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Abstract 

Traffic dispersion means spreading the traffic from a source over multiple 
independent paths, transmitting it in parallel through the network. The strategy 
reduces the effects of bursts in the traffic, and may hence improve the network 
performance in terms of reduced queuing delay. So far, there have been several 
reports on traffic dispersion, but to our best knowledge, there has been no in-depth 
investigation of how the strategy affects different types of traffic under various 
conditions. This paper focuses on the basic properties of traffic dispersion by defining 
the strategy and investigating it from the source's as well as from the network's point 
of view. We investigate the influence of dispersion on Poisson traffic, traffic generated 
by two-state Markov chains and traffic generated by the chaotic FPDI-map. The 
results indicate a large potential of traffic dispersion to provide fast, secure and fault
tolerant transmission for highly bursty traffic sources. 
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1 INTRODUCTION 

The broadband integrated services digital network, B-ISDN, is intended to carry 
various types of traffic, such as voice, data and video. Satisfying the various user 
performance requirements will put stringent demands on the network to be flexible, 
reliable and still cost-efficient, that is, to obtain high resource utilization. Some of the 
difficulties imposed on the network are discerned when considering the traffic 
behaviour of potential B-ISDN users. While ordinary telephone traffic traditionally 
has been modelled by Poisson processes, recent studies indicate the characteristics 
that stem from data and multimedia applications to be vastly different. Essentially, 
studies have shown this type of traffic to exhibit strong correlation over long time 
periods, Leland et al. (1994), Paxson and Floyd (1995). 

The asynchronous transfer mode, ATM, is the recommended network architecture 
for B-ISDN. Succinctly described, it combines the circuit-switched routing of 
telephone systems with the statistical multiplexing of packet switching, by 
establishing a virtual connection through the network before transmission. The 
information is then sent over the connection in fixed-size packets called cells. In order 
to better utilize the network resources, ATM employs statistical multiplexing, which 
means that the capacity of a transmission link in the network is statistically shared 
among the connections traversing it. This implies that the demand for capacity 
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occasionally may exceed the available resources. Surplus traffic could temporarily be 
buffered at the link access, but would result in buffer overflow and loss of data if 
continued inordinately. 

The probability of information loss due to buffer overflow is highly dependent on 
the correlation in the mult~plexed traffic streams Li (1989). Long-term correlation and 

extended traffic bursts complicate resource allocation because of the difficulties to 

guarantee performance. Given a connection, the correlation in a traffic stream may be 

lowered by spreading the traffic in time, so called shaping. The amount of shaping is 

however limited by the permissible delay that the information transfer may suffer, and 

the residual correlation in a shaped traffic stream may consequently still be strong. 

Multiplexing of such correlated streams at low probability of loss would require 

unreasonable low utilization of the network capacity, and excessively large buffers. 

Another method to reduce the correlation in a traffic stream is to spread the traffic 
from a source over multiple disjoint paths, thereby sending it in parallel through the 

network, Figure 1 (a). We call this technique traffic dispersion, and we define the 
dispersion factor N to be the number of paths over which the traffic from a source is 

spread. Dispersion may be used on several network levels; over paths, links or 
multiple channels within a link. In this study, we refer to traffic dispersion as 
dispersion of packets over disjoint paths, that is, paths that do not share links 

statistically. Given a certain number of paths, there are different ways to spread the 

traffic. Cyclic dispersion is the spreading of packets from a source in round-robin 
order over the paths (Figure 1 (b». If the correlation in the traffic stream is 
monotonously decreasing, this spreading strategy minimizes the correlation in the 

traffic stream on each path (see Section 2.2.2). Sequential dispersion means spreading 

