
The Stratix II Logic and Routing Architecture
David Lewis*, Elias Ahmed*, Gregg Baeckler, Vaughn Betz*, Mark Bourgeault*, David

Cashman*, David Galloway*, Mike Hutton, Chris Lane, Andy Lee, Paul Leventis*, Sandy
Marquardt*, Cameron McClintock, Ketan Padalia*, Bruce Pedersen, Giles Powell, Boris Ratchev,
Srinivas Reddy, Jay Schleicher, Kevin Stevens*, Richard Yuan, Richard Cliff, Jonathan Rose**

Altera Corporation, 101 Innovation Drive, San Jose, CA, 95134
(*) Altera Corporation, 151 Bloor St W., Toronto, Ont, Canada M5S 1S4

(**) Department of Electrical and Computer Engineering, University of Toronto,
10 King's College Road, Toronto, Ontario Canada M5S 3G4

dlewis@altera.com

ABSTRACT
This paper describes the Altera Stratix II™ logic and routing
architecture. This architecture features a novel adaptive logic
module (ALM) that is based on a 6-LUT, but can be partitioned
into two smaller LUTs to efficiently implement circuits containing
a range of LUT sizes that arises in conventional synthesis flows.
This provides a performance increase of 15% in the Stratix II
architecture while reducing area by 2%. The ALM also includes a
more powerful arithmetic structure that can perform two bits of
arithmetic per ALM, and perform a sum of up to three inputs. The
routing fabric adds a new set of fast inputs to the routing
multiplexers for another 3% improvement in performance, while
other improvements in routing efficiency cause another 6%
reduction in area. These changes in combination with other circuit
and architecture changes in Stratix II contribute 27% of an overall
51% performance improvement (including architecture and
process improvement). The architecture changes reduce area by
10% in the same process, and by 50% after including process
migration.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]:

General Terms
Design

Keywords
FPGA, logic module, routing

1. INTRODUCTION
This paper describes the Stratix II FPGA logic and routing
architecture. The goals for Stratix II were to improve both

performance and area compared to Stratix™, independent of the
process change. While the process shrink from 0.13um to 90nm
could provide approximately 20% performance improvement, this
was considerably short of the 50% performance increase that was
desired. Although Stratix II includes a number of new features as
well as circuit optimizations, the single largest source of
architectural performance improvement was the development of a
new adaptive logic module (ALM), offering 15% performance
compared to a 4-LUT. The inclusion of a set of fast routing
connections offered another 3%. The remainder of the
performance improvements will not be described in this paper.

Section 2 of the paper gives a brief overview of the Stratix
architecture and describes the tools used to evaluate logic and
routing architectures. Section 3 describes the development of the
adaptive logic module used in Stratix II. It describes various
structures for a larger LUT, and the evaluation of them together
with the appropriate LAB size. Arithmetic features and carry
chain modifications to enhance routability are also described.
Section 4 describes modifications of the routing architecture,
including fast routing multiplexers and the reduction in routing
channel widths used in Stratix-II. Section 5 concludes the paper.

2. ROUTING ARCHITECTURE
This section describes the development of the routing architecture
for Stratix. It first briefly describes the FPGA modeling toolkit
(FMT) experimental infrastructure used to evaluate various
routing architectures, and changes since previous description of it
[1]. The new Synthesis modeling toolkit is also described.

2.1 Experimental Infrastructure
The routing architecture was developed using the Altera FPGA
Modeling Toolkit (FMT) and Synthesis Modeling Toolkit (SMT.)
Based on the academic VPR place and route tool [3] [10], FMT
extends the VPR framework to deal with the level of complexity
of modeling the details of a state of the art FPGA architecture, and
was first used successfully to design the Stratix™ architecture [1].

Since the use of the FMT in developing the Stratix architecture,
the SMT has been developed to allow the exploration of logic
block architectures. The SMT allows synthesis from HDL into
LUT-based architectures, and requires some customization for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FPGA’05, February 20–22, 2005, Monterey, California, USA.
Copyright 2005 ACM 1-59593-029-9/05/0002...$5.00.

