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ABSTRACT 
This paper describes the Altera Stratix II™ logic and routing 
architecture. This architecture features a novel adaptive logic 
module (ALM) that is based on a 6-LUT, but can be partitioned 
into two smaller LUTs to efficiently implement circuits containing 
a range of LUT sizes that arises in conventional synthesis flows. 
This provides a performance increase of 15% in the Stratix II 
architecture while reducing area by 2%. The ALM also includes a 
more powerful arithmetic structure that can perform two bits of 
arithmetic per ALM, and perform a sum of up to three inputs. The 
routing fabric adds a new set of fast inputs to the routing 
multiplexers for another 3% improvement in performance, while 
other improvements in routing efficiency cause another 6% 
reduction in area. These changes in combination with other circuit 
and architecture changes in Stratix II contribute 27% of an overall 
51% performance improvement (including architecture and 
process improvement). The architecture changes reduce area by 
10% in the same process, and by 50% after including process 
migration.   

Categories and Subject Descriptors 
B.7.1 [Integrated Circuits]:  

General Terms 
Design 

Keywords 
FPGA, logic module, routing 

1. INTRODUCTION 
This paper describes the Stratix II FPGA logic and routing 
architecture. The goals for Stratix II were to improve both              

performance and area compared to Stratix™, independent of the 
process change. While the process shrink from 0.13um to 90nm 
could provide approximately 20% performance improvement, this 
was considerably short of the 50% performance increase that was 
desired. Although Stratix II includes a number of new features as 
well as circuit optimizations, the single largest source of 
architectural performance improvement was the development of a 
new adaptive logic module (ALM), offering 15% performance 
compared to a 4-LUT. The inclusion of a set of fast routing 
connections offered another 3%. The remainder of the 
performance improvements will not be described in this paper. 
 
Section 2 of the paper gives a brief overview of the Stratix 
architecture and describes the tools used to evaluate logic and 
routing architectures. Section 3 describes the development of the 
adaptive logic module used in Stratix II. It describes various 
structures for a larger LUT, and the evaluation of them together 
with the appropriate LAB size. Arithmetic features and carry 
chain modifications to enhance routability are also described. 
Section 4 describes modifications of the routing architecture, 
including fast routing multiplexers and the reduction in routing 
channel widths used in Stratix-II. Section  5 concludes the paper. 

2. ROUTING ARCHITECTURE 
This section describes the development of the routing architecture 
for Stratix. It first briefly describes the FPGA modeling toolkit 
(FMT) experimental infrastructure used to evaluate various 
routing architectures, and changes since previous description of it 
[1].  The new Synthesis modeling toolkit is also described. 

2.1 Experimental Infrastructure  
The routing architecture was developed using the Altera FPGA 
Modeling Toolkit (FMT) and Synthesis Modeling Toolkit (SMT.) 
Based on the academic VPR place and route tool [3] [10], FMT 
extends the VPR framework to deal with the level of complexity 
of modeling the details of a state of the art FPGA architecture, and 
was first used successfully to design the Stratix™ architecture [1]. 
 
Since the use of the FMT in developing the Stratix architecture, 
the SMT has been developed to allow the exploration of logic 
block architectures. The SMT allows synthesis from HDL into 
LUT-based architectures, and requires some customization for 
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each proposed architecture to efficiently exploit irregular features 
such as arithmetic structures and control signals for the flip-flops. 
  
The FMT is used to perform place and route experiments on a 
proposed architecture. The FMT was described in [3] so only a 
short description is included here. Input to the FMT is an 
architecture file that describes the various logic and memory 
resources, and a hierarchical description of the architecture. This 
includes all timing and physical information needed to perform 
placement and routing on FPGAs of any specified size, and to 
determine the overall area and performance of a proposed 
architecture. 
 
