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I. INTRODUCTION

Thanks to the efforts of the robotics and autonomous

systems community, robots are becoming ever more capable.

There is also an increasing demand from end-users for

autonomous service robots that can operate in real envi-

ronments for extended periods. In the STRANDS project1

we are tackling this demand head-on by integrating state-

of-the-art artificial intelligence and robotics research into

mobile service robots, and deploying these systems for long-

term installations in security and care environments. Over

four deployments, our robots have been operational for a

combined duration of 104 days autonomously performing

end-user defined tasks, covering 116km in the process. In

this article we describe the approach we have used to enable

long-term autonomous operation in everyday environments,

and how our robots are able to use their long run times to

improve their own performance.

II. LONG-TERM AUTONOMY IN STRANDS

Autonomous robots come in a range of forms, for a

range of applications. Across this range, long-term autonomy

(LTA) has a variety of meanings. For example, NASA’s

Opportunity rover has been autonomous for over 10 years on

the surface of Mars; wave gliders can autonomously monitor

stretches of ocean for months at a time; and autonomous cars

have completed journeys of thousands of kilometres. In this

article we restrict our contributions to mobile robots operat-

ing in everyday, indoor environments (e.g. offices, hospitals),

†Contact author: n.a.hawes@cs.bham.ac.uk
aSchool of Computer Science, University of Birmingham, UK
bAkademie Fur Altersforschung Am Haus Der Barmherzigkeit, Austria;

and Donau-Universitaet Krems, Austria
cKTH Royal Institute of Technology, Sweden
dRheinisch-Westfälische Technische Hochschule Aachen, Germany
eTechnische Universität Wien, Austria
fFaculty of Science and Technology, Middlesex University London, UK
gUniversity of Leeds, UK
hUniversity of Lincoln, UK
1Spatio-Temporal Representations and Activities for Cognitive Control in

Long-Term Scenarios, http://strands-project.eu.

capable of performing a variety of service tasks. Across all

the aforementioned robots there are commonalities in low-

level, short-term control algorithms (e.g. closed-loop motor

control). Beyond this, the algorithms used to provide long-

term, task-specific autonomous capabilities, and the hardware

these algorithms control, varies greatly, according to appli-

cation and environmental requirements. The challenges that

distinguish indoor service robots from the aforementioned

examples relate to both their environment and their task

capabilities. Indoor task environments are less physically

risky than outdoor environments, but have a comparatively

higher degree of short- to medium-term physical variability,

e.g. people, doors and furniture moving (roads are similar,

but traffic movement is generally more predictable and less

frequently occluded). In terms of application requirements,

multi-purpose service robots must be capable of predictable

scheduled behaviour whilst also being retaskable on-demand

with high availability, and must be able to navigate in rela-

tively confined, dynamics environments. This is in contrast

to the largely restricted-purpose systems mentioned above.

Taken together the set of requirements for indoor service

robots presents unique challenges, and thus LTA in this

context warrants dedicated research.

Given the state of the art, we consider “long-term” for

a mobile service robot to be at least multiple weeks of

continuous operation. In very general terms, such LTA

operation requires that a robot’s hardware and software is

robust enough to failure to enable such operation. Such

robustness can be provided by both design-time and run-

time approaches. It is essential that LTA systems are able to

actively manage consumable resources (e.g. battery) and that

any autonomy-supporting capabilities (e.g. localisation) are

not adversely affected by long run times. Whilst this latter

point is common sense, and common practice in many other

technologies (from operating systems to cars), it has only

recently been considered in autonomous robotics.

One reason it is challenging to design a service robot

to meet the requirements of LTA is the impossibility of

anticipating all the situations in which it may find itself.

http://strands-project.eu


However, if we can enable robots to run for long periods,

then they will have opportunities to learn about the structure

and dynamics of such situations. By exploiting the results

of such learning, the robots should be able to increase their

robustness further, leading to a virtuous cycle of improved

performance and greater autonomy. It is this latter point

which motivates STRANDS: to go beyond robots which

simply survive, to those that can improve their performance

in the long term. It is in this context that this article makes

its main contribution: a robotic software architecture (the

STRANDS Core System) which was designed for LTA

service robot applications, and evaluated across four end-user

deployments. It contains a mix of common sense and novel

elements which have enabled it to support over 100 days

of autonomous operation. This article is the first time all of

these elements have been presented together, and contains the

first presentation of metrics describing performance across

deployments. Our approach is inspired by the work of Willow

Garage [1] and the CoBot project [2], plus the pioneering

work on systems like Rhino and Minerva (e.g. [3]). What

distinguishes our work from these is the combination of

multiple service capabilities, in a single system capable

of weeks or more of continuous autonomous operation, in

dynamic indoor environments, whilst using various forms

of learning to improve system performance. Many other

projects address one or two of these elements, but not all

four simultaneously.

