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ABSTRACT

Cellular life depends on a complex web of func-

tional associations between biomolecules. Among

these associations, protein–protein interactions are

particularly important due to their versatility, speci-

ficity and adaptability. The STRING database aims to

integrate all known and predicted associations be-

tween proteins, including both physical interactions

as well as functional associations. To achieve this,

STRING collects and scores evidence from a number

of sources: (i) automated text mining of the scientific

literature, (ii) databases of interaction experiments

and annotated complexes/pathways, (iii) computa-

tional interaction predictions from co-expression

and from conserved genomic context and (iv) sys-

tematic transfers of interaction evidence from one

organism to another. STRING aims for wide cover-

age; the upcoming version 11.5 of the resource will

contain more than 14 000 organisms. In this update

paper, we describe changes to the text-mining sys-

tem, a new scoring-mode for physical interactions,

as well as extensive user interface features for cus-

tomizing, extending and sharing protein networks.

In addition, we describe how to query STRING with

genome-wide, experimental data, including the auto-

mated detection of enriched functionalities and po-

tential biases in the user’s query data. The STRING

resource is available online, at https://string-db.org/.

INTRODUCTION

Biomolecular networks are used pervasively inmodern biol-
ogy andmedicine (1–3). They enable the inference of molec-
ular functions through the ‘guilt-by-association’ principle
(4,5), allow the characterization of modularity in biologi-
cal processes (6–8) and serve as substrates for deep learning
(9,10). They also support applications such as drug target
discovery or drug repurposing (11,12), and can help in the
interpretation of genomic variation (13). Biomolecular net-
works have been constructed for many different purposes
and scopes, including networks of gene–gene regulatory
events in transcription, networks of kinases/phosphatases
and their substrates, or networks of metabolites together
with the enzymes that interconvert them. One of the most
useful, generic and broadly scoped network types is the
protein–protein association network; it encompasses all
protein-coding genes in a given genome, and highlights their
functional associations (14). Since proteins can interact in
manyways, a ‘functional association’ is typically de�ned op-
erationally: any two proteins that jointly contribute toward
a speci�c cellular process are deemed to be functionally as-
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sociated (14–17); this de�nition even includes pairs of pro-
teins that act antagonistically within the same process.
To construct a functional association network for the

proteins of an organism, interaction evidence from a vari-
ety of sources needs to be considered; these sources may dif-
fer in their applicability depending on the proteins in ques-
tion, their biological roles and the extent to which they have
been studied experimentally. Data integration across differ-
ent evidence sources is known to increase the overall net-
work quality (18–21) and is also deemed necessary given
the diverse modes by which proteins can be associated. The
sources of interaction evidence fall into three broad classes:
(i) prior knowledge––as available from curated pathway
databases, or more generally from scienti�c publications,
(ii) computational interaction predictions––from a variety
of algorithms and (iii) direct lab experiments, using a vari-
ety of assays in both low- or high-throughput.
The STRING database is one of several online resources

dedicated to organism-wide protein association networks.
The �eld has been recently reviewed in (14,22). Frequently
used resources include FunCoup (23), GeneMANIA (24),
HumanBase/GIANT (25), IMP (26), IID (27), Consensus-
PathDB (28) and HumanNet (29). These resources differ
in terms of the types of interaction evidence they integrate,
their organism coverage and the features of the web inter-
faces. STRING aims to place its focus on coverage (apply-
ing to thousands of genome-sequenced organisms), on com-
pleteness of evidence sources (e.g. including automated text
mining) and on usability features (such as customization,
enrichment detection and programmatic access). It allows
users to log on and make their searches persistent, and it
offers online-viewers to facilitate the inspection of the un-
derlying evidence supporting each protein–protein associa-
tion.
Apart from the website, the database can be queried di-

rectly from within Cytoscape (via a dedicated app) (30) and
fromwithin R (via a Bioconductor package) (31). STRING
can also be queried programmatically for associations, net-
work images or enrichments from any website or soft-
ware, through its comprehensive REST API. All network
items and scores, as well as all generated images and tables
are freely available without restrictions, under the Creative
Commons Attribution (CC BY 4.0) license. STRING has
been selected as one of the European Core Data Resources
by the ELIXIR consortium (32), is heavily cross-linked with
other resources both within and outside of ELIXIR and is
currently used by about 5000 distinct users per day.

