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Abstract Memristor, the fourth basic circuit element, has 
shown great potential in neuromorphic circuit design for its 
unique synapse-like feature. However, though the continuous 
resistance state of memristor has been expected, obtaining and 
maintaining an arbitrary intermediate state cannot be well 
controlled in nowadays memristive system. In addition, the 
stochastic switching behaviors have been widely observed. To 
facilitate the investigation on memristor-based hardware im-
plementation, we built a stochastic behavior model of TiO2
memristive devices based on the real experimental results. By 
leveraging the stochastic behavior of memristors, a macro cell 
design composed of multiple parallel connecting memristors 
can be successfully used in implementing the weight storage 
unit and the stochastic neuron  the two fundamental compo-
nents in neural network (NN)s, providing a feasible solution in 
memristor-based hardware implementation.   

1. Introduction 
As traditional von Neumann computing systems based on 

CMOS technologies gains less performance increment and 
energy efficiency from device scaling, neuromorphic hardware 
systems that potentially provide the capabilities of biological 
perception and information processing within a compact and 
energy-efficient platform have gained great attentions [1][2]. 
However, the hardware development of NNs in traditional 
VLSI circuits still falls behind from the following perspectives. 
First, the weight matrix storage by digital-analog convertors, 
capacitors, or floating gates, has low precision, high power 
consumption, and high area overhead. Second, the voltage-
based matrix computation induces many design issues includ-
ing voltage offset, noise generation and voltage saturation. 
Last but not the least, the architecture and connection of such 
neuromorphic systems are hard to scale up, limiting the size 
and function of hardware implementations [3].  

Theoretically, an idea memristor exhibits similarly as a syn-
apse in bio-tissues [4]  flux 
through the device as its memristance , which can be lever-
aged as the weight between an input voltage and an output 
current such as . Such device feature potentially pro-
vides a complementary solution in neuromorphic design.  

However, at current stage, a large gap exists between the 
theoretical memristor characteristics and the experimental data 
obtained from real devices, raising severe concerns in feasibil-
ity of memristor-based hardware design. For instance, the 
memristor theory expresses a continuous and stable memris-
tance change. Though an arbitrary intermediate state can be 
obtained by carefully setting current compliance and period in 
a single metal oxide memristor, the corresponding realization 
at large scale, e.g., crossbar array, is very difficult after includ-
ing intrinsic design constrains, process variations, etc. Keeping 
a memristor in its ON or OFF state (  or ), on the con-

trary, is much more controllable. Thus, memristors nowadays 
 [9].  

Moreover, metal oxide based memristor behaves stochasti-
cally and hence even a single memristive device demonstrates 
large variations in performance. More specific, the static states
of a single memristive switch, i.e.,  and , are not fixed, 
but have large variations with skewed distributions and heavy 
tails [10]. The switching mechanism of a memristive switch, 
that is, its dynamic behavior, performs as a stochastic process 
[11], which has been widely demonstrated in various materials 
[19][20]. Previous statistical analyses on memristors were 
limited to the binary switching as data storage. However, as an 
analog device in NN application, it is necessary to understand 
and model analog stochastic characteristic. Here, 
we refer memristor to TiO2 thin-film device. 

In this work, we built a stochastic behavior model of TiO2
memristive devices based on the real measurement results 
[9][10] to better facilitate the exploration of memristive 
switches in hardware implementation. The model bypasses 
material-related parameters while directly linking the device 
analog behavior to stochastic functions. Simulations show that 
the proposed stochastic device model fits well to the existing 
device measurement results.   

To overcome the gap between the theoretical and real char-
acteristics of memristive devices, we propose a macro cell 
design composed of a group of parallel connected memristive 
switches. It utilizes multiple memristors to represent an analog 
value by leveraging the stochastic behavior. Though the design 
sacrifices the design density, it is still more efficient than the 
CMOS implementations in floating gates or capacitors [18]. 
The usage of macro cells in weight storage unit and stochastic 
neuron, the two fundamental elements of neuromorphic system 
[12], is then demonstrated. The macro cells can be naturally 
integrated into memristor crossbars that previously were pro-
posed as weight storage in neuromorphic computation [21].  