14

each proposed architecture to efficiently exploit irregular features
such as arithmetic structures and control signals for the flip-flops.

The FMT is used to perform place and route experiments on a
proposed architecture. The FMT was described in [3] so only a
short description is included here. Input to the FMT is an
architecture file that describes the various logic and memory
resources, and a hierarchical description of the architecture. This
includes all timing and physical information needed to perform
placement and routing on FPGAs of any specified size, and to
determine the overall area and performance of a proposed
architecture.

Although similar to the methodology described in [3] [8] [10], the
architectural evaluation methodology is extended due to the
introduction of the SMT. Given a new logic block candidate, the
SMT must be modified to support synthesis into this block. A set
of benchmark circuits are then synthesized and used as input to
the place and route flow. For any proposed logic block, it is
important to determine the best routing architecture for that block.
This is done using the well known binary search place and route
to determine the minimum channel width. Given the set of
circuits, a candidate channel width is then selected that meets the
routing demand of the circuit set. While previous work suggested
that a 20% increase beyond average minimum channel width was
a useful metric for comparing architectural features, a commercial
architecture needs to be able to route all of the benchmark set, not
just the average, so increased weight is placed on the largest
channel width. Because a single outlier result with bad routing
can result in a large channel width, our methodology does not
strictly use the absolute maximum channel width, but some
discretion is allowed. To compare architectures, specific
candidates with routing that is sufficient to route on the order of
99% of the benchmark circuits is used, and the area and
performance of the proposed architecture computed using the
FMT. The placement and routing algorithms use the same basic
algorithms as production Altera software, so the FMT can provide
a good prediction performance of prototype architectures.

2.2 LAB-Based Architecture
Most Altera devices have used a LAB-based architecture,
including the Stratix [1], Flex 6000 [7], Flex 8000, Flex 10K,
Apex [6,7], and Mercury [4] architectures. Stratix II continues to
use a LAB-based architecture, but with substantial changes to the
logic element, as well as some changes to the routing
architecture.
A LAB-based routing architecture consists of a highly connected
block of logic elements connected to a sparser inter-LAB routing
fabric. Stratix II has two levels of hierarchy of routing resources.
The lowest level of the architecture is a logic element (LE) which
in previous architectures comprises a LUT based logic function
and flip-flop, and in Stratix II, includes adaptive logic module and
2 FFs. The first level of routing hierarchy is formed by a
collection of logic elements (10 in most previous architectures)
which are grouped into a logic array block (LAB). LEs within the
same LAB can be interconnected by intra-LAB routing. Figure 1
shows an overview of a LAB, using a conventional 4-LUT as an
example. The intra-LAB routing wires consist of LAB lines which
route signals external to the LE to the input pins of the LEs, and

local lines, which route the outputs of the LEs to inputs of LEs
within the same LAB. In Apex and prior architectures each input
pin of the LE could connect to any one of the signals in some pool
of LAB and local lines. In Stratix and subsequent architectures the
connectivity was reduced to 50%, so each input pin connects to
half the wires. The LAB also contains a control signal region,
typically located in the center of the LAB for reduced delay to the
LEs, which conditions and buffers control signals for the FFs and
contains other control logic.

The second level of routing hierarchy is formed by a number of
rows and columns of routing wires connecting the inputs and
outputs of the LABs, shown in Figure 2. The rows and columns
will be referred to as H or V wires (horizontal and vertical) for
brevity in this paper. Stratix and Stratix II use a three-sided
routing architecture, in which each LAB can drive signals or listen
to signals on one H channel, and either one of the two V channels
on the left or right sides.