Although similar to the methodology described in [3] [8] [10], the 
architectural evaluation methodology is extended due to the 
introduction of the SMT. Given a new logic block candidate, the 
SMT must be modified to support synthesis into this block. A set 
of benchmark circuits are then synthesized and used as input to 
the place and route flow. For any proposed logic block, it is 
important to determine the best routing architecture for that block. 
This is done using the well known binary search place and route 
to determine the minimum channel width. Given the set of 
circuits, a candidate channel width is then selected that meets the 
routing demand of the circuit set. While previous work suggested 
that a 20% increase beyond average minimum channel width was 
a useful metric for comparing architectural features, a commercial 
architecture needs to be able to route all of the benchmark set, not 
just the average, so increased weight is placed on the largest 
channel width. Because a single outlier result with bad routing 
can result in a large channel width, our methodology does not 
strictly use the absolute maximum channel width, but some 
discretion is allowed.  To compare architectures, specific 
candidates with routing that is sufficient to route on the order of 
99% of the benchmark circuits is used, and the area and 
performance of the proposed architecture computed using the 
FMT. The placement and routing algorithms use the same basic 
algorithms as production Altera software, so the FMT can provide 
a good prediction performance of prototype architectures.  

2.2 LAB-Based Architecture 
Most Altera devices have  used a LAB-based architecture, 
including the Stratix [1], Flex 6000 [7], Flex 8000, Flex 10K, 
Apex [6,7], and Mercury [4] architectures. Stratix II continues to 
use a LAB-based architecture, but with substantial changes to the 
logic element, as well as some changes  to the routing 
architecture. 
A LAB-based routing architecture consists of a highly connected 
block of logic elements connected to a sparser inter-LAB routing 
fabric. Stratix II has two levels of hierarchy of routing resources. 
The lowest level of the architecture is a logic element (LE) which 
in previous architectures comprises a LUT based logic function 
and flip-flop, and in Stratix II, includes adaptive logic module and 
2 FFs. The first level of routing hierarchy is formed by a 
collection of logic elements (10 in most previous architectures) 
which are grouped into a logic array block (LAB). LEs within the 
same LAB can be interconnected by intra-LAB routing. Figure 1 
shows an overview of a LAB, using a conventional 4-LUT as an 
example. The intra-LAB routing wires consist of LAB lines which 
route signals external to the LE to the input pins of the LEs, and 

local lines, which route the outputs of the LEs to inputs of LEs 
within the same LAB.  In Apex and prior architectures each input 
pin of the LE could connect to any one of the signals in some pool 
of LAB and local lines. In Stratix and subsequent architectures the 
connectivity was reduced to 50%, so each input pin connects to 
half the wires. The LAB also contains a control signal region, 
typically located in the center of the LAB for reduced delay to the 
LEs, which conditions and buffers control signals for the FFs and 
contains other control logic. 
 
The second level of routing hierarchy is formed by a number of 
rows and columns of routing wires connecting the inputs and 
outputs of the LABs, shown in Figure 2. The rows and columns 
will be referred to as H or V wires (horizontal and vertical) for 
brevity in this paper. Stratix and Stratix II use a three-sided 
routing architecture, in which each LAB can drive signals or listen 
to signals on one H channel, and either one of the two V channels 
on the left or right sides. 
 
 

LAB
lines

local
lines

LE

LE

Secondary
Signal

Generation

global signals

LEA

LEB

LEC

LED

LEA

LEB

LEC

LED

 
Figure 1: Overview of LAB 

3. Adaptive Logic Module Architecture 
Based on the desire for improved speed, and largely inspired by 
previously reported results [2,13], a larger LUT was a key area of 
interest. The 6-LUT has recently been reported as having better 
area-delay performance than the 4-LUT, with estimated 14.4% 
[13, table E.10] performance improvement for a 10-LE LAB, but 
17.2% area increase [13, table A.10] for a 10-LE LAB. Other 
LAB sizes are possible, for different area-delay tradeoffs. For 
Stratix II, the goal was to achieve as much speed improvement as 
possible but avoid the area increase if possible. The basic 
approach that was investigated was based on the ability to 
construct a larger LUT to reduce the number of levels of logic and 
increase performance. To avoid the area increase, methods to split 
the larger LUT efficiently into smaller LUTs were investigated. 
Two observations help motivate this goal. First, although 
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synthesis into the conventional 4-LUT produces mostly 4-LUTs 
as well as a mix of smaller functions, for a 6-LUT the mix is less 
skewed towards the largest size because not as many large cones 
of logic exist to be absorbed into a single function. As a result 
there is a higher proportion of 5-LUTs and smaller functions. 
Figure 3 shows the distribution of the number of used inputs for 
LUTs of various sizes, with 4-LUTs using all inputs 57% of the 
time, but 6-LUTs using all inputs only 36% of the time. There is a 
24% reduction in LE count using the 6-LUT, but this is clearly 
insufficient to achieve an overall area reduction. Thus the 6-LUT 
will be used to its capacity less often, resulting in a potential 
waste of its functionality. 
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Figure 2. Overview of routing structure 

