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Abstract

We conjecture a general upper bound on the strength of gravity relative to gauge
forces in quantum gravity. This implies, in particular, that in a four-dimensional
theory with gravity and a U(1) gauge field with gauge coupling g, there is a new
ultraviolet scale Λ = gMPl, invisible to the low-energy effective field theorist, which
sets a cutoff on the validity of the effective theory. Moreover, there is some light
charged particle with mass smaller than or equal to Λ. The bound is motivated by
arguments involving holography and absence of remnants, the (in) stability of black
holes as well as the non-existence of global symmetries in string theory. A sharp form of
the conjecture is that there are always light “elementary” electric and magnetic objects
with a mass/charge ratio smaller than the corresponding ratio for macroscopic extremal
black holes, allowing extremal black holes to decay. This conjecture is supported by a
number of non-trivial examples in string theory. It implies the necessary presence of
new physics beneath the Planck scale, not far from the GUT scale, and explains why
some apparently natural models of inflation resist an embedding in string theory.
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1 Introduction

By now it is clear that consistent theories of quantum gravity can be constructed in the

context of string theory. This can also be done in diverse dimensions by considering suitable

compactifications. This diversity, impressive as it may be for a consistent theory to possess,

poses a dilemma: The theory appears to be more permissive than desired! However it was

recently suggested [1] that the landscape of consistent theories of gravity one obtains in string

theory is by far smaller than would have been anticipated by considerations of semiclassical

consistency of the theory. The space of consistent low-energy effective theories which cannot

be completed to a full theory was dubbed the ‘swampland’. Certain criteria were studied in

[1] to distinguish the string landscape from the swampland. For example, one such criterion

was the finiteness of the number of massless fields (see also [2] for a discussion of this point).

In this paper we propose a new criterion which distinguishes parts of the swampland

from the string landscape. This involves the simple observation, clearly true in our own

world, that “gravity is the weakest force”. We promote this to a principle and in fact find

that surprisingly it is demanded by all consistent string theory compactifications! Roughly

speaking this is the statement that there exist two “elementary” charged objects for which

the repulsive gauge force exceeds the attractive force from gravity. More precisely, the

conjecture we make is that this is true for a stable charged particle which minimizes the

ratio |M/Q|. In other words one of our main conjectures in this paper is that (in suitable

units) the minimum of |M/Q| is less than 1.

We motivate this conjecture from various viewpoints. In particular we show how this

conjecture follows from the assumption of finiteness of the number of stable particles which

are not protected by a symmetry principle. This finiteness criterion nicely extends some of

the finiteness criteria discussed in [1, 2] in the context of bounds on the number of massless

particles in a gravitational theory. We show why if our conjecture were not true, there would

be an infinite tower of stable charged particles not protected by any symmetry principle. The

conjecture also ties in nicely with the absence of global symmetries in a consistent theory of

gravity.

Our conjecture, if true, has a number of consequences: For extremal (not necessarily

supersymmetric) black holes the bound is M/|Q| = 1. This suggests that there are correc-

tions to this formula for smaller charges, which makes it (in the generic case) an inequality

M/|Q| < 1. Another aspect of our conjecture is that it naturally suggests that the U(1)

effective gauge theory breaks down at a scale Λ well below the Planck scale Λ ∼ gMPl (more

precisely Λ ∼
√

α/GN), where g is the U(1) gauge coupling constant. These restrictions
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of low cutoff scales and forced presence of light charged particles are very surprising to the

effective field theorist, who would not suspect the existence of the new UV scale Λ. As long

as the Landau pole of the U(1) is above the Planck scale, the low-energy theorist would

think that the cutoff of the effective theory should be near MPl, and if anything, smaller g

seems to imply that the theory is getting even more weakly coupled.

Our conjecture, if true, has a number of consequences. If g is chosen to be one of the

Standard Model gauge couplings near the unification scale, the scale Λ is necessarily beneath

the Planck scale, close to the familiar heterotic string scale ∼ 1017 GeV. Furthermore, the

observation of any tiny gauge coupling, for instance in sub-millimeter tests of gravity, would

necessitate a low-scale Λ far beneath the Planck/GUT scales. Finally our conjecture also

explains why certain classes of apparently natural effective theories for inflation, involving

periodic scalars or axions with parametrically large, super-Planckian decay constants, have

resisted an embedding in string theory. [3].

