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Abstract. In this article we consider the stochastic heat equation ut −∆u = Ḃ in
(0, T )×Rd, with vanishing initial conditions, driven by a Gaussian noise Ḃ which is
fractional in time, with Hurst index H ∈ (1/2, 1), and colored in space, with spatial
covariance given by a function f . Our main result gives the necessary and sufficient
condition on H for the existence of a solution. When f is the Riesz kernel of order
α ∈ (0, d) this condition is H > (d − α)/4, which is a relaxation of the condition

H > d/4 encountered when the noise Ḃ is white in space. When f is the Bessel
kernel or the heat kernel, the condition remains H > d/4.

1. Introduction and Preliminaries

Stochastic partial differential equations (s.p.d.e.’s) perturbed by noise terms
which bear a “colored” spatial covariance structure (but remain white in time)
have become increasingly popular in the recent years, after the fundamental work
of Dalang (1999). Such an equation can be viewed as a more flexible alternative
to a classical s.p.d.e. driven by a space-time white noise, and therefore it can be
used to model a more complex physical phenomenon which is subject to random
perturbations. The major drawback of this theory is that it is mathematically more
challenging than the classical theory, usually relying on techniques from potential
analysis. One advantage is that an s.p.d.e. perturbed by a colored noise possesses a
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function-valued solution (under relatively mild conditions on the covariance struc-
ture), in contrast with its white-noise driven counterpart, for which the solution
exists only in the sense of distributions. Another advantage is the fact that such
an equation can lead to a better understanding of a complex physical situation.

This article continues the line of research initiated by Dalang (1999), the focus
being on a relatively simple s.p.d.e., the stochastic heat equation. The novelty
comes from the fact that random noise perturbing the equation possesses a colored
temporal structure given by the covariance of a fractional Brownian motion (fBm),
along with the colored spatial structure of Dalang (1999).

We recall that a fBm on the real line is a zero-mean Gaussian process with covari-
ance function RH(t, s) = (t2H +s2H−|t−s|2H)/2, whereH ∈ (0, 1). There is a huge
amount of literature dedicated to the fBm, due to its mathematical tractability, and
its many applications. We refer the reader to Nualart (2003) for a comprehensive
review on this subject.

Recently, the fBM made its entrance in the area of s.p.d.e.’s. We refer, among
others, to Maslovski and Nualart (2003), Tindel et al. (2003), Duncan et al. (2002),
Nualart and Ouknine (2004), Gubinelli et al. (2006) or Quer-Sardanyons and Tin-
del (2006). For example, in the case of the stochastic heat equation driven by a
Gaussian noise which is fractional in time and with a rather general covariance in
space, it has been proved in Tindel et al. (2003) that if the time variable belongs to
[0, T ] and the space variable belongs to S1 (the unit circle) then the solution exists
if and only if H > 1/4. The case of the same equation driven by a fractional-white
noise with space variable in Rd has been treated in Maslovski and Nualart (2003),
and it follows that a process solution exists if H > d/4. The case of the wave
equation with the fractional additive noise has been studied in Caithamer (2005).

We note in passing that, in contrast to the linear case, very few results are
available in the literature, in the case of non-linear equations driven by a fractional
Gaussian noise, due to difficulties encountered in the stochastic calculus associated
to this noise. We recall that there are two principal ways to define stochastic
integrals with respect to the fractional Brownian motion: the divergence method
and the pathwise method. The divergence approach does not allow in general to
solve stochastic equations driven by the fBm because the estimates for the L2-norm
of the divergence integral involves Malliavin derivatives in cascade and the standard
iteration method does not work. Therefore it is natural to try to use the pathwise
(or trajectorial) approach which already led to satisfactory results in the case of
s.d.e.’s driven by the fBm but not very much for s.p.d.e.’s. Among the tentatives
to solve evolution equations driven by non-linear fractional noises, we refer again
to Maslovski and Nualart (2003) (in the case of a very regular spatial covariance),
and to Gubinelli et al. (2006) (for the heat equations) and Quer-Sardanyons and
Tindel (2006) (for the wave equations) whose approach is based on the extension of
the Young integral to the two-parameter setting. We should mention that in these
articles the choice of the space covariance structure is very limited and the definition
of the integral needs to be adapted from case to case. Also the definition of the
solution (for the wave equation) is given in a particular way through a rotation
of the equation. This suggests the difficulty to find an unitary approach to define
stochastic integrals that could be used to solve fBm-driven s.p.d.e.’s in the general
non-linearity context and opens interesting research directions.
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In the present article we consider the (linear) stochastic heat equation in the
domain [0, T ]× Rd driven by a Gaussian noise B which has a fractional time com-
ponent, of Hurst index H ∈ (1/2, 1), and a colored spatial component. Therefore,
our work lies at the intersection of the two different lines of research mentioned
above, namely those developed in Dalang (1999), respectively Nualart and Ouk-
nine (2004). Here, we give a unitary approach based on the Fourier transform
(with respect to t) which allows us to treat the case of an arbitrary spatial di-
mension d and a general spatial covariance structure. This approach leads to a
necessary and sufficient condition for the existence of the solution, in terms of the
spatial covariance function f and the Hurst parameter H .

The solution of the equation is given in the mild formulation, but can also be
viewed as a distribution solution. Therefore, the first step we need to take is to
develop a stochastic calculus with respect to the noise B. Since our equation is
linear, only spaces of deterministic integrands are considered in the present pa-
per. We should mention that in this case, the solution is a Gaussian process, and
hence Reproducing Kernel Hilbert Space techniques can be used to investigate its
properties. This will be the subject of future work.

This article is organized as follows. In Section 2, we study the heat equation
perturbed by a Gaussian noise which is fractional in time, but white in space. In
this case, it is known from Maslovski and Nualart (2003) that a solution exists
if H > d/4; in the present article, we strengthen this result by proving that the
condition H > d/4 is in fact necessary for the existence of the solution. In Section
3, we identify the necessary and sufficient condition for the existence of the solution,
in the case of the heat equation perturbed by a Gaussian noise which is fractional
in time, and possesses a non-trial covariance structure in space. In particular,
when the color in space is given by the Riesz kernel of order α, we prove that the
necessary and sufficient condition for the existence of the solution is H > (d−α)/4.
This demonstrates that a suitable choice of the spatial covariance structure can
compensate for the drawbacks of the fractional component. However, it turns
out that if the spatial covariance is given by the Bessel or the heat kernel, the
condition remains H > d/4, whereas for the Poisson kernel the condition becomes
H > (d + 1)/4. This fact suggests a correspondence between the regularity of the
spatial covariance kernel and the range of H ; while one has a gain for the values of
H (or for the dimension d) in the case of the Riesz kernel, one loses in the case of
the Poisson kernel.

Appendix A contains a lemma which is heavily used in the present paper. This
lemma is the tool which allows us to import the Fourier transform techniques from
R to the bounded domain [0, T ]. (So far, this type of techniques have been exploited
only on R; see e.g. Pipiras and Taqqu, 2000.) Appendices B and C contain some
technical results.

We begin now to introduce the notation that will be used throughout this paper.
If U ⊂ Rn is an open set, we denote by D(U) the space of all infinitely differen-

tiable functions whose support is compact and contained in U . By D′(U) we denote
the set of continuous linear functionals on D(U) which is known as the space of
distributions. We let S(Rn) be the Schwarz space of all decreasing functions on R

n

and S′(Rn) be the space of tempered distributions, i.e. continuous linear functionals
on S(Rn). For an arbitrary function g on Rd the translation by x is denoted by gx,
i.e. gx(y) = g(x+ y). The reflection by zero is denoted by g̃, i.e. g̃(x) = g(−x).



60 Raluca M. Balan and Ciprian A. Tudor

For any function φ ∈ S(Rn) we define its Fourier transform by

Fφ(ξ) =

∫

Rd

exp(−iξ · x)φ(x)dx.

The map F : S(Rn) → S(Rn) is an isomorphism which extends uniquely to a
unitary isomorphism of L2(R

n); this map can also be extended to S′(Rn). We
define the convolution (f ∗ g)(x) =

∫

Rn f(x− y)g(y)dy.
For any interval (a, b) ⊂ R and ϕ ∈ L2(a, b), we define the restricted Fourier

transform of ϕ with respect to (a, b) by:

Fa,bϕ(τ) =

∫ b

a

e−iτtϕ(t)dt.

If f ∈ L1(0, T ) and α > 0, the right-sided fractional integral of f of order α is
defined by:

(Iα
T−f)(t) =

1

Γ(α)

∫ T

t

(u− t)α−1f(u)du.

If f ∈ Iα
T−(L1(0, T )) and α ∈ (0, 1), the right-sided fractional derivative of f of

order α is defined by:

Dα
T−f(t) =

1

Γ(1 − α)

(

f(t)

(T − t)α
+ α

∫ T

t

f(t) − f(s)

(s− t)α+1
ds

)

.

The following inversion formula holds true: Dα
T−(Iα

T−f) = f for any f ∈ L1(0, T )
(see p. 6 of Nualart, 2003).

Finally, we denote by Bb(R
d) the class of all bounded Borel sets in R

d.

2. The Fractional-White Noise

The purpose of this section is to identify the necessary and sufficient condition
for the existence of a solution of the stochastic heat equation, driven by a Gaussian
noise which is fractional in time and white in space.

In the first subsection we examine some spaces of deterministic integrands, which
are relevant for the stochastic calculus with respect to fractional processes. In the
second subsection, we describe the Gaussian noise and its stochastic integral. In the
third subsection, we introduce the solution of the stochastic heat equation driven by
this noise, and we identify the necessary and sufficient condition for the existence
of this solution.

2.1. Spaces of deterministic integrands. We begin by introducing the usual spaces
associated with the fractional temporal noise. Throughout this article we suppose
that H ∈ (1/2, 1) and we let αH = H(2H − 1).

Let H(0, T ) be the completion of D(0, T ) with respect to the inner product

〈ϕ, ψ〉H(0,T ) = αH

∫ T

0

∫ T

0

ϕ(u)|u− v|2H−2ψ(v)dvdu

= αHcH

∫

R

F0,Tϕ(τ)F0,Tψ(τ)|τ |−(2H−1)dτ,

where the second equality follows by Lemma A.1.(b) with

cH = [22(1−H)π1/2]−1Γ(H − 1/2)/Γ(1 −H).



Stochastic Heat Equation with Fractional-Colored Noise 61

Note that cH = q2H−1, where the constant qα is defined in Lemma A.1 (Appendix
A).

Let E(0, T ) be the class of all linear combinations of indicator functions 1[0,t], t ∈
[0, T ]. One can see that H(0, T ) is also the completion of E(0, T ) with respect to
the inner product

〈1[0,t], 1[0,s]〉H(0,T ) = RH(t, s).

(To see this, note that every 1[0,a] ∈ E(0, T ) there exists a sequence (ϕn)n ⊂
D(0, T ) such that ϕn(t) → 1[0,a](t), ∀t and supp ϕn ⊂ K for all n, where K ⊂
(0, T ) is a compact. By the dominated convergence theorem, it follows that ‖ϕn −
1[0,t]‖H(0,T ) → 0.)

Note that H(0, T ) ⊂ H(R), where H(R) is the completion of D(R) with respect to
the inner product

〈ϕ, ψ〉H(R) = αH

∫

R

∫

R

ϕ(u)ψ(v)|u − v|2H−2dvdu.