The second observation is that not all paths in a logic circuit have 
identical depth, so there is the potential for synthesis to use a 
smaller and less costly LUT for non-critical paths with narrow 
functions, and to use 6-LUTs only for wider cones of logic to 
reduce the depth on the critical path. Our investigations were 
therefore focused on structures that offered the full speed potential 
of the 6-LUT for performance critical functions, but can also 
efficiently partition into smaller LUTs for smaller logic functions, 
or less critical logic that can by synthesized into smaller LUTs. 
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Figure 3: LUT input pin usage distribution 

3.1 Logic Block Architectures 
There are three approaches that were identified for constructing a 
set of LUT sizes within a single logic block. All three of these will 
be described below, although the first was quickly discarded from 
further consideration and the second and third were the subject of 
detailed FMT experiments. 
 
The first approach is denoted a composable LUT. In a composable 
LUT, a set of basic k-LUTs are constructed, together with a tree of 
2:1 multiplexers on their outputs to form progressively larger 
LUTs. A key point is that all of the inputs to the k-LUTs and the 
subsequent multiplexers have independent inputs from the routing 
fabric. Figure 4 shows an example composable 6-LUT built out of 
4-LUTs. LUT inputs will be labeled a,b,c etc corresponding to 
their depth in the multiplexer tree when used in widest mode. The 
independence of the inputs in the composable LUT is also the 
source of a high cost. A cursory examination of the costs of 
constructing a composable LUT can be made by considering the 
final stage of routing alone. In previous Altera architectures, the 
final stage of routing that connects to the input pin of the LUT 
consists of a multiplexer with fanin typically ranging from 21:1 to 
30:1, requiring from 10 to 13 memory bits to control the selection. 
A 4-LUT alone consists of a 16:1 multiplexer and 16 memory 
bits. Thus, each input pin incurs a cost roughly comparable to the 
cost of a 4-LUT. Although this simplified analysis does not 
consider the difference in transistor sizes, typically larger in the 
final stages of the LUT to provide speed, it can be seen that each 
input pin to the logic block is nearly as expensive as a 4-LUT. 
Thus the composable 6-LUT, requiring a total of 19 input pins 
and 4 4-LUTs, is at least as expensive as 4 4-LUTs and 
considerably more expensive than a conventional 6-LUT with 
only 6 input pins. This makes the use of 6-LUTs sufficiently 
expensive that this structure was not considered attractive, and no 
further consideration of it was undertaken. 
This observation drives towards large LUTs with fewer input pins, 
that can implement a range of LUT sizes while minimizing the 
amount of replication of the routing. The second structure is 
denoted a fracturable LUT mask (FLM). A fracturable LUT can 
be parameterized by the two values k and m. Describing a FLM as 
a k,m LUT, the value k denotes the size of largest LUT, and the 
value m denotes the number of extra input pins that are brought 
into the logic element, for a total of k+m input pins. Thus the 6,2 
fracturable LUT implements a 6-LUT with a total of 8 inputs. 
In a FLM, the kth input, and each of the m extra inputs forms the 
inputs to a multiplexer tree of depth (m+1). When used to build 
two smaller LUTs, the logic in the top half of the LUT is used for 
one logic function, taking the output before the final 2:1 
multiplexer that forms the k-LUT output. The kth input is not 
required for functions smaller than size k, so it can be used to 
drive the select input of a multiplexer that corresponds to the k-1 
depth in the bottom half of the LUT. Similarly, the other m inputs 
are not required for the largest possible k LUT, so they also drive 
copies of the multiplexer tree using data from the bottom half of 
the k-LUT. Thus, when the LUT is used to implement a single k-
input function, m of the inputs must be duplicated. Figure 5 
illustrates how inputs c0 and c1, and inputs d0 and d1 must be 
duplicated to form the 6 input function z0(a,b,c,d,e,f). 
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 Figure 4: Composable 6-LUT constructed from 4-LUTs 
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Figure 5: 6,2 Fracturable LUT mask logic module 

