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Abstract: In this study, the results of triaxial compression tests of some naturally and artificially
bonded soils presented in the literature were analysed. It was shown that the three characteristic
stages of plastic flow during shear can be identified. In all stages, the stress–dilatancy behaviour
could be approximated by the general linear stress–dilatancy equation of the Frictional State Concept.
For many shear tests, the failure states and newly defined dilatant failure states are not identical. The
points representing dilatant failure states lie on a straight line, for which the position and slope in the
η-D plane depend on the soil type and the amount of cement admixture. This line defines the critical
frictional state angle, and its slope for bonded soils is greater than for unbonded soils.

Keywords: stress–dilatancy; artificially bonded soils; frictional state concept

1. Introduction

Bonded natural soils have high strength and stiffness and can be suitable subsoils for
dams and high-rise buildings. Bounding (cementation) is the result of physical–electro–
chemo–bio interactions between individual grains. The level of cementation in natural
soils is a function of grain mineralogy, temperature, the stress level during formation,
age, weathering conditions, and many other factors influencing the magnitude of forces
necessary to reposition the grains in relation to each other [1,2]. Similar properties to
structural natural soils can be obtained by using various additives to induce or increase
inter-grain cementation in the case of weak soils. The most commonly used additives are
Portland cement, gypsum, lime, fly ash, bacteria, etc. [3–6]. Naturally bonded (cemented)
soils, even formed and weathered in similar conditions, are usually anisotropic and have
different physical and mechanical properties [7,8]. The structure of natural soils is partially
destroyed during sampling, transportation, and sample preparation for laboratory tests,
which is the main difficulty in determining the physical and mechanical properties of these
soils [9,10]. Many researchers, e.g., [7,10], have shown that the behaviours of naturally and
artificially bonded soils are similar. Therefore, tests of artificially bonded soils are most
often performed [11,12]. The behaviour of bonded soils is significantly more complex than
that of soils with unbonded grains. Many constitutive models for soils take the critical
state as reference state [13,14]. For bonded soils, the critical state is difficult to achieve in a
triaxial compression test. For a low-stress level, the shear band is formed, the deformation
of the sample is very inhomogeneous, and the stresses and strains are very difficult to
calculate correctly. For a very high-stress level, the critical state is not reached with high
shear strains. Some constitutive models for structured soils are based on the disturbed state
concept [15].

Stress–dilatancy behaviour is very important in soil modelling and depends on the
deformation mode, stress level, and stress path [16]. The stress–dilatancy relationship
of unbonded soils can be approximated by straight lines in different stages of shearing,
defined by the critical frictional state angle (ϕ◦) and two (α and β) parameters of the
frictional state concept [17,18]. Contrary to what was observed in unbonded soils, the
maximum dilatancy was reached beyond the maximum strength for bonded soils [19,20].
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In this paper, the stress−dilatancy relationships are calculated for some artificially
bonded soils tested under axial symmetry conditions presented in the literature. The points
representing newly defined dilatant failure states lie on a straight line termed the dilatant
failure line. The position and inclination of that line in the η − D plane depend on the
amount of cement additives.

2. General Stress−Plastic Dilatancy Equation

The general stress–plastic dilatancy equation for axial symmetry compression has a
simple form [17]:

η = Q− A Dp (1)

where:
η = q/p′;
Q = Mo

c − αAo
c ;

A = βAo
c ;

Dp = δε
p
υ/δε

p
q ;

Mo
c = 6 sin φo/(3− sin φo);

Ao
c = 1−Mo

c /3, for drained triaxial compression;
Ao

c = 1 + 2Mo
c /3, for undrained triaxial compression;

q = σ′1 − σ′3;
p′ =

(
σ′1 + 2σ′3

)
/3;

δε
p
υ = δε

p
1 + 2δε

p
3 = δευ − (δp′/K);

δε
p
q = 2

3

(
δε

p
1 − δε

p
3

)
= δεq − (δq/3G);

K—bulk modulus;
G = 3K(1− 2ν)/2(1 + ν)—shear modulus;
ν—Poison’s ratio;
δε1, δε3, δε

p
1, δε

p
3—global and plastic parts of maximum and minimum major strain

increments, respectively;
δευ, δεq, δε

p
υ, δε

p
q—global and plastic parts of volumetric and shear strain increments, re-

spectively.
For purely frictional shear deformation, α = 0 and β = 1 [18]. The α and β parameters

represent the combined influence of destructuration, breakage, and other effects on the
stress−dilatancy relationship during shear.