The space H(R) appears in several papers treating colored noises. (In fact H(R)

is a particular instance of the space P(d)
0,x of Balan and Kim (2007), in the case

µ(dξ) = |ξ|−(2H−1)dξ and d = 1.) From p. 9 of Dalang (1999), we know that

H(R) ⊂ H(R) := {S ∈ S′(R);FS is a function,

∫

R

|FS(τ)|2|τ |−(2H−1)dτ <∞}.
(2.1)

Since |τ |2 < 1 + |τ |2, one can easily see that H(R) ⊂ H−(H−1/2)(R), where

H−(H−1/2)(R) :={S ∈ S′(R);FS is a function,

∫

R

|FS(τ)|2(1+|τ |2)−(H−1/2)dτ <∞}

is the fractional Sobolev space of index −(H − 1/2) (see p. 191, Folland, 1995).
Therefore, the elements of H(R) are tempered distributions on R of negative

order −(H−1/2). (This was also noticed by several authors; see e.g. p. 9, Nualart,
2003, or Pipiras and Taqqu, 2000, Pipiras and Taqqu, 2001)

On the other hand, similarly to (2.1), one can show that

H(0, T ) ⊂ H(0, T ) := {S ∈ S ′(R);F0,T S is a function,

Z

R

|F0,T S(τ )|2|τ |−(2H−1)
dτ < ∞},

(2.2)

where the restricted Fourier transform F0,TS of a distribution S ∈ S′(R) is defined
by: 〈F0,TS, ϕ〉 = 〈S,F0,Tϕ〉, ∀ϕ ∈ S(R).

Remark 2.1. One can show that (see p. 10, Nualart, 2003)

L2(0, T ) ⊂ L1/H(0, T ) ⊂ |H(0, T )| ⊂ H(0, T ), (2.3)

where

|H(0, T )|={f : [0, T ]×R
d → R measurable;

∫ T

0

∫ T

0

|f(u)||f(v)||u−v|2H−2dudv<∞}.

A different approach of characterizing the space H(0, T ) is based on the transfer
operator. We recall that the kernel KH(t, s), t > s of the fractional covariance
function RH is defined by:

KH(t, s) = c∗Hs
1/2−H

∫ t

s

(u− s)H−3/2uH−1/2du,

where c∗H = {αHΓ(3/2 −H)/[Γ(2 − 2H)Γ(H − 1/2)]}1/2.
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Note that RH(t, s) =
∫ t∧s

0
KH(t, u)K(s, u)du (see p. 7-8, Nualart, 2003) and

hence

〈K∗
H1[0,t],K

∗
H1[0,s]〉L2(0,T ) =

∫ t∧s

0

KH(t, u)KH(s, u)du=RH(t, s)=〈1[0,t], 1[0,s]〉H(0,T ),

i.e. K∗
H is an isometry between (E(0, T ), 〈·, ·〉H(0,T )) and L2(0, T ). Since H(0, T ) is

the completion of E(0, T ) with respect to 〈·, ·〉H(0,T ), this isometry can be extended
to H(0, T ). We denote this extension by K∗

H . In fact, one can prove that the map
K∗

H : H(0, T ) → L2(0, T ) is also surjective (see the proof of Lemma 2.3).

We are now introducing the space of deterministic integrands associated with
the a noise which is fractional in time and white in space. This space was also
considered in Nualart and Ouknine (2004).

More precisely, let H be the completion of D((0, T ) × Rd) with respect to the
inner product

〈ϕ, ψ〉H = αH

∫ T

0

∫ T

0

∫

Rd

ϕ(u, x)|u − v|2H−2ψ(v, x)dxdvdu

= αHcH

∫

R

∫

Rd

F0,Tϕ(τ, x)F0,Tψ(τ, x)|τ |−(2H−1)dxdτ

=

∫

Rd

〈ϕ(·, x), ψ(·, x)〉H(0,T )dx

where the second equality above follows by Lemma A.1.(b), and the third is due to
Fubini’s theorem.

If we let E be the space of all linear combinations of indicator functions 1[0,t]×A, t∈
[0, T ], A∈Bb(R

d), then one can prove that H is also the completion of E with respect
to the inner product

〈1[0,t]×A, 1[0,s]×B〉H = RH(t, s)λ(A ∩B)

where λ is the Lebesgue measure on Rd. (The argument is similar to the one used
in the temporal case.) Similarly to (2.2), one can show that

H ⊂ H :={S : R
d→S′(R);F0,TS(·, x) is a function ∀x ∈ R

d, (τ, x) 7→F0,TS(τ, x) is

measurable, and

∫

R

∫

Rd

|F0,TS(τ, x)|2|τ |−(2H−1)dxdτ <∞}.

Using (2.3) and the fact that

‖S‖2
H =

∫

Rd

‖S(·, x)‖2
H(0,T )dx, ∀S ∈ H,

one can show that

L2((0, T )× R
d) ⊂ |H| ⊂ H ⊂ L2(R

d;H(0, T )),

where |H|={ϕ : [0, T ]×Rd measurable;
∫ T

0

∫ T

0

∫

Rd |ϕ(u, x)||ϕ(v, x)||u−v|2H−2dxdvdu
<∞}.

The next result gives an alternative criterion for verifying that a function ϕ lies
in H.
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Theorem 2.2. Let ϕ : [0, T ]× Rd → R be a function which satisfies the following
conditions:

(i) ϕ(·, x) ∈ L2(0, T ) for every x ∈ Rd;
(ii) (τ, x) 7→ F0,Tϕ(τ, x) is measurable;

(iii)
∫

R

∫

Rd |F0,Tϕ(τ, x)|2|τ |−(2H−1)dxdτ <∞.
Then ϕ ∈ H.

Proof . Similarly to Proposition 3.3, Pipiras and Taqqu (2000), we let

Λ̃ = {ϕ : [0, T ]× R
d → R;ϕ(·, x) ∈ L2(0, T ) ∀x, (τ, x) 7→ F0,Tϕ(τ, x) is measurable

and ‖ϕ‖2
Λ̃

:= c1

∫

R

∫

Rd

|F0,Tϕ(τ, x)|2|τ |−(2H−1)dxdτ <∞}

Λ = {ϕ : [0, T ]× R
d → R; ‖ϕ‖2

Λ := c2

∫ T

0

∫

Rd

[I
H−1/2
T− (uH−1/2ϕ(u, x))(s)]2

s−(2H−1)dxds <∞}
where c1 = αHcH and c2 = {c∗HΓ(H − 1/2)}2. We now prove that

Λ̃ ⊂ Λ and ‖ϕ‖Λ̃ = ‖ϕ‖Λ, ∀ϕ ∈ Λ̃. (2.4)

Let ϕ ∈ Λ̃ be arbitrary. Since ϕ(·, x) ∈ L2(0, T ) ⊂ H(0, T ) and K∗
H is an

isometry from H(0, T ) to L2(0, T ), we have ‖ϕ(·, x)‖2
H(0,T ) = ‖K∗

Hϕ(·, x)‖2
L2(0,T )

for all x ∈ Rd, that is

c1

∫

R

|F0,Tϕ(τ, x)|2|τ |−(2H−1)dτ = c2

∫ T

0

[I
H−1/2
T− (uH−1/2ϕ(u, x))(s)]2s−(2H−1)ds.

Integrating with respect to dx and using Fubini’s theorem, we get ‖ϕ‖Λ̃ = ‖ϕ‖Λ.
The fact that ‖ϕ‖Λ̃ <∞ forces ‖ϕ‖Λ <∞, i.e. ϕ ∈ Λ. This concludes the proof of
(2.4).

Next we prove that

E is dense in Λ with respect to ‖ · ‖Λ. (2.5)

Let ϕ∈Λ and ε>0 be arbitrary. Since the map (s, x) 7→I
H−1/2
T− (uH−1/2ϕ(u, x))(s)

belongs to L2((0, T ) × Rd, dλH × dx) where λH(s) = s−(2H−1)ds, there exists a
simple function g(s, x) =

∑n
k=1 bk1[ck,dk)(s)1Ak

(x) on (0, T ) × Rd, with bk ∈ R,

0 < ck < dk < T and Ak ⊂ Rd Borel set, such that
∫ T

0

∫

Rd

[I
H−1/2
T− (uH−1/2ϕ(u, x))(s) − g(s, x)]2s−(2H−1)dxds < ε. (2.6)

By relation (8.1) of Pipiras and Taqqu (2001), we know that there exists an ele-
mentary function lk ∈ E(0, T ) such that

∫ T

0

[1[ck,dk)(s) − I
H−1/2
T− (uH−1/2lk(u))(s)]2s−(2H−1)ds < ε/Cg,

where we chose Cg := n
∑n

k=1 b
2
kλ(Ak). Define l(s, x) =

∑n
k=1 bklk(t)1Ak

(x) and
note that l ∈ E . Then

∫ T

0

∫

Rd

[g(s, x) − I
H−1/2
T− (uH−1/2l(u, x))(s)]2s−(2H−1)ds < ε. (2.7)
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From (2.6) and (2.7), we get
∫ T

0

∫

Rd

[I
H−1/2
T− (uH−1/2ϕ(u, x))(s)−IH−1/2

T− (uH−1/2l(u, x))(s)]2s−(2H−1)dxds < 4ε,

i.e. ‖ϕ− l‖2
Λ < 4εc2. This concludes the proof of (2.5).

From (2.4) and (2.5), we infer immediately that E is dense in Λ̃ with respect to
‖ · ‖Λ̃. Since ‖ · ‖Λ̃ = ‖ · ‖H and H is the completion of E with respect to ‖ · ‖H, it

follows that Λ̃ ⊂ H. This concludes the proof of the theorem. �

As in Nualart and Ouknine (2004), we define the transfer operator by:

(K∗
H1[0,t]×A)(s, x) := KH(t, s)1[0,t]×A(s, x). (2.8)

Note that

〈K∗
H1[0,t]×A,K

∗
H1[0,s]×B〉L2((0,T )×Rd) =

(∫ t∧s

0

KH(t, u)KH(s, u)du

)

〈1A, 1B〉L2(Rd)

=RH(t, s)λ(A ∩B) = 〈1[0,t]×A, 1[0,s]×B〉H,
i.e. K∗

H is an isometry between (E , 〈·, ·〉H) and L2((0, T ) × Rd). Since H is the

completion of E with respect to 〈·, ·〉H, this isometry can be extended to H. We
denote this extension by K∗

H.

Lemma 2.3. K∗
H : H → L2((0, T )× Rd) is surjective.

Proof . Note that 1[0,t]×A ∈ K∗
H(H) for all t ∈ [0, T ], A ∈ Bb(R

d); hence ϕ ∈
K∗

H(H) for every ϕ ∈ E . Let f ∈ L2((0, T ) × Rd) be arbitrary. Since E is dense in
L2((0, T )×Rd), there exists a sequence (fn)n ⊂ E such that ‖fn−f‖L2((0,T )×Rd) →
0. Since fn ∈ K∗

H(H), there exists ϕn ∈ H such that fn = K∗
Hϕn. The sequence

(ϕn)n is Cauchy in H:

‖ϕn − ϕm‖H = ‖K∗
Hϕn −K∗

Hϕm‖L2((0,T )×Rd) = ‖fn − fm‖L2((0,T )×Rd) → 0

as m,n→ ∞. Since H is complete, there exists ϕ ∈ H such that ‖ϕn − ϕ‖H → 0.