III. APPLICATION SCENARIOS

To ensure our research is able meet the demands of end

users, our work is evaluated in two application scenarios: se-

curity and care. Space does not permit a detailed explanation

of the tasks in each scenario. Instead we include citations to

further information on the tasks and technology from each

scenario.

Our security scenario is developed with G4S Technology.

The aim of this scenario is to have a robot monitoring an

indoor office environment, generating alerts when it observes

prohibited or unusual events. To date we have completed

two security deployments in which a mobile robot routinely

created models of the environment’s 3D structure [4], ob-

jects [5] and people [6]; modelling their changes over time;

and using these models to detect anomalous situations and

patterns. For example, we have developed robot behaviours

to: detect when a human moves through the environment

in an unusual manner [6]; build models of the arrangement

of objects on desks [7]; and check whether fire exits have

been left open. Long-term deployments are essential for these

services in order to gather sufficient data to build appropriate

models.

Our care scenario is developed with the Akademie für

Alterforschung at the Haus der Barmherzigkeit (HdB). In

this scenario, the robot supports staff and patients in a

large elderly care facility. To date we have completed two

care deployments in which a mobile robot: guides visitors;

provides information to residents; and assists in walking-

based therapies. In the care scenario the robot serves users

more directly, and therefore long-term system robustness is

crucial, as is adapting to the routines of the facility. For more

information on this scenario see [8], [9].

IV. ROBOT TECHNOLOGY

The systems reported in this paper are developed in ROS,

available under open source licenses, and binary packaged

for Ubuntu LTS.2 Whilst the majority of our work is platform

neutral, all our deployed systems are based on the MetraLabs

SCITOS A5 (see Figure 1). This is an industry-standard

mobile robot capable of the long run times (12 hours on

one charge) and autonomous charging. Our robots each have

SICK S300 lasers in their bases (for localisation, leg detec-

tion etc.), and two Asus Xtion PRO RGB-D cameras: one

at chest height pointing downward (for obstacle avoidance),

the other on a pan-tilt unit (PTU) above the robot’s head.

The SCITOS has an embedded Intel Core i7 PC with 8GB

RAM to which we have networked two additional PCs each

with an i7 and 16 GB RAM.

V. THE CORE STRANDS SYSTEM

The STRANDS Core System (Figure 2) is an application-

neutral architecture for LTA in mobile robots. It is a mix of

widely-used components, plus components designed specif-

ically for LTA. As mentioned above, hardware and software

robustness is essential for LTA. Hardware robustness is

beyond the scope of our research, thus we assume our

software is running on an appropriate robot and computa-

tional platform. We address software component robustness

through a mix of strategies. During development we encour-

age components to be designed in a way that makes the

minimum assumptions about the existence of other compo-

nents and services (e.g. by checking service existence before

running). We also pay particular to error handling to ensure

component-local errors and exceptions do not propagate un-

necessarily. This allows components, and whole subsystems,

to be brought up and down automatically. At run-time we use

built-in ROS functionality to automatically relaunch crashed

components, and try to run most subsystems only when

required (saving CPU and power, and reducing opportunities

for errors). We also use run-time topic monitoring to detect

problems (e.g. low publish rates) and trigger component

restarts. Finally, we run a continuous integration server that

tests components and the whole system in isolation, on

recorded data, and in simulation. The rest of this section

summarises the STRANDS Core System, and provides ref-

erences to additional technical details.

