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The Stokes-Einstein relation for the self-diffusion coefficient of a spherical particle suspended in
an incompressible fluid is an asymptotic result in the limit of large Schmidt number, that is, when
momentum diffuses much faster than the particle. When the Schmidt number is moderate, which
happens in most particle methods for hydrodynamics, deviations from the Stokes-Einstein predic-
tion are expected. We study these corrections computationally using a recently developed minimally
resolved method for coupling particles to an incompressible fluctuating fluid in both two and three
dimensions. We find that for moderate Schmidt numbers the diffusion coefficient is reduced rela-
tive to the Stokes-Einstein prediction by an amount inversely proportional to the Schmidt number in
both two and three dimensions. We find, however, that the Einstein formula is obeyed at all Schmidt
numbers, consistent with linear response theory. The mismatch arises because thermal fluctuations
affect the drag coefficient for a particle due to the nonlinear nature of the fluid-particle coupling.
The numerical data are in good agreement with an approximate self-consistent theory, which can
be used to estimate finite-Schmidt number corrections in a variety of methods. Our results indicate
that the corrections to the Stokes-Einstein formula come primarily from the fact that the particle it-
self diffuses together with the momentum. Our study separates effects coming from corrections to
no-slip hydrodynamics from those of finite separation of time scales, allowing for a better under-
standing of widely observed deviations from the Stokes-Einstein prediction in particle methods such
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as molecular dynamics. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4834696]

I. INTRODUCTION

The self-diffusion coefficient x of a tracer particle sus-
pended in a liquid (for example, a colloidal particle) is a quan-
tity of fundamental interest, and can be predicted using the
well-known Stokes-Einstein (SE) relation. This famous for-
mula is a combination of two results. The first, by Einstein,
comes from rather general linear response theory considera-
tions and relates the diffusion coefficient to the mobility u, x
= kgTp with kT the thermal energy scale, where the mo-
bility is defined by measuring the average steady velocity
(u) of the particle in response to a weak applied force F,
u = limg_,¢ (u)/F. The second part of the SE relation is the
Stokes formula for the mobility of a sphere suspended in a
viscous fluid, obtained using standard hydrodynamics. While
there is little reason to doubt the applicability of Einstein’s re-
lation, the Stokes-Einstein relation assumes that the drag force
on a particle is not affected by thermal fluctuations, that s, it is
assumed that the contribution of thermal kicks to the particle
average to zero and the drag is the same as in a deterministic
fluid. As we explain in this work, this is not necessarily so be-
cause of the nonlinear coupling between the moving particle
and the fluctuating fluid.

For a spherical particle of radius a suspended in a three-
dimensional fluid with shear viscosity 7, the SE formula takes
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the form

kT
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where « is a coefficient that depends on the boundary condi-
tions applicable at the surface of the sphere, equal to 6z for
a stick surface and 4 for a slip surface.! In fact, the precise
definitions of a and « are ambiguous except in certain lim-
iting cases,”? and it perhaps best to think of the product aa
= 6w Ry as a measure of the effective (stick) hydrodynamic
radius of the particle Ry. It is not difficult to extend the SE re-
lation to account for rotational diffusion and thus generalize it
to more complicated rigid particle shapes. There is ample ev-
idence and many theoretical calculations*> that demonstrate
that (1) is asymptotically exact for a rigid sphere that is much
larger and much more massive than the solvent molecules.
Remarkably, the SE formula (1) is consistent with experi-
mental and numerical measurements even for particles that
are comparable in size to the solvent molecules (including a
tagged fluid particle), with values of the hydrodynamic radius
that are comparable to the actual physical size of the parti-
cle. Many deviations from this relation have been observed
in particle simulations,? however, it is virtually impossible to
precisely attribute the cause of the mismatch because of the
large number of violations of the assumptions that underlie
(1). For example, traditional Navier-Stokes hydrodynamics
may break down at the scales of the suspended particle. or the
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appropriate boundary conditions may be different from the
traditional no-slip condition.”

Even if one assumes traditional hydrodynamics applies,
there are additional assumptions that enter the SE relation.
One of the most important, yet often overlooked, assump-
tions, is that the Schmidt number is very large, Sc = v/
> 1, where v = n/p is the kinematic viscosity of the fluid.
Physically, this means that momentum diffuses much faster
than does the particle and the particle motion is viscous-
dominated. In particular, at large Schmidt numbers the fluid
velocity quickly relaxes to the solution of the steady Stokes
equation as the particle barely moves.” This assumption can
safely be made for realistic liquids. The Schmidt number
for molecules in simple liquids is of the order of 10°-10°,
and for macromolecular or colloidal solutions it is at least
an order of magnitude larger. However, there are several nu-
merical methods used for simulating the diffusive motion of
particles in flow for which this assumption cannot be safely
made. This is particularly true for particle methods for hy-
drodynamics such as smooth particle hydrodynamics (SPH),®
smoothed dissipative particle dynamics (SDPD),” stochastic
hard-sphere dynamics (SHSD),'” and stochastic rotation dy-
namics (SRD) (also called multiparticle collision dynamics
(MPCD)'").'213 Achieving large Schmidt number in these
methods requires a prohibitively small time step (collision
frequency) and in many typical simulations Sc is less than
10. In several hydrodynamic (non-particle) methods such as
the lattice Boltzmann (LB) method, ' the stochastic immersed
boundary method,'> ' or the inertial coupling method used
here,!” Sc can be varied over a much broader range with com-
parative ease, however, Sc is still limited to moderate val-
ues (e.g., Sc ~ 25-50) by computational efficiency consider-
ations due to the large separation of time scales between the
viscous and diffusive dynamics. Practical heuristics have been
developed empirically,'® ' with findings generally consistent
with the detailed investigation we perform in this work.