Hence ‖fn − K∗
Hϕ‖L2((0,T )×Rd) = ‖K∗

Hϕn − K∗
Hϕ‖L2((0,T )×Rd) → 0. But ‖fn −

f‖L2((0,T )×Rd) → 0. We conclude that K∗
Hϕ = f . �

Remark 2.4. Note that for every ϕ ∈ E

(K∗
Hϕ)(s, x) =

∫ T

s

ϕ(r, x)
∂KH

∂r
(r, s)dr = c∗H

∫ T

s

ϕ(r, x)
( r

s

)H−1/2

(r − s)H−3/2dr

= c∗HΓ

(

H − 1

2

)

s−(H−1/2)I
H−1/2
T− (uH−1/2ϕ(u, x))(s). (2.9)
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We can formally say that

H = {ϕ;ϕ(u, x) =
1

c′H
u−(H−1/2)D

H−1/2
T− (sH−1/2f(s, x))(u), f ∈ L2((0, T ) × R

d)},

where c′H = c∗HΓ(H − 1/2).

2.2. The Noise and the Stochastic Integral. In this paragraph we describe the
Gaussian noise which is randomly perturbing the heat equation. This noise is
assumed to be fractional in time and white in space and was also considered by
other authors (see Nualart and Ouknine, 2004).

Let F = {F (ϕ);ϕ ∈ D((0, T ) × Rd)} be a zero-mean Gaussian process with
covariance

E(F (ϕ)F (ψ)) = 〈ϕ, ψ〉H. (2.10)

Let HF be the Gaussian space of F , i.e. the closed linear span of {F (ϕ);ϕ ∈
D((0, T ) × Rd)} in L2(Ω).

For every indicator function 1[0,t]×A ∈ E , there exists a sequence (ϕn)n ⊂
D((0, T ) × Rd) such that ϕn → 1[0,t]×A and supp ϕn ⊂ K, ∀n, where K ⊂
(0, T )× Rd is a compact. Hence ‖ϕn − 1[0,t]×A‖H → 0 and E(F (ϕm) − F (ϕn))2 =
‖ϕm − ϕn‖H → 0 as m,n → ∞, i.e. the sequence {F (ϕn)}n is Cauchy in L2(Ω).
A standard argument shows that its limit does not depend on {ϕn}n. We set
Ft(A) = F (1[0,t]×A) =L2(Ω) limn F (ϕn) ∈ HF . We extend F by linearity to E . A
limiting argument and relation (2.10) shows that

E(F (ϕ)F (ψ)) = 〈ϕ, ψ〉H, ∀ϕ, ψ ∈ E ,

i.e. ϕ 7→ F (ϕ) is an isometry between (E , 〈·, ·〉H) andHF . Since H is the completion
of E with respect to 〈·, ·〉H, this isometry can be extended to H, giving us the
stochastic integral with respect to F . We will use the notation

F (ϕ) =

∫ T

0

∫

Rd

ϕ(t, x)F (dt, dx).

Remark 2.5. One can use the transfer operator K∗
H to explore the relationship

between F (ϕ) and Walsh’s stochastic integral (introduced in Walsh (1986)). More
precisely, using Lemma 2.3, we define

W (φ) := F ((K∗
H)−1(φ)), φ ∈ L2((0, T ) × R

d). (2.11)

Note that

E(W (φ)W (η)) = 〈(K∗
H)−1(φ), (K∗

H)−1(η)〉H = 〈φ, η〉L2((0,T )×Rd),

i.e. W = {W (φ);φ ∈ L2((0, T ) × R
d)} is a space-time white noise. Using the

stochastic integral notation, we write W (φ) =
∫ T

0

∫

Rd φ(t, x)W (dt, dx) for all φ ∈
L2((0, T )×Rd). (Note that W (φ) is Walsh’s stochastic integral with respect to the
noise W .)

Let HW be the Gaussian space of W , i.e. the closed linear span of {W (φ);φ ∈
L2((0, T ) × Rd)} in L2(Ω). By (2.11), we can see that HW = HF . The following
diagram summarizes these facts:
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?

H
�

�
�

�
�

�
�	

L2((0, T )× R
d)

-

HF = HW

K∗
H

F W

F (ϕ) = W (K∗
Hϕ), ∀ϕ ∈ H, i.e.

∫ T

0

∫

Rd ϕ(t, x)F (dt, dx) =
∫ T

0

∫

Rd(K∗
Hϕ)(t, x)W (dt, dx).

In particular, F (t, A) =
∫ t

0

∫

AKH(t, s)W (ds, dy). This relationship will not be used
in the present paper.

2.3. The Solution of the Stochastic Heat Equation. We consider the stochastic heat
equation driven by the noise F , written formally as:

vt − ∆v = Ḟ , in (0, T ) × R
d, v(0, ·) = 0, (2.12)

where ∆v denotes the Laplacian of v, and vt is the partial derivative with respect
to t.

Let G be the fundamental solution of the classical heat equation, i.e.

G(t, x) =

{

(4πt)−d/2 exp
(

− |x|2

4t

)

if t > 0, x ∈ Rd

0 if t ≤ 0, x ∈ Rd
(2.13)

Let gtx(s, y) := G(t − s, x − y). The following result is needed in order to apply
Theorem 2.2.

Lemma 2.6. If ϕ = η ∗ G̃, where η ∈ D(0, T )× Rd), then

ϕ(·, x) ∈ L2(0, T ) ∀x ∈ R
d.

Proof . Without loss of generality, we suppose that η(t, x) = φ(t)ψ(x), where φ ∈
D(0, T ) and ψ ∈ D(Rd). Using Minkowski’s inequality for integrals (see p. 271,
Stein, 1970), we have

(

∫ T

0

|ϕ(t, x)|2dt
)1/2

=





∫ T

0

∣

∣

∣

∣

∣

∫ T

0

∫

Rd

φ(s)ψ(y)G(s − t, y − x)1{s>t}dyds

∣

∣

∣

∣

∣

2

dt





1/2

≤
∫ T

0

∫

Rd

|φ(s)ψ(y)|
(∫ s

0

|G(s− t, y − x)|2dt
)1/2

dyds.

Using the change of variables s− t = t′ and 1/t′ = u, we get
∫ s

0

|G(s− t, y − x)|2dt =
1

(4π)d

∫ ∞

1/s

ud−2e−|y−x|2u/2du ≤ C

|y − x|2(d−1)
,

and
(

∫ T

0

|ϕ(t, x)|2dt
)1/2

≤ C

∫ T

0

|φ(s)|
∫

Rd

|ψ(y)|
|y − x|d−1

dyds ≤ C(|ψ| ∗R1)(x) <∞,

where R1(x) = γ1,d|x|−(d−1) is the Riesz kernel of order 1 in Rd and the convolution
|ψ| ∗R1 is well-defined by Theorem V.1, p. 119, Stein (1970). �
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Theorem 2.7. If

H >
d

4
, (2.14)

then: (a) gtx ∈ |H| for every (t, x) ∈ [0, T ] × Rd; (b) η ∗ G̃ ∈ H for every η ∈
D((0, T ) × R

d). Moreover,

‖gtx‖H <∞ ∀(t, x) ∈ [0, T ]× R
d if and only if (2.14) holds. (2.15)

Remark 2.8. Since H < 1, condition (2.14) cannot be satisfied if d ≥ 4.

Proof . (a) We will apply Theorem 2.2 to the function gtx. Note that for every
fixed y ∈ Rd

∫ T

0

|gtx(s, y)|2ds = C

∫ t

0

1

(t− s)d
e−|y−x|2/[2(t−s)]ds = C

∫ ∞

1/t

ud−2e−|y−x|2u/2du <∞,

i.e. gtx(·, y) ∈ L2(0, T ). Clearly (τ, y) 7→ F0,T gtx(τ, y) is measurable. We now
calculate

‖gtx‖2
H := αHcH

∫

R

∫

Rd

|F0,T gtx(τ, y)|2|τ |−(2H−1)dydτ.

For this, we write

‖gtx‖2
H = αHcH

∫

R

|τ |−(2H−1)

∫

Rd

(

∫ T

0

e−iτsgtx(s, y)ds

)(

∫ T

0

eiτrgtx(r, y)dr

)

dydτ

= αHcH

∫

R

|τ |−(2H−1)

∫ t

0

∫ t

0

e−iτ(s−r)I(r, s)drdsdτ,

= αH

∫ t

0

∫ t

0

|s− r|2H−2I(r, s)drds

where we used Lemma A.1 (Appendix A) for the last equality and we denoted

I(r, s) :=

∫

Rd

gtx(s, y)gtx(r, y)dy = (2t− s− r)−d/2

We obtain that

‖gtx‖2
H=αH

∫ t

0

∫ t

0

|s−r|2H−2(2t−s−r)−d/2drds=αH

∫ t

0

∫ t

0

|u−v|2H−2(u+v)−d/2dvdu.

(2.16)
Relation (2.15) follows, since the last integral is finite if and only if 2H > d/2.

In this case, we have ‖gtx‖|H| = ‖gtx‖H <∞ (since gtx ≥ 0), and hence gtx ∈ |H|.
(b) We will apply Theorem 2.2 to the function ϕ = η ∗ G̃, since ϕ(·, x) ∈ L2(0, T )

for every x ∈ Rd, by Lemma 2.6. By writing

F0,Tϕ(τ, x) =

∫ T

0

e−iτs

∫ T−s

0

∫

Rd

η(u+ s, y)G(u, y − x)dyduds, (2.17)

we see that (τ, x) 7→ F0,Tϕ(τ, x) is measurable. We now calculate

‖ϕ‖2
H := αHcH

∫

R

∫

Rd

|F0,Tϕ(τ, x)|2|τ |−(2H−1)dxdτ.
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Using (2.17), we get

‖ϕ‖2
H = αHcH

∫

R

|τ |−(2H−1)

∫ T

0

∫ T

0

e−iτ(s−r)

∫

Rd

∫

Rd

∫ T−s

0

∫ T−r

0

η(u + s, y)

η(v + r, z)J(u, v, y, z)dv du dz dy dr ds dτ

= αH

∫ T

0

∫ T

0

|s− r|2H−2

∫

Rd

∫

Rd

∫ T−s

0

∫ T−r

0

η(u+ s, y)η(v + r, z)

J(u, v, y, z)dv du dz dy dr ds, (2.18)

where we used Lemma A.1 (Appendix A) for the second equality and we denoted

J(u, v, y, z) :=

∫

Rd

G(u, y − x)G(v, z − x)dx = exp

{

− |y − z|2
4(u+ v)

}

(u+ v)−d/2.

Clearly

J(u, v, y, z) ≤ (u+ v)−d/2 (2.19)

for every u ∈ (0, T − s), v ∈ (0, T − r). Using (2.18), (2.19) and the fact that
η ∈ D((0, T ) × R

d), we get

‖ϕ‖2
H ≤ αH

∫ T

0

∫ T

0

|s− r|2H−2

∫

Rd

∫

Rd

∫ T−s

0

∫ T−r

0

|η(u+ s, y)η(v + r, z)|

(u + v)−d/2dv du dz dy dr ds

≤ αHCη

∫ T

0

∫ T

0

|s− r|2H−2

∫ T−s

0

∫ T−r

0

(u+ v)−d/2dv du dr ds

≤ αHCη

∫ T

0

∫ T

0

(u + v)−d/2(T − u)2Hdv du,

where for the last inequality we used Fubini’s theorem and the fact that
∫ T−u

0

∫ T−v

0

|s−r|2H−2dr ds=RH(T−u, T−v)=[(T−u)2H+(T−v)2H−(u−v)2H ]/2.