The overall performance of a mobile robot is constrained

by its localisation and navigation systems, so we use widely-

adopted ROS packages to provide state-of-the-art perfor-

mance. When deploying we build a fixed map from laser,

localise in it using adaptive Monte Carlo localisation, and

navigate using the dynamic window approach (DWA) over

3D obstacle information.3 Whilst our use of a fixed map

2See http://strands-project.eu/software.html.
3See http://wiki.ros.org/navigation for details on these

techniques.

http://strands-project.eu/software.html
http://wiki.ros.org/navigation


Fig. 1. Two of the STRANDS MetraLabs SCITOS A5s in their application environments. On the left is the robot Bob at G4S’s Challenge House in
Tewkesbury, UK. On the right is the robot Henry in the reception of Haus der Barmherzigkeit, Vienna.
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Fig. 2. Schematic overview of the Core STRANDS System.

appears at odds with LTA in a dynamic environment, our

environments are dominated by static features (e.g. walls),

which prevent the robot’s localisation performance from

degrading. We also take advantage of the the robot regularly

docking with a charging station by resetting the robot’s

position to this known location whilst docked. This limits

localisation drift to that which can occur during time away

from the dock.

We manually build a topological map on top of the fixed

continuous map. We place topological nodes at key places

in the environment for navigation (e.g. either side of a door)

or for tasks (e.g. by a desk to observe). The topological map

from our 2015 security deployment is in Figure 6. Edges in

the topological map are parametrised by the action required

to move along them. In addition to DWA navigation, our

system can perform door passing, docking on to a charging

station, and adaptive navigation near humans [10].

In our experience, navigation performance is major deter-

miner of the autonomous run time of a mobile robot. This is

because navigation failures (e.g. getting stuck near obstacles)

can result in the robot being unable to return to its charging

station. Thus the aforementioned elements of the STRANDS

Core System support LTA in the following ways. First, by

constraining the robot’s movements to the topological map

we are able to restrict navigation to known good areas of the

environment. We additionally restrict movement by marking

areas of the static map as ‘no go’ zones which cannot be

planned through. Despite these restrictions, navigation fail-

ures still occur due to environmental dynamics (e.g. people

walking in front of the robot). Therefore edge traversals in

the topological map are executed by a monitored navigation

layer that can perform a range of recovery actions in the

event of failure (see Section VII). Also, topological route

planning and execution is one place where our core system

adapts to long-term experience, as described in Section VIII.

The main unit of behaviour in our system is a task.

Tasks represent something the robot can do (e.g. check

whether a fire door is open, serve information via a GUI),

and have an associated topological location, a maximum

duration, and a time window for execution. Our executive

framework [11] schedules tasks to be executed within their

time windows, and manages task-directed navigation then

execution. To prevent task failures from interfering with

long-term operation, our framework detects task time-outs

and failures, then stops or restarts robot behaviours as nec-

essary. Maintenance actions such as charging, batch learning

and database backups are all handled as tasks, allowing the

executive framework control of most of the robot’s behaviour.

This is essential for LTA as it enables the system to actively

manage its limited resources. A plot of tasks from the 2015

security deployment can be seen in Figure 3.

Our system relies on separate pipelines for perceiving

different elements of its environment: real-time multi-person

RGB-D detection and tracking [12]; visual object instance

and category modelling and recognition [13]; and 3D spatio-

temporal mapping [4]. This article does not cover our work

on perceptually challenging tasks. Instead we refer readers

to other papers where we have exploited these perception



Fig. 3. A plot of the tasks performed by the robot during the 2015 security deployment. White space indicates that the robot is not performing any tasks.
This indicates that the robot is charging or a failure has occurred.

pipelines, e.g. [10], [5], [7].

The data observed and generated (e.g. as inter-component

communication) by an LTA system is crucial for both

learning, and for monitoring and debugging the system.

We therefore use tools based on MongoDB4 to save ROS

messages to a document-oriented database. Database con-

tents (e.g. observations of doors being opened or closed)

can then be interpreted by the Frequency Map Enhancement

(FreMEn) component [14], which integrates sparse and irreg-

ular observations into spatio-temporal models representing

(pseudo-)periodic environment variations. These can be used

to predict future environment states (see Section VIII).

VI. METRICS

So far we have performed two evaluation deployments for

each of the security and care scenarios. For each deployment

we monitored overall system performance against two met-

rics: total system lifetime (TSL), and autonomy percentage

(A%). TSL measures how long the system is available for

4http://wiki.ros.org/mongodb_store

autonomous operation, and is reset if the system experiences

an unrecoverable failure, or needs an unrequested expert

intervention (i.e. something which cannot easily be done by

an end-user on site). A% measures the duration the system

was actively performing tasks as a proportion of the time it

was allowed to operate autonomously (which in our case is

typically restricted to office hours). The motivation of A%

is that it is trivial to achieve a long TSL if the system does

nothing. However, neither TSL nor A% measure the quality

of the services being provided. As this article focuses on

LTA we restrict our presentation to the aforementioned, task-

neutral but LTA-specific metrics. End-user evaluations of our

systems’ task-specific performance are ongoing, and will be

published in the future (see [9], [8] for early evaluations

from the care scenario).