The remainder of the paper is organized as follows. Section 
2 provides the preliminary knowledge. Section 3 describes the 
stochastic model and calibrates it with experimental data. Sec-
tion 4 presents the macro cell design and shows its usages. At 
last, we conclude the paper in Section 5.   
2. Preliminary  
2.1 Fundamental Components in Neural Network   

Inspired by biological system, NNs mimic neuron-synapse 
networks, in which synapses transmit weighted signals and 
neurons process these signals based on activation functions. 
Many NN functionalities can be obtained through different 
network topologies, training methods, and activation functions. 
However, two fundamental components are always essential:  
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The weight carrier for weight storage and signal modula-
tion. The weights shall be represented by continuous analog 
state (or at least highly accurate digital states).   
The stochastic neuron can be taken as neuron with a proba-
bilistic activation function. It has been widely used in mod-
ern NNs, e.g., Restricted Boltzmann Machine (RBM).  

2.2 Memristor and Its Potential in Neural Network   
As illustrated in Figure 1(a), a memristor describes the rela-

The first physical 
demonstration of memristor was announced in 2008 through a 
TiO2 thin-film material [14] depicted in Figure 1(b). The basic 
theoretical model contains of the static state represented by 
memristance  as  and the dynamic behavior 
described by the movement of an internal state  under elec-
trical excitation as . Note that the internal state 
is physically meaningful. For example,  in a TiO2 thin-film 
material is the width of its barrier. Memristor is considered as 
a potential candidate for efficient neuromorphic circuit realiza-
tion. Many researches on theoretical analysis [5][6] and hard-
ware implementation [7][8] were demonstrated.  
2.3 Characteristics of Real Memristive Devices 

Compared to theoretical characteristics of ideal devices, 
many non-ideal features have been revealed in real memristive 
devices. For example, a geometrical variation aware TiO2 de-
vice model illustrated in Figure 1(c) was developed [15]. More 
importantly, although a single memristor can be tuned to arbi-
trary analog state, it is difficult to generalize this approach to 
large-scale designs because of the sneak paths. We face the 
unfortunate reality that only ing 
binary states are practical for designs with nano-devices [4]. 

Moreover, the stochastic behavior in dynamic switching 
process and large variations in static states have been widely 
observed in experimental results of metal oxide materials. In 
brief, the time to successfully change the state of a single 
memristive switch is not deterministic but follows a long tail 
distribution [9]. And  and   follow skewed distributions 
[10]. These non-ideal characteristics shall be considered in 
hardware implementations built with memristive switches.  

Though many physical memristor models were built based 
on insight mechanisms [11][16][17], they cannot reflect the 
large variation induced by stochastic switching behavior. Sto-
chastic models can better link the statistical measurement data 
to probability functions. But the existing stochastic models are 
limited to only the binary switching behaviors [9][10] and 
hence cannot capture the intermediate analog state.  
3. Stochastic Model for Memristive Switch   

We proposed a stochastic model for TiO2 memristive switch 

based on both the inspection of the physical mechanisms 
[11][17] and the statistical analysis of experimental data 
[9][10]. Our model describes the stochastic memristive switch-
ing based on the behavior analysis in both static states and 
dynamic switching process.  
3.1 On and OFF Static States 

The static stochastic behavior can be described by the dis-
tributions of  and  . In TiO2 memristor, the initial barri-
er width  follows a normal distribution and the device re-
sistance exponentially depends on . Therefore the distribu-
tion of state resistance follows the lognormal probability den-
sity function (pdf) function, which is [11]:  

         (1) 

Here,  is the normal mean and  is the standard deviation. 
Note that or  does not change within a given static state 
because  remains constant. Therefore, we can use lognormal 
function ( ) to generate the sampling data, such as 

, and  (2a) 
.  (2b) 

3.2 Dynamic Switching Process 
The dynamics in TiO2 memristor is a complex oxide electro-

forming process. It can be explained as an electro-reduction 
and vacancy creation process caused by high electric fields 
and enhanced by electrical Joule heating. Usually the barrier 
width  is used to model the vacancy channeling mechanism. 
Although the vacancy channeling mechanism has been evi-
denced by experiments [11], it is difficult to match it to a pure 
physical model. Instead, our model is based on the analysis of 
three major behaviors; we start with a mathematical analysis 
of the analog stochastic switching behavior from the statistical 
aspect, and then bridge the parameters in mathematical expres-
sion with the physical excitation. At last, the impact of over 
tune is integrated into the stochastic model. 
3.2.1 Analog Stochastic Switching Behavior 