The last integral is clearly finite if 2H > d/2, i.e. H > d/4. �

Lemma 2.9. Assume that (2.14) holds. Then the process {v(t, x); (t, x) ∈ [0, T ]×
Rd} defined by

v(t, x) := F (gtx) =

∫ T

0

∫

Rd

G(t− s, x− y)F (ds, dy), (t, x) ∈ [0, T ]× R
d

is mean-square continuous, i.e. E|v(tn, xn)−v(t, x)|2 → 0 for any (t, x) ∈ [0, T ]×Rd

and for any sequence {(tn, xn)}n ⊂ [0, T ]× Rd with (tn, xn) → (t, x).

Proof . We first prove the continuity in t. We have

E|v(t + h, x) − v(t, x)|2 = E

˛

˛

˛

˛

Z t+h

0

Z

Rd

gt+h,x(s, y)F (ds, dy) −

Z t

0

Z

Rd

gtx(s, y)F (ds, dy)

˛

˛

˛

˛

2

= E

˛

˛

˛

˛

Z t

0

Z

Rd

(gt+h,x(s, y) − gtx(s, y))F (ds, dy) +

Z t+h

t

Z

Rd

gt+h,x(s, y)F (ds, dy)

˛

˛

˛

˛

2

≤ 2E

˛

˛

˛

˛

Z t

0

Z

Rd

(gt+h,x(s, y) − gtx(s, y))F (ds, dy)

˛

˛

˛

˛

2

+ 2E

˛

˛

˛

˛

Z t+h

t

Z

Rd

gt+h,x(s, y)F (ds, dy)

˛

˛

˛

˛

2

:= 2I1(h) + 2I2(h).
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We first treat the term I1(h). Note that

I1(h) = ‖F ((gt+h,x − gtx)1[0,t])‖2
L2(Ω) = ‖(gt+h,x − gtx)1[0,t]‖2

H =

= αH

∫ t

0

∫ t

0

∫

Rd

(gt+h,x − gtx)(u, y)|u− v|2H−2(gt+h,x − gtx)(v, y)dy dv du.

The continuity of G(t, x) with respect to t shows that the integrand converges to
zero as h → 0. By applying the dominated convergence theorem (using the fact
that ‖gtx‖H <∞), we conclude that I1(h) → 0.

For the term I2(h), we have

I2(h) = ‖F (gt+h,x1[t,t+h])‖2
L2(Ω) = ‖gt+h,x1[t,t+h]‖2

H =

= αH

∫ t+h

t

∫ t+h

t

∫

Rd

gt+h,x(u, y)gt+h,x(v, y)|u − v|2H−2dy dv du

= αH

∫ t

t−h

∫ t

t−h

∫

Rd

gtx(u′, y)gtx(v′, y)|u′ − v′|2H−2dy dv′ du.

Since 1(t−h,t)1(t−h,t) → 0 as h → 0 and ‖gtx‖H < ∞, we conclude that I2(h) → 0,
by the dominated convergence theorem.

We now prove the continuity in x. We have

E|v(t, x+ h) − v(t, x)|2 = E

∣

∣

∣

∣

∫ t

0

∫

Rd

(gt,x+h(s, y) − gtx(s, y))F (ds, dy)

∣

∣

∣

∣

2

= ‖(gt,x+h − gtx)1[0,t]‖2
H.

By the continuity in x of the function G(t, x), the integrand converges to 0. By the
dominated convergence theorem, E|v(t, x + h) − v(t, x)|2 → 0 as h→ 0. �

A jointly measurable process {Y (t, x); (t, x) ∈ [0, T ]×Rd} is said to be a solution
of the stochastic Cauchy problem (2.12) if for any η ∈ D((0, T ) × R

d),
∫ T

0

∫

Rd

Y (t, x)η(t, x)dxdt =

∫ T

0

∫

Rd

(η ∗ G̃)(t, x)F (dt, dx) a.s. (2.20)

We now specify the space where the solution lives. Let B be the space of jointly
measurable processes {Y (t, x); (t, x) ∈ [0, T ]× R

d} such that

sup
(t,x)∈[0,T ]×Rd

E|Y (t, x)|2 <∞.

Theorem 2.10. In order that there exists a stochastic process {Y (t, x); (t, x) ∈
[0, T ]×R

d} belonging to B and satisfying (2.20), it is necessary and sufficient that
(2.14) holds. In this case, for any (t, x) ∈ [0, T ]× Rd

Y (t, x) =

∫ T

0

∫

Rd

G(t− s, x− y)F (ds, dy) a.s. (2.21)

Proof . We first prove the sufficiency part. The process v defined in Lemma 2.9 is
continuous in probability and hence, by Theorem IV.30 of Dellacherie and Meyer
(1975), it possesses a jointly measurable modification Y . For any (t, x) ∈ [0, T ]×Rd,

E|Y (t, x)|2 = E|v(t, x)|2 = ‖gtx‖2
H = αH

∫ t

0

∫ t

0

|u− v|2H−2(u+ v)−d/2dvdu,
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where we used (2.16) for the last equality. Hence,

sup
(t,x)∈[0,T ]×Rd

E|Y (t, x)|2 ≤ αH

∫ T

0

∫ T

0

|u− v|2H−2(u+ v)−d/2dvdu <∞.

This proves that Y belongs to B.
To prove (2.20), let η ∈ D((0, T )×Rd) be arbitrary. By Theorem 2.7, η ∗ G̃ ∈ H;

we denote v(η) := F (η ∗ G̃). We will show that

E

∣

∣

∣

∣

∣

∫ T

0

∫

Rd

Y (t, x)η(t, x)dxdt − v(η)

∣

∣

∣

∣

∣

2

= 0,

by proving that:

E

∣

∣

∣

∣

∣

∫ T

0

∫

Rd

Y (t, x)η(t, x)dxdt

∣

∣

∣

∣

∣

2

= E

(

v(η)

∫ T

0

∫

Rd

Y (t, x)η(t, x)dxdt

)

= E|v(η)|2.

Note that for any (t, x), (s, y) ∈ [0, T ]× Rd,

E(Y (t, x)Y (s, y)) = E(v(t, x)v(s, y)) = E(F (gtx)F (gsy)) = 〈gtx, gsy〉H (2.22)

and

E(v(η)Y (t, x)) = E(v(η)v(t, x)) = E(F (η ∗ G̃)F (gtx)) = 〈η ∗ G̃, gtx〉H. (2.23)

By Fubini’s theorem and (2.22), we get

E

˛

˛

˛

˛

Z T

0

Z

Rd

Y (t, x)η(t, x)dxdt

˛

˛

˛

˛

2

=

Z

([0,T ]×Rd)2
η(t, x)η(s, y)〈gtx, gsy〉Hdy dx ds dt =

Z

([0,T ]×Rd)2
η(t, x)η(s, y)

„Z

R

Z

Rd

F0,T gtx(τ, z)F0,T gsy(τ, z) |τ |−(2H−1)
dzdτ

«

dydxdsdt

=

Z

R

Z

Rd

|F0,T (η ∗ G̃)(τ, z)|2|τ |−(2H−1)
dz dτ = ‖η ∗ G̃‖2

H = E|F (η ∗ G̃)|2 = E|v(η)|2.

On the other hand, using Fubini’s theorem and (2.23), we get

E

„

v(η)

Z T

0

Z

Rd

Y (t, x)η(t, x)dxdt

«

=

Z

[0,T ]×Rd

η(t, x)〈η ∗ G̃, gtx〉Hdxdt

=

Z

[0,T ]×Rd

η(t, x)

„Z

R

Z

Rd

F0,T (η ∗ G̃)(τ, z)F0,T gtx(τ, z) |τ |−(2H−1)
dzdτ

«

dxdt

=

Z

R

Z

Rd

|F0,T (η ∗ G̃)(τ, z)|2|τ |−(2H−1)
dzdτ = E|v(η)|2.

The necessity part is similar to the proof of Theorem 11, Dalang (1999). Suppose
that there exists a process {Y (t, x); (t, x) ∈ [0, T ]× Rd} in B which satisfies (2.20).
We want to prove that (2.14) holds. Let (t0, x0) ∈ [0, T ] × Rd be fixed and set
ηn(t, x) = λn(t− t0)ψn(x− x0), where λn(t) = nλ(nt) and ψn(x) = ndψ(nx). Here

λ, ψ are nonnegative smooth functions such that
∫ T

0
λ(t)dt =

∫

Rd ψ(x)dx = 1.

We denote v(ηn) := F (ηn ∗ G̃). We calculate E|v(ηn)|2 in two ways. First, using
(2.20) and Lebesgue differentiation theorem, we get

lim
n

E|v(ηn)|2 = lim
n

Z

[0,T ]×Rd

E|Y (t, x)Y (s, y)| ηn(t, x)ηn(s, y)dydxdsdt = E|Y (t0, x0)|
2
.

(2.24)
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Secondly,

E|v(ηn)|2 = E|F (ηn∗G̃)|2 = ‖ηn∗G̃‖2
H =

∫

Rd

∫

R

|F0,T (ηn∗G̃)(τ, x)|2|τ |−(2H−1)dτdx.

(2.25)
We claim that, for every τ ∈ R, x ∈ Rd, we have: (see Appendix B for the proof)

lim
n

F0,T (ηn ∗ G̃)(τ, x) = F0,T gt0x0(τ, x). (2.26)

Using Fatou’s lemma, (2.24), (2.25) and (2.26), we get

‖gt0x0‖2
H =

∫

Rd

∫

R

|F0,T gt0x0(τ, x)|2|τ |−(2H−1)dτdx

≤ lim inf
n

∫

Rd

∫

R

|F0,T (ηn ∗ G̃)(τ, x)|2|τ |−(2H−1)dτdx

= lim inf
n

E|v(ηn)|2 = E|Y (t0, x0)|2 <∞,

which forces H > d/4, by virtue of (2.15).
�

3. The Fractional-Colored Noise

In this section we examine the stochastic heat equation driven by a Gaussian
noise which is fractional in time and colored in space. Most of the results of this
section are obtained by mixing some colored spatial techniques with the fractional
temporal techniques of Section 2. The results of this section can therefore be viewed
as generalizations of the results of Section 2. The details are highly non-trivial.

The structure of this section is similar to that of Section 2. We first describe the
spaces of deterministic integrands, then we introduce the Gaussian noise and the
associated stochastic integral, and finally we examine the solution of the stochastic
heat equation driven by this type of noise.

3.1. Spaces of Deterministic Integrands. We begin by introducing the space of de-
terministic integrands on Rd.

Let f ∈ D′(Rd) be the Fourier transform of a tempered measure µ on Rd, i.e.
f(x) =

∫

Rd e
−iξ·xµ(dξ).