3. Stress–Strain Behaviour of Cemented Sand in Triaxial Compression
3.1. Characteristic Stages of Shearing

The mechanical behaviour of artificially cemented Portaway sand at high pressures
was investigated by Marri [10]. The results of two drained triaxial compression tests of
Portaway sand with a 5% Portland cement content at confining pressures σc = 1 MPAa
and σc = 4 MPAa were analysed in detail to determine the characteristic stages of shearing.
The relationships q− εa and ευ − εa obtained in the tests were sectionally approximated by
a high degree of polynomials. The elastic parts of the strain increments were calculated
using the formula:

G = G0
(2.97− e)2

(1 + e)

(
p′

pa

)0.7

, (2)

for the shear modulus with G0 = 120, atmospheric pressure pa = 101 kPa and

K = 2G(1 + ν)/3(1− 2ν), (3)

for the bulk modulus. Poisson’s ratio ν = 0.25 was assumed for the calculation. The
dependence of the bulk modulus on stress for the tested cemented sand with the assumed
shear modulus formula (2) and Poisson’s ratio is similar to that obtained in [10].

The approximate experimental values of shear stress (q) and volumetric strains (ευ) as
a function of axial strains are shown in Figure 1. The relations between the stress ratio and
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plastic dilatancy (η − Dp) and the tangential shear modulus (Gt = δq/3δεq) as a function
of axial strain are presented in Figures 2 and 3, respectively.

Materials 2022, 15, x FOR PEER REVIEW 3 of 13 
 

 

The approximate experimental values of shear stress (q) and volumetric strains (��) 

as a function of axial strains are shown in Figure 1. The relations between the stress ratio 

and plastic dilatancy (� − ��) and the tangential shear modulus (*? = �	 3���⁄ ) as a 

function of axial strain are presented in Figures 2 and 3, respectively. 

 

 

Figure 1. Drained triaxial compression test results for Portaway sand with 5% cement: (a) 	 versus 

�0; (b) �� versus �0 (description in the text). 

 

Figure 1. Drained triaxial compression test results for Portaway sand with 5% cement: (a) q versus εa;
(b) ευ versus εa (description in the text).

Materials 2022, 15, x FOR PEER REVIEW 3 of 13 
 

 

The approximate experimental values of shear stress (q) and volumetric strains (��) 

as a function of axial strains are shown in Figure 1. The relations between the stress ratio 

and plastic dilatancy (� − ��) and the tangential shear modulus (*? = �	 3���⁄ ) as a 

function of axial strain are presented in Figures 2 and 3, respectively. 

 

 

Figure 1. Drained triaxial compression test results for Portaway sand with 5% cement: (a) 	 versus 

�0; (b) �� versus �0 (description in the text). 

 

Figure 2. The stress ratio–plastic dilatancy relationship for the drained triaxial compression of
Portaway sand with 5% cement.



Materials 2022, 15, 7068 4 of 13

Materials 2022, 15, x FOR PEER REVIEW 4 of 13 
 

 

Figure 2. The stress ratio–plastic dilatancy relationship for the drained triaxial compression of 

Portaway sand with 5% cement. 

 

Figure 3. Tangent shear modulus versus axial strain for the drained triaxial compression of Port-

away sand with 5% cement. 

During shear, the elastic stage and three plastic flow stages can be distinguished. 

The points shown in Figures 1–3 represent the boundaries between characteristic stages, 

marked as @#
∗, @'

∗, and F, respectively. The E points represent the ends of the tests. The 

tangent shear modulus must be almost constant at the initial elastic stage due to a small 

change in the soil void ratio and stresses. Therefore, point @#
∗ can easily be determined as 

the point at which the value of the tangential shear modulus begins to decrease (Figure 

3). This point corresponds to the @' point defined by Jardine [21] and the gross yield 

point in [22–24]. For the analysed drained triaxial compression tests of cemented sand 

under high confining pressures, the @#
∗ points almost coincide with the initial shear 

points (�0 ≈ 0.11%) in Figures 1 and 2. 