The stochastic resistance changing has been observed in 
high frequency measurement at low voltage [17]. The time 
dependency of switching probability can be approximated by 
the cumulative probability function (CDF) of lognormal distri-
bution, such as [9]:  

 (3) 

Here,  represents the pulse width of activation time. And 
 and  are related to the external voltage .
Instead of studying the complicated physical mechanism 

and its impact, we use mathematical method to analyze the 
ON-OFF switching probability. According to Eq. (3), the ON-
OFF switching probability can be approximated by a CDF of 
lognormal distribution, differentiation of at

, then is a pdf of the lognormal distribution, such as 
.                (4) 

Eq. (4) describes the distribution of the increment of switching 
probability at time  when applying 
a signal with a short pulse width .

The switching mechanism of a memristive device is intrin-
sic. Hence, the characteristic of the stochastic behavior re-
mains unchanged and follows the same probability function 
during its switching process. From its physical meaning per-
spective, Eq. (4) reflects the increment of switching probabil-

Figure 1. (a) Memristor is the fourth basic circuit element. (b) The 
ideal TiO2 memristor model. (c) The geometric variation model. 
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ity at time , which can be associated to the resistance 
change . Physically, a successful switching event with a 
pulse of  indicates that the device resistance changes 
from  to , or vice versa, that is, .

Considering that both ON and OFF switching are the cumu-
lative results of the analog resistance changing and the incre-
ment of switching probability is directly reflected by the 
change of resistance, the change of analog resistance at time 

 can be generated by mapping to the distribution of the 
increment of switching probability, leading to  

.         (5) 

3.2.2 Time & Voltage Dependency of Switching Probability 
Time and voltage dependency of switching probability de-

scribes the switching probability of memristive switch under 
applied voltage  and activation time . The switching 
process resulted from the cumulative impact of input signals 
can be modeled with CDF function. The lognormal switching 
time distribution comes from the nonlinear switching dynam-
ics of the devices. Considering that the median switch time ( )
is exponentially dependent on the applied voltage amplitude ,
we approximate  as an exponential function, such as:  

                               (6) 
where  and are fitting parameters.  

Since  has only a weak dependence on , we can approx-
imate the relationship between  and  by a hard threshold 
squashing function, such as  

 .             (7) 

Where,  and  are fitting parameters.  and  are 
the upper and lower boundaries, respectively. Our model ap-
plies two individual sets of fitting parameters to ON and OFF 
switching processes.  
3.2.3 The Resistance Shifting Due To Over Tune 

Over tune stands for the behavior when one or more exter-
nal voltage pulses continue being applied in the switching 
direction after the state switching of memristor already suc-
cesses. For example, apply an ON switching signal to a device 
already in ON state. Based on the vacancy channeling mecha-
nism, the over tune in OFF state continues eliminating the 
oxygen vacancy until all the oxygen vacancies disappear and 
the device becomes an insulator. In ON state, the over tune 
creates more oxygen vacancies to form more conducting chan-
nels. The device mechanism becomes less appropriate to be 
modeled with barrier width  since the channel frontier no 
longer exists. The resistance shifting in real devices is even 
more complex after including thermal, electron kinetic energy, 
and other physical issues. During over tune, a memristor de-
vice remains in the same static state and the resistance shifting 
follows the static resistance distribution. However, a systemat-
ic impact on  and   has been observed [10].  

Here, we use a statistical method to analyze the impact of 
over tune on the resistance shifting. The charge  flowing 
through the device is used as the input variable, which has a 
direct impact on the number of oxygen vacancies and the de-
vice resistance. To exhibit the trend of resistance shifting, a 
linear approximation can be assumed between the passing 
charge  and the mean shifting   as [14]:    

  .                       (8) 

Here,  is the fitting parameter that describes the shift speed 
of mean, M is the current memristor resistance. The new 
and can be calculated from Eq. (7):

   (9a) 
                    (9b) 

Though more complicated fitting equations can be estab-
lished, such an approach is impractical and unnecessary at 
current stage considering of insufficient experimental data 
available. The resistance shifting caused by over tune is con-
strained within the target resistance state, demonstrating less 
impact on the overall memristor characteristic compared to the 
ON-OFF switching. 
3.3 Stochastic Model Verification  

We verified the proposed stochastic model from perspec-
tives of static states and dynamic switching process. 