Let P(Rd) be the completion of D(Rd) with respect to the inner product

〈ϕ, ψ〉P(Rd) =

∫

Rd

∫

Rd

ϕ(x)f(x − y)ψ(y)dydx =

∫

Rd

F2ϕ(ξ)F2ψ(ξ)µ(dξ),

where F2ϕ(ξ) :=
∫

Rd e
−iξxϕ(x)dx denotes the Fourier transform with respect to

the x-variable.
Equivalently, we can say that P(Rd) is the completion of E(Rd) with respect to

〈·, ·〉P(Rd), where E(Rd) is the space of all linear combinations of indicator functions

1A(x), A ∈ Bb(R
d))

The basic example is f = δ0 (the Dirac distribution at 0); in this case, P(Rd) =
L2(R

d). More interesting covariance structures are provided by potential analysis.
Here are some examples (see e.g. p.149-151, Folland, 1995, or p.117-132, Stein,
1970; our constants are slightly different than those given in these references, since
our definition of the Fourier transform does not have the 2π factor):
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Example 3.1. The Riesz kernel of order α:

f(x) = Rα(x) := γα,d|x|−d+α, 0 < α < d,

where γα,d = 2d−απd/2Γ((d− α)/2)/Γ(α/2). In this case, µ(dξ) = |ξ|−αdξ.

Example 3.2. The Bessel kernel of order α:

f(x) = Bα(x) := γ′α

∫ ∞

0

w(α−d)/2−1e−we−|x|2/(4w)dw, α > 0,

where γ′α = (4π)α/2Γ(α/2). In this case, µ(dξ) = (1 + |ξ|2)−α/2dξ and P(Rd)
coincides with H−α/2(Rd), the fractional Sobolev space of order −α/2; see e.g.
p.191, Folland (1995).

Example 3.3. The heat kernel

f(x) = Gα(x) := γ′′α,de
−|x|2/(4α), α > 0,

where γ′′α,d = (4πα)−d/2. In this case, µ(dξ) = e−π2α|ξ|2dξ.

Example 3.4. The Poisson kernel

f(x) = Pα(x) := γ′′′α,d(|x|2 + α2)−(d+1)/2, α > 0,

where γ′′′α,d = π−(d+1)/2Γ((d+ 1)/2)α. In this case, µ(dξ) = e−4π2α|ξ|dξ.

Remark 3.5. The space P defined as the completion of D((0, T ) × R
d) (or the

completion of E) with respect to the inner product

〈ϕ, ψ〉P =

∫ T

0

∫

Rd

∫

Rd

ϕ(t, x)f(x − y)ψ(t, y)dydxdt =

∫ T

0

〈ϕ(t, ·), ψ(t, ·)〉P(Rd)dt.

has been studied by several authors in connection with a Gaussian noise which is
white in time and colored in space. One can prove that P ⊂ L2((0, T );P(Rd)); see
e.g. Dalang (1999), or Balan and Kim (2007).

In what follows, we need to extend the definition of P(Rd) to allow for complex-
valued functions. More precisely, let DC(Rd) be the space of all infinitely differen-
tiable functions ϕ : Rd → C with compact support, and PC(Rd) be the completion
of DC(Rd) with respect to

〈ϕ, ψ〉PC(Rd) =

∫

Rd

∫

Rd

ϕ(x)f(x − y)ψ(y)dydx.

Since D(Rd) ⊂ DC(Rd) and 〈ϕ, ψ〉P(Rd) = 〈ϕ, ψ〉PC(Rd) for every ϕ, ψ ∈ D(Rd), we
conclude that

P(Rd) ⊂ PC(Rd).

We are now introducing the space of deterministic integrands associated with a
Gaussian noise which is fractional in time and colored in space. This space seems to
be new in the literature. More precisely, let HP be the completion of D((0, T )×Rd)
with respect to the inner product

〈ϕ, ψ〉HP = αH

∫ T

0

∫ T

0

∫

Rd

∫

Rd

ϕ(u, x)|u− v|2H−2f(x− y)ψ(u, y)dy dx dv du

= αHcH

∫

R

|τ |−(2H−1)

∫

Rd

∫

Rd

f(x− y)F0,Tϕ(τ, x)F0,Tψ(τ, y)dy dx dτ

= αHcH

∫

R

|τ |−(2H−1)〈F0,Tϕ(τ, ·),F0,Tψ(τ, ·)〉PC(Rd)dτ,
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where the second equality follows by Lemma A.1 (Appendix A). In particular,

‖ϕ‖2
HP = αHcH

∫

R

‖F0,Tϕ(τ, ·)‖2
PC(Rd)|τ |−(2H−1)dτ,

or equivalently

‖ϕ‖2
HP =

∫

R

‖F0,Tϕ(τ, ·)‖2
PC(Rd)λH(dτ),

where λH(dτ) = αHcH |τ |−(2H−1)dτ .
One can prove that HP is also the completion of E with respect to the inner

product

〈1[0,t]×A, 1[0,s]×B〉HP = RH(t, s)〈1A, 1B〉P(Rd).

Clearly |HP| ⊂ HP , where |HP| = {ϕ : [0, T ] × Rd measurable; ‖ϕ‖|HP| < ∞}
and

‖ϕ‖2
|HP| :=

∫ T

0

∫ T

0

∫

Rd

∫

Rd

|ϕ(u, x)||ϕ(v, y)||u − v|2H−2f(x− y)dy dx dv du.

Remark 3.6. Using Fubini’s theorem, we have the following alternative expression
for calculating 〈ϕ, ψ〉HP : for every ϕ, ψ ∈ D((0, T ) × Rd), we have

〈ϕ, ψ〉HP = αH

∫ T

0

∫ T

0

|u− v|2H−2

∫

Rd

F2ϕ(u, ξ)F2ψ(u, ξ)µ(dξ)dvdu

= αH

∫

Rd

∫ T

0

∫ T

0

F2ϕ(u, ξ)|u− v|2H−2F2ψ(v, ξ)dvduµ(dξ)

=

∫

Rd

〈F2ϕ(·, ξ),F2ψ(·, ξ)〉HC(0,T )µ(dξ),

where HC(0, T ) denotes the completion of DC(0, T ) with respect to the inner-
product 〈·, ·〉HC(0,T ) defined similarly to 〈·, ·〉H(0,T ). In particular, ‖ϕ‖2

HP =
∫

Rd ‖F2ϕ(·, ξ)‖2
HC(0,T )µ(dξ). This expression is not used in the present paper.

In this new context, the next theorem gives us a useful criterion for verifying
that a function ϕ lies in HP . To prove this theorem, we need the following lemma,
generalizing Lemma 5.1, Pipiras and Taqqu (2000).

Lemma 3.7. For every A ∈ Bb(R
d), there exists a sequence (gn)n ⊂ E(Rd) such

that
∫

Rd

|1A(ξ) −F2gn(ξ)|2µ(dξ) → 0.

Proof . Let (φn)n ⊂ D(Rd) be such that φn(ξ) → 1A(ξ) uniformly and supp φn ⊂
K, ∀n, where K ⊂ Rd is a compact (we may take φn = 1A ∗ ηn, where ηn(x) =
ndη(nx) and η ∈ D(Rd), with

∫

Rd |η(x)|dx = 1). Using the dominated convergence

theorem and the fact that µ is locally finite, we get
∫

Rd |φn(ξ) − 1A(ξ)|2µ(dξ) → 0.

Let ψn ∈ S(Rd) be such that F2ψn = φn. Then
∫

Rd

|F2ψn(ξ) − 1A(ξ)|2µ(dξ) → 0. (3.1)

Note that
∫

Rd |F2ψn(ξ)|2µ(dξ) =
∫

Rd |φn(ξ)|2µ(dξ) < ∞. By Lemma C.1 (Appen-

dix C), it follows that ψn ∈ P(Rd). Since P(Rd) is the completion of E(Rd) with
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respect to ‖ · ‖P(Rd), there exists a sequence (gn)n ⊂ E(Rd) such that

‖ψn − gn‖2
P(Rd) =

∫

Rd

|F2ψn(ξ) −F2gn(ξ)|2µ(dξ) → 0. (3.2)

The conclusion follows from (3.1) and (3.2). �

Theorem 3.8. Let ϕ : [0, T ]× Rd → R be a function which satisfies the following
conditions:

(i) ϕ(·, x) ∈ L2(0, T ) for every x ∈ Rd;
(ii) (τ, x) 7→ F0,Tϕ(τ, ·) is measurable;

(iii)
∫

R

∫

Rd

∫

Rd F0,Tϕ(τ, x)f(x − y)F0,Tϕ(τ, y)|τ |−(2H−1)dydxdτ <∞.
Then ϕ ∈ HP.

Proof . The proof follows the same lines as the proof of Theorem 2.2. The details
are quite different though. Let

Λ̃ = {ϕ : [0, T ]× R
d → R; ϕ(·, x) ∈ L2(0, T ) ∀x, (τ, x) 7→ F0,Tϕ(τ, x) is measurable,

‖ϕ‖2
Λ̃

:= c1

∫

R

∫

Rd

∫

Rd

F0,Tϕ(τ, x)f(x − y)F0,Tϕ(τ, y)|τ |−(2H−1)dydxdτ <∞}

Λ = {ϕ : [0, T ]× R
d → R; ‖ϕ‖2

Λ := c2

∫ T

0

∫

Rd

∫

Rd

I
H−1/2
T− (uH−1/2ϕ(u, x))(s)

f(x− y)I
H−1/2
T− (uH−1/2ϕ(u, y))(s)s−(2H−1)dydxds <∞}

where c1 = αHcH and c2 = {c∗HΓ(H − 1/2)}2. The fact that

Λ̃ ⊂ Λ and ‖ϕ‖Λ̃ = ‖ϕ‖Λ, ∀ϕ ∈ Λ̃. (3.3)

follows as in the proof of Theorem 2.2: let ϕ ∈ Λ̃ is arbitrary; using the fact K∗
H is

an isometry from H(0, T ) to L2(0, T ), we get

〈ϕ(·, x), ϕ(·, y)〉2H(0,T ) = 〈K∗
Hϕ(·, x),K∗

Hϕ(·, y)〉2L2(0,T ),

for all x, y ∈ Rd. Multiplying by f(x − y), integrating with respect to dx dy and
using Fubini’s theorem, we get ‖ϕ‖Λ̃ = ‖ϕ‖Λ <∞.

Next we prove that

E is dense in Λ with respect to ‖ · ‖Λ. (3.4)

The proof of the theorem will follow from (3.3) and (3.4), as in the case of Theorem
2.2.

To prove (3.4), let ϕ ∈ Λ and ε > 0 be arbitrary. Let λH(s) = s−(2H−1)ds and

a(s, x) = I
H−1/2
T− (uH−1/2ϕ(u, x))(s). First, we claim that there exists g ∈ E such

that

I1 :=

∫ T

0

∫

Rd

∫

Rd

[a(s, x)− g(s, x)]f(x− y)[a(s, y)− g(s, y)]dydxλH(ds) < ε. (3.5)

To see this, note that

‖ϕ‖2
Λ = c2

∫ T

0

∫

Rd

∫

Rd

a(s, x)f(x− y)a(s, y)dydxλH(ds)

= c2

∫ T

0

∫

Rd

|F2a(s, ξ)|µ(dξ)λH (ds) <∞,
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i.e. the map (s, ξ) 7→ F2a(s, ξ) belongs to L2((0, T ) × Rd, dλH × dµ). Hence, there
exists a simple function h(s, ξ) =

∑m
j=1 βj1[γj,δj)(s)1Bj

(ξ) on (0, T ) × Rd, with

βj ∈ R, 0 < γj < δj < T and Bj ⊂ Rd Borel sets, such that
∫ T

0

∫

Rd

|F2a(s, ξ) − h(s, ξ)|2µ(dξ)λH(ds) < ε/4. (3.6)

By Lemma 3.7, for every j = 1, . . . ,m, there exists gj ∈ E(Rd) such that
∫

Rd

|1Bj
(ξ) −F2gj(ξ)|µ(dξ) < ε/(4Dh), (3.7)

where we choseDh =m
∑m

j=1β
2
jλH([γj , δj)). Define g(s, x)=

∑m
j=1βj1[γj,δj)(s)gj(x).

