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During embryonic development, radial glial precursor cells give rise to neural lineages, and
a small proportion persist in the adult mammalian brain to contribute to long-term
neuroplasticity. Neural stem cells (NSCs) reside in two neurogenic niches of the adult
brain, the hippocampus and the subventricular zone (SVZ). NSCs in the SVZ are endowed
with the defining stem cell properties of self-renewal and multipotent differentiation, which
are maintained by intrinsic cellular programs, and extrinsic cellular and niche-specific
interactions. In glioblastoma, the most aggressive primary malignant brain cancer, a
subpopulation of cells termed glioblastoma stem cells (GSCs) exhibit similar stem-like
properties. While there is an extensive overlap between NSCs and GSCs in function,
distinct genetic profiles, transcriptional programs, and external environmental cues
influence their divergent behavior. This review highlights the similarities and differences
between GSCs and SVZ NSCs in terms of their gene expression, regulatory molecular
pathways, niche organization, metabolic programs, and current therapies designed to
exploit these differences.

Keywords: glioblastoma stem cells, neural stem cells, neurogenic niche, tumor microenvironment,
tumor metabolism
INTRODUCTION

Glioblastoma [GBM, International Classification of Diseases for Oncology (ICD-O) code 9440/3] is
the most common and aggressive primary CNS malignancy in adults. The short median survival of
9–18 months in patients with GBM has been attributed to the highly invasive nature of the disease
with rapid cell infiltration, frequent relapses, and therapy resistance (1–5). Anatomically, GBMs
arise predominantly in the cerebral cortex (40%), followed by temporal lobe (29%), the parietal lobe
(14%), deeper brain structures (14%), and the occipital lobe (3%) (6). The current therapy for GBM,
consisting of maximal surgical resection followed by radiation and temozolomide (TMZ), a
cytotoxic chemotherapy (7), has yielded minimal survival benefit with a vast majority of GBM
patients presenting with tumor recurrence. Recently, the addition of tumor-treating fields (TTFs) to
the standard chemoradiotherapy regimen has extended survival of patients from 16 to 20.9
months (8).
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Limited therapeutic options, poor survival, and the
universally fatal nature of the disease have fueled research
efforts to uncover novel molecular vulnerabilities within GBM.
However, despite the best efforts, the discovery of novel effective
treatments remains elusive. GBM tumors exhibit a large degree
of intra- and inter-tumoral heterogeneity, which frequently
renders majority of targeted therapies ineffective (9). In an
attempt to deconvolute this heterogeneity, an increasing body
of scientific work has been established to identify the cell-of-
origin in GBM to shed light on the hierarchical organization of
GBM tumors and identify vulnerabilities to target the tumor at
its roots. Historically, two major candidate cells of origin of
GBMs have been proposed, neural stem cells (NSCs) and
oligodendrocyte precursor cells (OPCs). The supporting
evidence and shortcomings of the two hypotheses have been
recently reviewed in detail by Fan et al. (10). The initial
identification of a subpopulation of GBM cells with multilineage
potency, increased self-renewal ability, proliferation, and
migration, termed glioma stem cells (GSCs) (11–13) has
provided correlative evidence for the possibility of GBMs arising
from transformed neural stem cells (NSCs). Through analysis of
patient samples and genetically engineered mouse models of
GBM, several studies have subsequently provided molecular
evidence suggesting that GBM arises from migration of mutated,
astrocyte-like NSCs from the subventricular zone (SVZ) (11–15).
In this review, we describe the intrinsic and extrinsic regulations of
SVZ NSCs and GSCs including molecular pathways,
microenvironment, and metabolic activity to further evaluate
how the differences can be exploited in the next generation of
targeted therapies for GBM.
SUBVENTRICULAR ZONE NEURAL STEM
CELLS IN ADULT NEUROGENESIS

Neural stem and progenitor cells are a specialized population of
multipotent cells that contribute to lifelong neural plasticity.
During embryonic neurogenesis, NSCs are spatiotemporally
regulated to generate multiple neural populations including
neurons and glial cells (16). Beyond development, a small pool
of NSCs are maintained and become spatially restricted to
two neurogenic niches in the brain; the dentate gyrus of
the hippocampus known as the subgranular zone (SGZ), or
the ventricular-subventricular zone (SVZ) (17). NSCs were
long believed to be a retained pool of self-renewing stem cells
as suggested by long-term expansion and retention of
differentiation potential by neurosphere culturing (17). Much
of our current understanding of the human SVZ has been
derived from studies in other mammals, namely mice. While
mice display robust SVZ neurogenesis, humans have shown an
increased preponderance of SGZ or hippocampal neurogenesis
(18). Nonetheless, studies in other mammals provide deep
insight into comparable NSC regulation and differentiation,
highlighting significant complexity and heterogeneity in the
adult brain. The SVZ is the largest germinal center in the adult
human brain found on the walls of the lateral ventricles (19).
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SVZ-NSCs, also known as B1 cells, are displaced and surrounded
by bi- or multi-ciliated ependymal cells to form a pinwheel-like
structure, in which the NSC apical surface contacts the
cerebrospinal fluid (CSF) and some the ventricle, while the
basal process terminates vascular vessels and the extravascular
basal lamina (17, 20). The morphology of B1 cells is reminiscent
of radial glia in the embryonic ventricular zone from which they
are hypothesized to originate (20, 21). These NSCs, which
express GFAP and CD133 at quiescence, can become activated,
express Nestin and EGFR, and become highly proliferative (22).
Activation of these NSCs ultimately gives rise to EGFR+
transient amplifying cells, which in turn differentiate into
progenitors and finally, neuroblasts. These cells follow a
specialized migratory route known as the rostral migratory
stream to the olfactory bulb in which they disperse radially
and differentiate into GABAergic interneurons, or form corpus
callosum oligodendrocytes (23, 24). Purification and subsequent
single-cell transcriptomics have revealed that SVZ-NSCs exhibit
a phenotypic continuum between quiescence and activation
suggesting a high degree of transcriptional dynamics (21, 25,
26). NSCs present a heterogeneous profile of multiple activation
states in the adult SVZ niche regulated by various molecular
programs affected by both intrinsic and extrinsic programs
(21, 23).