DATABASE CONTENT

The entire database content of STRING is pre-computed,
stored in a relational database and available for separate
download. All interaction evidence that contributes to a
given network is benchmarked and scored (31,33–34), and
the scores are integrated into a �nal ‘combined score’. This
score is scaled between zero and one and provides an esti-
mate of STRING’s con�dence on whether a proposed as-
sociation is biologically meaningful given all the contribut-
ing evidence. Each association is provided as a connection
between two non-identical proteins, each from a different
protein-coding gene locus. STRING does not differentiate

between splicing variants or post-translationally modi�ed
protein isoforms encoded from the same locus––instead, all
such isoforms are collapsed and represented by a single,
canonical protein (i.e. a single protein per gene locus).
The various evidence types that contribute to STRING

associations are �rst benchmarked and scored separately, in
seven distinct evidence channels. These channels are also dis-
cernible in the visual STRING networks by lines of differ-
ent colors, and they can be individually disabled by the user.
The �rst three of the channels (neighborhood, fusion and co-
occurrence) contain computational association predictions
based on whole-genome comparisons. These so-called ‘ge-
nomic context’ channels can be computed for all organisms
for which a completely sequenced genome is available, and
do not depend on any further lab assays or measurements.
In the case of the neighborhood channel, two proteins are
given an association score when their encoding genes are
in close proximity to each other on the chromosome. This
channel is applicable mostly for Bacteria and Archaea; gene
pairs achieve a higher score the closer they are on the chro-
mosome (the distance is measured in terms of non-coding
nucleotides between the two open reading frames). For the
fusion channel, STRING scans all genomes for open read-
ing frames that appear to be the result of gene-fusion events.
For all inferred fusion events, the constituent, non-fused
genes in other genomes/organisms are given an association
score; the score is higher the better the fusion event can
be delineated in terms of the orthology of the participat-
ing genes. The last of the genome context channels is the
co-occurrence channel. Here, STRING searches for pairs
of genes whose occurrence patterns throughout evolution
show similarities. Such similarities can arise when genes
have been transferred, lost, or duplicated together during
evolution, which in turn can signify a shared function. For
implementation details of this channel, refer to (37).
The next two channels are dealing with functional ge-

nomics experiments or direct lab assays. For the �rst (co-
expression), STRING is collecting gene expression evidence
from a number of sources; this is then normalized, pruned,
and the expression pro�les over a large variety of conditions
are compared. Pairs of genes that show consistent similar-
ities between their expression pro�les are assigned associ-
ation scores; the majority of the expression data is RNA-
based, but we also import proteome expression data, from
the ProteomeHD database (38). The experiments channel
collects protein–protein interaction evidence from experi-
ments and assays in the lab. This includes biochemical, bio-
physical and genetic experiments; all such interaction evi-
dence is imported from the curated interaction database or-
ganized in the iMEX consortium (39), plus BioGRID (40).
The �nal two evidence channels deal with prior, consoli-

dated knowledge on protein–protein associations. First, the
knowledge channel parses association evidence from curated
pathway databases, where it has been collected and con-
solidated manually by expert curators. These include path-
ways annotated in KEGG (41), Reactome (42) and Meta-
Cyc (43), as well as protein complexes de�ned at the EBI
Complex Portal (44) or by the Gene Ontology Consortium
(45). Finally, statistical co-occurrence analysis across the
scienti�c literature is performed for the text-mining channel.
As of version 11.5 of STRING, the text-mining channel is
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based on PubMed abstracts (last updated on 28 July 2020),
articles from the PMC open access subset (last updated on
17 April 2020) and text from OMIM (46) and SGD (47)
entry descriptions. Pairs of proteins mentioned together in
the same sentence, the same paragraph, or merely the same
publication are assigned a benchmarked association score,
the calculation of which is described in detail in (33).