Clearly g ∈ E . Using (3.6) and (3.7), we get

I1 =

∫ T

0

∫

Rd

|F2a(s, ξ) −F2g(s, ξ)|2µ(dξ)λH(ds) < ε,

which concludes the proof of (3.5).
We claim now that there exists a function l ∈ E such that

I2 :=

∫ T

0

∫

Rd

∫

Rd

[g(s, x) − b(s, x)]f(x− y)[g(s, y) − b(s, y)]dydxλH(ds) < ε, (3.8)

where b(s, x) = I
H−1/2
T− (uH−1/2l(u, x))(s). Say g =

∑n
k=1 bk1[ck,dk)(s)1Ak

(x) for

some 0 < ck < dk < T and Ak ⊂ Rd Borel sets. By relation (8.1) of Pipiras and
Taqqu (2001), there exists an elementary function lk ∈ E(0, T ) such that

∫ T

0

[1[ck,dk)(s) − I
H−1/2
T− (uH−1/2lk(u))(s)]2λH(ds) < ε/Cg, (3.9)

where we chose Cg := ‖∑n
k=1 bk1Ak

‖2
P(Rd). Let l(s, x) =

∑n
k=1 bklk(t)1Ak

(x) ∈ E
and note that

I2 =

n
∑

k,j=1

bkbj

∫ T

0

∫

Rd

∫

Rd

[1[ck,dk)(s) − I
H−1/2
T− (uH−1/2lk(u))(s)]1Ak

(x)f(x− y)

[1[cj,dj)(s) − I
H−1/2
T− (uH−1/2lj(u))(s)]1Aj

(y)dydxλH(ds)

≤
n
∑

k,j=1

bkbj〈1Ak
, 1Aj

〉P(Rd) · 2
(

ε

Cg
+

ε

Cg

)

= ε

(we used (3.9) and the fact that ab ≤ 2(a2 + b2)). The proof of (3.8) is complete.
Finally, we claim that from (3.5) and (3.8), we get

I :=

∫ T

0

∫

Rd

[a(s, x) − b(s, x)]f(x− y)[a(s, y) − b(s, y)]dydxλH(ds) < 4ε,

i.e. ‖ϕ− l‖2
Λ < 4εc2, which will conclude the proof of (3.4). To see this, note that

I =
∑4

k=1 Ik, where

I3 := −
∫ T

0

∫

Rd

∫

Rd

[a(s, x) − g(s, x)]f(x− y)[b(s, y) − g(s, y)]dydxλH(ds)

I4 := −
∫ T

0

∫

Rd

∫

Rd

[a(s, y) − g(s, y)]f(x− y)[b(s, x) − g(s, x)]dydxλH(ds).
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The fact that |I3| < ε and |I4| < ε follows from the Cauchy-Schwartz inequality in
P(Rd), (3.5) and (3.8). �

It is again possible to describe the space HP using the transfer operator. Define
the transfer operator on E by the same formula (2.8). Note that in this case we
have

〈K∗
H1[0,t]×A,K

∗
H1[0,s]×B〉P =

(∫ t∧s

0

KH(t, u)KH(s, u)du

)

〈1A, 1B〉P(Rd)

= RH(t, s)〈1A, 1B〉P(Rd) = 〈1[0,t]×A, 1[0,s]×B〉HP ,

i.e. K∗
H is an isometry between (E , 〈·, ·〉HP ) and P . Since HP is the completion of

E with respect to 〈·, ·〉HP , this isometry can be extended to HP . We denote this
extension by K∗

HP .

Lemma 3.9. K∗
HP : HP → P is surjective.

Proof . The proof is similar to the proof of Lemma 2.3, using the fact that 1[0,t]×A ∈
K∗

HP(HP) for all t ∈ [0, T ], A ∈ Bb(R
d), and E is dense in P with respect to

‖ · ‖P . �

Remark 3.10. Using (2.9) and Lemma 3.9, we can formally say that

HP = {ϕ;ϕ(u, x) =
1

c′H
u−(H−1/2)D

H−1/2
T− (sH−1/2f(s, x))(u), f ∈ P},

where c′H = c∗HΓ(H − 1/2).

3.2. The Noise and the Stochastic Integral. In this subsection, we introduce the
noise which is randomly perturbing the heat equation. This noise is assumed to be
fractional in time and colored in space, with an arbitrary spatial covariance function
f . It has been recently considered by other authors (see e.g. Quer-Sardanyons and
Tindel (2006)) in the case when f is the Riesz kernel and the spatial dimension is
d = 1. The general definition that we consider in this subsection seems to be new
in the literature.

Let B = {B(ϕ);ϕ ∈ D((0, T ) × Rd)} be a zero-mean Gaussian process with
covariance

E(B(ϕ)B(ψ)) = 〈ϕ, ψ〉HP .

Let HB be the Gaussian space of B, i.e. the closed linear span of {B(ϕ);ϕ ∈
D((0, T )× Rd)} in L2(Ω). As in subsection 2.2, we can define Bt(A) = B(1[0,t]×A)

as the L2(Ω)-limit of the Cauchy sequence {B(ϕ)}n, where (ϕn)n ⊂ D((0, T )×Rd)
converges pointwise to 1[0,t]×A. We extend this definition by linearity to all elements
in E . A limiting argument shows that

E(B(ϕ)B(ψ)) = 〈ϕ, ψ〉HP , ∀ϕ, ψ ∈ E ,
i.e. ϕ 7→ B(ϕ) is an is isometry between (E , 〈·, ·〉HP ) and HB. Since HP is the
completion of E with respect to 〈·, ·〉H, this isometry can be extended to HP , giving
us the stochastic integral with respect to B. We will use the notation

B(ϕ) =

∫ T

0

∫

Rd

ϕ(t, x)B(dt, dx).
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Remark 3.11. Similarly to subsection 2.2, the transfer operator K∗
HP can be used

to explore the relationship between B(ϕ) and another stochastic integral. Using
Lemma 3.9, we define

M(φ) := B((K∗
HP)−1(φ)), φ ∈ P . (3.10)

Note that

E(M(φ)M(η)) = 〈(K∗
HP)−1(φ), (K∗

HP )−1(η)〉HP = 〈φ, η〉P ,

i.e. M = {M(φ);φ ∈ P} is a Gaussian noise which is white in time and has spatial
covariance function f . This noise has been considered in Dalang (1999). We use
the following notation:

M(φ) =

∫ T

0

∫

Rd

φ(t, x)M(dt, dx), φ ∈ P .

Note that M(φ) is in fact Dalang’s stochastic integral with respect to the noise M .
Let HM be the Gaussian space ofM , i.e. the closed linear span of {M(φ);φ ∈ P}

in L2(Ω). By (3.10), it follows that HM = HB. The following diagram summarizes
these facts:

?

HP
�

�
�

�
�

�
�	

P-

HB = HM

K∗
HP

B M

B(ϕ) = M(K∗
HPϕ), ∀ϕ ∈ HP , i.e.

∫ T

0

∫

Rd ϕ(t, x)B(dt, dx) =
∫ T

0

∫

Rd(K∗
HPϕ)(t, x)M(dt, dx)

In particular, B(t, A) =
∫ t

0

∫

AKH(t, s)M(ds, dy). This relation is not used in the
present article.

3.3. The Solution of the Stochastic Heat Equation. We consider the stochastic heat
equation driven by the noise B, written formally as:

ut − ∆u = Ḃ, in (0, T )× R
d, u(0, ·) = 0. (3.11)

As in subsection 2.3, we let G(t, x) be given by formula (2.13), and gtx(s, y) =
G(t−s, x−y). The next theorem is the fundamental result leading to the necessary
and sufficient condition for the existence of a solution of (3.11).

To state the theorem we need to introduce the following notations:

If,tx(r, s) :=

∫

Rd

∫

Rd

gtx(s, y)f(y − z)gtx(r, z)dy dz

Jf (u, v, y, z) :=

∫

Rd

∫

Rd

G(u, y − x)f(x − x′)G(v, z − x′)dx dx′.
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Theorem 3.12. Suppose that f satisfies the following two conditions:

Af (2t− s− r)−(d−αf )/2 ≤ If,tx(r, s) ≤ Bf (2t− r − s)−(d−αf )/2, (3.12)

∀r ∈ [0, t], ∀s ∈ [0, t], ∀t ∈ [0, T ], ∀x ∈ R
d

Jf (u, v, y, z) ≤ Cf (u+ v)−(d−αf )/2, (3.13)

∀u ∈ [0, T ], ∀v ∈ [0, T ], ∀y ∈ R
d, ∀z ∈ R

d

for some constants Af , Bf , Cf > 0 and αf < d. If

H >
d− αf

4
, (3.14)

then: (a) gtx ∈ |HP| for every (t, x) ∈ [0, T ] × Rd; (b) η ∗ G̃ ∈ HP for every
η ∈ D((0, T ) × R

d). Moreover,

‖gtx‖HP <∞ ∀(t, x) ∈ [0, T ]× R
d if and only if (3.14) holds. (3.15)

Proof . (a) We will apply Theorem 3.8 to the function gtx. As we noted in the
proof of Theorem 2.7, gtx(·, y) ∈ L2(0, T ) for every y ∈ Rd, and the map (τ, y) 7→
F0,Tgtx(τ, y) is measurable. We calculate

‖gtx‖2
HP := αHcH

∫

R

∫

Rd

∫

Rd

F0,T gtx(τ, x)f(x − y)F0,T gtx(τ, y)|τ |−(2H−1)dydxdτ.

For this, we write

‖gtx‖2
HP = αHcH

∫

R

|τ |−(2H−1)

∫

Rd

∫

Rd

(

∫ T

0

e−iτsgtx(s, y)ds

)

f(y − z)

(

∫ T

0

eiτrgtx(r, y)dr

)

dy dzdτ

= αHcH

∫

R

|τ |−(2H−1)

∫ t

0

∫ t

0

e−iτ(s−r)If,tx(r, s)dr ds dτ

= αH

∫ t

0

∫ t

0

|s− r|2H−2If,tx(r, s)dr ds, (3.16)

where we used the definition of If,tx(r, s) and Lemma A.1 (Appendix A). Using
(3.12), we see that

‖gtx‖2
HP ≤ αHBf

∫ t

0

∫ t

0

|s− r|2H−2(2t− r − s)−(d−αf )/2dr ds

‖gtx‖2
HP ≥ αHAf

∫ t

0

∫ t

0

|s− r|2H−2(2t− r − s)−(d−αf )/2dr ds.

Relation (3.15) follows, since the integral above is finite if and only if 2H > (d −
αf )/2. In this case, we have ‖gtx‖|HP| = ‖gtx‖HP < ∞ (since gtx ≥ 0), and hence
gtx ∈ |HP|.