Intrinsic Regulation
Adult NSC self-renewal and multipotency have been proposed to
be regulated by various transcriptional factors. One such factor is
the orphan nuclear receptor TLX, which has been shown to be an
essential transcriptional regulator of NSC maintenance and
proliferation in the adult brain (27). Transcriptional regulation
has also been demonstrated to be controlled by arsenite-
resistance protein 2, a critical activator of the Sox family of
DNA binding proteins, particularly Sox2 (28). TLX has also been
suggested to regulate NSC maintenance by repression of cell-
cycle inhibitory factors and recruitment of a host of tumor
suppressor genes including Bmi1 (29), p53 (30), and the PTEN
pathway (31) which regulate stem cell maintenance (27).
Adult SVZ NSCs have also been shown to be regulated by
basic helix-loop-helix (bHLH) transcription factors, which
inhibit differentiation and maintain stemness. BHLH genes,
particularly of the Hes family have also been implicated
as Notch signaling effectors, which inhibit neuronal
differentiation, and maintain NSCs by inducing quiescence (17,
32, 33). Beyond transcriptional regulators, other nuclear
receptors such as estrogen receptors (34), thyroid hormone
receptors (35), and peroxisome proliferator activated receptor-
gamma (36), have been shown to regulate NSC proliferation and
differentiation (17, 32).

Cell-intrinsic regulation is also maintained through
epigenetic modification and chromatin remodeling. Epigenetic
control has been demonstrated to be regulated by the
aforementioned polycomb repressor Bmi1 by methylation of
the histone tail H3K27 to promote self-renewal (37). SVZ-NSC
differentiation is alternatively regulated by methylation of the
histone tail H3K4 by the TrxG family of proteins (38). The
balance between self-renewal and differentiation is subsequently
January 2021 | Volume 10 | Article 603738
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mediated by switches from a polycomb-repressor driven
chromatin remodeling to that of the TrxG family (39, 40).
Epigenetic regulation has also been shown to work through
histone acetyltransferase (HATs) and deacetylases (HDACs) in
NSCs (41). HDACs promote the silencing of key neurogenic
transcription and cell-cycle factors in a comparatively more
dynamic fashion relative to the polycomb family of epigenetic
regulators to tightly regulate fate specification, differentiation,
and cell-cycle exit (32, 37).

Epigenetic mechanisms in SVZ-NSCs are also regulated by a
network of miRNAs and non-coding RNAs, which play an
additional regulatory role in adult neurogenesis. Many
members of the small RNA family have been implicated in
modulating neuronal differentiation by binding to the RE1-
silencing transcription factor (REST), a crucial regulator of
neuronal gene expression (42). Together, small non-coding
RNAs fine tune epigenetic programs to regulate cell states of
SVZ-NSCs.

Extrinsic Regulation
NSC intrinsic programs are also regulated by signals from the
neurogenic niche (37, 43). The NSC niche is an extensive
microenvironment that hosts cell-cell and cell-microenvironment
interactions (44). Here, NSC proliferation and fate determination is
facilitated by various cell-extrinsic molecular signals.

The extracellular matrix is a critical component of the SVZ niche
that has been identified as a regulator of NSC proliferation (Figure
1A). It is composed of vessel basal lamina rich in laminin, collagen-
I, and other molecules including metalloproteinases, brevican,
tenascin-C, growth factors, and proteoglycans (44, 45). Unlike
embryonic development, the adult SVZ also consists of a unique
extravascular component consisting of ECM aggregates near the
ventricular surface known as fractones (46). Fractones play an
important role in facilitating the binding of growth-factors,
cytokines, and chemokines from the circulating CSF to fractone-
associated heparan sulfate proteoglycans (HSPGs) (47). Fractones
then present these molecules to their cognate receptors on NSCs.
Some of these molecules include fibroblast growth factor-2 (FGF-2)
(48) and bone morphogenetic proteins (BMP) to influence NSC
proliferation (49).