In this work, we study the deviations of the diffusion co-
efficient of a tracer particle immersed in an incompressible
Newtonian fluid from the Stokes-Einstein prediction at small
and moderate Schmidt numbers. We utilize a recently devel-
oped incompressible inertial coupling method'” method for
coupling minimally resolved particles with an incompressible
fluctuating fluid solver. This allows us to eliminate compress-
ibility yet consistently include both fluid and particle inertia,
as well as the thermal fluctuations responsible for the diffusive
Brownian motion. By changing the fluid viscosity we are able
to control the Schmidt number and thus study whether the SE
formula applies when the particle diffuses comparably fast to
momentum. Furthermore, we can trivially change the dimen-
sionality and study both two and three dimensional systems.
There has been some confusion in the literature about the ap-
plicability of hydrodynamics to two dimensional systems, and
statements to the effect that the SE relation does not apply in
two dimensions have been made.2° As we will demonstrate,
these misperceptions arise because finite-size effects diverge
in two dimensions,?! and not because (fluctuating) hydrody-
namics fails in two dimensions. In particular, we will demon-
strate that in finite two dimensional systems the SE relation
holds for Sc > 1.
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In Sec. II we describe the formulation of the minimally
resolved model we use to describe the coupled particle-fluid
system. We first discuss the emergence of the Stokes-Einstein
result in the limit of infinite Schmidt number, and then, in
Sec. II B, we discuss finite Schmidt number corrections. In
Sec. III we present numerical results for the velocity autocor-
relation function and long-time diffusion coefficient at finite
Schmidt numbers, and then offer some conclusions in Sec. IV.

Il. BROWNIAN PARTICLE MODEL

A detailed description of the fluid-particle equations that
we employ, as well as a numerical algorithm to solve them,
is given in Ref. 17. Here we briefly summarize the essential
features, and then discuss in more detail the Brownian (over-
damped) limit.

Let us consider a particle of physical mass m and size
(e.g., radius) a immersed in a fluid with density p. The posi-
tion of the particle is denoted with ¢(¢) and its velocity with
u = q. The shape of the particle and its effective interaction
with the fluid is captured through a smooth kernel function
8, (r) that integrates to unity and whose support is localized
in a region of size a. For example, one may choose any one-
dimensional “bell-shaped” curve §,(r) with half-width of or-
der a, such as a normalized Gaussian with standard deviation
a or a symmetric function of compact support of half-width a.
This kernel is used to mediate two crucial operations. First, it
is used to transfer (spread) the force A exerted on the fluid by
the particle to the fluid. Second, it is used to impose a mini-
mally resolved form of the no-slip constraint stating that the
velocity of the particle equals the local velocity of the fluid.
We term this diffuse particle a blob for lack of better terminol-
ogy (in polymer modeling the term bead is used for the same
concept,'* while blob is used to denote an effective soft par-
ticle that includes internal degrees of freedom). The physical
volume of the blob AV is determined by the shape and width
of the kernel function,

-1
AV = [/82(r)dr} ) 2)

The equations of motion in our inertial coupling method
take the form,!”

p@V+v-Vv)=—Vr+nV>0—A8,(q —r)

+V (kgT)ZW WD, (3)

V-v=0, “4)
m.u = F(q)+ A, 5)
u=/8a(q—r)v(r,t) dr, (6)

where p is the constant fluid density, v (r, t) is the incom-
pressible fluid velocity, 7 (r, t) is the hydrodynamic pres-
sure, m, is the excess mass of the particle relative to the
fluid, and F (q) is the external force applied to the particle.
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Here the stochastic momentum flux is modeled using a white-
noise random Gaussian tensor field W (r, t), that is, a tensor
field whose components are independent (space-time) white
noise processes.”? In this instantaneous frictionless coupling
the total fluid-particle force A is a Lagrange multiplier that
enforces the no-slip constraint (6). In this work we will ex-
clusively consider periodic systems, i.e., consider diffusion of
the Brownian particle on a torus, in either two or three dimen-
sions. The equations used here only account for the hydrody-
namic contribution to the diffusion coefficient, and not any ad-
ditional molecular (kinetic) contributions.”> One can include
a random slip to account for unresolved molecular effects, as
described in the Appendix of Ref. 17, in which case the addi-
tional “bare” diffusion coefficient would simply be added to
the hydrodynamic contribution studied here.?* In principle the
equations employed here can be obtained by coarse-graining
the complete microscopic dynamics with the momentum den-
sity field and the position of the particle as the relevant (slow)
degrees of freedom.>

Let us now assume that the nonlinear inertial effects in
the momentum equation can be neglected (this is easy to
check in our method by simply omitting the advective mo-
mentum flux term in the implementation), and that the im-
mersed particle is neutrally buoyant, m, = 0. In this work we
will not carefully study the effects of the particle excess mass
me, however, the results presented in Sec. III suggest that m,
does not affect the long-time diffusive motion. This suggests
that the dominant contribution to the effect we study here
comes from the transient inertia of the fluid (i.e., the term o9, v
in the momentum equation). Under these assumptions, we get
the simpler equations of motion for the fluid-particle system,

P8V 4+ Vr = nV3u+ V- [(kgTn)? (W + WT)]

+ F(q)da(q—1), (N

44 f5< Yo(r.1)d
= — = (g —r)v(r, r,
dt 1

u
which are much easier to analyze. Note, however, that
even though the fluid equation is linearized, the no-slip
constraint is a nonlinear constraint because of the presence
of the particle position in the argument of the kernel. These
semi-linear equations are also the equations used in the
stochastic immersed boundary method'® and the closely
related stochastic Eulerian-Lagrangian method.'® We note
however that in our numerical calculations we employ the full
equations (3)—(6), and only use the linearized equations for
theoretical analysis. The numerical method used to solve the
equations relies on a finite-volume staggered discretization of
the fluid equation,’® and on the immersed boundary method?’
for handling the fluid-particle interaction.'”