(b) We will apply Theorem 3.8 to the function ϕ = η ∗ G̃. By Lemma 2.6,
ϕ(·, x) ∈ L2(0, T ) for every x ∈ Rd. We now calculate

‖ϕ‖2
HP := αHcH

∫

R

∫

Rd

∫

Rd

F0,Tϕ(τ, x)f(x − y)F0,Tϕ(τ, x′)|τ |−(2H−1)dx′dxdτ.
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By (2.17), we get

‖ϕ‖2
HP = αHcH

∫

R

|τ |−(2H−1)

∫ T

0

∫ T

0

e−iτ(s−r)

∫

Rd

∫

Rd

∫ T−s

0

∫ T−r

0

η(u + s, y)

η(v + r, z)Jf(u, v, y, z)dv du dz dy dr ds dτ

= αH

∫ T

0

∫ T

0

|s− r|2H−2

∫

Rd

∫

Rd

∫ T−s

0

∫ T−r

0

η(u+ s, y)η(v + r, z)

Jf (u, v, y, z)dv du dz dy dr ds,

where we used the definition of Jf (u, v, y, z) and Lemma A.1 (Appendix A).
Using (3.13) and the fact that η ∈ D((0, T ) × R

d) (and thus is bounded by a
constant and its support is compact), we conclude that

‖ϕ‖2
HP ≤ αHCf

∫ T

0

∫ T

0

|s− r|2H−2

∫

Rd

∫

Rd

∫ T−s

0

∫ T−r

0

|η(u+ s, y)η(v + r, z)|

(u+ v)−(d−αf )/2dy dz dv du dr ds

≤ αHCfDη

∫ T

0

∫ T

0

|s− r|2H−2

∫ T−s

0

∫ T−r

0

(u + v)−(d−αf )/2dv du dr ds.

As in the proof of Theorem 2.7.(b), the last integral is finite if 2H > (d− αf )/2.
�

The next theorem identifies identifies the constant αf in the case of some particular
covariance functions.

Theorem 3.13. (i) If f = Rα with 0 < α < d, then (3.12) and (3.13) hold with
αf = α. In this case,

‖gtx‖HP <∞ ∀(t, x) ∈ [0, T ]× R
d if and only if H > (d− α)/4.

(ii) If f = Bα with α > 0, or f = Gα with α > 0, then (3.12) and (3.13) hold with
αf = 0. In each of these two cases,

‖gtx‖HP <∞ ∀(t, x) ∈ [0, T ] × R
d if and only if H > d/4.

(iii) If f = Pα with α > 0, then (3.12) and (3.13) hold with αf = −1. In this case,

‖gtx‖HP <∞ ∀(t, x) ∈ [0, T ]× R
d if and only if H > (d+ 1)/4.

Proof . In all four cases, it is enough to verify that conditions (3.12) and (3.13)
hold for the corresponding constant αf . The fact that H > (d−αf )/4 is a necessary
and sufficient condition for ‖gtx‖HP < ∞ for all (t, x) can be checked directly in
each case, using the same argument as in the proof of Theorem 3.12.

We begin by examining condition (3.12). To simplify the notation, we will omit
the index tx in the writing of If,tx. Using the definitions of If and G, we obtain

If (r, s) =
1

(4π)d[(t− s)(t− r)]d/2

∫

Rd

∫

Rd

f(y − z)e−
|x−y|2

4(t−s)
− |x−z|2

4(t−r) dydz

=
1

(2π)d

∫

Rd

∫

Rd

f(
√

2(t− s)y′ −
√

2(t− r)z′)e−
|y′|2

2 −
|z′|2

2 dy′dz′

= E[f(
√

2(t− s)Y −
√

2(t− r)Z)] = E[f(U)]. (3.17)
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Here we used the change of variables x− y =
√

2(t− s)y′, x− z =
√

2(t− r)z′ and
we denoted by (Y, Z) = (Y1, . . . Yd, Z1, . . . , Zd) a random vector with independent
N(0, 1) components, and

U =
√

2(t− s)Y −
√

2(t− r)Z.

Note that Ui =
√

2(t− s)Yi −
√

2(t− r)Zi, i = 1, . . . , d are i.i.d. N(0, 2(2t− s− r))
random variables. Then Vi = Ui/

√

2(2t− s− r), i = 1, . . . , d are i.i.d. N(0, 1)
random variables and

|U |2 =

d
∑

i=1

U2
i = 2(2t− s− r)

d
∑

i=1

V 2
i = 2(2t− s− r)Wd, (3.18)

where Wd is a χ2
d random variable.

We are now treating separately the four cases:

(i) In the case of the Riesz kernel, f(x) = Rα(x) = γα,d|x|−(d−α) and 0 < α < d.
Using (3.17) and (3.18), the integral If (r, s) becomes

IRα
(r, s) = γα,dE|U |−(d−α) = γα,d[2(2t− s− r)]−(d−α)/2E|Wd|−(d−α/2)

:= Cα,d(2t− s− r)−(d−α)/2, (3.19)

where Cα,d = γα,d2
−(d−α)/2E|Wd|−(d−α)/2. This proves that condition (3.12) is

satisfied with αf = α.

(ii) In the case of the Bessel kernel,

f(x) = Bα(x) = γ′α

∫ ∞

0

w(α−d)/2−1e−we−|x|2/4wdw

and α > 0. Using (3.17) and (3.18), the integral If (r, s) becomes

IBα
(r, s) = γ′α

∫ ∞

0

w−(α−d)/2−1e−wE[e−|U|2/(4w)]dw

= γ′α

∫ ∞

0

w(α−d)/2−1e−wE

[

exp

(

−2t− r − s

2w
Wd

)]

dw

= γ′α

∫ ∞

0

w(α−d)/2−1e−w

(

1 +
2t− r − s

w

)−d/2

dw

where we used the fact that E[e−cWd ] = (1 + 2c)−d/2 for any c > 0. Note that

(

2t− r − s

w

)d/2

≤
(

1 +
2t− r − s

w

)d/2

≤ Cd

[

1 +

(

2t− r − s

w

)d/2
]

where Cd = 2d/2−1. Hence

1

2Cd
(2t−r−s)−d/2≤

1

Cd

wd/2

wd/2 + (2t − s − r)d/2
≤

„

1 +
2t − r − s

w

«−d/2

≤w
d/2(2t−s−r)−d/2

(3.20)

where for the first inequality we used the fact that a/(a+ x) > 1/(2x) if x is small
enough and a > 0.
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We conclude that

IBα(r, s) ≤ γ
′
α

Z ∞

0

w
(α−d)/2−1

e
−w

w
d/2(2t − r − s)−d/2

dw ≤ γ
′
αΓ

“

α

2

”

(2t − r − s)−d/2

IBα(r, s) ≥
γ′

α

2Cd

Z 1

0

w
(α−d)/2−1

e
−w(2t − r − s)−d/2

dw

≥
γ′

α

2Cd

„Z 1

0

w
α/2−1

e
−w

dw

«

(2t − r − s)−d/2
,

i.e. condition (3.12) is satisfied with αf = 0.

(ii’) In the case of the heat kernel, f(x) = Gα(x) = γ′′α,de
−|x|2/(4α) and α > 0.

Using (3.17) and (3.18), the integral If (r, s) becomes:

IGα(r, s)=γ
′′
α,dE[e−|U|2/(4α)]=γ

′′
α,dE

»

exp

„

−
2t − s − r

2α
Wd

«–

=γ
′′
α,d

„

1 +
2t − r − s

α

«−d/2

.

Using (3.20), we obtain that

γ′′α,d

2Cd
(2t− r − s)−d/2 ≤ IGα

(r, s) ≤ γ′′α,dα
d/2(2t− r − s)−d/2,

i.e. condition (3.12) is satisfied with αf = 0.

(iii) In the case of the Poisson kernel, f(x) = Pα(x) = γ′′′α,d(|x|2 + α2)−(d+1)/2

and α > 0. Using (3.17) and (3.18), the integral If (r, s) becomes:

IPα
(r, s) = γ′′′α,dE

[

(|U |2 + α2)−(d+1)/2
]

= γ′′′α,dE
∣

∣2(2t− r − s)Wd + α2
∣

∣

−(d+1)/2
.

Using the fact that

Ad[(2t−r−s)Wd]−(d+1)/2≤ [2(2t−r−s)Wd+α2]−(d+1)/2≤Bd[(2t−r−s)Wd]−(d+1)/2

for some constants Ad, Bd > 0, we conclude that

AdE|Wd|−(d+1)/2(2t−r−s)−(d+1)/2≤IPα
(r, s)≤BdE|Wd|−(d+1)/2(2t−r−s)−(d+1)/2,

i.e. condition (3.12) is satisfied with αf = −1.

We continue by examining condition (3.13). Using the definitions of Jf and G,
we obtain that

Jf (u, v, y, z) =
1

(4π)d(uv)d/2

∫

Rd

∫

Rd

f(x− x′)e−
|x−y|2

4u
− |x′−z|2

4v dxdx′

=
1

(2π)d

∫

Rd

∫

Rd

f(y − z +
√

2(
√
ua+

√
va′))e−

|a|2

2 −
|a′|2

2 dada′

= E[f(y − z +
√

2(
√
uY +

√
vZ))] = E[f(y − z + U)]. (3.21)

Here we used the change of variables x − y =
√

2ua and x′ − z =
√

2va′, we de-
noted by (Y, Z) = (Y1, . . . Yd, Z1, . . . , Zd) a random vector with independent N(0, 1)
components, and

U =
√

2uY −
√

2vZ.

Note that Ui =
√

2uYi −
√

2vZi, i = 1, . . . , d are i.i.d. N(0, 2(u + v)) random

variables. Then Vi = Ui/
√

2(u+ v), i = 1, . . . , d are i.i.d N(0, 1) random variables
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and

|y− z+U |2 =

d
∑

i=1

(yi − zi +Ui)
2 = 2(u+ v)

d
∑

i=1

(µi +Vi)
2 = 2(u+ v)

d
∑

i=1

T 2
i , (3.22)

where µi = (yi − zi)/
√

2(u+ v) and Ti = µi + Vi is N(µi, 1)-distributed. It is
known that (see e.g. p. 132, Johnson and Kotz, 1970)

d
∑

i=1

T 2
i

d
= Wd−1 + S2, (3.23)

where Wd−1 and S are independent random variables with distributions χ2
d−1, re-

spectively N(

√

∑d
i=1 µ

2
i , 1).

We are now treating separately the four cases:

(i) In the case of the Riesz kernel, f(x) = γα,d|x|−(d−α). Using (3.21), (3.22),
and (3.23), the integral Jf (u, v, y, z) becomes:

JRα
(u, v, y, z) = γα,dE|y − z + U |−(d−α) =γα,d[2(u+ v)]−(d−α)/2E

∣

∣

∣

∣

∣

d
∑

i=1

T 2
i

∣

∣

∣

∣

∣

−(d−α)/2

= γα,d[2(u+ v)]−(d−α)/2E
∣

∣Wd−1 + S2
∣

∣

−(d−α)/2

≤Dα,d(u+ v)−(d−α)/2,

where Dα,d = γα,d2
−(d−α)/2E|Wd−1|−(d−α)/2, i.e. condition (3.13) is satisfied with

αf = α.