sequences of L consecutive packets (Figure 1 (c». A sequence length L=l 
corresponds to cyclic dispersion. Sequential dispersion with L> 1 does not necessarily 
reduce the correlation in the traffic stream, and if the sequence length is large, the 
performance may appear even worse with than without dispersion (see Section 3.1). 
In both cyclic and sequential dispersion, the order of the paths is known in advance, 
which facilitates the spreading and resequencing mechanisms. Dynamic dispersion 
spreads the traffic dynamically over the paths, according to the current network load. 
This makes it possible to avoid congested or heavily loaded paths, but requires 
continuously updated network information in return. Furthermore, this strategy does 
not consider the correlation in the traffic stream and may result in strongly correlated 
traffic on one or several of the paths, possibly congesting paths that were originally 
clear. Contrary to the two earlier methods, dynamic dispersion is reactive rather than 

preventive, and if all users were to spread their traffic dynamically, the result could be 

an unstable operation. The analyses in this study focus on the preventive dispersion 
strategies. 
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Figure 1 Illustration of traffic dispersion (a), and cyclic (b) and sequential (c) 
dispersion of the packets generated by a traffic source. 

During the last years, traffic dispersion has been discussed in various terms and for 

different purposes, Gustafsson and Karlsson (1997). Throughout the studies, traffic 
dispersion has shown to give performance improvement in terms of better queuing 

behaviour and reduced loss. The use of independent paths also makes loss of 
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information on one path independent of losses on other paths, and consequently, 

forward error correction can be successfully used to increase network reliability. An 

additional advantage of traffic dispersion is that it enhances the network security by 

making eavesdropping on parallel connections simultaneously practically impossible. 

There exist however, to our best knowledge, no thorough investigation of how 

dispersion affects the behaviour of the traffic from different types of traffic sources, 

nor a comparison of the queuing performance under different load conditions. In 

order to motivate more advanced studies on traffic dispersion, its basic properties 

need to be defined, investigated and reported. 

The aim of the work reported in this paper is to do such a study. We start in Section 

2 by describing the system model used in the studies, including the different types of 

traffic sources used. In Section 3 we continue by investing the queuing behaviour for 

each traffic source. This Section also includes a performance comparison of cyclic 
and sequential dispersion, and an investigation of how large part of the traffic that 

must be dispersed in order to make the effects of dispersion show. Section 4 discusses 

the optimum dispersion factor for a call, and Section 5 concludes the paper. 

2 SYSTEM MODEL DESCRIPTION 

2.1 One-stage multiplexer model 

In order to investigate the effects of traffic dispersion on some different traffic types, 
we use a one-stage multiplexer model according to Figure 2 (a) and (b). The case 

without dispersion is illustrated in Figure 2 (a), by a traffic source which generates 
traffic into a FIFO queue with fixed service rate. Next, the model is extended to 

spread the traffic from a source over N queues. This strategy will however reduce the 
amount of traffic entering the queue during a certain time interval. In order to keep the 
mean arrival rate to each queue constant, independent of N, we assume N independent 
identically distributed sources, each spreading its traffic over N queues (Figure 2 (b». 
The amount of traffic arriving at each queue is thus kept constant, while the traffic 
behaviour changes due to the effects of dispersion. We define the utilization factor p 
in a queue to be the mean arrival rate multiplied by the queue service time. The buffer 
size is in the remainder of this paper considered infinite. 
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Figure 2 A one-stage multiplexer, consisting of traffic sources generating traffic into 
a number of FIFO queues. The case of no dispersion is shown in (a), while (b) 
illustrates dispersion. The state diagram of a two-state Markov chain is shown in (c). 

2.2 Traffic source models 

2.2.1 Poisson traffic 

Poisson traffic is traffic which arrives according to a Poisson process, that is, the 

interarrival times between packets are independent and exponentially distributed. The 
Poisson process has been commonly used to model the arrival of telephone calls 
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during some time interval in a telephone network. A Poisson process with intensity A 
is a process X = {X (t);t ~ O} , where X (t) denotes the number of arrivals of the 
process by time t, and 

P {X( )_.} _ (At)i -AI 
r t -1 - -.,-e , 

1. 
i = 0,1,2 ... (1) 

The mean arrival rate is A packetsltime unit, and the variance of the arrival rate is 
')... . Since the arrivals of a Poisson process are mutually independent, the correlation in 
the traffic stream is zero. 