Table I presents our systems’ LTA performance so far. In

2014 we aimed for 15 days TSL. However the longest run

we achieved was seven days. Most of our system failures

were caused by the lack of robustness of our initial software,

leading to unrecoverable component behaviour (crashes or

deadlock states). This was fixed for our 2015 deployments by

http://wiki.ros.org/mongodb_store


Care 2014 Security 2014 Care 2015 Security 2015 Total

Total Distance Travelled 27.94km 20.64km 23.41km 44.25km 116.24km
Total Tasks Completed 1985 963 865 4631 8444
Max TSL 7 days 3 hours 6 days 19 hours 15 days 6 hours 28 days 0 hours
Cumulative TSL 20 days 19 hours 21 days 0 hours 27 days 8 hours 35 days 3 hours 104 days, 7 hours
Individual Continuous Runs 18 18 5 2 43
Autonomy Percentage (A%) 38.80% 18.27% 53.51% 51.10%

TABLE I

LTA METRICS FROM THE FIRST FOUR STRANDS SYSTEM DEPLOYMENTS.

following the development approaches outlined in Section V.

In 2015 we targeted 30 days TSL, coming close with 28 days

in the security deployment. This long run was terminated by

the robot’s motors not responding to commands, an issue

which has since been fixed by a firmware update. In the

2015 deployments, most failures were due to computer-

related issues beyond the direct contributions of the project

(e.g. USB drivers, power cables, network problems etc.). Of

the seven runs in 2015, one run was ended due to user

intervention (a decorator powered off the robot), two due

to bugs in our software, and the remaining four due to faults

in software or hardware beyond our components.

The variations across deployments in terms of number of

tasks completed and distance travelled were largely down to

the different types of tasks performed by the robots, and the

different environments they were deployed in. For example,

information serving tasks may take tens of minutes with very

little travel, but door checking tasks will be brief and will

also require the robot to travel both before and during the

task.

Systems in the literature have delivered more autonomous

time and distance cumulatively (i.e. accumulated across mul-

tiple robots and/or system runs), but we believe the 28 day

run is the longest a single continuous autonomous run of an

indoor mobile service robot capable of multiple tasks. The

most relevant comparison we can make is to the CoBots.

The CoBot analysis in [2] reports a total of 1, 279.5 hours

of autonomy time, traversing 1, 006.1km. This was achieved

by four robots in 3, 199 separate continuous autonomous runs

over three years, at an average of 0.31km, 23 minutes per

run. They do not report the longest single continuous run

(either in time or distance), but even an extremely long run

for a CoBot would only be measured in hours, not days

(as they don’t have autonomous charging capabilities). In

contrast the STRANDS systems performed a total of 43

separate continuous runs, yielding a total of 2, 545 hours and

116 km over the four deployments, at an average of 2.7km

and 58:12 hours per run. How the duration of individual

runs varied can be seen in Figure 4. Note that we use this

data to provide a point of comparison. The two projects are

targeting different metrics (total distance for CoBots, single

run duration for STRANDS) thus the systems naturally have

different performance characteristics.

Sections VII and VIII describe novel elements of our

system that have enabled such long run times everyday

environments. These are followed by examples of tasks

that exploit these long run times to improve robot service

performance.

Fig. 4. A histogram of individual continuous run lengths over the 4
STRANDS deployments.

VII. MONITORED NAVIGATION

Given the huge variety of situations an LTA service robot

will encounter, it is impossible to develop a navigation

algorithm to successfully deal with all of them. We therefore

developed a framework that executes topological navigation

actions and monitors them for failure. If a failure is de-

tected, then the framework iterates through a list of recov-

ery behaviours until either the navigation action completes

successfully, or the list is exhausted (in which case failure

is reported back to the calling component). Failure types

can be mapped to specific lists of recoveries. When the

robot’s bumper is pressed, a hardware cut-off prevents it

driving, therefore in this case the robot must ask to be

pushed away from obstructions by nearby humans. If the

local DWA planner fails to find a path, then simply clearing

the navigation costmap (to remove transient obstacles) may

suffice. We also developed a backtrack behaviour which uses

the PTU-mounted depth camera to sense backwards whilst

reversing along the path it took to the failure location. This

is triggered when navigation fails, but clearing the costmap

does not overcome the failure.

