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The Stochastic Traveling Salesman Problem:
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We study the random link traveling salesman problem, where lengths lij between
city i and city j are taken to be independent, identically distributed random
variables. We discuss a theoretical approach, the cavity method, that has been
proposed for finding the optimum tour length over this random ensemble, given
the assumption of replica symmetry. Using finite size scaling and a renormalized
model, we test the cavity predictions against the results of simulations, and find
excellent agreement over a range of distributions. We thus provide numerical
evidence that the replica symmetric solution to this problem is the correct one.
Finally, we note a surprising result concerning the distribution of k th-nearest
neighbor links in optimal tours, and invite a theoretical understanding of this
phenomenon.

KEY WORDS: Disordered systems; combinatorial optimization; replica
symmetry.

1. INTRODUCTION

Over the past 15 years, the study of the traveling salesman problem (TSP)
from the point of view of statistical physics has been gaining added
currency, as theoreticians have improved their understanding of the rela-
tion between combinatorial optimization and disordered systems. The TSP
may be stated as follows: given N sites (or ``cities''), find the total length L
of the shortest closed path (``tour'') passing through all cities exactly once.
In the stochastic TSP, the matrix of distances separating pairs of cities is
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drawn randomly from an ensemble. The ensemble that has received the
most attention in the physics community is the random link case, where the
individual lengths lij between city i and city j (i< j) are taken to be inde-
pendent random variables, all identically distributed according to some
\(l ). The idea of looking at this random link ensemble, rather than the
more traditional ``random point'' ensemble where cities are distributed
uniformly in Euclidean space, originated with an attempt by Kirkpatrick
and Toulouse(1) to find a version of the TSP analogous to the earlier
Sherrington�Kirkpatrick (SK) model(2) for spin glasses.

The great advantage of working with the random link TSP, rather
than the (random point) Euclidean TSP, is that one may realistically hope
for an analytical solution. A major breakthrough occurred with the idea,
first formulated by Me� zard and Parisi(3) and later developed by Krauth
and Me� zard, (4) that the random link TSP could be solved using the cavity
method, an approach inspired by work on spin glasses. This method is
based on assumptions pertaining to properties of the system under certain
limiting conditions. The most important of these assumptions is replica
symmetry. Although in the case of spin glasses, replica symmetry is
violated, (5) for the TSP there are various grounds for at least suspecting
that replica symmetry holds.(6, 4) The cavity solution then leads to a system
of integral equations that can be solved��numerically at least��to give a
prediction of the optimum tour length L in the many-city limit N � �.

In a previous article, (7) we have taken the random link distribution \(l )
to match that of the distribution of individual city-to-city distances in the
Euclidean case, thus using the random link TSP as a random link approxi-
mation to the Euclidean TSP. The approximation may seem crude since it
neglects all correlations between Euclidean distances, such as the triangle
inequality. Nevertheless, it gives remarkably good results. In particular,
a numerical solution of the random link cavity equations predicts large N
optimum tour lengths that are within 20 of the (simulated) d-dimensional
Euclidean values, for d=2 and d=3. In the limit d � �, this gap shows
all signs of disappearing. The random link problem, and its cavity predic-
tion, is therefore more closely related to the Euclidean problem than one
might expect.

The random link TSP is also, however, interesting in itself. Little
numerical work has accompanied the analytical progress made��a short-
coming made all the more troubling by the uncertainties surrounding the
cavity method's assumptions. In this paper we attempt to redress the imbal-
ance, providing a numerical study of the finite size scaling of the random
link optimum tour length, and arguments suggesting that the cavity solu-
tion is in fact correct. In the process, our numerics reveal some remarkable
properties concerning the frequencies with which cities are connected to
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their kth-nearest neighbor in optimal tours; we invite a theoretical explana-
tion of these properties.

2. BACKGROUND AND THE CAVITY METHOD

In an attempt to apply tools from statistical mechanics to optimization
problems, Kirkpatrick and Toulouse(1) introduced a particularly simple
case of the random link TSP. The distribution of link lengths lij was taken
to be uniform, so that \(l ) is constant over a fixed interval. In light of the
random link approximation, one may think of this as corresponding, at
large N, to the 1-D Euclidean case. (When cities are randomly and
uniformly distributed on a line segment, the distribution of lengths between
pairs of cities is uniform.) Although the 1-D Euclidean case is trivial��par-
ticularly if we adopt periodic boundary conditions, in which case the
optimum tour length is simply the length of the line segment��the corre-
sponding random link problem is far from trivial.