The mobility of a blob is easy to evaluate in the deter-
ministic setting (the stochastic setting will be discussed later
on). Consider applying a constant force F on the blob and
waiting for the velocity of the particle to reach a steady value.
In the steady state the fluid velocity solves the steady Stokes
equation and can be obtained explicitly,

o) =y / G(r,F)F (q)8.(q — r')dr,
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where G is the Green’s function (Oseen tensor) for the steady
Stokes equation*® with unit viscosity (Vz = V?v + f sub-
jectto V - v = 0 and appropriate boundary conditions). Note
that for periodic boundaries the integral of f over the unit pe-
riodic cell of volume V must vanish; we therefore take the
definition of G to include subtracting the total applied force F
as a uniform force density —V ~!F on the right hand side of
the momentum equation.

The velocity of the blob u = uF is determined from
the no-slip constraint, giving the mobility tensor (see also
Ref. 28)

w=n" f 8.(q —r)G(r,r")é,(q —r"Ydrdr'. (8)

For isotropic systems the mobility tensor is a multiple of
the identity tensor, w4 = pI. In three dimensions, the scalar
mobility u = (ana)~' can be taken to define an effective
hydrodynamic radius of the blob Ry ~ a via the relation for a
no-slip rigid sphere, un = (6w Ry)~'. There are well-known
finite-size corrections to the mobility for periodic systems
with a unit cell of volume L¢ that scale like L~' in three
dimensions.'*?*30 The hydrodynamic radius of the blobs
that we employ in our numerical implementation has been
measured computationally in Refs. 17 and 30. The spatial
discretization of the fluid/particle equations leads to a small
violation of translational invariance and isotropy and the
mobility tensor is not exactly constant or diagonal but rather
depends on the precise location of the blob relative to the
underlying grid used to solve the fluid equation.!” These
discretization artifacts are small, of the order of a couple
percent for the three-point Peskin kernel,®' and a fraction
of a percent for the four-point Peskin kernel.?” It is also
possible to construct discrete kernel functions with even
better translational invariance at the cost of increasing the
support of the kernels and thus the computational cost of the
algorithm.

In two dimensions, the mobility of a blob diverges
logarithmically with system size, consistent with the Stokes
paradox for flow past a cylinder in an unbounded domain.
For periodic system with a square unit cell with area L?,
the logarithmic divergence of the Green’s function for
two-dimensional Stokes flow gives™

L
p=@rn " n — )

where the coefficient o depends on the shape of the kernel
8..2! This is analogous to the formula for the mobility of
a periodic array of no-slip rigid cylinders of radius Ry,
w = (4rn) "n[L/(3.708 Ry)],*° and can be used to define
an effective hydrodynamic radius for a two-dimensional
blob. It is important to note that while the mobility diverges
for an infinite system, for any finite system the mobility is
finite and well-defined even in two dimensions. There is,
in fact, no fundamental difference between two and three
dimensions; it is simply the slower decay of the Green’s
function in two dimensions that changes the essential
physics.
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A. Brownian dynamics limit

The short-time motion of particles immersed in the fluid
is known to be very strongly affected by momentum diffu-
sion and by inertial effects.’? Since our method includes in-
ertial effects, it is able to produce both the correct short-time
and long time features of the Brownian motion of a particle,
where “short” refers to time scales after sound waves have
decayed. This observation was made for the stochastic im-
mersed boundary method in Refs. 7 and 28, and in Ref. 17
we demonstrated that our inertial coupling method also cor-
rectly captures the known physical effects of particle and fluid
inertia on the velocity autocorrelation function (VACF)

C(t) = (u() @u(0),

including the effect of particle excess mass on the short time
behavior of the VACF, as well as the long time power-law
tail of the VACF. Here we focus on the long-time diffusive
motion of the particles, where “long” means that the mo-
tion is observed at a time scale T over which momentum
has diffused throughout the domain and the VACF has de-
cayed to zero, T > t; = L*/v, where v = n/p is the kinematic
viscosity.

In the long-time limit, the motion of a single free
particle immersed in a fluid looks like simple Brownian
motion with a diffusion coefficient that can be defined
from the long-time mean square displacement of the par-
ticle. More generally, one defines a time-dependent diffu-
sion tensor, either using the mean-square displacement of the
particle,

[q(r) — q(0)] ® [q(?) — ¢q(0)]
Xmsp(?) = ,

2t

X = xsg = (kgT) »
(6N Ry)

can only be justified in the limit Sc — oo.

For a collection of neutrally buoyant blobs, the multi-
dimensional symmetric positive semi-definite mobility tensor
M (Q) = {m;;} (which is a block matrix with blocks of size
d?, where d is the dimensionality) depends on the positions of
all particles Q = {q ; } The diagonal block u;; corresponds to
the single-particle mobility in the absence of other particles,
while the block corresponding to particle pair i and j is the
inter-particle mobility u;;. For blobs this is given by a gener-
alization of (8),%

Mij = pj; = Tfl/&;(‘l,‘ —r)G(r,r')8,(q; —r')drdr'.
(10)
This pairwise hydrodynamic interaction between two blobs
was studied numerically for blobs in Ref. 17, and was
shown to be closely related to the well-known Rotne-

@)~ In[L/(3.708 Ryy)]
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or the integral of the VACEF,
t
Xvacr (D) = / ()t
0

_ i<[q(1)—q(O)]®[q(l)—lI(0)]>
T 2 '

The long-time diffusion tensor is then the asymptotic value

X= tl_l)fg Xmsp(?) = ll_l)f{.lo Xvacr(?).