Static States: Figure 2 shows the resistance distributions of 
a memristive switch in ON and OFF states. The blue bars in 
the figure are real measurement data of a TiO2 memristive 
switch [10]. The results show that the lognormal distribution 
fits well to the real device data in ON state. However, in OFF 
state, the heavy tail is captured but the median value is slightly 
skewed. Though the distribution of  is not perfectly fitted, 
the error in distribution fitting of  has ignorable impact in 
the circuit simulation since  is more than two orders of 
magnitude higher than .

Dynamic Switching Process: Figure 3 shows the time de-
pendencies of ON and OFF switching probability at different 
applied voltages. The results have high approximation to the 
experimental results [9]. The error mainly comes from the 
approximation of the relationship between  and . As 
aforementioned, establishing a more reliable estimation of 
requires more experimental data.  

 Figure 4 shows the simulated analog resistance changing 
process of a TiO2 memristor to better demonstrate the time and 
voltage dependency of switching probability and the resistance 
shifting due to over tune. The external voltage is set as 
to switch the memristor from  to . The 100 curves in 
the figure represent the resistance changings by repeating 100 
times of the ON switching procedure for the same device. The 
distribution of 100 tests agrees well with the switching proba-
bility curve at -3.0V in Figure 3(a): about 40% of the curves 
reach  before 0.1 S.  

Considering the obvious stochastic behavior of memristive 
device at nanometer regime, traditional device modeling based 
on curve fitting is not enough. In this work, we built a stochas-
tic model for TiO2 memristor by bridging the key physical 

Figure 2. The static state distributions of a memristive switch. 
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mechanisms and the experimental data fitting. The model 
combines the stochastic characteristics in static states and 
dynamic switching process together, and extends the stochas-
tic study to the analog state while still holding high approxi-
mation to the existing data. The accurate and fast estimation 
on the distribution of analog states makes the pro-
posed model more meaningful for higher level circuit and sys-
tem designs. This model can be generalized to other metal 
oxide memristors [19][20] for the same stochastic nature, that 
is, the percolation property of the thin dielectric soft break-
down [22]. The proposed model can be further enhanced by 
integrating with reliable physical model that precisely de-
scribes the stochastic switching mechanism. The complex and 
slow physical model generates the required distribution data to 
develop the proposed fast stochastic model.  
4. Memristive Switches in Neural Network  

Our primary interest is to effectively utilize memristive 
switches and provide feasible designs for NN hardware. Ra-
ther than digging into specific NNs, we realized two funda-
mental NN components with memristive switches: the weight 
storage unit and the stochastic neuron for binary/continuous 
value generation. To ease the following discussion, we change 
the expression of memristive switches from resistance  (in 
unit ) to conductance  (in unit ), where .
4.1 Weight Storage Units 

Storing high-precision continuous weight is beyond the ca-
pability of a single memristive switch. We proposed a macro 
cell design composed of a group of parallel connected memris-
tive switches for weight storage.  
4.1.1 Characterization of Multiple Memristive Switches  

Multiple memristive switches connected in serial or in par-
allel can provide multi-level conductance (resistance) values 
by simply combining the ON and OFF states of these devices. 
Comparing the two connection topologies, the design of paral-
lel connection can be easily adapted on crossbar arrays. Also, 
it can provide a linear function of the read-out current, mitigat-
ing the pressure on sensing circuit. Thus, a group of parallel 

connected memristive switches is adopted in our design. The 
programming/detecting on the different ON and OFF combi-
nations is realized through the peripheral circuit.  

Here we take 9 parallel connected switches as an example. 
Figure 5 shows the distribution of its overall conductance .
To evaluate the impact of resistance in OFF state, we gradual-
ly increase the device number in ON state and remain the oth-
ers in OFF state. The simulation result shows that the mean 
and deviation of  linearly grows as the number of ON 
memristive switches increases. Moreover, when all the 
memristive switches are in OFF state, the variation is negligi-
ble, indicating the variation in OFF State has little impact on 
the total conductance. In other words, the ON-state variation 
dominates the distribution of . Thus, with more memristors 
in a macro cell, it can achieve larger conductance range, 
roughly proportional to  times number of memristors.  
4.1.2 Macro cell  A Continuous Weight Storage Unit   

The parallel connection of memristive switches can be easi-
a  memristive 

switch crossbar in Figure 6(a) as an example. By combining 
the three inputs wires together and connecting the three output 
wires, the 9 memristive switches in this structure are parallel 
connected. We name such a structure as a macro cell.