Molecular signals in the ECM regulating adult NSC activity
can originate from multiple cell types. In assessing the cellular
composition of the SVZ microenvironment, endothelial, pericyte
and vascular cells, as well as immature and mature lineages of
NSCs are found (50, 51). Most significant are the ependymal cells
which uniquely line the ventricular surface in a pinwheel
formation around single NSCs (20, 52). Ependymal cells
secrete local signaling factors into the circulating CSF, which
include noggin, a BMP signaling inhibitor, to activate adult
human NSCs and promote fate commitment (53). Endothelial
cells in the SVZ also secrete factors including vascular
endothelial growth factor (VEGF) and neurotrophin-3 which
promote self-renewal and quiescence, respectively (54). NSCs
and their immediate progeny also self-regulate through autocrine
and paracrine mechanisms (55, 56). This regulation is
particularly controlled by diffusible factors transmitted through
gap junctions such as the neurotransmitter GABA which
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modulates quiescence (57), and cytokines such as IL-1b and
IL-6 which promote NSC differentiation (58). Cell-cell
interactions of adult NSCs are also observed in the SVZ
microenvironment through signaling molecules such as ephrin
B2 and Jagged1 on endothelial cells which promote quiescence
and cell cycle suppression (59). Direct cell-cell interactions have
also been demonstrated, such as that with endothelial cells
through a6b1 integrins which modulate NSC proliferation
(60). Thus, multiple cell types contribute to the signaling
milieu of the SVZ niche.

Extrinsic factors that affect adult NSC regulation can also be
derived from the cerebrospinal fluid (CSF) and blood-derived
systemic signals. NSCs have direct access to the CSF which
provides a rich supply of various additional mitogens such as
PDGF, and morphogens including the Wnt ligands which
particularly promote proliferation and self-renewal of adult
NSCs via canonical Wnt signaling (61). Peripheral circulating
morphogens have also been implicated in modulating mouse
NSC behavior such as GDF11 which induces vascular
remodeling leading to NSC proliferation (62, 63).

NSCmultipotency and stemness is also modified by endogenous
and niche-derived metabolic factors. Adult NSCs are known to rely
on aerobic glycolysis prior to differentiation. Changes in metabolic
activity affects adult NSC differentiation and cell-fate commitment,
particularly by activation of mitochondrial respiration and reactive
oxygen species production (64). Oxygen tension or hypoxia in the
microenvironment also stimulates proliferation within the SVZ and
migration into the hypoxic region (65). Metabolomic analyses of
NSCs has also revealed that lipid metabolism can induce changes in
NSC state. Adult NSCs have been shown to require lipogenesis for
proliferation to ensure quiescence (66, 67). Extrinsic insulin/insulin-
like growth factor signaling has also been shown to stimulate NSC
reactivation and proliferation through regulation of CDK4 activity
(68, 69).

While other niche-mediated cues such as regional identity (70)
and positional information (71) modulate adult NSC activity, it is
the combination of molecular stimuli, cytoarchitecture, and
structural components of the SVZ niche that continually
regulate NSC state and function.
CANCER STEM CELL HYPOTHESIS AND
GLIOBLASTOMA

The cancer stem cell (CSC) hypothesis has been used as a
framework describe and provide explanation for the high
degree of molecular heterogeneity, cellular plasticity, and the
molecular divergence of recurrent GBM. CSCs were observed to
share many of the similar properties to the healthy stem cells
including multipotent differentiation and self-renewal (72), low
frequency and low proliferative rate (73–76), ability to regulate
the surrounding microenvironment (77), strict re-regulation of
proliferation and cell death, and reliance of similar molecular
pathways (78). The initial evidence of cancer stem cell-driven
tumorigenesis came through studies involving serial re-
transplantation of a specific subpopulation of leukemic cells in
January 2021 | Volume 10 | Article 603738
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immunodeficient mice (74, 79). Since the early 2000s, CSCs have
successfully been identified in numerous solid tumors including
breast cancer (80), colorectal cancer (81, 82), and brain cancers
including GBM (12) in which they are specifically termed GBM
stem cells (GSCs). GSCs have demonstrated chemo- (83, 84) and
radiotherapy (85) resistant, while contributing to invasion (86),
angiogenesis (87) and tumor recurrence (87). Comparison of
underlying molecular mechanisms within GSCs to those in NSCs
will allow for development of selective therapies to target the rare
cell population responsible for tumor initiation, propagation,
and evasion of current therapies.