2.2.2 Two-state Markov chain source 

The most commonly used on-off source is based on a two-state Markov chain (Figure 
2 (c». The chain is alternating between an on state and an off state, and while in the 
on state, it generates traffic at peak rate h packets/time unit. The model may be seen 
as a crude model for data communications, and has been used with good accuracy to 
model speech after removal of silence periods. 

In the following calculations, the peak rate of the source is set to h = 1 packetltime 
unit. Define E( i) as the number of packets generated within the ith time unit; E( i) is 
thus 0 or 1. The mean and variance of the chain are then given by 

e= I-Poff andcr2 =e(l-e) . 
2 - P on - P off 

As in Li and Mark (1990), E( i) is normalized: u( i) = E(i) - e . 
cr 

The correlation between u(i) and u(i + n) is then given by 

(2) 

(3) 

(4) 

The correlation is monotonously decreasing, and cyclic dispersion, which 
maximizes the distance between two consecutive packets on each path, hence 
minimizes the correlation. With cyclic dispersion, the correlation sequence becomes 

rd(n) = E{u(iN + nN)u(iN)} = r(nN) = <j>lnNI. (5) 

The sojourn time the two-state Markov chain stays in a state is geometrically 
distributed with mean 

T- 1 d-T I . I 
on = -- an off = -1-- respective y. 

1 - P on - P off 
(6) 

Some of the numerical examples in this paper corresponds to transmitting voice 
traffic over ATM. The transition probabilities of the chain are then assigned values 
according to the mean length of talkspurts and silent periods, for example 1366 ms 
and 1802 ms, Brady (1968), and 227 ms and 596 ms, Lee and Un (1986) respectively. 
Transmitting voice over 64 kbitls links makes an ATM cell (48 bytes of information) 
correspond to 6 ms, and the transition probabilities of a corresponding two-state 
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Markov chain are for the first example P on = 1-6/1366 and P off= 1-6/1802, and for the 

second P on = 1-6/227 and P off= 1-6/596. 

2.2.3 The Fixed Point Double Intermittency map 

Recent studies have shown tele and data communications traffic to exhibit long-range 

dependence, Leland et al. (1994), Paxson and Floyd (1995). Modelling traffic with 

such characteristics requires a new generation of traffic models, like for instance the 
fixed point double intermittency map, Pruthi (1995). The FPDI-map is a chaotic map 

in the form of an on-off source, where the distribution of the time spent in each state 

can be varied from geometric to heavy-tailed. The nature of the distribution depends 
on the Hurst parameter of the source, and the FPDI-map can be used to generate long

range dependent traffic. 

3 QUEUING BEHAVIOUR 

In this Section, we present the effects of dispersion in calculated and simulated 

queuing results. The question of cyclic or sequential dispersion is investigated in 

Section 3.1, and then the queuing behaviour is studied for the different source models. 
We start by discussing independent arrivals from a Poisson process in Section 3.2, 

continue with short-term correlated traffic generated by two-state Markov chains in 

Section 3.3 and finish in Section 3.4 by considering traffic generated by the chaotic 
FPDI-map. Section 3.5 deals with the question of how many users must employ 

dispersion in order to make the positive effects of it show. 

3.1 Cyclic or sequential dispersion? 

In the following, we use the one-stage multiplexer model from Figure 2 (b) to 
investigate and compare the effects of cyclic and sequential dispersion. The 
simulation results in Figure 3 show how the mean queue size changes with increasing 
sequence length. The results presented in Figure 3 (a), for Poisson traffic sources, 
show that the mean queue size increases with the sequence length, and the larger 
dispersion factor, the faster increase. There is always a possibility that several sources 
will send traffic to the same queue simultaneously, thereby increasing the 
instantaneous peak arrival rate to the queue. As the sequence length increases, each 
source generates traffic continuously to each queue during a longer time interval. 
Several sources sending traffic into the same queue may hence cause traffic bursts of 

high peak rate. As a consequence of increased instantaneous peak arrival rate and 

increased correlation in the traffic, the mean queue size increases, even if the queue 
utilization factor is kept constant (see Section 3.3.2). 