CUSTOMIZATION AND SHARING

The networks and reports generated by the STRING re-
source, whether for functional associations or physical in-
teractions, can be con�gured and controlled through a num-
ber of options. First, users can broadly determine which
types of evidence should be considered for a given net-
work. All interaction evidence in STRING is thematically
grouped into ‘channels’ (such as text mining, co-expression,
lab experiments); these can be individually disabled by the
user. Second, users can control the minimum score thresh-
old below which interactions will not be shown. Third, en-
riched pathways of interest can be highlighted by coloring
the respective proteins in the network, individually or in
combinations. Fourth, the visual appearance of the network
can be controlled, including whether or not singletons (i.e.
unconnected proteins) are to be included, or what type of
information should be highlighted through the styling of
network edges. Lastly, the most versatile way of customiz-
ing a network is by adding additional custom data onto
it, via the so-called ‘payload’ mechanism (see below). To-
gether, thesemechanisms allow highly speci�c networks and
datasets to be generated. These customized networks can
then be exported in a number of formats, including tab-
ulated, machine-readable or visual formats. The same �le
formats and exports are also available for computational
retrieval via a REST-based API interface. In addition, on
most STRING views, a stable web-URL can be generated
on request, which can be shared with other users; this URL
is version-controlled and should not expire within the life-
time of a given STRING version.
For recurring users that have identi�ed themselves

through STRING’s login mechanism, additional options
for generating and sharing content are available. Such users
can generate and store their own gene lists; these can then
be repeatedly re-visited and exported under a variety of
settings. More importantly, they can upload and control
self-provided add-on data (‘payload data’, see Figure 1).
Such add-on data can be either node-centric, edge-centric
or both. Through a node-centric payload, users can con-
trol several aspects of the appearance of a protein node,
and can thereby communicate study-speci�c measurements
or statistics of their own, for each node. Node color, tex-
tual annotation and links to external web resources can be
customized for each node; in addition, a small space within
the protein ‘popup’-window can be reserved for arbitrary
HTML code. Similarly, the edge-centric settings include the
possibility to customize the information that is shown for
each protein–protein association, including textual annota-
tions and extramarkup. In addition, users can raise the con-
�dence score of a given association (or create a novel associ-
ation) based on additional evidence that theymay have. This
can be done either by raising the con�dence score of one

of STRING’s evidence channels, or by assigning a score to
a dedicated ‘external’ channel reserved for this purpose. In
either way, such user-assigned association scores contribute
to the �nal combined score of an association and are fully
searchable and browsable as part of the organism-wide net-
work.
Together with user-provided payload data, an arbitrary

legend image can be uploaded that explains and highlights
the additions made, as well as a small banner image that is
shown at the top of the page to alert the viewer to the added
payload. In combination with the sharing mechanisms, this
allows complex functional genomics datasets to be shared
with other scientists, in an intuitive, searchable and brows-
able network context.