While the precise identification of the GBM cell of origin
remains elusive, two major hypotheses have been explored over
the years. In one theory, GBM arises from a transformation events
Frontiers in Oncology | www.frontiersin.org 4
in differentiated astrocytes, while others have suggested that a GBM
pathogenesis begins with a transformed NSC [Comprehensive
review by Fan et al. (10)]. Previously, astrocyte progenitor cells
were believed to be the sole proliferating cells in the adult brain (88)
and were hypothesized to drive GBM tumorigenesis due to
extensive expression of the marker GFAP in both healthy
astrocytes and glioma samples (89). This would require a fully
committed astrocytes to acquire mutations, de-differentiate and
become tumorigenic. Other attempts to identify the cell-of-origin
in GBM using lineage tracing experiments in mouse models have
suggested oligodendrocyte precursor cells (OPCs) (90, 91). The
similarity in expression levels of PDGFRa and NG2 in OPCs and
GBM provided further support to the notion of OPC-derived GSC
(92–94), and in a study by Hide et al., the authors have proposed a
A B

FIGURE 1 | Differences in cytoarchitectures surrounding subventricular zone (SVZ) neural stem cells (NSCs) and glioblastoma stem cells (GSCs). (A) A schematic
representation of adult human SVZ. Human SVZ is composed of four distinct layers. The superficial ependymal monolayer, Lamina I, is in contact with ventricular
lumen. The second layer, Lamina II is a vastly acellular layer formed by the neuroblast depletion, containing ependymal expansions and numerous astrocyte
processes. Lamina III, is a region known as astrocytic ribbon, containing densely packed astrocytes. Lastly, Lamina IV is a transitional zone rich in oligodendrocytes
and myelinated neurons. The NSC niche is an extensive microenvironment that hosts cell-cell and cell-microenvironment interactions that contribute extensively to
the extrinsic regulation of NSC proliferation and self-renewal. (B) A schematic representation of three major microenvironments within glioblastoma (GBM) tumors.
The hypoxia region formed in the course of tumor growth lacks any blood and oxygen supply and has been implicated in playing a protective role against
chemoradiotherapy. Perivascular niches exist along capillaries or arterioles where endothelial cells come into direct contact with glioblastoma cells. In addition to
producing high levels of pro-angiogenic factors driving tumor vascularization, cells in the perivascular contribute to activation of pathways regulating self-renewal and
proliferation of GSCs. As a highly invasive tumor, GBMs can infiltrate into healthy brain tissue and limit the effectiveness of surgical interventions.
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model where a transformation of both OPCs and NSCs is required
for generation of GSCs (90).

Early mouse models exploring effects of genetic alterations in
either NSCs or differentiated astrocytes have failed to provide
definitive resolution to the cell-of-origin question. Some reports
suggested that overexpression of Ras and Akt signaling in neural
progenitor cells but not in more differentiated astrocytes was
sufficient to induce formation of GBM-like lesions (95). On the
other hand, other groups have provided evidence that genetic
alterations in either population is sufficient to induce GBM
formation (96). Mounting evidence of the hierarchical organization
of GBM tumors and the upregulation of developmental pathways in
GSCs became the principal evidence for the notion of transformation
of NSCs from SVZ as the initial stage of gliomagenesis. In addition to
evident functional overlap, similarities in expression patterns of a
number of genes including CD133 (97, 98), Sox10 (99), Nestin (100,
101), Musashi (101, 102), GFAP (103), and Olig1/2 (104, 105)
highlight shared molecular programs between NSCs and GSCs.
Through deep sequencing of isocitrate dehydrogenase wild-type
GBM patient samples and normal SVZ tissue, researchers
observed similar expression of driver mutations in both the SVZ
and patient matched-tumor tissue (15). Intriguingly, multiple studies
have reported shorter survival of GBM patients in cases where
tumors were in contact with SVZ (106–109). The comprehensive
profiling and understanding of GBM cell of origin may pave the way
for identification of prognostic markers along with targeted
preventative and curative therapies.
INTRINSIC DEREGULATIONS OF GLIOMA
STEM CELLS COMPARED TO NEURAL
STEM CELLS

Like all cancers, GBM exhibits behavioral hallmarks that
distinguish it from healthy tissue (110). Compared to NSCs,
GSCs are self-sufficient in providing growth signals, resistant to
Frontiers in Oncology | www.frontiersin.org 5
growth inhibition, evade programmed cell death, have limitless
replicative potential, sustain angiogenesis, and invade
surrounding tissue (Figure 2). Markers of interest to explain
these phenotypes have been extensively studied and while some
have been exploited in clinical settings, no single one is
responsible for GBM’s relentless growth.

Aberrant Growth Signals
Epidermal growth factor (EGF), is a critical regulator in the
proliferation of normal NSCs in mice (111). Aberrant EGF
signaling prevents mouse NSC differentiation while increasing
proliferative capacity and invasiveness, properties that closely
resemble those of high-grade gliomas (112, 113). As epidermal
growth factor receptor (EGFR) amplification is one of the most
frequent mutations in GBM patients (114), and has been
implicated in human gliomagenesis (115), its targeting in the
clinical setting has been extensively investigate (116). Even in the
absence of EGF, aberrant behavior of the EGFR pathway
maintains stemness properties and promotes self-sufficient
growth in tumors human (117).