Figure 3 (b) shows the results from strongly correlated traffic generated by two

state Markov chains. In this case, the mean queue size increases practically linearly 
with the sequence length, and the larger the N, the faster the increase. For a large 

enough sequence length, dispersion aggravates the queuing behaviour, compared to 

the non-dispersed case. This may be explained by the same discussion as above. 
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Figure 3 The mean queue size changing with the sequence length for Poisson traffic 
(a) and traffic generated by Markov chains with P on= 1-6/1366, P o.tF 1-6/1802 (b). The 
results are for N=2, 5 and 10, and the mean queue size without dispersion is shown in 
(b), while in (a), it is too small to show. The utilization factor is 0.86. 

In essence, sequential dispersion may introduce bursts in the traffic, thereby 

aggravating the queuing behaviour. For a large enough sequence length, sequential 
dispersion performs worse than non-dispersed traffic, with respect to the mean queue 
size. Additional results, which are not presented here, show the standard deviation of 

the queue size to behave similarly. In the remainder of this paper, we therefore 

assume cyclic dispersion. 

3.2 Queuing with Poisson traffic 

3.2.1 Calculated mean queue size 

To an MIDII queuing system, traffic arrives according to a Poisson process, and is 
served in the single server with a constant service rate. If we let A be the mean arrival 
rate in packets/time unit, d the service time in time units and p = Ad < 1 , the mean 
queue size, at moments of departure in equilibrium, is, Kleinrock (1975) 

2 

- - P 
q - 2(1- p) ' 

(7) 

Denote the time between arrival i-J and i to the queue by Xi' The probability 
density function of Xi is then 

1 -Ax 
fx.(x) = r..e , 

1 

\;/i>O (8) 

and the mean interarrival time between packets is 111.. time units. If the traffic from a 

source is cyclically dispersed with dispersion factor N, the arrivals to one of the 

queues corresponds to every Nth arrival from the source. With N=2, the time between 

two adjacent arrivals to the queue is Y = Xi + Xi+ l' the mean arrival rate is 1../2 
packets/time unit, and the probability density function of Y is gamma distributed 

according to 

Y 

h(y) = Jfx,<x)·fx . (y-x)dx = JAe-Ax . Ae-'A.(Y-X)dx = A2ye-'J....y (9) 
1 1+ 1 

o 
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As the arrivals to the queue are still independent, the system becomes a GIG/l 

queuing system. For this system, the mean waiting time in the queue, W, can be 

calculated using the spectral solution to Lindley's integral equation, described in 

Kleinrock (1975). In order to make a fair comparison of the queuing behaviour for 

different degrees of dispersion, p is kept constant. The distribution of the interarrival 

times to one queue is according to (9), and the distribution of service time is given by 

the Dirac delta function according to o(x - 2d). Following the calculations in 
Kleinrock (1975), the mean waiting time and mean queue size are obtained as 

2 A 2 

W = P and q = _. W = P . 
2A(1- p) 2 4(1 - p) 

(10) 

Repeating the calculations for different N gives the mean queue size for different 

degrees of dispersion. Figure 4 shows the calculated values and the corresponding 
simulated values. 