The simulations performed by Kirkpatrick and Toulouse suggested a
random link optimum tour length value of LRLr1.045 in the N � �
limit.3 Me� zard and Parisi(8) attempted to improve both upon this estimate
and upon the theory by using replica techniques often employed in spin
glass problems (for a discussion of the replica method in this context, see
ref. 5). This approach allowed them to obtain, via a saddle point approxima-
tion, many orders of the high-temperature expansion for the internal energy.
They then extrapolated down to zero temperature��corresponding to the
global TSP optimum��finding LRL=1.04\0.015. Their analysis, like that
of Kirkpatrick and Toulouse, was carried out only for the case of \(l )
equal to a constant.

Given the difficulties of pushing the replica method further, Me� zard
and Parisi then tried a different but related approach known as the cavity
method.(3) This uses a mean-field approximation which, in the case of spin
glasses, gives the same result as the replica method in the thermodynamic
limit (N � �). As much of the literature on the cavity method has been
prohibitively technical to non-specialists, we shall review the approach in
more conventional language here, indicating what is involved in the case of
the TSP.

Both the replica and the cavity methods involve a representation of
the partition function originally developed in the context of polymer
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theory.(9, 10) The approach consists of mapping the TSP onto an m-compo-
nent spin system, writing down the partition function at temperature T,
and then taking the limit m � 0. More explicitly: consider N spins S i ,
i=1,..., N (corresponding to the N cities), where each spin Si has m com-
ponents S:

i , :=1,..., m, and where (Si)
2=m for all i. The partition function

is defined, in terms of a parameter |, as

Z=| `
q

d+(Sq) exp \| :
i< j

Rij Si } Sj+ (1)

=| `
q

d+(Sq) _1+| :
i< j

Rij (S i } Sj)+
|2

2!
:

i< j
k<l

R ijRkl (Si } Sj)(Sk } S l)+ } } } &
(2)

where the integral is taken over all possible spin values (the area measure
is normalized so that � d+(Sq)=1), and Rij is related to the length l ij

between city i and city j as Rij#e&N1�dlij �T. Now employ a classic diagram-
matic argument: let each spin product (Sa } Sb) appearing in the series be
represented by an edge in a graph whose vertices are the N cities. The first-
order terms (|) will consist of one-edge diagrams, the second-order terms
(|2) will consist of two-edge diagrams, and so on. What happens when we
integrate over all spin configurations? If there is a spin Sa that occurs only
once in a given diagram, i.e., it is an endpoint, the spherical symmetry of
Sa will cause the whole expression to vanish. The non-vanishing summa-
tion terms in Eq. (2) therefore correspond only to ``closed'' diagrams, where
there is at least one loop. It may furthermore be shown that in performing
the integration, any one of these closed diagrams will contribute a factor m
for every loop present in the diagram.(10) If we then consider (Z&1)�m and
take the limit m � 0, it is clear that only diagrams with a single loop will
remain. Moreover, since any closed diagram with more than N links must
necessarily contain more than one loop, only diagrams up to order |N will
remain. Finally, take the limit | � �. The term that will dominate in
Eq. (2) is the order |N term which, being a single loop diagram, represents
precisely a closed tour passing through all N cities. We may write it
without the combinatorial factor N! by expressing it as a sum over ordered
pairs in the tour, and we thus find:

lim
m � 0
| � �

Z&1
m|N = :

N-link single loops
(i1 , i2 ,..., iN)

Ri1 i2
R i2 i3

} } } RiN&1 iN
RiN i1

(3)

= :
N-city tours

e&N 1�dL�T (4)
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where L is the total tour length. What we obtain is exactly the partition
function for the traveling salesman problem, with the correct canonical
ensemble Boltzmann weights, using the tour length as the energy to be
minimized (up to a factor N 1�d, necessary for the energy to be extensive).

The idea behind the cavity method is then as follows. Since all spin
couplings Rij in Eq. (1) are positive (ferromagnetic), we expect the m-com-
ponent spin system to have a non-zero spontaneous magnetization in equi-
librium. Now add an (N+1)th spin to the system; it too acquires a
spontaneous magnetization (SN+1). Let us obtain the thermodynamic
observables of the new system (in particular (SN+1) itself) in terms of the
earlier magnetizations (S i)$ from before the (N+1)th spin was added��
hence the notion of a ``cavity.''