LAB
lines

local
lines

LE

LE

Secondary
Signal

Generation

global signals

LEA

LEB

LEC

LED

LEA

LEB

LEC

LED

Figure 1: Overview of LAB

3. Adaptive Logic Module Architecture
Based on the desire for improved speed, and largely inspired by
previously reported results [2,13], a larger LUT was a key area of
interest. The 6-LUT has recently been reported as having better
area-delay performance than the 4-LUT, with estimated 14.4%
[13, table E.10] performance improvement for a 10-LE LAB, but
17.2% area increase [13, table A.10] for a 10-LE LAB. Other
LAB sizes are possible, for different area-delay tradeoffs. For
Stratix II, the goal was to achieve as much speed improvement as
possible but avoid the area increase if possible. The basic
approach that was investigated was based on the ability to
construct a larger LUT to reduce the number of levels of logic and
increase performance. To avoid the area increase, methods to split
the larger LUT efficiently into smaller LUTs were investigated.
Two observations help motivate this goal. First, although

15

synthesis into the conventional 4-LUT produces mostly 4-LUTs
as well as a mix of smaller functions, for a 6-LUT the mix is less
skewed towards the largest size because not as many large cones
of logic exist to be absorbed into a single function. As a result
there is a higher proportion of 5-LUTs and smaller functions.
Figure 3 shows the distribution of the number of used inputs for
LUTs of various sizes, with 4-LUTs using all inputs 57% of the
time, but 6-LUTs using all inputs only 36% of the time. There is a
24% reduction in LE count using the 6-LUT, but this is clearly
insufficient to achieve an overall area reduction. Thus the 6-LUT
will be used to its capacity less often, resulting in a potential
waste of its functionality.

H channel

V channel

LAB

LAB lines

LE

Figure 2. Overview of routing structure

The second observation is that not all paths in a logic circuit have
identical depth, so there is the potential for synthesis to use a
smaller and less costly LUT for non-critical paths with narrow
functions, and to use 6-LUTs only for wider cones of logic to
reduce the depth on the critical path. Our investigations were
therefore focused on structures that offered the full speed potential
of the 6-LUT for performance critical functions, but can also
efficiently partition into smaller LUTs for smaller logic functions,
or less critical logic that can by synthesized into smaller LUTs.

LUT size distribution

0

10

20

30

40

50

60

1 2 3 4 5 6

Number of used inputs

%
 o

f L
U

Ts 4 LUT
5 LUT
6 LUT

Figure 3: LUT input pin usage distribution

3.1 Logic Block Architectures
There are three approaches that were identified for constructing a
set of LUT sizes within a single logic block. All three of these will
be described below, although the first was quickly discarded from
further consideration and the second and third were the subject of
detailed FMT experiments.