ENRICHMENT DETECTION

An increasing number of STRING users enter the database
not with a single protein as their query, but with a set of
proteins. In this case, STRINGwill perform identi�er map-
ping on the user’s input and then display a network covering
all the mapped proteins and their interconnections. As with
all STRING networks, this can then be browsed interac-
tively, inspected for the underlying evidence and clustered
using k-means or MCL clustering. In addition, STRING
will perform automated pathway-enrichment analysis on
the user’s input and list any pathways or functional sub-
systems that are observed more frequently than expected
(using hypergeometric testing, against a statistical back-
ground of either the entire genome or a user-supplied back-
ground gene list). STRING will perform these overrepre-
sentation tests for a total of eleven functional pathway clas-
si�cation frameworks, two of which are not available else-
where. The commonly available frameworks are: Gene On-
tology annotations (all three GO domains) (45), KEGG
pathways (41), UniProt keywords (48), Reactome pathways
(42), Pfam (49) and SMART (50) protein domains and In-
terPro protein features (51).Unique to STRINGare the two
remaining classi�cation systems: i) a comprehensive name-
tagged collection of the biomedical literature (PubMed ab-
stracts, augmented by 2.7 million full-text articles), and ii) a
hierarchical clustering of the STRING network itself, par-
titioned into smaller, tightly linked clusters. These two sub-
systems provide complementary and more exploratory en-
richment views, compared to the established, manually an-
notated pathway classi�cations. In case of the publication-
based system, individual publications assume the role of
a pathway in enrichment testing: all proteins discussed
in a given publication (identi�ed using STRING’s text-
mining pipeline) form a gene set, which is tested for over-
representation on the user’s input. With more than 3 mil-
lion publications available for testing, this requires strong
correction for multiple testing (52), but has the advantage
of covering newly reported or controversial protein group-
ings thatmay yet have to appear in pathway databases. Like-
wise, the hierarchical STRING clustering provides protein
groupings that are the result of a synthesis across all the
interaction knowledge in the database, clustered to vary-
ing levels of stringency and hence to varying levels of func-
tional granularity. These STRING clusters usually do not
correspond fully to canonical pathways; they can include
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Figure 1. Example of a user-extended STRING network, adding external information. SARS-CoV-2 proteins, highlighted in blue, have been added to the
standard human protein–protein association network in STRING, using the data add-on (‘payload’) mechanism. Virus proteins will automatically appear
in the network based on their known associations with host proteins (as imported from the IMEx coronavirus interactome (35)). In addition, host proteins
whose expression appears to control SARS-CoV-2 virion entry into cells, as determined in a recent genome-wide CRISPR-screen (36), are highlighted:
proteins whose removal causes a drop in virus entry ef�ciency are highlighted in red; green highlights indicate proteins whose removal enhances virus entry.
Proteins without highlights have entered the network based on close associations to the CRISPR screen proteins. The inset describes topological statistics
of the network: it is strongly enriched in terms of functional associations, as compared to a random network of similar size.

additional, less well-studied proteins and theymay partition
functional subsystems differently, which may or may not be
better suited for any given user input. Apart from testing
the STRING clusters separately, the website also reports
a �nal test metric using the whole network: for each input
gene set it is checkedwhether there aremore interactions be-
tween the input proteins than expected for an input of that
size.
For users entering with more than 2000 proteins at once,

the network view becomes unwieldy; in addition, with such
large inputs it can become relevant to know how the pro-
teins are actually ranked within the input. For these cases,
a new analysis mode is available since version 11.0 of
STRING––it deals with large-scale input wherein each pro-
tein or gene comes with a user-provided numerical value.
This allows the application of rank-based enrichment de-
tection algorithms (functional class scoring). The user-
provided value can be any relevantmeasurement or statistic,
such as a log fold change, measured phenotype, mutation

count, or expression strength. On such inputs, STRING
will test the proteins of each known pathway for any non-
random skew within the user-provided input values, and re-
port statistically signi�cant pathways. Of note, such func-
tional class scoring approaches do not require a statisti-
cal background to be speci�ed––the tests are applied solely
within the user’s input, and the rest of the genome is not
considered. For this reason, users should provide the full list
of available protein/value pairs as input, ideally genome-
wide. STRING will test pathways for a skewed distribu-
tion on either end of the user’s ranked input. Uniquely,
STRING will also report pathways that are simultaneously
enriched on both ends of the user’s input (and thus de-
pleted in the middle ranks). Kolmogorov–Smirnov testing
is used to detect signi�cant pathways, followed by Aggre-
gate Fold-Change testing (53) where computationally feasi-
ble. The testing typically completes in <5 min, and the en-
riched pathways can be inspected and browsed interactively.
Across the 11 gene annotation subsystems tested, STRING
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provides a comprehensive view of functional enrichments
within a user’s input, frequently including signi�cant hits
that are not reported elsewhere (for an instructive example,
see ref (36)).