Along with EGF, fibroblast growth factors (FGF) play an
important role in the regulation of stemness in GSCs in vitro
(118, 119). The FGF superfamily consists of 22 genes with
various isoforms (120). Of particular interest is FGF-2, which
does not follow conventional secretion (121) and was found to
increase proliferation of NSCs in rat SVZs (122). The low
molecular weight isoform of FGF-2 can be excreted and
internalized for autocrine or paracrine signaling via fibroblast
growth factor receptors (FGFRs), or be translocated directly to
the cytoplasm and nucleus (123). The transcription factor ZEB1,
which has previously been implicated in regulation of glioma
stemness (124), has been found to regulate FGFR1 expression
(125), suggesting that FGFRs could also be associated with GSCs.
Indeed, FGFR1 was found to be preferentially expressed on
GSCs, and regulated stem cell transcription factors SOX2,
OLIG2, and ZEB1 to promote GBM growth in vivo (126).
While FGF is a large and cumbersome family to investigate,
FIGURE 2 | Schematic representation of key genetic and signaling difference between subventricular zone (SVZ) neural stem cells (NSCs) and glioblastoma stem
cells (GSCs).
January 2021 | Volume 10 | Article 603738

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Bakhshinyan et al. Parallels Between NSCs and GSCs
further inquiries into their functions and potential redundancies
may offer insights into preferential novel therapeutic vulnerabilities
of GSCs compared to NSCs.

Platelet-derived growth factor (PDGF) is another important
regulator of NSCs in the SVZ. When neural stem cells were
identified to express PDGF-receptor-alpha (PDGFRA) in the
adult mouse SVZ, supplemental PDGF alone was sufficient to
induce hyperplasia with some features of GBM (127). These
receptors show functional significance by promoting evasion of
radiotherapy (128). Amplification of PDGFRA is one of the most
common mutations in GBM and is most commonly associated
with the proneural subtype (129). As PDGFRs are important in
the healthy development of the normal central nervous system
(130), its increased activity has led to important relationships
between subclasses of GBM (131). While these receptors provide
another intriguing avenue to potentially eradicate GBM, selective
inhibition to avoid targeting of surrounding healthy tissue
requires further research and clinical investigation.

Insensitive to Growth Inhibition
As one of the most studied tumor suppressors in cancer, TP53
has been shown to regulate a wide range of cellular functions of
various cancers including GBM. As a key stem cell maintenance
regulator, TP53 is expressed in proliferating cells within the SVZ
and has been implicated in controlling cell division and
differentiation (132). The key regulatory role of TP53 is not
limited to development as it has been shown to regulate
proliferation and self-renewal of NSCs in adult mice (133,
134). While deletion mutations in TP53 are predominant in
several cancers, in the context of GBM, mutations in TP53 are
often gain-of-function, resulting in a wider range of downstream
effect (135). Mutations in TP53 may cause healthy NSCs to
prematurely migrate out of the SVZ effectively seeding the brain
with pre-cancerous stem cells (136, 137).

Another common loss of tumor suppressor in GBM is
phosphatase and tensin homolog (PTEN). The role of PTEN in
the regulation of mouse NSCs in SVZ is extensively reviewed in
Li et al. (138). Together with TP53, PTEN also regulates the self-
renewal and differentiation of both NSCs and GSCs (139). Loss
of PTEN was observed to represses GSC differentiation (140),
and similarly promote NSC conversion to a GSC-like phenotype
(141). Unsurprisingly, mutational status of PTEN positively
correlates with a worse overall prognosis for GBM patients (142).

Evasion of Programmed Cell Death
The PI3K/AKT/mTOR intracellular pathway is a critical pathway
for cell cycle regulation, proliferation, and it is directly antagonized
by PTEN (143). The pathway exerts direct influences on cell
quiescence, proliferation, longevity by acting predominately
through phosphorylation and subsequent activation of AKT/
mTOR driving downstream effects (144). Although the PI3K/
AKT/mTOR pathway is found throughout the body, its role in
promoting growth and proliferation and preventing differentiation
in adult NSCs (145) make it an important area of research in GBM
and GSCs (146). In addition to being a key pathway in preventing
GSC differentiation (147), PI3K/AKT/mTOR further contributes
to GBM growth by blocking apoptosis signaling (146).
Frontiers in Oncology | www.frontiersin.org 6
Signal transducer and activator of transcription-3 (STAT3) is
a transcription factor whose activity is directly regulated by
PI3K/AKT/mTOR (148). A variety of cytokines, growth factors
and interferons converge to regulate STAT3, but its influence on
an array of pathways within normal and cancerous stem cells is
well documented as it is highly conserved (149). Most
importantly, STAT3 plays a major role in maintaining
stemness and promoting tumor survival and invasion while
suppressing anti-tumor immunity (150). Several studies have
shown that reducing levels of STAT3 can lead to a reduction of
CD133 and other stemness markers while increasing the
propensity for apoptosis and differentiation (151, 152).
Inhibition of STAT3 in recurrent GBM has also been shown to
reduce levels of BCL-XL and survivin, leading to caspase-3
activation and apoptosis in GSCs (153).

Limitless Replicative Potential
Healthy replication of cells requires proper activity of telomerase
enzymes to ensure the end of chromosomes do not shorten or
fuse with other chromosomes (154). Telomerase activity
becomes restricted to the SVZ as mammals age (155) but
proper maintenance allows NSCs to remain present into
adulthood (156). Likewise, increased activity of telomerase
leads to replicative immortality within GSCs and is one of the
most frequent mutations in GBM (157, 158). The most common
gain-of-function mutation of telomerase is located in the
promoter region of TERT (159) and is predictive of shorter
survival times (160).