The first approach is denoted a composable LUT. In a composable
LUT, a set of basic k-LUTs are constructed, together with a tree of
2:1 multiplexers on their outputs to form progressively larger
LUTs. A key point is that all of the inputs to the k-LUTs and the
subsequent multiplexers have independent inputs from the routing
fabric. Figure 4 shows an example composable 6-LUT built out of
4-LUTs. LUT inputs will be labeled a,b,c etc corresponding to
their depth in the multiplexer tree when used in widest mode. The
independence of the inputs in the composable LUT is also the
source of a high cost. A cursory examination of the costs of
constructing a composable LUT can be made by considering the
final stage of routing alone. In previous Altera architectures, the
final stage of routing that connects to the input pin of the LUT
consists of a multiplexer with fanin typically ranging from 21:1 to
30:1, requiring from 10 to 13 memory bits to control the selection.
A 4-LUT alone consists of a 16:1 multiplexer and 16 memory
bits. Thus, each input pin incurs a cost roughly comparable to the
cost of a 4-LUT. Although this simplified analysis does not
consider the difference in transistor sizes, typically larger in the
final stages of the LUT to provide speed, it can be seen that each
input pin to the logic block is nearly as expensive as a 4-LUT.
Thus the composable 6-LUT, requiring a total of 19 input pins
and 4 4-LUTs, is at least as expensive as 4 4-LUTs and
considerably more expensive than a conventional 6-LUT with
only 6 input pins. This makes the use of 6-LUTs sufficiently
expensive that this structure was not considered attractive, and no
further consideration of it was undertaken.
This observation drives towards large LUTs with fewer input pins,
that can implement a range of LUT sizes while minimizing the
amount of replication of the routing. The second structure is
denoted a fracturable LUT mask (FLM). A fracturable LUT can
be parameterized by the two values k and m. Describing a FLM as
a k,m LUT, the value k denotes the size of largest LUT, and the
value m denotes the number of extra input pins that are brought
into the logic element, for a total of k+m input pins. Thus the 6,2
fracturable LUT implements a 6-LUT with a total of 8 inputs.
In a FLM, the kth input, and each of the m extra inputs forms the
inputs to a multiplexer tree of depth (m+1). When used to build
two smaller LUTs, the logic in the top half of the LUT is used for
one logic function, taking the output before the final 2:1
multiplexer that forms the k-LUT output. The kth input is not
required for functions smaller than size k, so it can be used to
drive the select input of a multiplexer that corresponds to the k-1
depth in the bottom half of the LUT. Similarly, the other m inputs
are not required for the largest possible k LUT, so they also drive
copies of the multiplexer tree using data from the bottom half of
the k-LUT. Thus, when the LUT is used to implement a single k-
input function, m of the inputs must be duplicated. Figure 5
illustrates how inputs c0 and c1, and inputs d0 and d1 must be
duplicated to form the 6 input function z0(a,b,c,d,e,f).

16

4 LUT

f

a0
b0
c0
d0

a1
b1
c1
d1

a2
b2
c2
d2

a3
b3
c3
d3

e1

e0

 Figure 4: Composable 6-LUT constructed from 4-LUTs

z2(a,b,c1,d1,f)

a
b

e

f

4-LUTc1

d0 z1(a,b,c,d,e,f)

z0(a,b,c0,d0,e)
c0

d1

Figure 5: 6,2 Fracturable LUT mask logic module

The FLM can also implement two functions of size up to k-1. In
the case that the LUT is used for the smaller functions, each
function can use m+1 distinct inputs, but must share (k-1)-(m+1)
= k-m-2 inputs. That is, for the 6,2 LUT used as two 5-LUTs,
three inputs are distinct for each of the two 5-LUTs, and two
inputs must be shared. In Figure 5 it can be seen that the FLM
can also implement both z1(a,b,c1,d1,e) and z2(a,b,c2,d2,f), so
inputs a and b must be shared when the FLM is used to construct
two 5-LUTs. Because the FLM can be partitioned into two 5-
LUTs, progressively smaller LUTs will use the 5-LUTs, but do
not need to share as many inputs. For example, the example 6,2
LUT can also implement two 4-LUTs with completely
independent inputs. Other combinations, such as a 5-LUT and 3-
LUT that do not share inputs, or 5-LUT and 4-LUT that share one
input are also possible. In summary, a k,m FLM has a total of
k+m inputs and can be used to construct either one k-input
function, or two functions of size up to k-1 that use no more than
k+m distinct inputs. This also enables an ability for synthesis to
target either 6-LUTs for higher performance or a mix of 5-LUTs
and 6-LUTs for area efficiency.
It is typically expected that two flip-flops would be used with an
FLM to support packing up to two logic functions each directly
feeding a FF.