CHANGES IN VERSION 11.5

Version 11.5 of STRING updates the organism coverage
to 14 094, and includes a full re-import and re-scoring of
all evidence types. In the experiments channel, the scoring
has been revised to take into account the type of the as-
say that was used to detect the interaction in the lab. This
information is now increasingly available, and STRING
uses a globally benchmarked estimate of the relative per-
formance of each assay type. In the text-mining channel,
changes have been applied to allow the introduction of a
document-speci�c stop-word list (‘stop-words’ are words
that correspond to known gene names but appear too fre-
quently and too unspeci�cally in texts to be used for en-
tity recognition). This signi�cantly increases the precision
of the text-mining system. Speci�cally, we have created a
high-con�dence dataset consisting of millions of protein
and non-protein text spans, which three widely adopted
protein name recognition systems (54–56) agreed on tag-
ging as such. Textual contexts of 200 words surrounding
these spans have been used to create a high-con�dence la-
beled dataset of positive and negative examples, which was
subsequently used to train a deep learning-based model,
taking outset in BioBERT (57), a state-of-the-art context-
based biomedical language representation model. The deep
learning model we trained can detect whether a text span
is a protein, based on the context surrounding it. We used
this model to generate the probability of being a protein
for all matches of protein names, detected by the STRING
text-mining system, in the scienti�c literature. Probabilities
for the same names were combined within and across doc-
uments to automatically produce a list of the most prob-
lematic names detected by the text-mining system. Man-
ual inspection of the list has assured its quality and it has
been introduced to the text-mining pipeline, thus doubling
the size of the previous manually curated stop-word list.
In addition, a stop-word list that allows the resolution of
ambiguous names at a document-speci�c level has been
generated, using the same model. This list blocks names
in ∼250000 speci�c documents, and unblocks valid pro-
tein names in∼22000 documents, although these names are
present in the stop-word list.
In the web interface, an important change is that users

can now control the semantic meaning of edges in the net-
work. The meaning (and scoring framework) can be set ei-
ther to the traditional ‘functional association’, or limited to
the ‘physical interaction’ subset; see below for more details.
Another change concerns the functional enrichment

analysis, speci�cally in the case of large inputs with ex-
perimental measurements associated to each protein/gene.
Functional enrichment analysis in such genome-scale ex-
periments can be in�uenced by inherent biases––which can
be either technical or biological in origin (58). Beginning
in version 11.5 of STRING, therefore, an automated bias
analysis is performed for large-scale user inputs. This oc-
curs in the background, while the enrichment testing is ex-

ecuted, and results in a graphical report showing potential
systematic biases/trends in the input (Figure 2). Currently,
the potential confounders that are tested include i) average
protein abundance, ii) protein length, iii) number of publi-
cations mentioning the gene or protein in PubMed-indexed
literature, iv) protein disorder as predicted by IUPred and
v) average GC content of the encoding transcript.

PHYSICAL INTERACTIONS MODE

While protein–protein associations in STRING by de�ni-
tion are functional, i.e. not necessarily physical interactions,
the organization of proteins in a physical complex provides
particularly strong evidence for their biological relation-
ship. Therefore, in addition to the functional channel and
combined scores, we now also assign physical interaction
scores to associations in STRING, if the proteins show ev-
idence of co-occurring in a complex. Physical interaction
scores are calculated for selected evidence channels and ag-
gregated into a combined physical interaction score, which
can be speci�cally selected by the user at query time.
To derive the physical interaction score, a gold standard

dataset of trusted protein complexes is required. As op-
posed to functional relationships, such datasets are available
only for a few organisms. Therefore, the scores derived from
a benchmark of physical interactions in one of these organ-
isms have to be applied to all other organisms contained in
STRING. We chose Saccharomyces cerevisiae as our gold
standard organism due to the extensive experimental work
carried out over the past decades to identify protein inter-
actions in this model organism. This has led to a compre-
hensive set of well-established interactions being distilled in
various databases. Among these, the Complex Portal (44)
database provides a suf�cient number of stringently manu-
ally curated yeast protein complexes, covering a broad range
of functional areas, to be used as our gold standard dataset
for physical interactions.
To score the physical interactions identi�ed by evidence