Sustained Angiogenesis
Angiogenesis is a tightly controlled pathways in normal tissue
and is initiated in response to injury (161). However, several of
the receptors discussed before that are upregulated in GSCs are
also involved in angiogenic pathways. EGFR, PDGFR, FGFR,
and VEGFR have all been shown be involved in angiogenesis
with GBM cells and GSCs themselves being major producers of
the signaling molecules and their respective receptors (162–167).

Similar, to the intrinsic regulation seen in NSCs, GSCs
themselves can directly promote their own survival by
modulating the microenvironment. In a study by Takahashi et
al., mice engrafted with OCT3/4 overexpressing GBM cells were
observed to have larger tumors and increased number of blood
vessels (168). Furthermore, tumor-conditioned media
accelerated capillary formation in vitro and elevated mRNA
levels of VEGF in OCT3/4-overexpressing cells providing
additional evidence of tumor cell contributing to angiogenesis
(168). GSCs have also been shown to directly secrete VEGF-A in
extracellular vesicles (169). Along with their influence on
surrounding cells, when GSCs asymmetrically divide to self-
renew, the differentiated daughter cell is capable of forming
blood vessel structures (170).

Increased Invasiveness
Although GBM cells rarely metastasize to other organs, they do
demonstrate a highly invasive growth pattern. Once a GBM is
established, the infiltrative edge presents a challenge for surgical
resection as the edge is enriched with chemoradioresistant GSCs,
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meaning the remaining cells are poised to drive tumor relapse
upon removal of therapeutic pressures (171, 172). The invasive
nature of GBM cells is further exuberated by surrounding non-
malignant cells, such as astrocytes secreting cytokines and
chemokines (173). Additionally, GBM tumors can degrade the
extracellular matrix via metalloproteinases (174) and cathepsins
(175) to modulate their cell structure for efficient cell
movement (176).

Altered Cellular Metabolism
Compared to the rest of the body, the brain naturally has a higher
dependence on glucose as a source of energy, consuming 60% of
our daily intake (177). In normal cells, catabolism via glycolysis/
oxidative phosphorylation and anabolism via gluconeogenesis
pathways achieve a glucose homeostasis. However, a
phenomenon known as the Warburg effect describing the
preferential usage of anaerobic glycolysis in CSCs, even in the
presence of sufficient oxygen, heightens the dependency of
differentiated GBM cells on glucose (178). However, in a side
by side comparison, GSCs consumed less glucose and produced
less lactate while maintaining higher ATP levels than their
differentiated counterparts (179). GSCs are therefore thought
to rely mainly on oxidative phosphorylation, however, if
challenged, are capable of using other metabolic pathways (179).

Metabolic flexibility and plasticity of cellular states influence
each other. In GBM cells, functional p53 leads to increased
glutaminase 2 (GLS2) under stress which increases oxidative
metabolism and ATP generation, by catalyzing the conversion of
glutamine to glutamate and increasing a-ketoglutarate (a-KG)
levels (180). This metabolic shift, known as glutaminolysis, is
also observed in freshly resected GSCs (181). Glutaminolysis
produces precursors for macromolecules (nucleic acids, amino
acids, fatty acids), regulates redox homeostasis (via NADH,
NADPH, and ROS levels) and contributes to immunosuppression
by glutamate production to ensure pro-tumor survival (182). As
an abundant non-essential amino acid, glutamine is transported
through the blood and capable of crossing the blood-brain barrier,
making it a particularly useful energy source by tumors (183).

Glutamate can be converted to a-KG by either glutamate
dehydrogenase 1 (GDH1) or transaminases such as glutamate
pyruvate transaminase 2 (GPT2) and glutamate oxaloacetate
transaminase 2 (GOT2) (184). Conversions fluctuate according
to nitrogen and carbon availability. In addition to a metabolite,
a-KG behaves as a cofactor (along with oxygen) in the activity of
a-ketoglutarate-dependent hydroxylases. These are non-heme,
iron-containing enzymes that catalyze a wide range of
oxygenation reactions including biosynthesis (ex. collagen and
L-carnitine), post-translational modifications (ex. protein
hydroxylation), epigenetic regulations (ex. histone and DNA
demethylation), as well as sensors of energy metabolism. So far
majority of these processes in GBM have been restricted to
isocitrate dehydrogenase mutants of GBM, however, collagen
prolyl hydroxylases were found to induce metastasis of breast
cancer (185) by mechanistically stabilizing HIF-1a in
chemoresistance (186). While the importance of HIF-1a in the
conversion of GSCs in different tumor niches has been
Frontiers in Oncology | www.frontiersin.org 7
mentioned above, only recently was it reported that collagen-
prolyl hydroxylases promote proliferation and invasion in GBM.
Interestingly, mouse embryonic stem cells were found to
maintain high aKG/succinate ratios via glucose and glutamine
catabolism that promoted histone/DNA demethylation and
maintenance of pluripotency (187). By altering intracellular
aKG/succinate ratios, multiple chromatin modifications such
as H3K27me3 and ten-eleven translocation-dependent (26)
DNA demethylation were shown to regulate genes associated
with pluripotency (187). In addition to glucose metabolism,
GSCs were observed to have higher expression of genes
involved in iron trafficking and metabolism when compared to
healthy astroglial and neural progenitor cells, presenting an
opportunity for targeted therapeutic intervention (188).
THE EXTRINSIC GLIOMA STEM CELL
MICROENVIRONMENT