G 

I·· 
I 

~~~~L+~ ' ~'~~'~7pL~~~--
w~-·-~ 

Figure 4 Calculated (shaded bars) and simulated mean queue size on one path, for 
different degrees of dispersion. The traffic is generated by a dispersed Poisson 
process, and the utilization factor is 0.86 (a) and 0.92 (b). 

3.2.2 Simulated queuing behaviour 

The results discussed above were for one source, spreading its traffic cyclically over 
N queues. In the following, the model with N sources spreading the traffic over N 
queues is employed (Figure 2 (b)) . The simulated mean queue size and the standard 
deviation of the queue size in such a system are presented in Figure 5. These results 
show that the minimum mean queue size and standard deviation are obtained with a 
dispersion factor of approximately five . For a dispersion factor larger than five, even 
though the queue size of each dispersed source still decreases, as shown in Figure 4, 

superposing N dispersed sources causes the queue size to increase. Additional results, 

which are not presented here, show that for a lower utilization (smaller p), the 

optimum N is smaller than five, while a higher utilization makes the optimum N 
larger. 

°0 °0 ... S e "7 
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Figure 5 Mean queue size and standard deviation of the queue size for N Poisson 
sources generating traffic into N queues. The utilization factor is 0.86. 
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Figure 6 shows an example of how the queue size varies in time when using 

dispersion. The decrease in queue size agrees with the results from both Figure 4 and 

Figure 5. Thus, for Poisson arrivals, dispersion provides a means to reduce the mean 

queue size as well as the variance of the queue size. The results indicate the optimum 

dispersion factor to be in the interval [2, 5]. 

Figure 6 Example of queue size as a function of time for the on-stage multiplexer 
model with Poisson traffic, for N=I, 2, 5 and 10. The utilization factor is 0.86. 

3.3 Queuing with traffic from two-state Markov chains 

3.3.1 Calculated mean queue size 

The power spectral density of a cyclically dispersed two-state Markov chain source is 
obtained as the discrete Fourier transform of the correlation sequence (5): 

2N 
'" -j2rcqn 1 - <I> 

Seq) = ,L, rin)e = 2N N . 

n = _00 1 + <I> - 2<1> cos(21tq) 

(11) 

Since 1<1>1 < 1 , Seq) ~ 1 as N ~ 00. That is, when increasing the number of paths, 
the power spectral density will converge consistently with the definition of white 
noise . It is thereby clear that cyclic dispersion effectively reduces the correlation in 
the traffic generated by this type of source. Figure 7 shows the power spectral density 
of the packets on one path for different degrees of dispersion. 
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Figure 7 Power spectral density for two-state Markov chain source and dispersion 
factor N = 1,2,5 and 10. The source is characterized by Pon=I-6/1366, Po.tFI-6/1802. 

For the one-stage multiplexer in Figure 2 (a), the mean queue size can be 

calculated. Assuming that the source consists of two independent identically 
distributed two-state Markov chains, and that the queue service rate is one, the mean 
queue size is, Li and Mark (1990) 

q = 1 :22£ . (. : <I> - 1), where £ and <I> are defined in (2) and (4). (12) 
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In case of cyclif, I dispeN1i~n, the dispersion may be illustrated by reducing the 
correlation from q> n to q> n, N ~ 1 , according to (5), while keeping the peak and 

mean source rates unchanged. The mean queue size can then be expressed as 

-2 (2 ) 
q = 1 ~ 2E' 1 _ q>N - 1 . (13) 

q>N in (13) refers to the correlation sequence between adjacent packets from the 

same source, arriving at a queue. In the multiplexer model, however, the correlation 
behaves slightly different, since packets originate from different independent sources. 

The calculated and simulated values might therefore differ. The calculated mean 

queue size as a function of the dispersion factor is shown together with simulated 

results in Figure 8, and the results show accordance in behaviour between the 
calculated and simulated values. 
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Figure 8 Calculated and simulated mean queue sizes, where each source consists of 
two Markov chains with Pon=1-6/1366, PotFl-6/1802 (a) and Pon=1-6/227, PofFl. 
6/596 (b). The shaded bars show the calculated mean queue size according to (13), 
and the utilization factor is 0.86. 

3.3.2 Simulated queuing behaviour 

Figure 9 shows the simulated mean queue size and standard deviation of the queue 
size, for N two-state Markov chain sources with peak rate 1, using the system model 
in Figure 2 (b). Both the mean and the deviation of the queue size decrease as N 
increases, but there is no obvious optimum N, as was the case for Poisson traffic. 
Nevertheless, one can see from the graphs that for N=1 .. 5 there is a significant change 

in queue size, while both the mean and the deviation of the queue size start to level 
out for N>5. 