Table II presents the recovery behaviours used in our

2015 deployments. Successful recoveries are those which

are not followed by another failure within one minute or

one metre of travel, otherwise they are unsuccessful. A

successful recovery may be preceded by any number of

unsuccessful recoveries. A sequence of unsuccessful recov-



Failure Recoveries Successful Unsuccessful Total

Bumper pressed Request help via screen and voice. Repeated until recovered. 177 148 325
Navigation failure Sleep then retry; backtrack to last good pose;
(no valid local or global path) request help via screen and voice. Repeated request until recovered. 707 993 1700
Stuck on carpet Increased velocities commanded to motors 16 247 263

TABLE II

CLASSES OF NAVIGATION FAILURE, THEIR ASSOCIATED RECOVERIES, AND THE OVERALL COUNTS OF SUCCESSFUL AND UNSUCCESSFUL

RECOVERIES FROM THESE FAILURES. PER-RECOVERY COUNTS ARE SHOW IN FIGURE 5

Security 2015 Monitored Navigation Recoveries
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Fig. 5. Per-recovery counts for our 2015 security (left) and care (right) deployments.

Fig. 6. The map of the deployment area in Challenge House, Tewkesbury with the topological map superimposed. Also displayed are the locations where
the robot successfully recovered from a navigation failure. Locations where the bumper was triggered are red. The robot asked humans for help at these
locations. It also did this at locations marked with green (for non-bumper fails). Places where recoveries were performed by reversing along the previous
path are marked in yellow, and by simply retrying in blue.

eries can come from the monitored navigation system as it

attempts recoveries that then fail, or from the task execution

framework unsuccessfully trying to navigate the robot to

another task after a previous failure. Figure 6 shows where all

the successful recoveries from our 2015 security deployment

occurred. They are largely clustered around areas where it

was difficult to navigate, such as near doors, and close to

desks. This novel approach significantly contributed to the

LTA performance of our systems, as each recovered failure

could have potentially caused the end of a continuous run.

VIII. ADAPTIVE TOPOLOGICAL NAVIGATION

Whilst monitored navigation helps the robot recover from

navigation failures, it does not help it avoid them. To do

this we aggregate the robot’s navigation experience into a

Markov Decision Process (MDP) automatically built from

the topological map [15]. Using an MDP allows the system

to model uncertainty over the success of the robot traversing

an edge in the map and its expected duration. By learning

models for these success probabilities and durations online,

the robot is able to continually adapt its behaviour to the

environment it is deployed in. Every time the robot navi-

gates an edge, the duration and success of the traversal is

logged to the robot’s database. These logs are processed by

FreMEn (see Section V) to produce a temporal predictive

model that allows the actions of the MDP to be assigned

probabilities and travel durations appropriate for the time

of execution [11]. This MDP is then solved for a target

location to produce a policy for topological navigation that

prefers low duration edges with high success probabilities



Fig. 7. The results of the robot selecting interaction times and locations
using FreMEn models learnt during the 2015 care deployment.

(see [15] for details). This improves the system’s robustness

by making it avoid areas where it previously encountered

navigation failures. This is only possible in an LTA setting

where the robot runs repeatedly in the same environment.

IX. PREDICTING HUMAN-ROBOT INTERACTION

In the HdB care facility our robot acts as an information

terminal, using its touch screen to present the date, daily

menu, news etc., to staff and to residents with potentially

severe dementia. This behaviour is scheduled as a task at

different topological nodes in the care home. As we did not

know in advance the locations and times people would prefer

to interact with the robot, we allowed it to adapt its routine

based on long-term experience. To achieve this, each node

in the topological map is associated with a FreMEn model

that represents the probability of someone interacting with

the robot’s screen at a given time. This is built from logs

of screen interactions stored in MongoDB. These FreMEn

models are used to predict the likelihood of interactions at

given times and locations. These predictions are used by

the robot to schedule where and when it should provide

information during the day.