In order to compute these relations, an important mean-field assump-
tion is made: that at large N, any effect spin N+1 feels from correlations
among the N other spins is negligible. We justify this in the following way.
Although all spins in Eq. (1) are indeed coupled, the coupling constants Rij

decrease exponentially with length lij , and so effective interactions arise
only between very near neighbors. But a crucial property of the random
link model is that the near neighbors of spin N+1 are not generally near
neighbors of one another: they are near neighbors of one another only with
probability O(1�N ). Thus, when considering quantities involving spin
N+1, the effect of direct interactions between any two of its neighbors is
O(1�N ), and decays to zero in the limit N � �. We therefore replace (1)
by the mean-field partition function

ZMF=| `
N

q=1

d+(Sq) | d+(SN+1) exp \| :
N

i=1

Ri, N+1Si } SN+1+ :
N+1

i=1

Si } hi+
(5)

By definition, if spin N+1 were removed, we would recover the
``cavity magnetizations'' (Si)$. This requirement is sufficient to specify the
fields hi . Stripping out spin N+1 from (5) leaves us simply with a product
of integrals >q � d+(Sq) exp(Sq } hq), whose logarithmic derivative with
respect to hi must then give the magnetization (Si)$. We may obtain this
expression by expanding the integrands, taking advantage of the identity
� d+(Si) S:

i S;
i =$:; for all spin components : and ;, as well as the

nilpotency property(3) that in the limit m � 0, the integral of the product
of more than two components of Si vanishes. (This is analogous to the
property used earlier in the diagrammatic expansion.) The result is

(Si)$=
hi

1+(hi)
2�2

(6)
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Note that this specifies hi for 1�i�N; hN+1 has been introduced purely
for analytical convenience, and will ultimately be set to 0.

Without loss of generality, let us assume the spontaneous magnetiza-
tions of the system to be directed exclusively along component 1. This
may be imposed, for instance, by applying an additional infinitesimal field
directed along component 1. Physically, however, the assumption that dis-
tant spins are uncorrelated also means that this infinitesimal field is suf-
ficient to select a single phase or equilibrium state, thus giving rise to a
unique thermodynamic limit. From the point of view of dynamics, a conse-
quence is that two ``copies'' of the system will evolve to the same equi-
librium distribution. This property is known as replica symmetry, and has
been central to the modern understanding of disordered systems.4 Replica
symmetry is in fact known to be broken in spin glasses; if one uses the
replica symmetric solution of the SK model, for instance, one finds a
ground state energy prediction that is inaccurate by about 50.(5) However,
this does not mean that replica symmetry breaking occurs in all related
problems of high complexity (the TSP and the spin glass both fall into the
NP-hard class of computational complexity). Showing that the (replica
symmetric) cavity solution correctly predicts macroscopic quantities for the
random link TSP would suggest that the TSP, unlike a spin glass, does
indeed exhibit replica symmetry.

In order to obtain the cavity solution, consider the mean-field expres-
sion (5). Taking advantage of nilpotency, as well as the fact that Rij is non-
negligible only with probability O(1�N ), we may expand (5) and obtain in
the large N limit:

ZMF= `
N

i=1
\1+

(hi)
2

2 + _1+
(hN+1)2

2
+ :

N

j=1

|Rj, N+1hj } hN+1

1+(hj)
2�2

+ :
1� j<k�N

|2Rj, N+1Rk, N+1h j } hk

[1+(h j)
2�2][1+(hk)2�2]& (7)

From (5) it is clear that differentiating ZMF with respect to hN+1 and then
setting hN+1=0 yields an expression for (SN+1) in terms of the remaining
hi , or equivalently in terms of the cavity magnetizations (Si)$. This expres-
sion simplifies further at large |. Recalling that the magnetization is by
construction directed along component 1, we obtain:(3)

(S 1
N+1) =

�N
j=1 Rj, N+1(S 1

j )$

| �1� j<k�N R j, N+1Rk, N+1(S 1
j )$ (S 1

k)$
(8)
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(The factor | in the denominator may be avoided, if need be, by applying
a uniform rescaling factor - | to all magnetizations.) Thus, using the
mean-field approach, we can express the magnetization of the (N+1)th
spin in terms of what the other magnetizations would be in the absence of
this (N+1)th spin.