~~~~~~·~D_L~~·_~I~~ •• LN'~~~~~ 

W 00 
Figure 9 The mean queue size and standard deviation of the queue size for traffic 
generated by a two-state Markov chain source with peak rate 1, Pon=1-6/1366 and 
Po.u=1-6/1802. The utilization factor is 0.86. 
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The sources used to obtain the results above produce strongly correlated traffic 
streams. In Figure 10, we investigate how the queuing behaviour is affected by the 

correlation. As the correlation decreases, an optimum dispersion factor shows up. 

Increasing the dispersion factor above that optimum value results in an increasing 

mean queue size. For highly correlated traffic, the mean queue size levels out at about 

N=5, and one may assume that for some larger N than shown in the graphs, the queue 

size starts to increase again. Additional results, which are not presented here, show 

that it is actually the case. Further results also show the standard deviation of the 
queue size to behave similarly to the mean queue size. 

r: 
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Figure 10 The mean queue size chan~ing with the correlation. The traffic is generated 
by two-state Markov chains with 1<p1 =0.2 (a), 1<p1 =0.4 (b), 1<p1 =0.7 (c) and 1<p1 =0.8 
(d). The source peak and mean rates are kept constant, and the queue utilization factor 
is 0.86. 

Considering traffic with lower correlation, we also investigate how the optimum 

dispersion factor depends on the utilization factor in the queue. Figure 11 shows that 

the optimum dispersion factor increases as the utilization factor increases, so when 
increasing the utilization factor for low correlation traffic, the result approaches the 
ones obtained with high correlation. 
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Figure 11 The mean queue size changing with the queue utilization factor. The traffic 
is generated by two-state Markov chains with Pon=0.7, PotF0.8 and peak rate 1. The 
utilization factor in the different graphs is 0.48 (a), 0.72 (0), 0.84 (c) and 0.92 (d). 

Next, we investigate how the queuing behaviour changes with dispersion for 
different source peak rates (Figure 12). Considering the case with no dispersion, that 

is, the first bar in each graph, we note that the mean queue size increases 
approximately proportionally to the source peak rate, when the utilization factor is 

constant. When looking at the graphs, we also note that dispersion improves the 

queuing behaviour more as the source peak rate increases. Additional results, which 
are not shown here, indicate a similar behaviour for the standard deviation of the 
queue size. The optimum dispersion factor still can be found in the interval [2, 5]. 
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Figure 12 How the mean queue size changes with the source peak rate. The traffic is 
generated by two-state Markov chains with Pon=0.7 and Por.0.8, and the queue 
utilization factor is 0.6. The peak rate is 1 (a), 10 (b), 100 (c) and 1000 (d). 

Figure 13 gives an example of how the queue size varies in time for the system. 

Obviously, dispersion reduces the large fluctuations in queue size, hence making it 

easier to predict the amount of capacity needed for a source. Earlier results 
accordingly show a decrease in the equivalent capacity for dispersed traffic, 
Gustafsson and Karlsson (1996). For traffic generated by a two-state Markov chain, 

dispersion thus reduces the correlation in the traffic stream and thereby also the mean 

queue size and standard deviation of queue size. The more correlated traffic, and the 
higher queue utilization factor, the higher the gain obtained by using dispersion. For 
low correlation, low peak rate and low utilization factor, the dispersion factor should 
be rather small in order not to aggravate the queuing behaviour. In general, N should 
be in the interval [2, 5]. With N>5, the surplus queuing benefits may not always 

justify the overhead caused by the required additional paths. 