 The third approach is a shared LUT mask (SLM). Previous
architectures targeting data path applications have proposed
collections of LUTs that share all memory bits, but have distinct
inputs to each of the multiplexer trees [11]. This was intended to
allow the efficient implementation of data paths that implement a
number of copies of identical logic functions on each of the bits of
data, but is too restrictive for general purpose logic. Instead, a
variation that a supports the features of the FLM but extends
beyond this by allowing LUT mask sharing for the full k input
LUT but without providing unique inputs for each of the two
functions. A k,m SLM can implement the same functions as a
FLM, but can also implement two k-LUTs that have the same
logic function, and no more than k+m distinct inputs. While both
FLM and SLM allow any pair of logic functions subject to these
constraints, the key difference between an FLM and the SLM is
the ability of the SLM to implement two identical functions of k
inputs in a single logic module, provided that the two functions
share (k-m) inputs.
Figure 6 shows an overview of a 6,2 SLM. The SLM operates by
introducing an extra level of multiplexing at the penultimate level
of the mux tree. This level of muxing can be controlled either by
an input pin, or tied to a 1 (top half) or 0 (bottom half). When an
input signal is selected, both top and bottom half of the LUT can
implement the same k-input function, using no more than k+m
distinct inputs. When a 0 or 1 is input to these multiplexers, the
top and bottom half of the LUT are divided into independent
partitions, and two distinct functions can be implemented as in the
FLM.

dc0

a
b

3-LUT

dc1

e0

e1

f0

f1

z0 (a,b,dc0,dc1,e0,f0)
z1(a,b,dc0,e0,f0)

z0 (a,b,dc0,dc1,e1,f1)
z2(a,b,dc1,e1,f1)

Figure 6: 6,2 Shared LUT mask logic element

The SLM structure was not known when the Stratix II architecture
evaluation began, so the first step was to explore the viability of

17

the FLM. An initial circuit design and area estimate as well as
circuit simulations provided the area and delay of the 6,2 FLM.
The initial area estimates suggested that the 6,2 FLM and FFs (not
including any routing multiplexers) would be approximately 2.4X
the area of a 4-LUT, well below the >4X increase required for a
composable LUT structure.
Using a Stratix-like routing architecture, minimum channel width
binary search place and route was used to determine the required
channel width for two candidates. The first was a conventional 10
LE 4-LUT LAB and the second was a 10 LE 6,2 FLM LAB. Both
architectures were designed to have routing that provided
comparable routability across a range of designs. The 6-LUT
FLM was on average 12.4% faster and consumed only 2.1% more
area, achieving a net 9.2% reduction in area-delay product.
Although the LE by itself is a factor of nearly 2.4X as large as the
4-LUT, the overall LAB area does not increase by this ratio, since
the routing makes up most of the overall area, and fewer LEs are
required to implement the same logic.
The next step was to investigate the effectiveness of the SLM.
This requires placing pairs of 6-LUTs with identical functions and
4 shared inputs in the same LE. Since the FMT is unaware of
logic functionality, the SMT was enhanced to support passing the
LUT mask into the flow, finding suitable pairs of 6-LUTs, and
producing netlist constraints that forced these pairs to be placed in
the same LE. Although the area overhead of SLM compared to
FLM was estimated as 1.2%, the question was whether it was
possible to find enough candidate 6-LUTs with identical
functionality that could be shared in the same LE to produce a net
area win. In fact, experiments showed that a 5.8% reduction in LE
count could be achieved for a net area improvement of 4.7%,
although a 1.3% reduction in performance was also found.
However, subsequent tuning of the 6-LUT circuit design had
improved its performance, so after the 1.3% performance loss, the
net SLM performance advantage was 15%. Of the 1.3%
performance degradation, about 0.4% is due to the SLM hardware
and the remaining 0.9% due to the constraints of the LUT pairs
using the SLM feature. This was judged to be a good tradeoff and
SLM was adopted for Stratix II, with a net area reduction of 2.6%
compared to the original 4-LUT based LAB. Thus the ALM not
only achieves a 15% performance improvement, but manages to
shrink logic and routing area by 2.6%, for an overall 17.6%
improvement in area-delay product.