While these quantities have been derived for a spin system whose par-
tition function is given by Z, we are interested in the TSP whose partition
function is given by (4). Consider an important macroscopic quantity for
the TSP: the frequency with which a tour occupies a given link. Define nij

to be 1 if the link ij is in the tour, and 0 otherwise. Since the total tour
length (energy) is L=�i< j n ij lij , the mean occupation frequency (nij) ,
averaged over all tours with the Boltzmann factor, is simply found from the
logarithmic derivative of (4) with respect to lij . Using ZMF&1 in place of
Z&1, and proceeding as above, we obtain in the limit | � �:

(ni, N+1)=R i, N+1(S 1
i )$

�j{i Rj, N+1(S 1
j )$

�1� j<k�N Rj, N+1Rk, N+1(S 1
j )$ (S 1

k)$
(9)

The relations (8) and (9) have been derived for a single realization of
the Rij's. In the ensemble of instances we consider here, the thermal
averages become random variables with a particular distribution. As far as
(8) is concerned, we may treat the magnetizations (S 1

i )$ as independent
identically distributed random variables. Furthermore, the existence of a
thermodynamic limit in the model requires that at large N, (S 1

N+1) have
the same distribution as the cavity magnetizations; this imposes, for a given
link length distribution \(l ), a unique self-consistent probability distribu-
tion of the magnetizations. From (9), one can then find the probability dis-
tribution of (nN+1, i) , and in turn, taking the T � 0 limit, the distribution
P(l ) of link lengths l used in the optimal tour (at N � �).

Krauth and Me� zard(4) carried out this calculation, for \(l ) corre-
sponding to that of the d-dimensional Euclidean case, namely

\d (l )=
2?d�2

1 (d�2)
l d&1 (10)

Of course, \d (l ) must be cut off at some finite l in order to be nor-
malizable; precisely how this is done is unimportant, since only the
behavior of \d (l ) at small l is relevant for the optimal tour in the N � �
limit. The result of Krauth and Me� zard's calculation is:

Pd (l )=N&1�d?d�2 1 (d�2+1)
1 (d+1)

l d&1

21 (d ) \&
�
�l+ |

+�

&�
[1+Hd (x)]

_e&Hd (x)[1+Hd (l&x))] e&Hd (l&x) dx (11)
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where Hd (x) is the solution to the integral equation

Hd (x)=?d�2 1 (d�2+1)
1 (d+1) |

+�

&x

(x+ y)d&1

1 (d )
[1+Hd ( y)] e&Hd ( y) dy (12)

From Pd (l ), one may obtain the mean link length in the tour, and thus the
cavity prediction Lc

RL for the total length of the tour. Introducing the large
N asymptotic quantity ;RL(d )#limN � � LRL(N, d )�N 1&1�d, the cavity
prediction ;c

RL(d ) is then:

;c
RL(d )= lim

N � �
N 1�d |

+�

0
l Pd (l ) dl

=
d
2 |

+�

&�
Hd (x)[1+Hd (x)] e&Hd (x) dx (13)

At d=1, Krauth and Me� zard solved these equations numerically,
obtaining ;c

RL(1)=1.0208... . It is difficult to compare this with
Kirkpatrick's value of ;RL(1)r1.045 from direct simulations (as no error
estimate exists for the latter quantity), however an analysis(11) of recent
numerical results by Johnson et al.(12) gives ;RL(1)=1.0209\0.0002,
lending strong credence to the cavity value. Krauth and Me� zard also per-
formed a numerical study of P1(l ). They found the cavity predictions to be
in good agreement with the results of their own direct simulations. Further
numerical evidence supporting the assumption of replica symmetry was
found by Sourlas, (6) in an investigation of the low temperature statistical
mechanics of the system. Thus, for the lij distribution at d=1, there is good
reason to believe that the cavity assumptions are valid and that the cavity
predictions are exact at large N, so that ;c

RL(1)=;RL(1).
At higher dimensions, the values of ;c

RL(d ) were given by the present
authors in ref. 13, and a large d power series solution for ;c

RL(d ) was
derived:(14, 7)