Unlike the NSC microenvironment in the SVZ, the GBM
microenvironment is defined by three unique regions, the
hypoxic-necrotic core, the perivascular niche, and the invasive
edge, each with distinct contribution to the tumor progression
(Figure 1B) (189). Each niche influences and activates different
cellular programs in GSCs to express distinct markers and
transcriptional profiles. This plasticity allows cells to change
states and adapt to stressors as needed. The interconnected
relationship between GBM and their environment maintains
stemness and contributes to heterogeneity which is why
emphasis to target the tumor microenvironment has gained
traction is recent years, and why more advanced in vitro
experimental methods such as 3D-culture methods and
cerebral organoids are becoming more prevalent (190, 191).

Hypoxia and necrosis are defining features of GBM, caused by
the tumor’s exceeding growth requirements on available blood
flow to supply oxygen and nutrients. This subsequent lack of
oxygen protects cells from irradiation, the most effective
treatment modality against GBM, by limiting the amount of
molecules capable of turning into cytotoxic free radicals (192).
Restricted blood flow also limits the delivery of chemotherapies
such as temozolomide to the tumor cells (193). In both cases, the
hypoxic environment forces tumor cells into a quiescent state,
where the lack of cell division prevents cytotoxic DNA damage
induced by chemo-radiotherapies (194). Effects of hypoxia on
stemness and tumor survival are largely mediated through
hypoxia-inducible factors (HIF-1 and HIF-2), which upregulate
signaling pathways including Klf4, Sox2, Oct4, CD133, and
VEGF (195, 196). Cell death in the center of the hypoxic
region leads to formation of the necrotic core and contributes
to the release of pro-inflammatory signals, IL-1b, IL-6, and IL-8,
into the surrounding microenvironment. This signaling in turn,
contributes to the conversion of tissue-associated macrophages
and neutrophils into immune-suppressive and angiogenesis-
promoting cells, allowing for continued GBM progression and
expansion (197–200). Similar to NSC metabolism, hypoxia
forces a metabolic shift in GBM toward aerobic glycolysis and
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fatty acid metabolism rather than oxidative phosphorylation.
Together, the hypoxic niche plays key regulatory roles leading to
heterogeneity and cancer progression.

Interestingly, hypoxia can influence GBM cells to
transdifferentiate into endothelial-like cells (201) which
contribute to feedback loops of the second major tumor
environment-the perivascular niche (202, 203). This niche
most closely resembles the SVZ where NSCs reside (20, 50,
60). Perivascular niches exist along capillaries or arterioles where
endothelial cells come into direct contact with GSCs (204). GSCs
in the perivascular niche in turn remodel the microenvironment
by producing high levels of pro-angiogenic factors, such as
VEGF, that drive endothelial cell proliferation, survival,
migration, and blood vessel permeability. This is critical for
angiogenesis as GBM is one of the most vascularized human
tumors and requires a supply of nutrients for tumor progression.
The perivascular niche thus regulates stemness and induces
pathways enriching for GSCs, namely nitric oxide and
NOTCH (205), TGF-b (206, 207), as well as sonic hedgehog
signaling pathways (208). Other perivascular cell populations in
this niche, such as tumor-associated macrophages (TAMs)
secrete chemokines to promote GSC growth and expansion.

The infiltrating (or “invasive”) edge is the third and final
major GBM niche. As a highly invasive tumor, GBMs can
infiltrate into healthy brain tissue and limit the effectiveness of
maximal surgical resection. To circumvent and eradicate
infiltrative GSCs, patients receive whole-brain radiation
therapy. However, GBM cells, and most notably GSCs, have
been shown to adapt and resist the applied environmental stress
of irradiation (85). Once exposed to radiation, cells undergo a
process known as the proneural-mesenchymal transition, similar
to the metastatic cascade known as the epithelial-mesenchymal
transition (EMT). In this process, cells lose cell polarity, cell-cell
adhesions, and alter their cytoskeletal organization for migration.
GSCs are observed to invade along white matter tracts of the
human brain through a NOTCH1-Sox2 mediated feedback loop
(209). Mesenchymal GSCs are regulated by STAT3, N-cadherin,
NF-kB, and integrins (210–215). These phenotypes exhibited
within the infiltrative niche are also influenced by the hypoxic
and perivascular niches.
LEVERAGING DIFFERENCES BETWEEN
NEURAL STEM CELLS AND
GLIOBLASTOMA STEM CELLS
FOR DEVELOPMENT OF NOVEL
TARGET THERAPIES