3.2 Logic Blocks per LAB
After determining that the 6-LUT SLM was the preferred logic
block, it was necessary to determine the best LAB size. Although
the 10-LE 6-LUT had been demonstrated to be better than the 10-
LE 4-LUT, it was not clear if this was the optimal size. It is a
separate issue whether the 10-LE 4-LUT was optimal, but the
investigation of this did not lead us to change our conclusions on
the 6-LUT. Further experiments used the FMT area model and
timing models that included all physical wire length scaling for
various sizes of LAB to evaluate LAB sizes ranging from 6 to 14
LEs per LAB. LABs with fewer LEs incur more inter-LAB
routing, but the routing resources inside the LAB are faster.
Conversely, larger LABs need less inter-LAB routing, but the
intra-LAB routing is slower. The area model takes into account
the appropriate amount of routing, both inter-LAB and intra-LAB
to predict overall LAB area. The timing model is also constructed
to use correct intra- and inter-LAB delays, assuming that the LAB

is laid out as a rectangle with a 2:1 V:H aspect ratio. It can be
seen from the results in Table 1 that 10 LEs appears to be area
minimum, but the performance of LABs range from 8 to 14 LEs
has no consistent trend, due to experimental noise, with any one
of these likely to provide comparable results.
Two factors guiding the final LAB size choice were more detailed
layout considerations, and a study of performance as a function of
the physical aspect ratio on the LAB. The initial experiment on
LAB size assumed that the physical aspect ratio of the LAB
remained constant at 2:1 height:width across various LAB sizes.
Although this is a reasonable approximation for his is not likely
true in practice, as the LAB is most efficiently laid out as a
column of LEs stacked vertically, with the consequence that larger
LABs have more vertically skewed aspect ratios. Figure 7 shows
the results of an experiment where the physical aspect ratio of the
LAB was varied from 1:1 to 3:1. LABs with more skewed aspect
ratios tend to have lower performance due to the difference in
delay in the X and Y directions. The faster signal propagation in
one direction is not sufficiently compensated for by the slow
down in the other direction. Together with detailed layout
considerations using the expected amount of routing, this led us to
select 8 LEs for the Stratix II LAB.
Table 1: Area and performance results for LABs of various
sizes

fmax vs lab aspect ratio

-2.5

-2

-1.5

-1

-0.5

0

0.5

0 0.5 1 1.5 2 2.5 3 3.5

LAB aspect ratio height / width

fm
ax

 c
ha

ng
e

%
 v

s
2.

0
ba

se
 c

as
e

Figure 7: Effect of LAB aspect ratio on overall performance

3.3 Arithmetic Functions in the ALM
Another desire for Stratix II was to improve arithmetic capability.
Previous Altera architectures had used a 4-LUT, split into two 3-
LUTs to implement a sum and carry function respectively. Since
the carry-in counts as an input, the LUT could only implement

#ALEs per LAB # LAB lines Channel Width Fmax LAB Area
6 30 188 -4% 5.50%
8 38 212 2% 1.50%
10 46 236 0% 0%
12 54 260 1% 0.30%
14 62 274 2% 0.50%

LAB Size Results Summary

18

additive functions of 2 inputs which effectively limits them to
addition or subtraction. Using an entire 6-LUT for one bit of
arithmetic was judged too expensive, so our investigations
focused on structures that used the ALM for two bits of
arithmetic. Implementing the previous approach would have
offered two 4-LUTs per bit, supporting arithmetic functions of
three inputs and a carry-in. To offer more functionality, a
dedicated adder was included in the Stratix II ALM. Two one-bit
adders are included in the ALM, with inputs taken from the four
respective 4-LUT outputs. Taking the adder inputs from the most
obvious set of 4-LUTs at intermediate points in the 6-LUT would
provide two sum bits z0(a,b,dc0,e0) + z1(a,b,dc0,e0) and
z2(a,b,dc1,e1)+z3(a,b,dc1,e1), which would have wasted the f0
and f1 inputs. To allow a larger set of functions, extra
multiplexers controlled by the f0 and f1 respectively were
introduced at the last stage of the 4-LUT multiplexer trees,
allowing all inputs to be used to compute
z0(a,b,dc0,e0)+z1(a,b,dc0,f0) and z2(a,b,dc1,e1)+z3(a,b,dc1,f1).
The extra multiplexers are in bold in Figure 8, which also removes
other unrelated detail for clarity.
A further enhancement allows the shifting of one of the adder
inputs by one bit. This allows each pair of 4-LUTs to be used as a
3:2 compressor, using the adder to form the sum of the outputs.
Thus each ALM can perform a 3-input sum, forming a+b+c with
two bits per ALM.