" 0' _.o' . ... " 0' 

Figure 13 Example of queue size as a function of time for N=I, 2, 5 and 10, for 
Markov chain sources with peak rate 1, P on= 1-6/1366, P or 1-6/1802. The utilization 
factor is 0.86. 

3.4 Queuing with traffic generated by the FPDI-map 

3.4.1 Simulated queuing behaviour 

For the values on the Hurst parameter considered here, the FPDI-map traffic source 

generates a queue length distribution with an unbounded mean queue size, Pruthi 

(1995). The unbounded queue size is due to the fact that the traffic is highly variable, 

wherefore a single burst occasionally may be large enough to dominate the queuing 
performance. We can thus not investigate how the mean queue size changes for 
different degrees of dispersion, as we did in Section 3.2 and Section 3.3. Instead, we 
look at the queue distribution (Figure 14). The results indicate that dispersion reduces 
the queue size for this type of traffic as well as for the traffic types discussed earlier. 
Figure 15 shows an examlpe of how the queue size varies in time when dispersion is 
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used. These results indicate a similar change in queuing behaviour, due to traffic 
dispersion, as revealed earlier in this paper. 

Figure 14 Queue-length distribution for traffic generated by the FPDI-map. The 
traffic has peak rate 1 and Hurst parameter 0.8333, and the utilization factor for the 
queue is 0.86. The graph shows results for N=l, 2 and 5, and the axes show x and 
p(x)=Pr{ queue size> x}. 

Figure 15 Example of queue size as a function of time for traffic generated by the 
FPDI-map, with peak rate 1 and Hurst parameter 0.8333. The utilization factor is 
0.86, and the results are for N=l, 2, 5 and 10. 

3.5 Traffic dispersion • a general or individual decision? 

As the previous results show, traffic dispersion may yield large performance 
improvements. An important remaining question is whether there are any benefits 
from using dispersion on one source alone, or if every user must employ dispersion to 
make the benefits show. We try to answer this question by again studying the model in 
Figure 2 (b), while adding non-dispersed background traffic to the traffic already 
generated into a queue. All sources are two-state Markov chains, and the sum of the 
peak rates of the dispersed source and the background traffic source is kept constant, 
while the dispersed traffic is varied from constituting 0 to 100% of the total traffic. 

Figure 16 shows how the mean queue size changes with the amount of dispersed 
traffic. We note that in Figure 16 (a), the effects of dispersion show when about 20% 
or more of the traffic is dispersed, while the corresponding limit in Figure 16 (b) is 
between 20 and 30%. The sources in Figure 16 (b) are less correlated than the sources 
in Figure 16 (a), and we thus conclude that the stronger correlation in the traffic 
stream, the earlier the effects of dispersion start to show. In general, dispersion starts 
showing when employed on about 20% of the traffic, while the large benefits may 
come later. The results also further emphasize the statement that a dispersion factor 
larger than 5 does not significantly improve the performance. 
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w w 
Figure 16 How dispersion affects the mean queue size when dispersing ° to 100% of 
the traffic. The total peak rate of the arriving traffic is 100 packets/time unit. In (a), 
the sources are characterized by Pon=0.7, porrO.8 and the queue utilization factor is 
0.6. The corresponding values in (b) are 1-6n366, 1-611802 and 0.52 respectively. 

4 OPTIMUM DISPERSION FACTOR 

The results in the previous Sections show the optimum dispersion factor to be in the 
interval N=[2, 5]. The higher dispersion factor, the higher gain, but when N exceeds 5, 

the additional gain per new path starts to level out. Earlier results have shown the 
dispersion factor to depend on the ratio of the source peak rate to the link capacity, 
Gustafsson and Karlsson (1996). The higher ratio, the larger gain, and in general, 
dispersion is useful as the peak-to-link ratio exceeds about 1110 or the peak-to-mean 

ratio exceeds about 10. Evidently, the dispersion factor for a call depends on the 
number of paths available in the network. As mentioned earlier, the paths should 

preferably be disjoint and of equal length. An effect of one path being longer or 

congested would be large resequencing delay at the receiver. The effects of a 
congested path could be avoided by forward error correction. If for example a single 
parity check is used, one of the paths would carry redundant information, hereby 
increasing the tolerance to link failures and information loss at the expense of higher 
capacity requirements. The effects of redundancy on the capacity can be illustrated by 
the effective bandwidth of a connection. 