The FLM can also implement two functions of size up to k-1. In 
the case that the LUT is used for the smaller functions, each 
function can use m+1 distinct inputs, but must share (k-1)-(m+1) 
= k-m-2 inputs. That is, for the 6,2 LUT used as two 5-LUTs, 
three inputs are distinct for each of the two 5-LUTs, and two 
inputs must be shared. In Figure 5  it can be seen that the FLM 
can also implement both z1(a,b,c1,d1,e) and z2(a,b,c2,d2,f), so 
inputs a and b must be shared when the FLM is used to construct 
two 5-LUTs. Because the FLM can be partitioned into two 5-
LUTs, progressively smaller LUTs will use the 5-LUTs, but do 
not need to share as many inputs. For example, the example 6,2 
LUT can also implement two 4-LUTs with completely 
independent inputs. Other combinations, such as a 5-LUT and 3-
LUT that do not share inputs, or 5-LUT and 4-LUT that share one 
input are also possible. In summary, a k,m FLM has a total of 
k+m inputs and can be used to construct either one k-input 
function, or two functions of size up to k-1 that use no more than 
k+m distinct inputs. This also enables an ability for synthesis to 
target either 6-LUTs for higher performance or a mix of 5-LUTs 
and 6-LUTs for area efficiency. 
It is typically expected that two flip-flops would be used with an 
FLM to support packing up to two logic functions each directly 
feeding a FF. 

 The third approach is a shared LUT mask (SLM). Previous 
architectures targeting data path applications have proposed 
collections of LUTs that share all memory bits, but have distinct 
inputs to each of the multiplexer trees [11]. This was intended to 
allow the efficient implementation of data paths that implement a 
number of copies of identical logic functions on each of the bits of 
data, but is too restrictive for general purpose logic. Instead, a 
variation that a supports the features of the FLM but extends 
beyond this by allowing LUT mask sharing for the full k input 
LUT but without providing unique inputs for each of the two 
functions. A k,m SLM can implement the same functions as a 
FLM, but can also implement two k-LUTs that have the same 
logic function, and no more than k+m distinct inputs. While both 
FLM and SLM allow any pair of logic functions subject to these 
constraints, the key difference between an FLM and the SLM is 
the ability of the SLM to implement two identical functions of k 
inputs in a single logic module, provided that the two functions 
share (k-m) inputs. 
Figure 6 shows an overview of a 6,2 SLM. The SLM operates by 
introducing an extra level of multiplexing at the penultimate level 
of the mux tree. This level of muxing can be controlled either by 
an input pin, or tied to a 1 (top half) or 0 (bottom half). When an 
input signal is selected, both top and bottom half of the LUT can 
implement the same k-input function, using no more than k+m 
distinct inputs. When a 0 or 1 is input to these multiplexers, the 
top and bottom half of the LUT are divided into independent 
partitions, and two distinct functions can be implemented as in the 
FLM. 
 

dc0

a
b

3-LUT

dc1

e0

e1

f0

f1

z0 (a,b,dc0,dc1,e0,f0)
z1(a,b,dc0,e0,f0)

z0 (a,b,dc0,dc1,e1,f1)
z2(a,b,dc1,e1,f1)