(ii) In the case of the Bessel kernel,

f(x) = Bα(x) = γ′α

∫ ∞

0

w(α−d)/2−1e−we−|x|2/4wdw

and α > 0. Using (3.21), (3.22), and (3.23), the integral If (r, s) becomes

JBα
(u, v, y, z) = γ′α

∫ ∞

0

w(α−d)/2−1e−wE[e−|y−z+U|2/(4w)]dw

= γ′α

∫ ∞

0

w(α−d)/2−1e−wE

[

exp

(

−u+ v

2w

d
∑

i=1

T 2
i

)]

dw

= γ′α

∫ ∞

0

w(α−d)/2−1e−wE

{

exp

[

−u+ v

2w
(Wd−1 + S2)

]}

dw

Note that

E[e−c(Wd−1+S2)] ≤ (1 + 2c)
−d/2

, ∀c > 0. (3.24)

This follows by the independence of Wd−1 and S, the fact that E(e−cWd−1) =
(1 + 2c)−(d−1)/2, and

E
(

e−cS2
)

=
1√

1 + 2c
exp

{

−
∑d

i=1 µ
2
i

2
· 2 + 2c

1 + 2c

}

≤ (1 + 2c)−1/2, ∀c > 0
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(recall that S has N(
√

∑d
i=1 µ

2
i , 1) distribution). Therefore

JBα
(u, v, y, z) ≤ γ′α

∫ ∞

0

w(α−d)/2−1e−w

(

1 +
u+ v

w

)−d/2

dvdu

= γ′α

∫ ∞

0

wα/2−1e−w(w + u+ v)−d/2dw

≤ γ′αΓ(α/2)(u+ v)−d/2,

i.e. condition (3.13) is satisfied with αf = 0.

(ii’) In the case of the heat kernel, f(x) = Gα(x) = γ′′α,de
−|x|2/(4α) and α > 0.

Using (3.21), (3.22), and (3.23), the integral Jf (u, v, y, z) becomes

JGα
(u, v, y, z) = γ′′α,dE[e−|U|2/(4α)] = γ′′α,dE

{

exp

[

−u+ v

2α
(Wd−1 + S2)

]}

≤ γ′′α,d

(

1 +
u+ v

α

)−d/2

≤ γ′′α,dα
d/2(u+ v)−d/2

where we used (3.24) for the first inequality. This proves that condition (3.13) is
satisfied with αf = 0.

(iii) In the case of the Poisson kernel, f(x) = Pα(x) = γ′′′α,d(|x|2 + α2)−(d+1)/2

and α > 0. Using (3.21), (3.22), and (3.23), the integral Jf (u, v, y, z) becomes

JPα
(u, v, y, z) = γ′′′α,dE

[

(|y − z + U |2 + α2)−(d+1)/2
]

= γ′′′α,dE

∣

∣

∣

∣

∣

2(u+ v)

d
∑

i=1

T 2
i + α2

∣

∣

∣

∣

∣

−(d+1)/2

= γ′′′α,dE
∣

∣2(u+ v)(Wd−1 + S2) + α2
∣

∣

−(d+1)/2

≤ γ′′′α,d[2(u+ v)]−(d+1)/2E|Wd−1|−(d+1)/2,

i.e. condition (3.13) is satisfied with αf = −1. �

Lemma 3.14. Let f be one of the kernels given in Theorem 3.13, and assume that
(3.14) holds (with the corresponding constant αf ). Then the process {u(t, x); (t, x) ∈
[0, T ]× Rd} defined by:

u(t, x) := B(gtx) =

∫ T

0

∫

Rd

G(t− s, x− y)B(ds, dy) (t, x) ∈ [0, T ]× R
d

is mean-square continuous, i.e. E|u(tn, xn)− u(t, x)|2 → 0 for any (t, x) ∈ [0, T ]×
Rd and for any sequence {(tn, xn)}n ⊂ [0, T ] × Rd with (tn, xn) → (t, x).

Proof . The proof is identical to the proof of Lemma 2.9, based on the continuity
of the function G(t, x) with respect to each of its arguments, and the fact that
‖gtx‖HP <∞. �

A jointly measurable process {X(t, x); (t, x) ∈ [0, T ]×Rd} is said to be a solution
of the stochastic Cauchy problem (3.11) if for any η ∈ D((0, T ) × Rd),

∫ T

0

∫

Rd

X(t, x)η(t, x)dxdt =

∫ T

0

∫

Rd

(η ∗ G̃)(t, x)B(dt, dx) a.s. (3.25)
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The next theorem can be viewed as a counterpart of the result obtained by
Maslowski and Nualart (see Example 3.5, Maslovski and Nualart, 2003 in the case
m = 1, L1 = ∆, f = 0, Φ = 1). Its proof is similar to the proof of Theorem 2.10
and therefore is omitted.

Theorem 3.15. Let f be one of the kernels given in Theorem 3.13, and αf the cor-
responding constant. In order that there exists a stochastic process {X(t, x); (t, x) ∈
[0, T ]×Rd} belonging to B and satisfying (3.25), it is necessary and sufficient that
(3.14) holds. In this case, for any (t, x) ∈ [0, T ]× Rd

X(t, x) =

∫ T

0

∫

Rd

G(t− s, x− y)B(ds, dy) a.s. (3.26)

Acknowledgement. The authors would like to thank an anonymous referee who read
the article very carefully and made numerous suggestions for improving the presentation.

Appendix A. An Auxiliary Lemma

The following result is the analogue of Lemma 1, p.116, Stein (1970), for functions
on bounded domains. It plays a crucial role in the present paper. For our purposes,
it is stated only for d = 1, but it can be easily generalized to d ≥ 2.

Lemma A.1. Let 0 < α < 1 be arbitrary. (a) For every ϕ ∈ L2(a, b), we have
∫ b

a

|t|−(1−α)ϕ(t)dt = qα

∫

R

|τ |−αFa,bϕ(τ)dτ

where qα = (21−απ1/2)−1Γ(α/2)/Γ((1 − α)/2). (b) For every ϕ, ψ ∈ L2(a, b), we
have

∫ b

a

∫ b

a

ϕ(u)|u− v|−(1−α)ψ(v)dvdu = qα

∫

R

|τ |−αFa,bϕ(τ)Fa,bψ(τ)dτ

Remark A.2. Note that qα = 1/γα,1 where γα,d is the constant defined in Example
3.1.

Proof . (a) We use the fact that
∫

R

e−iτte−πδ|τ |2dτ = δ−1/2e−|t|2/(4πδ), ∀δ > 0. (A.1)

Using the definition of Fa,bϕ, Fubini’s theorem and (A.1), we have

∫

R

e−πδ|τ |2Fa,bϕ(τ)dτ =

∫ b

a

(∫

R

e−iτte−πδ|τ |2dτ

)

ϕ(t)dt=δ−1/2

∫ b

a

e−|t|2/(4πδ)ϕ(t)dt.

Multiply by δα/2−1 and integrate with respect to δ > 0. Using Fubini’s theorem,
we get
∫

R

(∫ ∞

0

δα/2−1e−πδ|τ |2dδ

)

Fa,bϕ(τ)dτ =

∫ b

a

(∫ ∞

0

δ−(1−α)/2−1e−π|t|2/(4πδ)dδ

)

ϕ(t)dt.

Using the change of variable 1/δ = u for the inner integral on the right hand side,
and the definition of the Gamma function for evaluating both inner integrals, we
get the conclusion.
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(b) Note that for every u ∈ [a, b],

∫ b

a

|u−v|−(1−α)ψ(v)dv=

∫ u−a

u−b

|w|−(1−α)ψ(u−w)dw=qα

∫

R

|τ |−αFu−b,u−a(ψu)~(τ)dτ,

where we used the result in (a) for the last equality. Now,

Fu−b,u−a(ψu)~(τ)=

∫ u−a

u−b

e−τtψ(u − v)dv=

∫ b

a

e−iτ(u−w)ψ(w)dw=e−iτuFa,bψ(τ).

Using Fubini’s theorem

∫ b

a

ϕ(u)

∫ b

a

|u− v|−(1−α)ψ(v)dvdu = qα

∫ b

a

ϕ(u)

∫

R

|τ |−αe−iτuFa,bψ(τ)dτdu =

qα

∫

R

(

∫ b

a

ϕ(u)e−iτudu

)

|τ |−αFa,bψ(τ)dτ = qα

∫

R

|τ |−αFa,bϕ(τ)Fa,bψ(τ)dτ.

�

Appendix B. Proof of (2.26)

Let ηn(t, x) = λn(t− t0)ψn(x− x0) := αn(t)βn(x). Then

F0,T (ηn ∗ G̃)(τ, x) =

∫ T

0

e−iτt

(∫ 0

−∞

∫

Rd

αn(t− s)βn(x− y)G̃(s, y)dy ds

)

dt

=

∫

Rd

βn(x− y)

∫ 0

−∞

e−iτsG̃(s, y)

(

∫ T

0

e−iτ(t−s)αn(t− s)dt

)

ds dy.

Since supp αn ⊂ (t0, t0 + T/n), we obtain that

∫ T

0

e−iτ(t−s)αn(t− s)dt =

∫ T−s

−s

e−iτuαn(u)du

=







Ft0,t0+T/nαn(τ) if − s < t0
F−s,t0+T/nαn(τ) if t0 < −s < t0 + T/n
0 if − s > t0 + T/n

and hence

F0,T (ηn ∗ G̃)(τ, x) = Ft0,t0+T/nαn(τ)

∫

Rd

βn(x− y)

∫ 0

−t0

e−iτsG̃(s, y)dsdy+

∫

Rd

βn(x − y)

∫ −t0

−t0−T/n

e−iτsG̃(s, y)F−s,t0+T/nαn(τ)dsdy := An(τ, x) +Bn(τ, x).

Note that limnBn(τ, x) = 0. Whereas for An(τ, x), we have

Ft0,t0+T/nαn(τ) =

∫ t0+T/n

t0

e−iτtλn(t− t0)dt = e−iτt0

∫ T/n

0

e−iτuλn(u)du

= e−iτt0F0,Tλ(τ/n) → e−iτt0 , as n→ ∞
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and
∫

Rd

βn(x− y)

∫ 0

−t0

e−iτsG̃(s, y)dsdy =

∫

Rd

ψn(x− y − x0)F−t0,0G̃(τ, y)dy

=

∫

Rd

ψn(z − x0)F−t0,0G̃(τ, x − z)dz

→ F−t0,0G̃(τ, x− x0), as n→ ∞
by Lebesgue differentiation theorem. Therefore

lim
n
An(τ, x) = e−iτt0F−t0,0G̃(τ, x− x0) = F0,Tgt0x0(τ, x).

Appendix C. A Result about the Space P(Rd)

The next result is probably well-known. It is used in the proof of Lemma 3.7
and we include its proof for the sake of completeness.

Lemma C.1. If ϕ ∈ S(Rd) and
∫

Rd |F2ϕ(ξ)|2µ(dξ) <∞, then ϕ ∈ P(Rd).

Proof . Let η ∈ D(Rd) be such that η > 0 and
∫

Rd η(x)dx = 1. Define ηn(x) =

ndη(nx) and ϕn = ϕ ∗ ηn ∈ S(Rd). We have ϕn ∈ |P(Rd)| ⊂ P(Rd), since
∫

Rd

∫

Rd

|ϕn(x)|f(x − y)|ϕn(y)|dydx =

∫

Rd

f(z)(|ϕn| ∗ |ϕ̃n|)(z)dz <∞,

by Leibnitz’s formula (see p. 13, Dalang, 1999). Note that

‖ϕn−ϕ‖2
P(Rd) =

∫

Rd

|F2ϕn(ξ)−F2ϕ(ξ)|2µ(dξ)=

∫

Rd

|F2ηn(ξ)−1|2|F2ϕ(ξ)|2µ(dξ)→0,

where we used the dominated convergence theorem, and the fact that F2η(ξ) =
F2η(ξ/n) → 1 and |F2η(ξ)| ≤ 1 for all n. The conclusion follows. �
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