During further shear, the tangent shear modulus gradually decreases and reaches a 

zero value in the failure state (F* point). During this phase of plastic flow, the rate of the 

decrease in the tangential shear modulus varies, increasing in the first phase and de-

creasing in the second phase. Point @'
∗ represents the shear stage for which the change in 

the rate of the tangential shear modulus takes place (Figure 3). Point @'
∗ represents the 

shear state for which there is a local maximum change in the slope of the � − �� curve 

(Figure 2) and divides this phase of shearing into the first and second stages of plastic 

flow. In the first stage of the plastic flow, the intensive breakdown of the bonds between 

grains takes place. In the second stage of the plastic flow, the breakdown of the bonds 

continues, and intensive changes in the grains’ fabric take place. The maximum effect of 

destructuration on the shear strength of the bonded soils is observed in the failure state, 

represented by the F* point. The maximum curvature of the curve � − �� (Figure 2) 

represents the characteristic shear state, called the dilatant failure state, marked as point F 

in Figure 2. For some shear deformations of bonded soils, the states of failure and dilatant 

failure are slightly different, e.g., [3,10,19]. A dilatant failure state can be easily identified 

for the dilative and contractive behaviour of bonded soils, as shown in Figure 2 for ce-

mented Portaway sand. For unbonded granular soils without breakage, the failure and 

dilatant failure states are identical [18]. 

In the third plastic flow stage, after the dilatant failure stage, the bonded soil de-

forms similarly to the unbonded granular material with crushable and various sizes and 

shapes of the individual grains or their clusters. For most drained triaxial tests of bonded 

soils, the critical states cannot be reached, such as for the analysed two tests of cemented 

Portaway sand (Figure 1). The analysed tests were aborted at the axial strain �0 = 30% 

and marked as E points in Figures 1–3. 
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sand with 5% cement.

During shear, the elastic stage and three plastic flow stages can be distinguished. The
points shown in Figures 1–3 represent the boundaries between characteristic stages, marked
as Y∗1 , Y∗2 , and F, respectively. The E points represent the ends of the tests. The tangent
shear modulus must be almost constant at the initial elastic stage due to a small change
in the soil void ratio and stresses. Therefore, point Y∗1 can easily be determined as the
point at which the value of the tangential shear modulus begins to decrease (Figure 3).
This point corresponds to the Y2 point defined by Jardine [21] and the gross yield point
in [22–24]. For the analysed drained triaxial compression tests of cemented sand under high
confining pressures, the Y∗1 points almost coincide with the initial shear points (εa ≈ 0.11%)
in Figures 1 and 2.

During further shear, the tangent shear modulus gradually decreases and reaches a
zero value in the failure state (F* point). During this phase of plastic flow, the rate of the
decrease in the tangential shear modulus varies, increasing in the first phase and decreasing
in the second phase. Point Y∗2 represents the shear stage for which the change in the rate
of the tangential shear modulus takes place (Figure 3). Point Y∗2 represents the shear state
for which there is a local maximum change in the slope of the η − Dp curve (Figure 2) and
divides this phase of shearing into the first and second stages of plastic flow. In the first
stage of the plastic flow, the intensive breakdown of the bonds between grains takes place.
In the second stage of the plastic flow, the breakdown of the bonds continues, and intensive
changes in the grains’ fabric take place. The maximum effect of destructuration on the shear
strength of the bonded soils is observed in the failure state, represented by the F* point. The
maximum curvature of the curve η − Dp (Figure 2) represents the characteristic shear state,
called the dilatant failure state, marked as point F in Figure 2. For some shear deformations
of bonded soils, the states of failure and dilatant failure are slightly different, e.g., [3,10,19].
A dilatant failure state can be easily identified for the dilative and contractive behaviour of
bonded soils, as shown in Figure 2 for cemented Portaway sand. For unbonded granular
soils without breakage, the failure and dilatant failure states are identical [18].