The schedule has to satisfy two contradicting objectives

common to many online, active learning tasks: exploration

(to create and maintain the spatio-temporal models), and

exploitation (using the model to maximise the chance of

interacting with people). Exploration requires the robot to

visit locations at times when the chance of obtaining an

interaction is uncertain. Exploitation requires scheduling

visits to maximise the chance of obtaining interactions. To

tackle this trade off, the schedule is generated using Monte

Carlo sampling from the location/time pairs according their

FreMEn-predicted interaction probability (exploitation) and

entropy (exploration). For more details see [16].

Figure 7 shows that by using this approach the robot

was able to increase the number of successful interactions

(i.e. when information was offered and someone interacted

with the screen) on average per day over the course of its

deployment. Although we have no control group to compare

against, our on-site observations indicate that the robot’s

choices are having a positive effect. This demonstrates the

ability of the system to improve its application-specific

behaviour from long-term experience.

X. ACTIVITY LEARNING

In our security scenario, the robot should learn models

of normal human activity then raise an alert if an observa-

tion deviates from this. We have explored activity learning

using walking trajectories (see Figure 8). Over the 2015

security deployment, the robot detected 42, 850 individual

trajectories. As described in [6], we use Qualitative Spatio-

Temporal Activity Graphs (QSTAGs) to generalise from

individual trajectories to spatial and temporal relations be-

tween trajectories and landmarks in a semantic map (see

Figure 8). A QSTAG ignores minor quantitative variations

across trajectories, but captures larger, qualitative changes.

Every night the robot created QSTAGs for a subset of

all trajectories (based on their displacement ratio) observed

during the day. It then clustered these to create classes of

movement activities. Some examples of the results can be

seen in Figure 9.

During the day, an observation of a trajectory sufficiently

far from any cluster centre triggered a task to approach the

tracked human and request confirmation of their identity

using a card reader. To enable a fast response it is important

that the robot can accurately match the start of the trajectory

to a cluster. Table III shows how the accuracy of predicting

the cluster of a trajectory from an initial segment (20%)

improves as more data is gathered over the robot’s lifetime.

This provides another example of how a robot can improve

its application-specific performance once it can operate over

long periods.

Training weeks (#traj.) K recall prec F1
week 0 (342) 9 0.24 0.72 0.29
weeks 0-1 (511) 12 0.43 0.54 0.44
weeks 0-2 (707) 12 0.43 0.56 0.43
weeks 0-3 (811) 10 0.43 0.71 0.49
weeks 0-4 (1016) 14 0.48 0.63 0.53

TABLE III

ACCURACY OF ACTIVITY CLUSTER PREDICTION ON WEEK 5 DATA,

FROM PARTIAL INPUT TRAJECTORIES.

XI. CONCLUSIONS AND FUTURE WORK

The STRANDS Core System features a mix of design-

and run-time approaches which allow it to deliver LTA in

everyday environments. A key strategy for delivering long-

term robustness is the monitoring of system behaviour, from

the individual component level up to navigation and task

behaviours, plus the ability to restart system elements on

demand. This allows the system to cope with unexpected

situations both internally and in the external environment.

Our aim is also to use the long-term experience of failures

to learn to avoid these failures in the future. We presented

our approach for doing this for navigation (Section VIII),



Fig. 8. Top: The manually-created semantic map from the 2015 security deployment. Bottom: Example human trajectories with length close to the average
trajectory length of 2.44m. Also pictured are the manually annotated room regions we used for task planning.

Fig. 9. Trajectories belonging to three learned clusters in the region at the bottom left of Figure 8 (direction of motion is red to green). These can be
interpreted as two clusters of a desk approaching activity, and one of desk leaving.



and hope to generalise this to other parts of the system.

Whilst these features provide a fundamental ability to operate

autonomously for long durations in everyday environments,

our robots currently have no way to manage failures which

are more catastrophic, harder to predict, or both. For exam-

ple, our systems have suffered from PC component failure

and subtle networking issues. In the future we would like

to look at the use of redundancy and online reconfiguration

(e.g. substituting a failing software or hardware component),

coupled with more general failure detection approaches (both

have which have been extensive researched in robots and

other systems).

Our robots are able to learn online from lengths of

experiences that no other robots to date have access to.

The results above demonstrate what we have always known

from machine learning: more data improves performance.

However, the novel element here is that a robot must be

able to operate for longer in order to gather additional data,

and can make active choices about what data is gathered.

In the future we will also focus on the robot’s ability to

understand human activities (the major causes of environ-

ment dynamics at most scales) and to actively close the gaps

in its understanding it has already obtained from weeks of

autonomous runtime.
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