dc0

a
b

3-LUT

dc1

e0

e1

+

f0twist
in

+

f1
twist
out

Figure 8: Extra multiplexers and full adder in ALM

The powerful arithmetic can potentially create a high demand for
inputs into the LAB, in the event that complex arithmetic
functions with many inputs and little sharing are used. To increase
the flexibility of packing a mix of arithmetic and random logic
functions in the same LAB, multiplexing circuits were added to

the control signal region so that the carry chain could be
configured to take an “early exit” after half the LEs in a LAB,
then to skip to the next LAB. In this way the carry chain can
either use all or half the LEs in the LAB, and complex arithmetic
functions use only half the LEs and a mix of other related random
logic. This tends to make the distribution of the number of LAB
inputs more uniform and offers improvements to the overall
routing efficiency.

4. MODIFICATIONS TO ROUTING
ARCHITECTURE
Stratix II uses a routing architecture that is similar to Stratix. This
consists of a direct drive architecture, with each LAB being able
to drive two pools of routing multiplexers, and to listen to a
horizontal and two vertical channels. Stratix contained wires of
length 4, 8, 16 (V only) and 24 (H only). All of these choices
were revisited for Stratix II. Although the choice of the length 4
wires was confirmed, it was found that the benefit of the length 8
wires was reduced, and the presence of a single long wire network
(either the 8 or 24H/16V) was sufficient. Further, the 24H/16V
network offered the highest speed long distance connections a
lower area cost than the length 8 network. Thus the 24H/16V
network was retained, and the length 8 network was removed.
Beyond this, approximately a 20% reduction in routing capacity
(normalized to logic density) compared to Stratix was
implemented, despite the doubling of target logic density, due to
increased ability to tune FMT routing patterns, and improvements
in the production router, offering a further 6% improvement in
overall area per unit logic.
Although the Stratix II LAB contains about twice as much logic
as the Stratix LAB, the total wire count of the channel needed to
be increased by only 5%, whereas closer to a 40% increase would

be expected based on an approximate 2/1N growth of routing
demand vs LAB size that is found experimentally. This is due not
only to the improved routing efficiency of the ALM, but
improvements in the production router as well. The substitution
of the more efficient length 4 wires for length 8 also contributes to
the net reduction in wire count. It should be noted that [13] does
predict a reduction in routing requirements for a 10-LE 6-LUT
compared to a 10-LE 4-LUT, but this comparison is not directly
appropriate here because the use of a regular 6-LUT has less logic
capacity and fewer inputs on average than a SLM 6-LUT and
should also be expected to have less routing demand.
Another change to the routing structure was the provision of a
small number of fast inputs to the routing multiplexers. The
routing multiplexers are constructed as conventional two-level
NMOS pass transistor selection stage, followed by two buffer
stages. A small number of single stage fanins can also be provided
that feed the buffers through only a single NMOS pass transistor,
as shown in Figure 9. Each additional fast input provides more
potential fast connections, at the cost of not only larger area, but
potentially slowing down all connections, including the fast ones,
that go through that multiplexer. The slow down arises from the
increased fanin of the second stage of the multiplexer, causing
increased parasitic loading. FMT experiments were used to sweep
various possible numbers of fast inputs, include one, two, and all
inputs to the multiplexer being fast, although ignoring the
parasitic loading effects in this phase of the investigation. Table 2