;c
RL(d )=� d

2?e
(?d )1�2d _1+

2&ln 2&2#
d

+O \ 1
d 2+& (14)

where # represents Euler's constant (#=0.57722 . . .). But is the cavity
method exact��that is, is ;c

RL(d )=;RL(d )��for all d, or is d=1 simply a
pathological case (as it is in the Euclidean model, where ;E (1)=1)? While
it appears sensible to argue that the qualitative properties of the random
link TSP are insensitive to d, there is as yet no evidence that replica sym-
metry holds for d{1. Our purpose here is to provide such evidence by
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numerical simulation, as has been done, for instance, in a related com-
binatorial optimization problem known as the matching problem.(15, 14) We
now turn to this task, considering first the d=2 case, and then a ``renor-
malized'' random link model that enables us to verify numerically the
O(1�d ) coefficient predicted in Eq. (14).

3. NUMERICAL ANALYSIS: d=2 CASE

We have implicitly been making the assumption so far, via our nota-
tion, that as N � � the random variable LRL(N, d )�N 1&1�d approaches a
unique value ;RL(d ) with probability 1. This is a property known as self-
averaging. The analogous property has been shown for the Euclidean TSP
at all dimensions.(16) For the random link TSP, however, the only case
where a proof of self-averaging is known is in the d � � limit, where a
converging upper and lower bound in fact give the exact result:(17)

;RL(d )=� d
2?e

(?d )1�2d _1+O \ 1
d +& (15)

Comparing this with (14), we may already see that ;c
RL(d )t;RL(d ) when

d � �, and so the cavity prediction is correct in the infinite dimensional
limit.

For finite d, however, it has not been shown analytically that ;RL(d )
even exists. To some extent, the difficulty in proving this can be traced to
the non-satisfaction of the triangle inequality. The reader acquainted with
the self-averaging proof for the Euclidean TSP may see that the ideas used
there are not applicable to the random link case; for instance, combining
good subtours using simple insertions will not lead to near-optimal global
tours, making the problem particularly challenging. Let us therefore
examine the distribution of d=2 optimum tour lengths using numerical
simulations, in order to give empirical support for the assertion that the
N � � limit is well-defined.

The algorithmic procedures we use for simulations are identical to
those we have used in an earlier study concerning the Euclidean TSP;(7) for
details, the interested reader is referred to that article. Briefly stated, our
optimization procedure involves using the LK and CLO local search
heuristic algorithms(18, 19) where for each instance of the ensemble we run
the heuristic over multiple random starts. LK is used for smaller values of
N (N�17) and CLO, a more sophisticated method combining LK optimi-
zation with random jumps, for larger values of N (N=30 and N=100).
There is, of course, a certain probability that even over the course of multiple
random starts, our heuristics will not find the true optimum of an instance.
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Fig. 1. Distribution of 2-D random link rescaled tour length (LRL&(LRL) )�- N for
increasing values of N. Plus signs show N=12 (100,000 instances used), squares show N=17
(100,000 instances used), diamonds show N=30 (4,000 instances used), and dots show
N=100 (1,200 instances used). Solid lines represent Gaussian fits for each value of N plotted.

We estimate the associated systematic bias using a number of test instances,
and adjust the number of random starts to keep this bias at least an order
of magnitude below other sources of error discussed below. (At its
maximum��occurring in the N=100 case��the systematic bias is estimated
as under 1 part in 20,000.)

Following this numerical method, we see from our simulations (Fig. 1)
that the distribution of LRL(N, 2)�- N becomes increasingly sharply
peaked for increasing N, so that the ratio approaches a well-defined limit
;RL(2). Furthermore, the variance of LRL(N, 2) remains relatively constant
in N (see Table 1), indicating that the width _ for the distribution shown
in the figure decreases as 1�- N , strongly suggesting a Gaussian distribu-
tion. Similar results were found in our Euclidean study (albeit in that case

Table 1. Variance of the Nonrescaled
Optimum Tour Length LRL(N, 2) with

Increasing N

Number of
N _2 instances used

12 0.3200 100,000
17 0.3578 100,000
30 0.3492 4,000

100 0.3490 1,200
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with _ being approximately half of its random link value). This is precisely
the sort of behavior one would expect were the central limit theorem to be
applicable.