While we will not demonstrate this here, it can be shown
that, for very large Schmidt numbers, neither sound effects
(compressibility) nor inertial effects affect the diffusion coef-
ficient of a single particle.> For a single particle, x can be
obtained from the mobility tensor g via the Einstein relation
X = (kgT) p. It is important to note that the diffusive mo-
tion of the particle is entirely determined by its coupling to
the fluid and is not an input parameter to our method. This
reflects the physical relationship between fluid velocity fluc-
tuations (viscosity and temperature) and diffusion coefficient,
as encoded in the Stokes-Einstein relation.?*

The Stokes-Einstein relation can formally be obtained
starting from (7) by taking the overdamped limit v = n/p —
oo, which can be achieved by either assuming strong viscous
friction  — o0, or no fluid inertia, o — 0. In this limit, mo-
mentum diffuses much faster than does the immersed parti-
cles, as measured by the Schmidt number

Se=—3>1.
X
The overdamped limit is the formal limit Sc — oo, in which
the fluid velocity becomes a fast degree of freedom that can be
eliminated adiabatically, while the particle position becomes a
slow degree of freedom.'%>*2> We emphasize that the Stokes-
Einstein relation in a periodic domain of length L >> Ry,

in two dimensions

9
in three dimensions

Prager-Yamakawa (RPY) tensor used in Brownian dynamics
simulations.'33%34 In the overdamped limit, the collective dif-
fusion of a collection of blobs can be described by the equa-
tions of Brownian dynamics,'®2*

do 1~ a

o MF + \/2kgT MW + kT <@ . M) , (11)
where W is a collection of independent white-noise pro-
cesses and the noise is to be interpreted in the Ito sense, and
F (Q) = {F,;} are the forces applied on the particles. In this
work we focus on the Brownian motion of a single particle,
however, the effect of Schmidt number that we study here ex-
ists in multi-particle systems as well.

It is important to point out that at times longer than the

time #; = L?/v it takes for momentum to traverse the sys-
tem length L, the VACF starts decaying exponentially’ and
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Xvacr (t > tp) & x. Therefore, at times ¢ > t; the diffusive
motion of an isolated particle looks like simple Brownian mo-
tion and it becomes meaningful to use the long-time diffu-
sion coefficient. Note however that the Brownian motions of
multiple particles are not independent because of the corre-
lations induced by the long-ranged (decaying as In () in two
dimensions and r~! in three dimensions) hydrodynamic in-
teractions. The diffusion of a large collection of particles is
therefore subtly but crucially different from that of a collec-
tion of independent Brownian walkers with diffusion coeffi-
cient x.2*

B. Finite schmidt numbers

For finite Schmidt numbers, Sc = O(1), theoretical anal-
ysis is significantly complicated by the fact that the parti-
cle moves while the velocity relaxes through viscous dissi-
pation. We are not aware of any rigorous results regarding
the diffusive motion of even a single particle, yet alone col-
lective diffusion. The main theoretical approach in the litera-
ture is mode-mode coupling theories,* which are essentially
a perturbative series in the strength of the thermal fluctua-
tions. One key prediction of these theories is that the mo-
mentum diffusion coefficient v = n/p should be augmented
by the particle diffusion coefficient x since the particle dif-
fuses while the momentum diffuses. At the viscous time scale,
t>t, = R%, /v, conservation of momentum (hydrodynamics)
in the fluid introduces a memory in the motion of the particle
and the VACF C(t) = d~' (u(t) - u(0)) decays algebraically
rather than exponentially. The standard theory for the tail
of the VACF (long-time behavior)*? implicitly assumes that
Sc > 1, and leads to the conclusion that for an isolated
particle in an infinite fluid asymptotically C(¢) ~ (t/t,)~%?
~ (v1)~%2. Self-consistent mode coupling theory predicts that
at finite Schmidt numbers C(¢) ~ [(x + v)f]~%2.5:3¢ This was
confirmed to hold for blob particles numerically in Ref. 17 for
Sc 2 2, with the caveat that y was approximated by xsg, the
prediction of the Stokes-Einstein relation.

It is not difficult to see that predictions of mode-mode
coupling theories have to be approximate in nature since the
diffusion coefficient of the particle, which is the result of the
fluid-particle coupling, is used in the theory as an input to pre-
dict the corrections to the overdamped limit. Self-consistent
mode-mode coupling theories are usually heuristic and thus
also approximate. Based on the scaling of the tail of the VACF
with Schmidt number, and the fact that the diffusion coeffi-
cient is given by the integral of the VACF, one may conjecture
that, to leading order, the effect of finite Schmidt number can
be captured by the modified Stokes-Einstein formula

X (v+ x) = Xsev. (12)

This relation was proposed as a self-consistent equation for
x in Refs. 37 and 38. It is important to note, however, that
both the short time and the long time part of the VACF
contribute to the diffusion coefficient. Numerical results in
Ref. 17 indicate that the short-time VACF does not scale in
the same way as the long-time tail, leading us to question the
prediction (12). In particular, at very short times no rescaling
is required to overlap the VACFs, and therefore, in principle,
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to fully overlap the VACFs over both short and long times, one
would need to use an Sc-dependent non-uniform rescaling of
time axes. One therefore expects the integral of the VACF to
be somewhere in-between the Stokes-Einstein relation (cor-
responding to the short-time scaling) and (12) (corresponding
to the long-time scaling).

We are not aware of any detailed theory that success-
fully predicts the form of the corrections to the simple Stokes-
Einstein prediction (1) for moderate values of Sc (see Ref. 5
for one attempt). In Ref. 21 a heuristic self-consistent theory
of diffusion is proposed. The starting point is renormalization
theory for the effective diffusion coefficient in the advection-
diffusion equation for the concentration of a large number
of passive tracers.’’ The self-consistent theory suggests that
in both two and three dimensions (cf. Egs. (29) and (30) in
Ref. 21 in the case of no bare diffusion)

1
XSE 1/2 2 2
—v[1 2—] —v=v| {1+ 2) —1,
X v[—i— ” v V|:<+SCSE

(13)
where we have defined a predicted Schmidt number
ScSE = v/ xsg (which is input to our simulations rather than
output as is Sc). This prediction for the self-diffusion coeffi-
cient is the solution to the self-consistent equation

x(v+7) = xsev. (14)
which differs from (12) in the prefactor of 1/2. In Sec. III, we
will compare the two predictions (12) and (14) for the leading-
order correction to Stokes-Einstein’s relation with numerical
results. Note that we only expect this type of relation to pre-
dict the leading-order corrections (proportional to Sc™!) to the
Stokes-Einstein relation and not the complete dependence on
Sc. At very small Schmidt numbers there would likely be im-
portant contributions from higher order (e.g., proportional to
x2/v) correction terms inside the parenthesis in (14).