19

shows the results of the area and performance increase, broken out
into all circuits, as well as circuits with more than 5000 and 10000
LEs. Although a monotonic increase in performance is expected
with more fast inputs, it can be seen that two fast inputs offers
slightly less performance than one. This is attributed to
experimental noise which can be on the order of +/- 1%, but is
also suggesting that the one fast input case benefited positively
from noise. Overall it can be inferred that beyond the first fast
input there is little incremental benefit to more fast inputs,
especially as parasitic loading effects are not included here. After
deciding to include a single fast input and performing more
detailed circuit design including the slow down due to parasitic
effects, detailed area analysis, and a more exhaustive experiment
to reduce noise, the performance improvement of a single fast
input was confirmed at 3%. Other enhancements to the routing
structure have also been implemented, but will not be described in
this paper.

fast input

regular input

Figure 9: Fast inputs to routing multiplexers

Table 2: Effect of adding fast inputs to routing multiplexers

Fast Inputs
per Routing
Mux

Fmax All
Circuits

Fmax Circuits
 > 5K LEs

Fmax Circuits
>10K LEs

1 Fast 5.7% 5.6% 2.7%

2 Fast 4.0% 3.5% 0.9%

All Fast 7.6% 7.8% 7.7%

5. CONCLUSIONS
This paper has shown how a shared LUT mask LE can effectively
improve performance by 15% while reducing overall area by 2%.
More powerful arithmetic supports merging logic with arithmetic
functions, and supports functions such as adding three
independent operands in each LE. Combined with further tuning
of the routing patterns, improvements in the production router,
fast routing multiplexer inputs, and a process shrink from 0.13um
to 90nm, an overall 51% performance increase and 50% area
decrease is achieved.

6. REFERENCES
[1] D. Lewis et al, “The Stratix™ Logic and Routing
Architecture”, Proc FPGA-02, pp 12-20
[2] Elias Ahmed and Jonathan Rose, “The Effect of LUT and
Cluster Size on Deep-Submicron FPGA Performance and
Density”, Proc FPGA-00, pp 3-12
[3] V. Betz, J. Rose, and A. Marquardt, “Architecture and CAD
for Deep-Submicron FPGAs”, Kluwer Academic Publishers, 1999
[4] M. Hutton et al, “Interconnect Enhancements for a High-
Speed PLD Architecture”, Proc FPGA-00, pp 3-10
[5] R. Cliff et al, “A Next Generation Architecture Optimized for
High Density System Level Integration”, Proc. CICC-99, pp 175-
178
[6] M. Hutton, K. Adibsamii, and A. Leaver, “Timing Driven
Placement for Hierarchical Programmable Logic Devices”, Proc.
FPGA-01, pp3-11
 [7] K. Veenstra et al, “Optimizations for a Highly Cost-Efficient
Programmable Logic Architecture”, Proc FPGA-98, pp 20-24
 [8] V. Betz and J. Rose, “FPGA Routing Architecture:
Segmentation and Buffering to Optimize Speed and Density”,
Proc FPGA-99, pp 59-68
[9] V. Betz and J. Rose, “Effect of the Prefabricated Routing
Track Distribution on FPGA Area-Efficiency”, IEEE Trans.
VLSI, Sept 1998, pp 445-456
[10] V. Betz and J. Rose, “Automatic Generation of FPGA
Routing Architectures from High-Level Descriptions”, Proc.
FPGA-00, pp 175-184
[11] D. Cherepacha and D. Lewis, “A Datapath Oriented
Architecture for FPGAs”, Proc. FPGA-94
[12] M. Hutton, et al, “Improving FPGA Performance and Area
Using an Adaptive Logic Module”, in Proc. Int'l Conference on
Field Programmable logic and its applications Proc. FPL-04, pp.
135-144, 2004
[13] E. Ahmed, “The Effect of Logic Block Granularity on Deep-
Submicron FPGA Performance and Density”, MASc Thesis,
University of Toronto, 2001

20