Let us now consider the large N limit of LRL(N, 2)�- N , as given by
numerical simulations. In the Euclidean case, it has been observed(7) that
the finite size scaling law can be written in terms of a power series in 1�N.
The same arguments given there apply to the random link case, and so we
may expect the ensemble average (LRL(N, 2)) to satisfy

(LRL(N, d ))=;RL(d ) N 1&1�d _1+
A(d )

N
+ } } } & (16)

In order to obtain (LRL(N, 2)) at a finite value of N from simulations, we
average over a large number of instances to reduce the statistical error
arising from instance-to-instance fluctuations. Figure 2 shows the results of
this, with accompanying error bars, fitted to the expected finite size scaling
law (truncated after O(1�N 2)). The fit is a good one: /2=4.46 for 5 degrees
of freedom. As in ref. 7, we may obtain an error estimate on ;RL(2) by
noting that if we take the extrapolated value and add or subtract one
standard deviation, and then redo the fit with this as a fixed constant,
/2 will increase by 1. We thus find ;RL(2)=0.7243\0.0004, in very good
agreement with the cavity result of ;c

RL(2)=0.7251 ... . The discrepancy
between the two is consistent with the statistical error (two standard devia-
tions apart), and in relative terms is approximately 0.10. The fit in Fig. 2,

Fig. 2. Finite size scaling of mean optimum tour length for d=2. Best fit (/2=4.46) is given
by: (LRL(N, 2))�N 1�2=0.7243(1+0.0322�N&1.886�N 2). Error bars show one standard
deviation (statistical error).
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furthermore, appears robust with respect to sub-samples of the data; even
if we disallow the use of the N=100 data point in the fit, the resulting
asymptotic value is still within 0.250 of the cavity prediction. By com-
parison, recall that the error in the replica symmetric solution to the SK
spin glass ground state energy is of the order of 50.(5)

Another quantity that Krauth and Me� zard studied in their d=1
numerical investigation(4) was the optimum tour link length distribution
Pd (l ) given in Eq. (11). Let us consider P2(l ), and following their example,
let us look specifically at the integrated distribution Id (l )#�l

0 Pd (l $) dl $.
The cavity result for Id (l ) can, like ;c

RL(d ), be computed numerically to
arbitrary precision. In Fig. 3 we compare this with the results of direct
simulations, for d=2, at increasing values of N. The improving agreement
for increasing N (within 20 at N=100) strongly suggests that the cavity
solution gives the exact N � � result.

Finally, it is of interest to consider one further quantity in the d=2
random link simulations, for which there is at present no corresponding
cavity prediction: the frequencies of ``neighborhood rank'' used in the
optimal tour, that is, the proportion of links connecting nearest neighbors,
2nd-nearest neighbors, etc. Sourlas(6) has noted that in practice in the d=1
case, this frequency falls off rapidly with increasing neighborhood rank��
suggesting that optimization heuristics could be improved by preferentially
choosing links between very near neighbors. Our simulations show (see
Fig. 4) that for d=2 the decrease is astonishingly close to exponential. We
may offer the following qualitative explanation for this behavior. An

Fig. 3. Integrated probability distribution of link lengths in the optimal tour, for d=2, using
rescaled length l� =l - N . Plus signs represent N=12 simulation results, dots represent
N=100 simulation results, and solid line represents cavity prediction.
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Fig. 4. Frequencies with which k th-nearest neighbors are used in optimal 2-D random link
tours. Plus signs show values for N=12, squares for N=17, diamonds for N=30, and dots
for N=100. Best exponential fit (straight line on log plot) is shown for N=100 data.

optimal tour will always try to use links to the closest neighbors possible.
While the constraint of a closed loop may force it in rare cases to use
neighbors of high rank, this will apply only to a very small number of links
in the tour. Connecting a point to, say, its k th-nearest neighbor will for the
most part be profitable only when this neighbor is not much further away
than the k&1 nearer neighbors. In other words, the lengths from the point
to its k closest neighbors would have to be nearly degenerate. Since a k-fold
degeneracy of this sort is the product of k&1 unlikely events, it is in fact
quite natural that the probability of such an occurrence is exponentially
small in k.

We therefore conjecture that the neighborhood frequency function will
fall exponentially in k at large k. We expect this behavior to hold in any
dimension, and for that matter, in the Euclidean TSP as well. Similar and
even stronger numerical results have been reported(21) in another link-
based combinatorial optimization problem, the matching problem. An
analytical calculation of the neighborhood frequency may indeed turn out
to be feasible using the cavity approach, thus providing a theoretical
prediction to accompany our conjecture. We consider this a significant
open question.