In the third plastic flow stage, after the dilatant failure stage, the bonded soil deforms
similarly to the unbonded granular material with crushable and various sizes and shapes
of the individual grains or their clusters. For most drained triaxial tests of bonded soils, the
critical states cannot be reached, such as for the analysed two tests of cemented Portaway
sand (Figure 1). The analysed tests were aborted at the axial strain εa = 30% and marked
as E points in Figures 1–3.

3.2. Stress–Dilatancy Relationship

As in unbonded granular soils [25,26], the stress–plastic dilatancy relationship can be
expressed by Equation (1) for cemented soils. For each of the three (i = 1, 2, 3) stages of
plastic shear flow, αi and βi can be determined (Figure 4) as the parameters of the linear
approximation of the experimental relationships, η − Dp (Figure 4).
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Figure 4. Linear approximations of stress–plastic dilatancy relationships for drained triaxial compres-
sion tests of Portaway sand with 5% cement.

The values of these parameters are a function of the initial structure of the soil and
stress level. For the drained triaxial compression tests under high pressures of cemented
Portaway sand, the share of the elastic parts of the strain increments in the global strains
is very small, and it may be assumed that the plastic dilatancy is equal to the dilatancy
(Dp = D).

3.3. Dilatant Failure Line

The F points representing the dilatant failure states for the drained triaxial compression
tests of cemented Portaway sand with a varying Portland cement content lie on straight
lines (Figure 5), called dilatant failure lines (DFLs).

These lines are given by Equation (1) with α = αF = 0 and β = βF = 1.35, independent
of the cement content. These DFLs intersect the vertical axes for values of η = Mo

c = 1.45.
Therefore, the critical frictional state angle φo = 35.7◦ is independent of the cement content.
The η − D relationships shown in Figure 5 were calculated directly from the experimental
data of the stresses and strains and are not as smooth as those shown in Figure 2, which
were obtained from approximate data. For clarity, only the F points are shown in Figure 5.

For the undrained triaxial compression tests, the ultimate states (Figure 6) correspond
to the critical frictional states (Mo

c = 1.45) defined by the intersecting DFL with the vertical
axes in the η − D plane for the drained triaxial compression tests (Figure 5). The dilatant
failure states are represented by characteristic points of the stress path in q− p′ planes
(Figure 6) for the undrained triaxial compression tests. Parameters αF and βF could not be
determined based on the data shown in [10].
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4. Dilatant Failure of Some Artificially Bonded Soils
4.1. Osorio Sand with Cement Admixture

Many conventional drained triaxial tests have been carried out on non-plastic, uniform,
fine, predominantly quartz Osorio sand with varying amounts of Portland cement by
Consoli et al. [27]. The influence of the amount of cement and porosity in the cement−void
ratio (Vce/Vv) was investigated—defined as the ratio of the cement volume to the void
volume in the mixture—with respect to the stress−dilatancy behaviour. The obtained
stress−dilatancy relationships are shown in Figure 7.

For all the tests, three stages of plastic flow are visible. The characteristic points
(Y∗1 , Y∗2 , F*, F, and E) are not shown in Figure 7 for clarity. The dilatant failure states can be
easily identified, and the approximate DFL can be drawn in the η − D plane. The DFLs
for both cement−void ratios Vce/Vv ≈ 0.06 and Vce/Vv ≈ 0.10 are defined by Equation (1)
with Mo

c = 1.36 (φo = 33.7◦), αF = 0, and βF = 1.82 (Figure 7).
The same DFL was obtained for the triaxial compression tests conducted under a

confining pressure σc = 200 kPa for sand−cement mixtures with different amounts of
cement and different cement−void ratios (Figure 8).

