 and for the law of L,(3),
[17], ch. VI, 2.2. Equation (2.25) is just a convenient rewriting of (4.6).

Corollary 2.5 is proven following the same steps. When o(dz) = 8o(dz) from (2.23)
1 _24 He 3
E ($u(2)9e(2) = 5— E;

we have
Vs L1(b)
0,(z—=')/Vv2vt;1 (e w ) (47)

On the other hand, by the time reversal property of the brownian bridge
B (50) = B2, (450) = [P B (140)

_ /o‘p,,(ds)Eg-;m (V) «9)
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where P,(ds) is the law of the stopping time T; := inf{t : b, = a} for the brownian bridge
from 0 to a in time 1, realizing it as a conditional brownian motion it can be verified that

= la| —ad 1
P,(ds) = e 77 ds 4.9
(de) V2782 (1—s) (49)

The formula (2.26) follows then from (4.7), (4.8), (4.9) and the following result, see
[17] ch. XII, 3.8. If b is a brownian bridge (with diffusion coefficient 1) from 0 to 0 in
time 1, the local time L,(b) has the same law of /27, where « is an exponential random
variable of mean 1. O

Proof of Theorem 2.6
As in the proof of Corollary 2.4 we express the moments of ¥¢(z) in terms of the local

times of independent brownian motions. Let ,5 := (B',---,B") n independent brownian
motions with diffusion coeflicient v, from Proposition 2.3 we have
E ('Ebt(m)n) — Ef,v (eZ.»<,. L:(ﬂ‘—ﬁj)) (410)

where we used (4.4).
By Tanaka formula (2.20) we have

S |Bi-Bi|=2vwe+2v ¥ LB - B) (4.11)
i<j i<j

where ) .
wei= g5 3 ) seal6 - B) 6 - ) (412)

It can be rewritten as

J#i

w=g [ (2 sgn(6; —ﬂf)) 4; (413)

from which we get
t n(n?-1)

(w, ), =Zt;§(n—l—2(i—1))2=4u :

by Levy characterization theorem w is thus, in law, a brownian motion starting from 0
and with diffusion coefficient n(n? — 1)/12v.

Using a deterministic procedure in (4.11), the Skorohod lemma, see [17] ch. VI, 2.1,
we have

(4.14)

2 L(B* = ) = sup(-w,) (4.15)

Recalling (4.10) we have proven

E (x(2)") = BB (exp {ilg(—w.)}) = E¢" (eXP { [n—(n;;—l)] % s'lég(—ﬂ.)}) (4.16)

from which (2.39) follows by the reflection principle: if B is a brownian motion starting
from 0, then sup,, B, has the same law of ||, see e.g. [17], 111 3.7. O
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