Mode-mode and renormalization theories, on which both
(12) and (14) are based, are perturbative theories typically
truncated at terms quadratic in the strength of the fluctuations.
In the context of infinite (bulk) systems, a systematic pertur-
bative theory that accounts for corrections of order higher than
quadratic in the fluctuations has been discussed in Refs. 38
and 39. In three dimensions, the conclusion of such studies
has been that the higher order terms do not make a dramatic
contribution. This can be attributed to the fact that large-scale
modes of the fluctuating velocity make a negligible contribu-
tion to the diffusive dynamics (this is directly related to the
fact that the 1~/ tail of the VACF is integrable, see Ref. 21
for additional discussion).

In two dimensions, however, the logarithmic divergence
of xsg with system size is a sign of the growing contribution
of large-scale modes. In fact, the Schmidt number will be-
come arbitrarily small for sufficiently large systems (keeping
viscosity fixed) and the Stokes-Einstein relation will be
strongly violated. In this case, however, the infinite-time dif-
fusion coefficient x does not describe the diffusive dynamics
even at macroscopic length (e.g., system size L) and time
scales (L/x). Specifically, the slowly decaying ¢+~ tail of the
VACF means that the diffusive motion has correlations over
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macroscopic times and does not resemble simple Brownian
motion at relevant scales. Instead, one needs to consider the
time-dependent diffusion coefficients xmsp(f) or xvacr(?).
Several calculations’**! and numerical simulations*>*3
suggest that including higher order terms changes the decay
of the tail of the VACF in two dimensions. Specifically,
it has been predicted that the self-consistent power-law
decay for the VACF is faster than !, C(t) ~ (tv/Int)~1.
Hydrodynamics-based methods such as the method we use
here (see also Ref. 42 for a study using a lattice gas model)
are better for studying this very long time decay of the VACF
than are particle methods, since larger systems and longer
time scales become computationally feasible. Nevertheless,
because of the slow logarithmic growth, extremely large
systems are required to see any effects of higher order
corrections. To see this, let us assume Stokes-Einstein’s
formula holds and estimate the system size when

Sc &~ S¢S = 2 = 471pv2 <1

xse  kgTIn[L/(4Rp)]

For a hard-disk fluid, we can estimate the viscosity 7 using
simple Enskog kinetic theory,** which has been found to be
quite accurate even at high densities.*> For a hard-disk fluid
at packing density (fraction) ¢ = (p/m)(wo?/4) = 0.6 (which
is close to the liquid-solid transition), Enskog theory predicts

A/ mk B T

n~ 2 Y EL
o

where o0 & 2Ry denotes the particle diameter. This gives that
the system size required to get Schmidt number close to unity,

ss., 65
In[L/ (4 Rp)]

Reaching such a staggering system size is not feasible with
any numerical method, and therefore in this work we focus
on the more practically relevant case of finite system size at
moderately large Schmidt numbers.

In addition to the nonlinearity coming from the fact that
at moderate Schmidt numbers the particle moves while mo-
mentum diffuses,’? additional nonlinearities arise because of
the presence of the advective term pv - Vv in the momentum
equation. If we define a “thermal” Reynolds number based
on the equilibrium magnitude of the particle thermal velocity
fluctuations!”

<1 = L>15-10°Ry.

in three dimensions we can estimate

2\ 1
R kgT
Re — >Ry | kT [Xse _ S¢Syt
v vnRy v

A similar result applies in two dimensions as well, ex-
cept for an additional factor of ln%[L /(4 Ry)]. This shows
that the thermal Reynolds number becomes O(1) when ScSE
~ 1, and in principle nonlinear effects arising from advec-
tion could arise. By contrast, at large Schmidt numbers the
thermal Reynolds number is small and advective nonlinear-
ities are expected to be negligible. While in realistic fluids,
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including particle simulations, advective nonlinearities are al-
ways present, in our numerical method we can simply turn off
the term pv - Vv to assess its importance. Numerical experi-
ments indicate that nonlinear inertial effects play a minimal
role, not noticeable within statistical accuracy for reasonable
Schmidt numbers. Therefore, it appears appropriate to sim-
ply linearize the velocity equation, as is often done in the lit-
erature with somewhat hand-waving justifications. Similarly,
we find that the excess inertia of the particles does not affect
the long-time diffusion coefficient, consistent with traditional
derivations based on linearized theory.’> We do not attempt
to provide rigorous justification for these observations in this
work.

lll. RESULTS

In this section we present numerical results obtained us-
ing the computational algorithm for solving (3)—(6) devel-
oped in Ref. 17. In Ref. 17 some of us presented results con-
cerning the short-time behavior of the VACF C(r) of a sin-
gle blob particle in a three-dimensional periodic domain of
length L, including a comparison to the case of a blob sus-
pended in a compressible fluid. Excellent agreement with the-
oretical predictions for the variance of velocity (i.e., C(t = 0))
was obtained, and the =¥ power-law behavior at long times
L?/v>t>t, = R%I /v was confirmed. Here we briefly ex-
amine the VACF in two dimensions, and then focus on the
self-diffusion of a blob in both two and three dimensions.
Note that in Ref. 17 it is demonstrated that the method cor-
rectly reproduces the static structure of a suspension of many
interacting blobs. Also note that the presence of multiple in-
teracting blobs affects the dynamics in a nontrivial way, and
changes both the short-time VACF (via multi-particle inertial
effects) and also the self-diffusion coefficient. We do not ad-
dress multi-particle suspensions in this work.