4. NUMERICAL ANALYSIS: RENORMALIZED MODEL

In this section we will consider a different sort of random link TSP,
proposed in ref. 7, allowing us to test numerically the 1�d coefficient predicted
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by the cavity result (14). The approach involves introducing a mapping
that shifts and rescales all the lengths between cities. By taking the limit
d � �, one obtains a d-independent random link model having an
exponential distribution for its link lengths. This ``renormalized'' model was
outlined in ref. 7; we present it here in further detail. We then perform a
numerical study of the model, which enables us to determine the large d
behavior of the standard d-dimensional random link model.

Let us define (D1(N, d )) to be the distance between a city and its
nearest neighbor, averaged over all cities in the instance and over all
instances in the ensemble.5 For large d, it may be shown(7) that

lim
N � �

N 1�d(D1(N, d ))=� d
2?e

(?d )1�2d _1&
#
d

+O \ 1
d 2+& (17)

where # is Euler's constant. It is not surprising that this quantity is reminis-
cent of Eq. (15), since N 1�d(D1(N, d )) represents precisely a lower bound
on ;RL(d ).

In order to obtain the renormalized model, consider a link length
transformation making use of (D1(N, d )). For any instance with link
lengths lij (taken to have the usual distribution (10) corresponding to d
dimensions), define new link lengths xij#d[lij&(D1(N, d ))]�(D1(N, d )).
The xij are ``lengths'' only in the loosest sense, as they can be both positive
and negative. The optimal tour in the xij model will, however, follow the
same ``path'' as the optimal tour in the associated lij model, since the trans-
formation is linear. Its length Lx(N, d ) will simply be given in terms of
LRL(N, d ) by:

Lx(N, d )=d
LRL(N, d )&N(D1(N, d ))

(D1(N, d ))
, so (18)

LRL(N, d )=N(D1(N, d )) _1+
Lx(N, d )

dN & (19)

In the standard d-dimensional random link model, ;RL(d )=
limN � � LRL(N, d )�N 1&1�d, so

;RL(d )= lim
N � �

N 1�d(D1(N, d )) _1+
Lx(N, d )

dN & , and at large d, using (17),

=� d
2?e

(?d )1�2d _1&
#
d

+O \ 1
d 2+& lim

N � � _1+
Lx(N, d )

dN & (20)
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As ;RL(d ) is a well-defined quantity, there must exist a value +(d ) such
that limN � � Lx(N, d )�N=+(d ).

Now, what will be the distribution of ``renormalized lengths'' \(x)
corresponding to \(l )? From Eq. (10) and the definition of the x ij ,

\(x)=
d?d�2l d&1

1(d�2+1)
(D1(N, d ))

d
, and substituting for l,

=
?d�2

1(d�2+1) \1+
x
d +

d&1

(D1(N, d )) d (21)

In the limit N � �, we thus obtain from (17) the large d expression:

\(x)t
?d�2

1(d�2+1) \1+
x
d +

d&1

N&1 \ d
2?e+

d�2

- ?d _1&
#
d

+ } } } &
d

tN&1 \1&
#
d +

d

\1+
x
d +

d&1

_1+O \1
d +& by Stirling's formula

tN&1ex&# _1+O \1
d +& (22)

In the limit d � �, \(x) will be independent of d; the same must then be
true for Lx(N, d ), and consequently for +(d ).

Let us now define the renormalized model as being made up of link
``lengths'' xij in this limit. This results in a somewhat peculiar random link
TSP, no longer containing the parameter d. Its link length distribution is
given by the d � � limit of Eq. (22),

\(x)=N&1 exp(x&#) (23)

and its optimum tour length satisfies

lim
N � �

Lx(N )
N

=+ (24)

where we have dropped the d argument from these (now d-independent)
quantities. By performing direct simulations using the distribution (23)��
cut off beyond a threshold value of x, as was done for \d (l )��we may find
the value of + numerically.
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Finally, let us relate this renormalized model to the standard d-dimen-
sional random link model. In light of (24), we may rewrite (20) and obtain
the result given in ref. 7:

;RL(d )=� d
2?e

(?d )1�2d _1+
+&#

d
+O \ 1

d 2+& (25)

The value of + in the renormalized model therefore yields directly the 1�d
coefficient for the (non-renormalized) ;RL(d ).