 
Figure 6: 6,2 Shared LUT mask logic element 

 
The SLM structure was not known when the Stratix II architecture 
evaluation began, so the first step was to explore the viability of 
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the FLM. An initial circuit design and area estimate as well as 
circuit simulations provided the area and delay of the 6,2 FLM. 
The initial area estimates suggested that the 6,2 FLM and FFs (not 
including any routing multiplexers) would be approximately 2.4X 
the area of a 4-LUT, well below the >4X increase required for a 
composable LUT structure. 
Using a Stratix-like routing architecture, minimum channel width 
binary search place and route was used to determine the required 
channel width for two candidates. The first was a conventional 10 
LE 4-LUT LAB and the second was a 10 LE 6,2 FLM LAB. Both 
architectures were designed to have routing that provided 
comparable routability across a range of designs. The 6-LUT 
FLM was on average 12.4% faster and consumed only 2.1% more 
area, achieving a net 9.2% reduction in area-delay product. 
Although the LE by itself is a factor of nearly 2.4X as large as the 
4-LUT, the overall LAB area does not increase by this ratio, since 
the routing makes up most of the overall area, and fewer LEs are 
required to implement the same logic. 
The next step was to investigate the effectiveness of the SLM. 
This requires placing pairs of 6-LUTs with identical functions and 
4 shared inputs in the same LE. Since the FMT is unaware of 
logic functionality, the SMT was enhanced to support passing the 
LUT mask into the flow, finding suitable pairs of 6-LUTs, and 
producing netlist constraints that forced these pairs to be placed in 
the same LE. Although the area overhead of SLM compared to 
FLM was estimated as 1.2%, the question was whether it was 
possible to find enough candidate 6-LUTs with identical 
functionality that could be shared in the same LE to produce a net 
area win. In fact, experiments showed that a 5.8% reduction in LE 
count could be achieved for a net area improvement of 4.7%, 
although a 1.3% reduction in performance was also found. 
However, subsequent tuning of the 6-LUT circuit design had 
improved its performance, so after the 1.3% performance loss, the 
net SLM performance advantage was 15%. Of the 1.3% 
performance degradation, about 0.4% is due to the SLM hardware 
and the remaining 0.9% due to the constraints of the LUT pairs 
using the SLM feature. This was judged to be a good tradeoff and 
SLM was adopted for Stratix II, with a net area reduction of 2.6% 
compared to the original 4-LUT based LAB. Thus the ALM not 
only achieves a 15% performance improvement, but manages to 
shrink logic and routing area by 2.6%, for an overall 17.6% 
improvement in area-delay product. 

3.2 Logic Blocks per LAB 
After determining that the 6-LUT SLM was the preferred logic 
block, it was necessary to determine the best LAB size. Although 
the 10-LE 6-LUT had been demonstrated to be better than the 10-
LE 4-LUT, it was not clear if this was the optimal size. It is a 
separate issue whether the 10-LE 4-LUT was optimal, but the 
investigation of this did not lead us to change our conclusions on 
the 6-LUT. Further experiments used the FMT area model and 
timing models that included all physical wire length scaling for 
various sizes of LAB to evaluate LAB sizes ranging from 6 to 14 
LEs per LAB. LABs with fewer LEs incur more inter-LAB 
routing, but the routing resources inside the LAB are faster. 
Conversely, larger LABs need less inter-LAB routing, but the 
intra-LAB routing is slower. The area model takes into account 
the appropriate amount of routing, both inter-LAB and intra-LAB 
to predict overall LAB area. The timing model is also constructed 
to use correct intra- and inter-LAB delays, assuming that the LAB 