This restriction has a number of phenomenological consequences. It implies that, extrap-

olating the Standard Model to high energies, there must be new scale Λ beneath the Planck

scale with Λ ∼
√

αGUT/GN ∼ 1017 GeV, and that any experimental observation of extremely

weak gauge coupling must be accompanied by new ultraviolet physics at scales far beneath

the Planck/GUT scales.

Landscape

Swampland

m2

2
G   <

 N
g___

m2

2

 N
g___G   >

Figure 1. Consistent theories of quantum gravity (the landscape) represent

a small portion of the effective field theories (the swampland) where additional

conditions such as the weakness of gravity are satisfied.

The organization of this paper is as follows: In section 2 we present some loose conjectures

which motivate our more precise conjectures discussed in section 3. In section 4 we present

evidence for our conjecture drawn from string theory. We conclude with a discussion of
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certain additional points in section 5.

2 Loose conjectures

2.1 Weak electric and magnetic gauge couplings

Consider a 4-dimensional theory with gravity and a U(1) gauge field with gauge coupling g.

Naively, the effective theory breaks down near the scale MPl where gravity becomes strongly

coupled, and certainly nothing seems to prevent taking g as small as we wish; if anything

the effective theory seems to become even more weakly coupled and consistent.

Nonetheless, we claim that for small g there is a hidden new ultraviolet scale far beneath

the Planck scale. For instance, we claim that there must be a light charged particle with a

small mass

mel
<∼ gelMPl . (1)

This statement should also hold for magnetic monopoles,

mmag
<∼ gmagMPl ∼

1

gel
MPl . (2)

Note that the monopole masses are a probe of the ultraviolet cutoff of a U(1) gauge theory.

The monopole has a mass at least of order the energy stored in the magnetic field it generates;

this is linearly divergent, and if the theory has cutoff Λ, this is of order

mmag ∼
Λ

g2
el

(3)

which is indeed parametrically correct in all familiar examples—for the U(1) arising in the

Higgsing of an SU(2), this is the correct expression for the monopole mass with Λ → mW ,

while on a lattice with spacing a, this is the monopole mass with Λ → 1/a. Therefore, the

above constraint on monopole masses tells us that for small g, the effective theory must

break down at a prematurely low scale

Λ <∼ gMPl . (4)

This conjecture can be rephrased as the plausible statement that “gravity is the weakest

force”; if charged particles have m > gMPl, then the gauge repulsive force between them

is overwhelmed by the gravitational attraction—while if there are states with m <∼ gMPl,

then gravity is subdominant. Of course, in highly supersymmetric systems, all velocity-

independent forces vanish in any case, but as we will see, our constraints still apply.
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Finally, we are familiar with restrictions on the relative magnitudes of masses and charges

from BPS bounds, but these have the opposite sign, telling us that M ≥ Q in some units.

Our bound might appear to be an “anti-BPS” bound. This is not quite accurate. First of all

the BPS case is a limiting case of our bound, saturating it. Secondly we are not conjecturing

that for a given charge sector all the masses are less than the charge, but that there exist

some such state.

We have phrased our constraint as one on the strength of U(1) gauge couplings. This is

a running coupling so we should ask about the scale at which it should be evaluated. For the

statement that there exists a light charged particle with mass m < gMP l, it is natural to use

the asymptotic value of g, the running coupling evaluated at the mass of the lightest charged

particle. But for the statement about the existence of a cutoff Λ < gMP l, it is clearly most

natural to consider the running coupling near the scale Λ. Clearly our bound will also apply

to non-Abelian gauge theories, that can be Higgsed to U(1)’s. In this case, the mass of the

W ’s is mW ∼ gelv where v is an appropriate vev, and these particles will satisfy our bound

as long as the vevs don’t exceed the Planck scale, a statement not independent of conjecture

about the finiteness of the volume of moduli spaces in [1].

2.2 Black holes and global symmetries

Why should such a conjecture be true? One motivation has to do with the well-known

argument against the existence of global symmetries in quantum gravity. Gauge symmetries

are of course legal, but as we take the limit g → 0, the symmetry becomes physically

indistinguishable from a global symmetry. Something should stop this from happening, and

our conjecture provides an answer. As the gauge coupling goes to zero g → 0, the cutoff on

the effective theory Λ → 0 as well, so that the limit g → 0 can not be taken smoothly.