This means that for these sand−cement mixtures, the DFL does not depend on the
amount of cement or the cement−void ratio.
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Figure 7. Stress ratio–dilatancy relationships for the drained triaxial compression of fine sand with
different cement–void ratios: (a) Vce/Vv≈0.06; (b) Vce/Vv≈0.10 (adapted from [27]). Used with
permission of the American Society of Civil Engineers, ASCE, from Influence of Cement–Voids Ratio
on Stress-Dilatancy Behaviour of Artificially Cemented Sand., Consoli, N. C.; Cruz, R. C.; Viana da
Fonseca, A.; Coop, M. R., J. Geotech. Geoenviron. Eng. 138 (1), 2012, [doi:10.1061/(ASCE)GT.1943-
5606.0000565]; permission conveyed through Copyright Clearance Center, Inc.
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Figure 8. Stress ratio–dilatancy relationships for the drained triaxial compression of fine sand
with different volumes of cement and different cement–void ratios (adapted from [27]). Used with
permission of the American Society of Civil Engineers, ASCE, from Influence of Cement–Voids Ratio
on Stress-Dilatancy Behaviour of Artificially Cemented Sand., Consoli, N. C.; Cruz, R. C.; Viana da
Fonseca, A.; Coop, M. R., J. Geotech. Geoenviron. Eng. 138 (1), 2012, [doi:10.1061/(ASCE)GT.1943-
5606.0000565]; permission conveyed through Copyright Clearance Center, Inc.

4.2. Residual Granitic Soil with Different Cement

Drained triaxial compression tests on natural and remoulded residual granitic soil and
mixtures of this remoulded soil with admixtures of Portland cement 52.5R and 32.5N were
carried out by Cruz [28] and Cruz et al. [7]. The stress ratio versus dilatancy obtained in
the tests is shown in Figures 9–12.
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Figure 9. Stress ratio–dilatancy relationships for the drained triaxial compression of decom-
posed granitic residual soil (adapted from [7]). Reprinted from Publication Proceedings of the
15th European Conference on Soil Mechanics and Geotechnical Engineering, Part 2, Cruz, N.;
Viana da Fonseca, A.; Rodrigues, C., The influence of microfabrics in bonded soils behaviour,
based in laboratorial comparison of artificially and naturally cemented specimens, 173–178, Copy-
right (2022), with permission from IOS Press. The publication is available at IOS Press through
http://doi.org/10.3233/978-1-60750-801-4-173.

http://doi.org/10.3233/978-1-60750-801-4-173
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For all the tests, the characteristic points of shearing can be easily identified (they are
not shown in the figures for clarity). Therefore, the DFLs can be drawn in the η − D planes.
The DFLs intersect the vertical axes at η = Mo

c = 1.47, which means that for all the tested
materials, the critical state friction angle φo = 36.2◦. The DFL slopes, determined by βF,
are βF = 3.18 for destructured soil, βF = 3.02 for destructured soil with a 1% admixture of
52.5R cement, and βF = 1.96 for destructured soil with a 2% admixture of 32.5N cement
and natural residual granitic soil. The frictional state lines (FSL) with α = 0 and β = 1
representing the failure states of unbonded quartz sands [18] are also shown in Figure 9. It
is unclear why the DFL slope for the destructured granitic residual soil without cement, a
less structured soil, is higher than those for artificially bonded and structured natural soils.

5. Conclusions

(1) For bonded soils, geomaterials with high stiffness, the elastic parts of the strains in
global strains are small, and it can be assumed that the dilatancy and plastic dilatancy
are equal.

(2) The stress−dilatancy behaviour of naturally and artificially bonded soils in all stages
of plastic flow can be approximated by the linear stress−dilatancy equation of the
Frictional State Concept.

(3) The failure and dilatant failure states are not equivalent for many triaxial compression
tests of bonded soils. Dilatant failure states are more characteristic than failure states
for these geomaterials.

(4) The dilatant failure state line in the η − D plane is defined by αF = 0 and βF, and
intersects the vertical axis at the point η = Mo

c , defining the critical frictional state
angle (φo). The value of parameter βF > 1 for artificially bonded soils.

(5) The parameters α and β for different stages of shear are functions of the quantity of
the cement admixture and soil type. The frictional critical state angle (φo) does not
depend on the amount of cement for the analysed artificially bonded soils.

(6) The variety of the stress−strain behaviours of bonded soils can be described by the
stress−dilatancy relationship, but the mechanics of this behaviour cannot be explained
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by the frictional state concept. The complex stress−strain behaviour of bonded soils
should be further investigated experimentally and theoretically.
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