In the majority of the simulations we use the three-point
discrete kernel function of Roma and Peskin?®3! to discretize
the kernel 8,. By using the Peskin four-point kernel®’ in-
stead of the three-point discrete kernel function the transla-
tional invariance of the spatial discretization can be improved,
however, at a potentially significant increase in computational
cost, particularly in three dimensions. The effective hydrody-
namic radius Ry for a given discrete kernel function can be
obtained easily from the deterministic mobility tensor fge,
given by a discrete equivalent of (8). The deterministic mo-
bility tensor can be obtained by turning off fluctuations, ap-
plying a unit force along each of the coordinate directions
in turn, solving the spatially discretized steady Stokes equa-
tion, and then calculating the resulting velocity of the parti-
cle. After accounting for finite-size effects due to the finite
length of the periodic box, in three dimensions we numer-
ically estimate!”-3 the effective hydrodynamic radius to be
Rzp " =(0.91 +0.01) h the three-point kernel,® where & is

the grid spacing, and R;‘f’ = (1.255 £0.005) i for the 4pt
kernel.*® In two dimensions, the effective (rigid disk) hydro-
dynamic radii are estimated to be Rzp " =(0.72 £0.01)h and

Ri,” " = (1.04 £ 0.005) h. Note that the spatial discretization
we use is not perfectly translationally invariant and there is



214113-7 Balboa Usabiaga et al.

a small variation of Ry (quoted above as an error bar) as the
particle moves relative to the underlying fixed fluid grid.'7-4®

We use a relatively small grid of 322 cells in two dimen-
sions and 323 cells in three dimensions in order to be able to
perform sufficiently long runs even with the larger Schmidt
numbers. In two dimensions we use a neutrally buoyant par-
ticle (m, = 0), while in three dimensions we use a particle
twice denser than the surrounding fluid (m, = pAV), in or-
der to confirm that the excess mass (density) does not (sig-
nificantly) affect the conclusions of our investigations. The
advantage of using neutrally buoyant blobs is that they are
passive tracers (they do not affect the velocity equation), and
therefore one can use multiple tracers in a single simulation
in order to improve the statistical accuracy. This is useful
in two dimensions, where the VACF has a slowly decaying
tail and therefore long runs are required to study the long-
time diffusive motion of the particle. In all cases we have
confirmed that the time step size At is sufficiently small by
comparing with a simulation using a twice smaller time step
size. A detailed discussion and numerical results concerning
the accuracy of the scheme as a function of At are given in
Ref. 17. We varied the viscosity in order to change the
Schmidt number, but as explained earlier, the Schmidt number
is the only relevant dimensionless number so one can equiva-
lently change the temperature. Since the actual Schmidt num-
ber is an output rather than an input to our calculation, we can-
not calculate the Schmidt number a priori. Therefore, in this
section we estimate the true Schmidt number with Sc &~ ScSE
= v/ xsg for the purposes of captions and axes labels, which
is a good approximation for moderate and large Schmidt
numbers.

During each simulation a discrete trajectory of the
particle {q (0), q (At), g (2At),...} is recorded. From
this data, we calculate an apparent (discrete) velocity ity
=(qk+1)—qk)/At, k=1,2,..., which for finite Atis
in general different from the velocity of the particle u (kAft)
calculated by the numerical scheme. We then obtain the dis-
crete VACF Cy = d ™! ((iip) - (fwsr)) efficiently using a fast
Fourier transform of the apparent velocity. It is not hard to
show that the time-dependent diffusion coefficients at the dis-
crete time points in time can be obtained in linear time using

k—1 k—1

At 1 .
xvsp(kAD) = —Co + At [ZI: Ci— ¢ > i c,-] , (15)

i= i=1

k—1
At
xvacr(kAr) ~ —=Co + At > oa (16)

i=1

A. VACF

In Fig. 1 we show the VACF C(¢) = d~' (u(t) - u(0)) for
a neutrally buoyant (m, = 0) blob in two dimensions, for sev-
eral Schmidt numbers. The theoretical variance of the velocity
of a neutrally buoyant particle immersed in an incompressible
two dimensional fluid gives C(r =0) = (d — DkgT /(d m)
=kpT/(2pAV), where AV is the volume of the blob given
in Eq. (2). We see from the figure that the numerical curves
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FIG. 1. Velocity autocorrelation function (VACF) of a single neutrally buoy-
ant blob (three-point kernel) in two dimensions. A deterministic calculation,
corresponding to the limit Sc — oo, is also shown. The expected value at the
origin is shown with a dotted line. The scaling of the time axes is chosen
to collapse the different curves at long times. Note that the time 77, = L*/v
~ 1031, is off the scale of the time axis.

are in excellent agreement with this value, confirming that the
numerical method correctly captures the thermal particle ve-
locity fluctuations.

The standard theory for the tail of the VACF (long-time
behavior)*? implicitly assumes that Sc > 1, and predicts that
the long-time VACF has a power law decay C(f) ~ (vf)~'. As
discussed in Sec. II B, accounting for a finite Schmidt num-
ber leads to a predicted decay C(f) ~ [(v + x)f]~'. This means
that the tails of the VACFs for different Sc values can be col-
lapsed on one master curve if we plot them as a function of
(1 4+ Sc™)(¢/t,). This was confirmed in Ref. 17 in three di-
mensions, and it is confirmed in two dimensions in Fig. 1.
The rescaling is not perfect at shorter times, especially for
small Schmidt numbers, however, we note that the collapse
is significantly poorer if one plots the VACF as a function of
just #/t,,.

Our numerical method becomes very inefficient as the
Schmidt number becomes very large due to the large sepa-
ration of scales between the momentum and particle diffu-
sion. We will present modifications of the numerical method
to handle the limit Sc — oo in future work. The VACF in the
limit Sc — oo can, however, easily be obtained by a deter-
ministic calculation. We simply give the particle a small mo-
mentum kick Ap = F At during the first time step, and then the
deterministic algorithm is used to track the subsequent decay
of the velocity u(¢), which gives the VACF in the limit after a
suitable rescaling. In particular, the time-dependent diffusion
coefficient in the limit Sc — oo is given by

. kBT ! / ’
lim yvacp(t) = — [ u(@)dt".
Sc—00 Ap Jo

In Fig. 1 we show also the result of such a deterministic
calculation. Due to lack of statistical noise, the determinis-
tic VACF shows very clearly the transition from a power-law
to an exponential tail at long times. It is also clearly seen
that the VACF at large Schmidt numbers closely matches the
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deterministic one, as expected. Note that, in principle, the
deterministic VACF can be calculated analytically using dis-
crete Fourier Transform techniques.’