To see this more concretely, imagine that we have g ∼ 10−100, and consider a black hole

with mass ∼ 10MPl. Since the gauge coupling is so tiny, the black hole can have any charge

between 0 and ∼ 10100, and still be consistent with the bound for having a black hole solution

(M ≥ QMPl). But if there are no very light charged particles, none of this charge can be

radiated away as the black hole Hawking evaporates down to the Planck scale. But then we

will have a Planckian black hole labeled by a charge anywhere from 0 to 10100. This leads

to 10100 Planck scale remnants suffering from the same problems that lead us to conclude

quantum gravity shouldn’t have global symmetries (see e.g. [4]).
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M = Q

M > Q

M < Q

Figure 2. An extremal black hole can decay only if there exist particles

whose charge exceeds their mass.

The difficulties involving remnants are avoided if macroscopic black holes can evaporate

all their charge away, and so these states would not be stable. Since extremal black holes

have M = QMPl, in order for them to be able to decay into elementary particles, these

particles should have m < qMPl. Our conjecture also naturally follows from Gell-Mann’s

totalitarian principle (“everything that is not forbidden is compulsory”) because there should

not exist a large number of exactly stable objects (extremal black holes) whose stability is

not protected by any symmetries.

Another heuristic argument leading to same limit on Λ is the following. Consider the

minimally charged monopole solution in the theory. With a cutoff Λ, its mass is of order

Mmon ∼ Λ/g2 and its size is of order Rmon ∼ 1/Λ. It would be surprising for the minimally

charged monopole to already be a black hole because the values of all charges carried by

a black hole should be macroscopic (and effectively continuous); after all, a black hole is a

classical concept. Demanding that this monopole is not black yields

Mmon

M2
PlRmon

<∼ 1 ⇒ Λ <∼ gMPl (5)

2.3 Simple parametric checks

It is easy to check the conjecture in a few familiar examples. For U(1)’s coming from closed

heterotic strings compactified to four dimensions, for instance, we have

gMPl ∼ Ms , (6)
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and there are indeed light charged particles beneath the string scale Ms, which also sets the

cutoff of the effective theory. In Kaluza-Klein theory, we have

gMPl ∼
1

R
; (7)

again there are charged particles at this scale and it also acts as the cutoff of the low-energy

4D effective theory. By T -duality, it is easy to see that the same thing will be true for

winding number gauge symmetries, too.

Next let’s consider U(1)’s in type I string theories compactified to 4D. Here

gMPl ∼
Ms√
gs

(8)

and indeed at weak string coupling this is even larger than the string scale. At large coupling,

we revert to a heterotic dual. Similarly, we can consider a U(1) living on a stack of Dp-branes.

Then

gMPl ∼
Ms

√

gs(RMs)(9−p)
(9)

where R is a typical radius of the space transverse to the brane. Again, here we could try

and violate the bound for (RMs) ≪ 1 but then we revert to a T -dual description.

If we move a single D-brane far away from others, the objects charged under its U(1)

become long strings and can be made heavier and heavier. For a non-compact space, it is

clear that they can be made arbitrarily heavy—but to have 4D gravity, the space must be

compact and this limits the mass of these charged particles. For a brane of codimension

bigger than two in the large dimensions, which we’ll take to have comparable sizes R, the

back-reaction of the brane on the geometry is small and we can limit mW
<∼ MsR. Then, for

instance for D3-branes moving in a spacetime with n large dimensions we have

mW

gMPl
∼
√

gs

(MsR)(n−2)
(10)

so again for n > 2, gs < 1, and R > ls, the ratio is smaller than one. The magnetic monopole

is a long D-string attached to the brane, so the analogous ratio depends on 1/g instead and

mmon

(1/g)MPl

∼
√

1

(MsR)(n−2)
(11)

is again satisfied.

Things are parametrically marginal for n = 2, but look like they might be violated for

n = 1. As an example, suppose we have an AdS5 × X space, with LAdS parametrically
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larger than the string scale. By the introduction of a “Planck brane” we have a warped

compactification down to 4D. Suppose also that we can have some D3-branes in the space

with a U(1) gauge field living on them. To an effective field theorist, there is no obstacle

to imagining that the internal space X is small, of order the string scale. But this is in

conflict with our conjecture. The W ’s charged under the U(1) correspond to a long string

ending on the D3-brane and hence have a mass scaling as LAdSM2
s , the U(1) gauge coupling

is g2
Y M = gs while M2

Pl = M8
s VXLAdS/g2

s . The requirement that

m2
W

<∼ g2
Y MM2

Pl (12)

then implies that

(VXM5
s ) >∼ gs(LAdSMs) . (13)