While understanding the similarities between GSCs and NSCs is
instrumental for contextualization of gliomagenesis and
underlying mechanisms driving GBM progression and therapy
resistance, it is leveraging the differences between two cell
populations that may offer avenues for generation of novel
targeted therapies. Unlike other solid tumors, brain tumors
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present a unique set of challenges for development of new
treatment options. First, the blood-brain-barrier (BBB), which
normally protects the brain from harmful toxins, can also hinder
the access of targeted therapies against GBM. Although BBB
permeability can be theoretically increased through chemical
modification of small molecule-based inhibitors, such approach
does not expand to more precise modalities including antibody-
drug conjugates (ADCs) and adoptive cell transfer therapies. In
both mouse models (216, 217) and patient studies, locoregional
delivery of the therapeutic offers distinct advantages. In addition
to expanding the range of possible treatment modalities, while
minimizing systemic toxicities, the locoregional delivery route
allows for direct targeting of potential source of GSCs residing in
SVZ at the border of lateral ventricle.

One of the most widespread strategies in targeting GSCs
is through identification and subsequent development of
targeted therapies against cell surface markers. Several different
targeting approaches have been investigated in the recent years
including antibody-drug conjugates (ADCs) and chimeric
antigen receptor T cells (216, 218). And while researchers
were able to demonstrate efficacy in mouse models, it is likely
that additional combinatorial strategies will be needed to yield
complete tumor clearance. Anti-angiogenic therapies have
become an attractive modality to prevent tumor progression by
cutting off the tumor’s supply of nutrients and oxygen (219).
Bevacizumab and other anti-angiogenic therapies showed great
promise, but repeated failures show the adaptability of tumors to
overcome single agent therapies (220). Reducing the invasion of
GBMs has been tested to reduce overall tumor progression, but
further therapies would be required to fully eradicate the tumor
(221). The use of ibrutinib, and FDA-approved drug to treat
lymphoma and leukemia, was shown to suppress the BMX-
STAT3 axis in GSCs making them vulnerable to radiation
therapy (222). This signaling axis was previously shown to
maintain self-renewal in GSCs (223) and mitigate apoptosis
(224). Additionally, because BMX is not expressed in neural
progenitor cells, ibrutinib may be a selective and beneficial
therapy for GBM patients (222).

While there is biological overlap between NSCs and GSCs,
promising research is exposing differences and vulnerabilities of
each, presenting an avenue for novel therapeutic interventions.
Research on telomerase activity in a variety of tumors has
resulted in development of distinct therapeutic approaches
including small-molecule inhibitors, plant-derived compounds,
gene therapy, and immunotherapy. Although they remain to be
tested in the clinical setting, several of these therapies have
demonstrated promising efficacy in mouse models of GBM
(225–228). More recently, CRISPR/Cas9 technology has been
tested pre-clinically as a modality to repair mutations in cancers
to induce cell cycle arrest with few off-target effects in GBM
(229). Moving forward, it will be vital to further interrogate the
therapeutic window of telomerase activity modulating
treatments by comparing their effects on GSCs and SVZ NSCs.
The proximity of SVZ NSCs to the lateral ventricles allows for
intracerebroventricular (ICV) delivery of potential therapeutic
interventions, bypassing the challenges presented by the BBB
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while increasing penetrance and distribution. Delivery of cell and
gene therapies intracranially and intracerebroventricularly has
been tested in both human clinical trials and mouse models of
GBM and was shown to reduce tumor progression and invasion
(230–232). It is important to note, that due to the extensive intra-
and inter-tumoral heterogeneity between GBM tumors, it is
unlikely that a single intervention will be sufficient to eradicate
the tumor or control its progression, requiring more research
into combinatorial approaches in both mouse models and
clinical trials. Further research profiling the mechanisms by
which SVZ NSCs and the surrounding microenvironment
contribute to the chemoradiotherapy evasion of GBM is
needed to identify therapies that will synergize with the current
SoC. For example, in several in vitro and in vivo pre-clinical
studies, inhibiting CXCL12/CXCR4 signaling in the mouse SVZ
promoted radiosensitization and reduced GBM tumor cell
proliferation (233, 234). Finally, in the past few years, the
difference in the metabolic flexibility between GSCs and NSCs
has become more apparent and is now being extensively
investigated for the therapeutic potential.
CONCLUDING REMARKS

The aggressive growth characteristic, resistance to therapies and
poor clinical outcome have been attributed to the extensive intra-
and intertumoral heterogeneity within GBM tumors. Over the
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years, the observed similarities between GSCs and NSCs of the
SVZ, have led to the hypothesis of a transformed NSCs cell
presiding at the apex of GBM cytoarchitecture. Although the
recent findings have corroborated this hypothesis, it has become
evident that that understanding both similarities and differences
between GSCs and the healthy NSCs of the SVZ is essential in the
search for novel targeted therapies. The comparison of
similarities can allow for improved understanding of the
molecular mechanisms driving GBM formation, while the
comparison of the differences can allow in identifying unique
molecular vulnerabilities for development of targeted therapies
with a large therapeutic index.
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