is laid out as a rectangle with a 2:1 V:H aspect ratio. It can be 
seen from the results in Table 1 that 10 LEs appears to be area 
minimum, but the performance of LABs range from 8 to 14 LEs 
has no consistent trend, due to experimental noise, with any one 
of these likely to provide comparable results. 
Two factors guiding the final LAB size choice were more detailed 
layout considerations, and a study of performance as a function of 
the physical aspect ratio on the LAB. The initial experiment on 
LAB size assumed that the physical aspect ratio of the LAB 
remained constant at 2:1 height:width across various LAB sizes. 
Although this is a reasonable approximation for his is not likely 
true in practice, as the LAB is most efficiently laid out as a 
column of LEs stacked vertically, with the consequence that larger 
LABs have more vertically skewed aspect ratios. Figure 7 shows 
the results of an experiment where the physical aspect ratio of the 
LAB was varied from 1:1 to 3:1. LABs with more skewed aspect 
ratios tend to have lower performance due to the difference in 
delay in the X and Y directions. The faster signal propagation in 
one direction is not sufficiently compensated for by the slow 
down in the other direction. Together with detailed layout 
considerations using the expected amount of routing, this led us to 
select 8 LEs for the Stratix II LAB. 
Table 1: Area and performance results for LABs of various 
sizes 
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Figure 7: Effect of LAB aspect ratio on overall performance 

 

3.3 Arithmetic Functions in the ALM 
Another desire for Stratix II was to improve arithmetic capability. 
Previous Altera architectures had used a 4-LUT, split into two 3-
LUTs to implement a sum and carry function respectively. Since 
the carry-in counts as an input, the LUT could only implement 

#ALEs per LAB # LAB lines Channel Width Fmax LAB Area
6 30 188 -4% 5.50%
8 38 212 2% 1.50%
10 46 236 0% 0%
12 54 260 1% 0.30%
14 62 274 2% 0.50%

LAB Size Results Summary
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additive functions of 2 inputs which effectively limits them to 
addition or subtraction. Using an entire 6-LUT for one bit of 
arithmetic was judged too expensive, so our investigations 
focused on structures that used the ALM for two bits of 
arithmetic. Implementing the previous approach would have 
offered two 4-LUTs per bit, supporting arithmetic functions of 
three inputs and a carry-in. To offer more functionality, a 
dedicated adder was included in the Stratix II ALM. Two one-bit 
adders are included in the ALM, with inputs taken from the four 
respective 4-LUT outputs. Taking the adder inputs from the most 
obvious set of 4-LUTs at intermediate points in the 6-LUT would 
provide two sum bits z0(a,b,dc0,e0) + z1(a,b,dc0,e0) and 
z2(a,b,dc1,e1)+z3(a,b,dc1,e1), which would have wasted the f0 
and f1 inputs. To allow a larger set of functions, extra 
multiplexers controlled by the f0 and f1 respectively were 
introduced at the last stage of the 4-LUT multiplexer trees, 
allowing all inputs to be used to compute 
z0(a,b,dc0,e0)+z1(a,b,dc0,f0) and z2(a,b,dc1,e1)+z3(a,b,dc1,f1). 
The extra multiplexers are in bold in Figure 8, which also removes 
other unrelated detail for clarity. 
A further enhancement allows the shifting of one of the adder 
inputs by one bit. This allows each pair of 4-LUTs to be used as a 
3:2 compressor, using the adder to form the sum of the outputs. 
Thus each ALM can perform a 3-input sum, forming a+b+c with 
two bits per ALM. 
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Figure 8: Extra multiplexers and full adder in ALM 

The powerful arithmetic can potentially create a high demand for 
inputs into the LAB, in the event that complex arithmetic 
functions with many inputs and little sharing are used. To increase 
the flexibility of packing a mix of arithmetic and random logic 
functions in the same LAB, multiplexing circuits were added to 

the control signal region so that the carry chain could be 
configured to take an “early exit” after half the LEs in a LAB, 
then to skip to the next LAB. In this way the carry chain can 
either use all or half the LEs in the LAB, and complex arithmetic 
functions use only half the LEs and a mix of other related random 
logic. This tends to make the distribution of the number of LAB 
inputs more uniform and offers improvements to the overall 
routing efficiency. 
 