The given example has 10 possible ON-OFF device combi-
nations, corresponding to 10 different conductance levels. 
Ideally, the 10 conductance levels can be differentiated by 
tuning the number of memristive switches in ON state. Unfor-
tunately, as the simulation result in Figure 5 shows that the 
large resistance variation of ON state causes overlapping of 
conductance distribution, which is problematic in realizing 
traditional digitalized data storage for lacking of noise margin 
between adjacent levels. However, it also indicates continuous 
analog weight storage since a macro cell can achieve any arbi-
trary conductance within the overlapping range. For instance, 
the total conductance  of the macro cell in Figure 6(a) 
ranges from  to . The unreachable con-
ductance ranges from  to , correspond-
ing to the region from the upper bound of 9 switches in OFF 
state to the lower bound when only one switch is in ON state.  
4.1.3 Feedback Attempt Scheme  

A feedback attempt scheme can be used to achieve target 
conductance in macro cells. Figure 6(a) illustrates the concep-
tual diagram of the programming scheme. First, the number of 
memristive switches in ON state is determined to tune the 
overall conductance roughly. The output current is detected to 
check if the target  has been reached. A feedback control 
then is given to finely tune the macro cell memristor conduct-
ance. If the detected current is not within the absolute error 
threshold , an ON state memristor is randomly selected to 
reset and then set again. Under a given operation condition, the 

         
Figure 3. The time dependency of ON (a) and OFF (b) switching at different external voltages V.           Figure 4. The analog switching process of 

                              a TiO2 memristor. 
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target conductance may not be obtained within a certain num-
ber of tryouts, indicating that either one or more memristors 
are too conductive or too resistive. We need to gradually re-
duce or increase the memristor number on ON state until the 
total conductance falls into tunable range. Then, restart the 
programming through the random attempt scheme.  

In weight storage unit design, voltage pulses are used to 
control the switching of memristive switches. The pulse width 

 is fixed, which is determined by the speed requirement. 
The amplitude  with ~100% switching probability is required 
to ensure the deterministic switching. 

Figure 7 summarizes the average and the worst-case recon-
figuration cycles to approach the different target conductance. 
The target conductance  can be generated by comparing to 
a reference current signal. Each data in the figures represents 
the statistical results of 1 million samples. The simulation re-
sults show that reconfiguration cycles increases linearly as the 
target conductance rises, while dramatically increases as the 
threshold error  decreases. More importantly, it shows that 
the proposed feedback attempt scheme can already achieve 
high precision programming within affordable attempts: any 
target conductance can be approached within on average 25 
attempts with the error of , corresponding to 
only 1% of the achievable conductance range. In the worst-
case study, when , the macro cell reaches the 
target conductance within 50 attempts in most cases. A rough 
calculation of  implies that the macro cell 
can achieve at least 17 non-overlapping conductance levels 
rather than 10 levels obtained from ON/OFF combinations. If 
more attempts are affordable, we can increase to 50 non-
overlapping conductance levels by reducing  to .
4.1.4 Macro Cells in Crossbar 

The proposed macro cell can be easily adopted on larger 
crossbar structure. Figure 6(b) shows an example in which a 

memristive switch crossbar is partitioned into 4 macro 
cells to implement a  weight matrix. The design sacrific-
es density while offering a practical and reliable way to realize 
continuous resistance state for analog storage and computation 
via binary switching memristors. The biggest advantage of 

such a design is the dramatical decrement of programming 
complexity: a complex and slow feedback scheme is necessary 
when tuning a memristor to a specific analog state. In contrast, 
binary switching of memristors can adopt the existing memory 
programming scheme that is simple and reliable. 