from the experiments channel, all interactions derived only
from genetic interference methods are excluded as purely
functional and the remaining interactions are benchmarked
against the gold standard of protein complexes, similarly to
the functional association benchmark (34). For physical in-
teractions however, a protein pair is considered a true posi-
tive if both proteins are found together in any gold standard
complex, which means they can be directly or indirectly in-
teracting. True and false positive interactions were down-
weighted during benchmark by the geometric mean of the
gold standard node degrees to account for the large num-
ber of protein pairs in large complexes. The physical inter-
action score is then the probability of two proteins being to-
gether in a gold standard complex. A calibration function
derived from relating the physical with the functional chan-
nel scores is used to assign a physical interaction score to all
physical interactions that are not covered by the gold stan-
dard dataset. Finally, we apply the yeast calibration curve
to the experiments channel data of other species to derive
their physical channel scores from their functional channel
scores.
For the text-mining channel, a dedicated pipeline had

to be developed to extract physical interaction information
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Figure 2. Example of a STRING-report on quantitative trends in a user input. Genome-scale inputs into STRING can be used to search for functional
enrichments, but confounders in the data can potentially complicate interpretation. A new STRING feature allows to visualize such confounding trends.
Here, STRING was queried with a large set of human proteins, whereby each protein was entered together with its approximate likelihood of being
targeted toward the mitochondrion (‘Mito Evidence IMPI score’, from theMitoMiner database (59)). As expected, to rank proteins by their mitochondrial
localization likelihood reveals no trend in terms of the GC content of their encoding genes, but noticeable trends in some of the other measures tested.
Protein abundance is taken from PaxDB (60), expressed in parts-per-million (log-scale). The ‘nr of publications’ refers to the tagged corpus of the STRING
text-mining channel, counting howmany publications have been tagged for a given proteinwith at least one of its knownnames. The protein size corresponds
to the amino-acid length of the canonical isoform expressed at a given gene locus (log-scale).

from the literature, since the fact that proteins are men-
tioned together in text is not enough to infer that they also
physically interact. BioBERT (57) served once again as the
basis for the development of a deep learning-based relation
extraction text-mining model to extract physically interact-
ing protein pairs from the scienti�c literature. The model
we developed has been trained on an unbiased dataset of
6145 manually annotated relations, extracted both from
PubMed abstracts and PMC full-text articles, and can pre-
dict whether two proteins are in a complex together, based
on the context around them. We used this model to gener-
ate a physical interaction probability for all sentences in the
scienti�c literature mentioning protein pairs, and then com-
bined these probabilities �rst within and then across docu-
ments to generate a raw physical interaction score for each
unique pair of proteins using the following scoring function:

(1 − p) = (1 − p∗)
∏ (1 − pi )

(1 − p∗)

where pi is the probability of physical interaction for protein
pair i within a document, p is the probability of physical in-
teraction for the same pair across documents and p* is the

prior probability of a sentence mentioning a pair of physi-
cally interacting proteins.
Similar to the benchmarking of interactions for the ex-

periments channel, the text-mined yeast interactions are
ranked by their raw score and benchmarked against the gold
standard of protein complexes to calculate the �nal physical
interaction scores for the text-mining channel. As an addi-
tional control, we also benchmarked the human text-mined
interactions against the human protein complexes in Com-
plex Portal. The fact that the resulting relationship between
the raw text-mining and physical interaction scores is simi-
lar for the two distant organisms further supports our deci-
sion to use one calibration curve for all organisms.

CONCLUSION

Taken together, the network and enrichment facilities in
STRING enable comprehensive characterization of user
gene lists and functional genomics datasets, and allow
the creation and sharing of highly customized and aug-
mented protein–protein association networks. Future work
in STRING will include options to prune the networks
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down to speci�c cell-types or tissues based on gene expres-
sion information, as well as further expansions of the func-
tional enrichment detection to additional classi�cation sys-
tems and more complex types of user input.
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