B. Diffusion coefficient

The long-time diffusion coefficient can be obtained either
from the limiting value of xysp(f) or xvacr(?). It is preferable
to use the discrete integral of the (discrete) VACF rather than
the mean square displacement because yvacr converges faster
to the asymptotic (long-time) value,* and thus has smaller
statistical error. Because the position of the particle is a more
fundamental quantity (in particular, in the limit Sc — oo it
becomes the only relevant variable), the mean square dis-
placement has a more direct physical interpretation, and is di-
rectly obtained from the discrete particle trajectory. We there-
fore use ymsp(?) to illustrate the time dependence of the dif-
fusion coefficient, and use xyacg(?) to obtain the long-time
diffusion coefficient x.

In the left panel of Fig. 2 we show the time-dependent
diffusion coefficient yysp(?) for a single particle in a three
dimensional periodic domain at several Schmidt numbers, in-
cluding the limit Sc — oo as obtained from a deterministic
simulation. We see that at short times we obtain collapse of
all of the curves just by scaling the time axes by t, = R?, /v,
however, at long times the curves do not collapse. In particu-
lar, the diffusion coefficient is lower than the Stokes-Einstein
prediction for the smaller Schmidt numbers. In order to ob-
tain an estimate of the long-time diffusion coefficient that
is essentially converged to the asymptotic value, while at
the same time minimizing the statistical errors, we estimate
x ~ xvace(L?/ (4v)). In the right panel of Fig. 2 we show the
estimated x/xsg as a function of the approximate Schmidt
number ScSE. The numerical data are compared to the two
self-consistent theories, (12) and (14). We see good agree-
ment of the numerical data with (14) to within the statistical
accuracy.

L 1 .
1______________________________:___ e e o ]
L = 1 1
[ [-— Se=2
[ |— Sc=4
08| Sc=10 b =
C Se=50 : ]
« C Sc=200 | ]
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Our numerical results clearly demonstrate that the
Stokes-Einstein relation does not apply at finite Schmidt num-
bers. On the other hand, the Einstein formula, which is a linear
response relationship between the diffusion coefficient and
the mobility, x = (kgT)u, is quite general, and follows from
straightforward statistical mechanics arguments.*’ However,
one must be careful here in defining the mobility . Mobility
should be defined as the coefficient of proportionality between
a small applied force Fj on the particle (with the opposite
force applied uniformly to the fluid to prevent center-of-mass
motion) and the average velocity of the particle,

@ = lim (u)

g 17
Fy—0 FO ( )

in the presence of thermal fluctuations. Here the average is
taken over time, or, equivalently, over a nonequilibrium but
steady-state ensemble that is a weak perturbation of the equi-
librium ensemble. Because of the nonlinearity of the fluid-
particle equations, thermal fluctuations can affect average val-
ues. Therefore, we should not expect, in general, that the mo-
bility measured at finite temperature is the same as the de-
terministic (kg7 = 0) mobility. Indeed, in the right panel of
Fig. 2 we show the predictions of (17) with (#) measured nu-
merically under a small applied force (to ensure the system
remains in the linear response regime). These predictions are
in agreement with the direct measurements of the diffusion
coefficient from the integral of the velocity autocorrelation
function, as predicted by linear response theory. We there-
fore observe no violation of any known physical principles,
so long as we recognize the fact that fluctuations cannot just
be turned off. More precisely, at finite value of kT the fluctu-
ations do not necessarily average out, and can, in fact, affect
the dynamics of macroscopic or deterministic observables.

In Fig. 3 we confirm that the same conclusions apply
to finite two-dimensional systems. In order to verify that the
results are not affected by the specific choice of the kernel
function, here we also use the four-point Peskin kernel.?” The

) = X (v+)) = const

K X (V+Y/2) = const
From VACF integral
From mobility

0.8

[y IS
.

X/ Xse
f=1
o
I —
N

~.

4 8 16 32 64 128 256

—_
[ Y=

Approximate Sc=v/y,

FIG. 2. (Left panel) The ratio of the time-dependent diffusion coefficient xpsp(?) to the long-time diffusion coefficient estimate xsg given by the Stokes-
Einstein formula, for a three dimensional blob (three-point kernel). The statistical error estimates are shown as vertical bars, and the vertical line shows the time
7 = L%/(4v) at which we estimate the long-time diffusion coefficient x & xvacr (7). (Right panel) Comparison between the numerical estimate (symbols) for
the long-time diffusion coefficient and the Stokes-Einstein prediction for several Schmidt numbers. The predictions of the self-consistent theories (12) and (14)
are shown for comparison (dashed lines). The Einstein prediction x = (kpT)u based on direct measurements of the mobility (17) are shown for several Schmidt

numbers.



214113-9 Balboa Usabiaga et al.

F— Deterministic ]
08 [--- sc=200 =
N Sc=16 1
[ |-~ Sc=4 -]
r Sc=2 b
§ 06 |- se=1 | ]
= N P
= C ]
< B 1]
X 04} 1 -
C -
[ 1]
L 1 4
C P
02 i
L 1]
C -
C > -
Lt vl il 0l il

10° 10" 10° 10" 10° 10°

t/t
v

J. Chem. Phys. 139, 214113 (2013)

r L L L N S e = St e i
F @ -7 1

0.9:7 , . O  3ptkernel E

F Q - [0 4ptkernel ]

F e x (vx/2) = const | ]

E /A/ c=-= % (VHY) = const E

a r ‘/' ]
= o08F o ]
x F , ]
L / ]

L ’ ]

ro ’ ]

0.7 a ]

1] / ]

L /7 ]

[/ ]

Fs 1

0.6 S T T T T T A T TS A ST B
T 2 4 8 16 32 64 128 256

Approximate Sc=v/y.