We consider the continuous-time version of the two-state Markov chain source 
from Section 2.2.2. With transition rates ex and ~ from off to on and on to off state 
respectively, the effective bandwidth is given by, Kelly (1996) 

a(s, t) = ..!.. 10g{ [~ _~_J exp[[- ~ + hs ~ l tJ [I]}, 
st ex + ~ ex + ~J ex -exJ 1 

(14) 

where s is the space-scale, relating to the expected quality, t is the time-scale and h is 
the source peak rate. With N paths, of which k carry dispersed information from the 

source, and N-k carry redundant information, the effective bandwidth can be 

expressed as 

a(s,t,N,k) = ~'IOg{[~ _~Jexp[[-~+Sh/k ~JtJ[I]}. 
st ex+~ ex+~J ex -ex 1 

(15) 

In order to better show the effects of dispersion on the effective bandwidth, we 

temporarily withdraw the restriction on N to be an integer. Some results are presented 
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in Figure 17. The graphs show that if k=N-l, a dispersion factor N> 3 still requires less 
capacity than a non-dispersed connection. For k=N-2, this holds for N>5. Provided 

that there are five disjoint paths of equal length available in the network, a dispersion 
factor N=5 should be used, with or without redundancy, depending on the quality of 

service requirements from the user. If the number of available paths is less, a 
dispersion factor N=2 and N=3 gives a capacity gain without redundancy, while N=4 

can tolerate redundant information to be carried on one of the paths. Lastly, it should 
be noted that the choice of dispersion factor may be different if there are special 
requirements, such as high security or extremely low capacity utilization on each 
path. 
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Figure 17 Effective bandwidth for a two-state Markov chain source, as a function of 
Nand k. In the example presented, a =1, P =9 and h=l O. The sand t parameters are 
kept constant in each graph. 

5 CONCLUSIONS 

In this paper, we have investigated the basic properties of traffic dispersion. We have 
discussed how dispersion changes the traffic behaviour for different types of traffic 
sources, and how it affects the queuing performance. We confirmed that cyclic 
dispersion performs better than sequential dispersion, with respect to the queuing 
behaviour. When using cyclic dispersion, it is possible to reduce the correlation in the 
traffic stream and to reduce the peak rate of a source. The influence of a source on 
each of the paths used is hence reduced, and this makes it possible to fully utilize the 
benefits of statistical multiplexing in for example an ATM network. Reducing the 
correlation also gives a smoother queuing behaviour. Traffic dispersion has been 
shown to decrease the mean and variance of the queue size, and in a more general 
perspective to reduce the fluctuations in the queue size over time. The benefits from 
using dispersion are a reduction on the order of five to ten times in the mean and the 
standard deviation of the queue size, compared to non-dispersed transmissions. In 
order to make the effects of dispersion show though, the strategy must be employed 
on at least 20 to 30% of the total amount of multiplexed traffic. In summary, our 
results show the large potential of traffic dispersion, with an optimum dispersion 
factor N=5. 

Considering the benefits from using traffic dispersion, the technique deserves 
further research and attention, with focus on studies of larger networks, delays 
through the networks and resequencing delays at the receiver. What makes the traffic 
dispersion approach special is that the network does not have to adapt to complicated 
traffic characteristics. On the contrary, the traffic characteristics are engineered to suit 
a reasonable network structure. This, we believe, gives us the opportunity of fast, 
secure and fault-tolerant transfers of data to satisfy high performance demands also 
for highly bursty traffic sources. 
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