Compared with the crossbar array implementation by using 
floating gates or capacitors [18], memristors enable simpler 
structure. Moreover, the charge-based CMOS devices require 
certain dimension to guarantee data accuracy, while the 
memristor technology can easily shrink. Thus, though a macro 
cell employs multiple memristors, it still provides better area 
efficiency (1~2 orders) over CMOS technologies.  
4.2 Stochastic Neurons 

The stochastic switching process is a severe issue for non-
volatile memories with memristive switches. However, with 
careful design, it can be leveraged in designing stochastic neu-
rons. Generally, stochastic neurons can be categorized into the 
binary neuron and the continuous value stochastic neuron.  
4.2.1 Binary Stochastic Neuron   

Binary stochastic neuron generates random binary pulse 
signals, which uses external voltage signals to control the 
probability of 0 (OFF) or 1 (ON) generation. Figure 8 illus-
trates the design of a binary stochastic neuron with a memris-
tive switch. The operation timing diagram is given in the inner 
set of the figure. Figure 9 shows the voltage dependency of 
ON and OFF switching of a TiO2 memristive switch. Each 
curve has a fixed pulse width. The voltage dependency shows 
a normal dependency between the applied voltage and the 
switching probability, where  has a log impact on the 
means and deviations of switching distributions.  

Accordingly, the binary stochastic neuron can control the 
probability of random numbers by applying a fixed pulse 
width  and adjusting voltage amplitude . Figure 9 also 
demonstrates the tradeoff between  and the tunable 
range of . The longer pulse width results in the lower applied 
voltage and the wider tunable range, which alleviates the 
hardware design complexity but the speed of circuit operation 
exponentially reduces. The shorter pulse width makes the cir-
cuit run much faster, at the cost of smaller tunable range and 
the increased risk of device damage. A related work partially 
verified our design by using contact-resistive random-access-
memory to build random number generator [13].  
4.2.2 Continuous Value Stochastic Neuron   

Continuous value stochastic neuron generates random pulse 
signal. The voltage amplitude of the pulse signal is an analog 
value, which falls into a given distribution with controllable 
mean and noise. As illustrated in Figure 8, a continuous value 
stochastic neuron can be constructed by replacing the single 
memristive switch in a binary stochastic neuron with a macro 

Figure 6. (a) A macro cell containing of 9 memristive switches on a 3x3 
crossbar. (b) Partitioning a 6x6 memristive switch crossbar to obtain a 
2x2 macro cell crossbar for continuous weight storage. 
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cell. The noise and mean are controlled by the external voltage 
signal and the number of memristive switches in a macro cell. 

Figure 10 shows the means and standard deviations of the 
noise generated by the proposed continuous value stochastic 
neuron. The designs with different macro cells containing 

 memristive switches are compared. The 
means and the deviations of total conductance are controllable 
through the applied voltage. When a zero-mean noise signal is 
required, an offset current/voltage source can be added at the 
output  to cancel out the mean shifting considering that the 
voltage amplitude dependency of mean follows a normal CDF.  

The variation comes from both the stochastic ON switching 
process and the randomness of ON state resistance. When 

, the major contribution to variation comes from 
stochastic switching. Hence, the standard deviation decreases 
as the voltage amplitude drops down. When , a 
memristive switch has >80% probability to successfully 
change to ON state, as shown in Figure 9. Thus, the random-
ness of ON state dominates and the deviation is saturated. Af-
ter all, using memristive switches, it is possible to replace the 
traditional continuous stochastic neuron [12] with memristive 
switch based circuit to obtain higher area/ power efficiency. 
5. Conclusion 

In this paper, we proposed a stochastic memristor model 
from the macro perspective of stochastic characteristics in 
memristive switches. With the help of the model, we evaluated 
the performance of practicable memristive switches on two 
fundamental NN components. Weight storage unit for contin-
ues value is realized by using parallel connected memristive 
switches, or macro cell. A programming scheme is provided to 
tune the macro cell to any desired approachable conductance 
with high precision. For stochastic neurons, we made use of 
the stochastic behavior of memristive switches to benefit the 
natural generation of binary/continuous random values with 
controllable mean and variation. The controllability of noise 
has been also analyzed and demonstrated. 
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Figure 9. Voltage dependency of ON (a) and OFF (b) switching at 
different pulse widths tswitch.
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Figure 10. Voltage dependency of macro cell conductance. N is the 
number of memristive switches.
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