FIG. 3. The same panels as Fig. 2 but this time for a two dimensional blob. The four-point kernel was used for the left panel, and both the three- and four-point

kernels are employed for the right panel.

results in the right panel of Fig. 3 show that dimensionless re-
lations are independent of the kernel function. This leads us
to believe that (14) is a rather general relation that correctly
captures the leading-order corrections to the Stokes-Einstein
relation at finite Schmidt numbers in both two and three
dimensions.

IV. CONCLUSIONS

We presented a simple theory for the effect of Schmidt
number Sc =v/x on the long-time diffusion coefficient
of a particle immersed in a fluid. The approximate self-
consistent calculation suggests that the long-time diffusion
coefficient of the particle can be determined from the condi-
tion x (v + x/2) = xsgv. Here xsg is the prediction of the
Stokes-Einstein relation, xsg = kg7 [Lg.r, Where pge is the
deterministic mobility of the particle, that is, the linear re-
sponse to an applied force in the absence of thermal fluc-
tuations. In the limit of large Schmidt numbers the Stokes-
Einstein relation is obeyed, as expected, but the correction can
be substantial at small Schmidt numbers and is also measur-
able at moderate Schmidt numbers. By contrast, the Einstein
relation x = kgT is always obeyed, as long as the mobility is
defined by the linear response in the presence of fluctuations.
The discrepancy between p and pger Stems from the nonlin-
ear fluid-particle coupling, which becomes important at finite
Schmidt numbers.

Our numerical results are in good agreement with the
self-consistent theory in both two and three dimensions. In
two dimensions, for finite systems, Stokes-Einstein’s relation
holds, but the Stokes-Einstein diffusion coefficient diverges
logarithmically with system size. At the same time, however,
as the system size diverges the Schmidt number decreases
and the deviations from Stokes-Einstein’s prediction become
stronger. The truly asymptotic behavior of a particle in an un-
bounded two-dimensional fluid (e.g., a tagged hard disk in
a hard-disk fluid) remains an open question, albeit one of
mostly academic interest since the Schmidt number is still
rather large for system sizes feasible in present-day molecular
dynamics.

While the above results elucidate some important fun-
damental questions about the physical importance of fluctu-
ations, it should be observed that for realistic fluids (rather
than coarse-grained fluid models'') small Sc implies that the
size of the blob particle becomes comparable to the length
scale at which hydrodynamics breaks down (molecular diam-
eter for liquids, or mean free path for gases). The physical
fidelity of the blob model and the fluctuating hydrodynam-
ics equations'' used here should therefore be questioned at
small Sc. In Ref. 3 the validity of the Stokes-Einstein relation
is studied using molecular dynamics. In that study the small-
est Schmidt number is of the order of 15, and the corrections
studied here are significant. Nevertheless, in the case of a true
molecular fluid many other effects enter the picture as well,
for example, the (in)validity of the no-slip condition with a
fixed particle radius. Therefore, one should not try to explain
the data in Ref. 3 using our model. In fact, the deviations
from the SE prediction measured in Ref. 3 have a comparable
magnitude but the opposite sign from the correction predicted
here. This means that, when one takes into account that hy-
drodynamic theory should include the finite Schmidt-number
correction studied here, the deviations between the MD simu-
lation and hydrodynamic predictions are twice larger than re-
ported in Ref. 3. A similar “cancellation-of-errors” that leads
to a better agreement with hydrodynamic theory than truth-
fully present is discussed in Ref. 2.

Despite its somewhat limited practical utility, our model
allows us to separate hydrodynamic from molecular effects,
and to test the predictions of self-consistent renormalization
theory.?! More importantly, our results are quite relevant to
the interpretation of results obtained using widely used parti-
cle methods for fluid dynamics of complex fluids, e.g., MD,
(S)DPD, MPCD/SRD, SHSD, and even Lattice Boltzmann
schemes. In some of these methods, as they are typically used,
the Schmidt number can be of the order of unity, and in all of
them it is rarely larger than 50. This is to be contrasted with
realistic liquids (e.g., water at room conditions) where the
Schmidt number for tagged particles exceeds 100 and is of-
ten larger than 1000. In order to avoid the types of unphysical
deviations from the Stokes-Einstein relation as we described
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here, one must use methods that take the limit Sc — oo and
use a fluctuating steady Stokes equation for the fluid (e.g.,
Brownian and Stokesian dynamics). In the future we will de-
velop modifications of our method that achieves this limiting
behavior. Note that increasing Sc is not possible in traditional
particle methods or Lattice Boltzmann methods because they
(by design) avoid the solution of Poisson equations for the
pressure, as is necessary in the steady Stokes limit.

The primary cause of the correction to the SE prediction
at finite Sc is the fact that the particle diffuses with effective
diffusion coefficient y while the momentum diffuses, rather
than nonlinear inertial effects. This leads us to suspect that
the effect studied here is independent of the details of the mi-
croscopic dynamics giving rise to the particle diffusion, and
the same self-consistent formula should apply, for example,
in Lattice Boltzmann methods with a frictional fluid-particle
coupling.'* Note that in Stokes frictional coupling, and likely
also in molecular (particle) simulations, there is an additional
non-hydrodynamic or “bare” contribution to the diffusion co-
efficient o = kgT/y coming from the dissipative friction co-
efficient y between the particle and the fluid.'*?* A way to
estimate such bare friction in molecules, from the autocor-
relation of molecular forces in restraint dynamics, has been
proposed in Ref. 48. The bare diffusion coefficient x should
be added to the (Schmidt-number dependent) hydrodynamic
contribution g = x — xo studied in this work. In both two
and three dimensions, the self-consistent theory proposed in
Ref. 21 gives the prediction

x+x]"
X = Xo+ 1+T XSE»

which can be written as a self-consistent equation for x g,

XH
XH (V + Xo + 7) = XSEV-
It would be interesting to perform numerical simulations in
the future to test this theory numerically.
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