We now carry out these direct simulations for the renormalized model.
Figures 5 and 6 show our numerical results. In Fig. 5, we see that just as
in the d=2 case, the distribution of the optimum tour length becomes
sharply peaked at large N and the asymptotic limit + is well-defined. Via
(25), this provides very good reason for believing that ;RL(d ) is well-
defined for all d, and that self-averaging holds for the random link TSP in
general. In Fig. 6, we show the finite size scaling of (Lx(N ))�N. The fit is
again quite satisfactory (with /2=5.23 for 5 degrees of freedom), giving the
asymptotic result +=0.7300\0.0010. The resulting value for the 1�d coef-
ficient in ;RL(d ) is then +&#=0.1528\0.0010, in excellent agreement
(error under 0.30) with the cavity prediction 2&ln 2&2#=0.1524 . . .
given in Eq. (14).

Again, as in the d=2 case, let us briefly consider the frequencies of
kth-nearest neighbors used in optimal tours. These frequencies are given in

Fig. 5. Distribution of renormalized random link rescaled tour length (Lx&(Lx) )�N for
increasing values of N. Plus signs show N=12 (100,000 instances used), squares show N=17
(100,000 instances used), diamonds show N=30 (4,000 instances used), and dots show
N=100 (1,200 instances used). Solid lines represent Gaussian fits for each value of N plotted.
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Fig. 6. Finite size scaling of renormalized model optimum. Best fit (/2=5.23) is given by:
(Lx(N ))�N=0.7300(1+0.3575�N&2.791�N 2). Error bars show one standard deviation
(statistical error).

Fig. 7 for the renormalized model. Even though the exponential fit is not
as good as in the d=2 case, it is still striking here. What does this tell us,
in turn, about the standard random link TSP? Recall that the renormalized
model arises from the d � � limit of the d-dimensional (non-renormalized)
model, and that the mapping (18) preserves the optimum tour for any
given instance. These kth-neighbor frequency results are thus the d � �

Fig. 7. Frequencies with which k th-nearest neighbors are used in optimal renormalized ran-
dom link tours. Plus signs show values for N=12, squares for N=17, diamonds for N=30,
and dots for N=100. Best exponential fit (straight line on log plot) is shown for N=100 data.
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limiting frequencies for the d-dimensional random link TSP (and most
likely for the Euclidean TSP also). This gives further support to our conjec-
ture that the exponential law holds for all d, and suggests as a consequence
that the ``typical'' neighborhood rank k used in optimal tours remains
bounded for all d.

5. CONCLUSION

The random link TSP has interested theoreticians primarily because of
its analytical tractability, allowing presumably exact results that are not
possible in the more traditional Euclidean TSP. Outside of the d=1 case,
however, it has attracted little attention. In this paper we have provided a
numerical study of the random link TSP that was lacking up to this point,
addressing important unanswered questions. Through simulations, we have
tested the validity of the theoretical predictions derived using the cavity
method. While in other disordered systems, such as spin glasses, the replica
symmetric solution gives values of macroscopic quantities that are inexact
(typically by several percent), in the random link TSP it shows all signs
of being exact. We have studied various link-based quantities at d=2 and
found that the numerical results confirm the cavity predictions to within
0.10. Furthermore, we have confirmed, by way of simulations on a renor-
malized random link model, that the analytical cavity solution gives a large
d expansion for the optimum tour length whose 1�d coefficient is correct
to well within 10. The excellent agreement found at d=1, (4, 6) d=2, and
to O(1�d ) at large d, then suggest strongly that the cavity predictions
are exact. This provides indirect evidence that the assumption of replica
symmetry��on which the cavity calculation is based��is indeed justified for
the TSP.

Finally, our random link simulations have pointed to a surprising
numerical result. If one considers the links in optimal tours as links
between k th-nearest neighbors, at d=2 the frequency with which the tour
uses neighborhoods of rank k decreases with k as almost a perfect exponen-
tial. Encouraged by similar results in the renormalized model, we conjec-
ture that this property holds true for all d, as well as in the Euclidean TSP.
As no theoretical calculation presently explains the phenomenon, we would
welcome further investigation along these lines.
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