4. MODIFICATIONS TO ROUTING 
ARCHITECTURE 
Stratix II uses a routing architecture that is similar to Stratix. This 
consists of a direct drive architecture, with each LAB being able 
to drive two pools of routing multiplexers, and to listen to a 
horizontal and two vertical channels. Stratix contained wires of 
length 4, 8, 16 (V only) and 24 (H only). All of these choices 
were revisited for Stratix II. Although the choice of the length 4 
wires was confirmed, it was found that the benefit of the length 8 
wires was reduced, and the presence of a single long wire network 
(either the 8 or 24H/16V) was sufficient. Further, the 24H/16V 
network offered the highest speed long distance connections a 
lower area cost than the length 8 network. Thus the 24H/16V 
network was retained, and the length 8 network was removed. 
Beyond this, approximately a 20% reduction in routing capacity 
(normalized to logic density) compared to Stratix was 
implemented, despite the doubling of target logic density, due to 
increased ability to tune FMT routing patterns, and improvements 
in the production router, offering a further 6% improvement in 
overall area per unit logic. 
Although the Stratix II LAB contains about twice as much logic 
as the Stratix LAB, the total wire count of the channel needed to 
be increased by only 5%, whereas closer to a 40% increase would 

be expected based on an approximate 2/1N growth of routing 
demand vs LAB size that is found experimentally. This is due not 
only to the improved routing efficiency of the ALM, but 
improvements in  the production router as well. The substitution 
of the more efficient length 4 wires for length 8 also contributes to 
the net reduction in wire count. It should be noted that [13] does 
predict a reduction in routing requirements for a 10-LE 6-LUT 
compared to a 10-LE 4-LUT, but this comparison is not directly 
appropriate here because the use of a regular 6-LUT has less logic 
capacity and fewer inputs on average than a SLM 6-LUT and 
should also be expected to have less routing demand. 
Another change to the routing structure was the provision of a 
small number of fast inputs to the routing multiplexers. The 
routing multiplexers are constructed as conventional two-level 
NMOS pass transistor selection stage, followed by two buffer 
stages. A small number of single stage fanins can also be provided 
that feed the buffers through only a single NMOS pass transistor, 
as shown in Figure 9.  Each additional fast input provides more 
potential fast connections, at the cost of not only larger area, but 
potentially slowing down all connections, including the fast ones, 
that go through that multiplexer. The slow down arises from the 
increased fanin of the second stage of the multiplexer, causing 
increased parasitic loading. FMT experiments were used to sweep 
various possible numbers of  fast inputs, include one, two, and all 
inputs to the multiplexer being fast, although ignoring the 
parasitic loading effects in this phase of the investigation. Table 2 
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shows the results of the area and performance increase, broken out 
into all circuits, as well as circuits with more than 5000 and 10000 
LEs. Although a monotonic increase in performance is expected 
with more fast inputs, it can be seen that two fast inputs offers 
slightly less performance than one. This is attributed to 
experimental noise which can be on the order of +/- 1%, but is 
also suggesting that the one fast input case benefited positively 
from noise. Overall it can be inferred that beyond the first fast 
input there is little incremental benefit to more fast inputs, 
especially as parasitic loading effects are not included here. After 
deciding to include a single fast input and performing more 
detailed circuit design including the slow down due to parasitic 
effects, detailed area analysis, and a more exhaustive experiment 
to reduce noise, the performance improvement of a single fast 
input was confirmed at 3%. Other enhancements to the routing 
structure have also been implemented, but will not be described in 
this paper. 
 
 

fast input

regular input

 
Figure 9:  Fast inputs to routing multiplexers 

 
Table 2: Effect of adding fast inputs to routing multiplexers 
 

Fast Inputs 
per Routing 
Mux 

Fmax All 
Circuits 

Fmax Circuits 
 > 5K LEs 

Fmax Circuits 
>10K LEs 

1 Fast 5.7% 5.6% 2.7% 

2 Fast 4.0% 3.5% 0.9% 

All Fast 7.6% 7.8% 7.7% 

 
 

5. CONCLUSIONS 
This paper has shown  how a shared LUT mask LE can effectively 
improve performance by 15% while reducing overall area by 2%. 
More powerful arithmetic supports merging logic with arithmetic 
functions, and supports functions such as adding three 
independent operands in each LE. Combined with further tuning 
of the routing patterns, improvements in the production router, 
fast routing multiplexer inputs, and a process shrink from 0.13um 
to 90nm, an overall 51% performance increase and 50% area 
decrease is achieved. 
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