In other words, the volume of the internal 5D space must be as large as gsLAdS in string

units. This is certainly true for the familiar AdS5 × S5 compactifications, where the volume

of the S5 scales like L5
AdS. One might try to orbifold the internal S5 to smaller volumes, but

there are only 3 U(1)’s one might orbifold by, and since the size of the “slices” in the S5

can’t get much smaller than ls, this still assures that the volume of X is larger than L2
AdS in

Planck units and safely satisfies our bound. We aren’t aware of any examples where X can

be kept at the string scale with parametrically large LAdS.

Finally, let us consider another possible way in which our bound might be parametrically

violated. Consider a theory with some cutoff Λ but a large N number of U(1)’s, perhaps

associated with wrapped brane charges along a large number of cycles in some compactifica-

tion. If we could somehow Higgs these U(1)’s down to the diagonal subgroup, the low-energy

coupling gdiag would be suppressed by ∼ 1√
N

, and we can make the coupling very weak. How-

ever, at large N , there is also a “species problem”—N can’t be made parametrically large

without making gravity weak [4]. For instance, naively the cycles would have to each occupy

a volume of order the string scale, so that the internal volume and hence M2
Pl also grows as

N , and hence N cancels out of the combination gdiagMPl. Similar issues were discussed in

the “N -flation” proposal of [5].

2.4 Generalizations

It is natural to generalize our loose conjecture: consider a p-form Abelian gauge field in any

number of dimensions D; then there are electrically and magnetically charged p − 1 and

D − p − 1 dimensional objects with tensions

Tel
<∼
( g2

GN

)1/2
, Tmag

<∼
( 1

g2GN

)1/2
, (14)
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where the coupling g (the charge density) has a dimension of mass p+1−D/2. We have dis-

cussed the case D = 4, p = 1 above. Whenever the objects carry central charges only, the

inequalities above are saturated and coincide with the BPS bounds. However, the inequality

becomes strict for other types of charges. This generalization can be used to rule out effective

field theories that have been constructed in the literature for a variety of purposes.

F

F

Fel

el

grav

Figure 3. For any kind of an electric field, there should exist “self-non-

attractive” objects for whom the electric repulsive force exceeds the strength of

gravity.

For instance, in [6], it was argued that a natural candidate for an inflaton could be found

in 5D gauge theories compactified on a circle. Consider a U(1) gauge theory with gauge

coupling g5 and Planck scale M3
5 . Compactifying on a circle, we have 4D gravity as well

as the 4D periodic scalar θ = A5R associated with the Wilson line around the circle. The

effective action for θ and gravity is simply

∫

d4x
√−g

[

F 2(∂θ)2 + M2
PlR

]

, (15)

where

F 2 =
1

g2
5R

, M2
Pl = M3

5 R . (16)

At one-loop level, light charged scalars can generate a potential V (θ) ∼ (1/R4) cos(θ). It is

easy to see that θ can have slow-roll inflation as long as F 2 ≫ M2
Pl, or

g2
5M

3
5 R2 ≪ 1 . (17)
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This is perfectly consistent in effective field theory, but it runs afoul of our general constraint

for D = 5, p = 1. Indeed, straightforward attempts to embed this model into string theory

fail. For instance, for the U(1) coming from closed strings, g2
5M

3
5 = M2

s and so we must have

R ≪ M−1
s , where this description breaks down and the T -dual is appropriate.

Indeed, Banks, Dine, Fox, and Gorbatov [3] subsequently studied the more general ques-

tion of whether in compactifications to 4D it is possible to get periodic scalars (“axions”)

with decay constants F parametrically larger than the Planck scale. In all the examples

they studied, they found that either F can’t be made larger than MPl, or that if it could,

there was also an instanton of anomalously small action Sinst ∼ MPl/F , so the instanton

generated unsuppressed potential generated terms up to cos(Nθ) with N ∼ MPl/F , ruining

the parametric flatness of the potential. This observation is subsumed in our generalized

conjecture; for D = 4, p = 0, the 0-form is an axion; the “tension” of the object charged

under it is simply the action of an instanton coupling to the axion, while the axion gauge

coupling is g ∼ 1/F where F is the axion decay constant so our constraint gives precisely

Sinst
<∼

MPl

F
. (18)

3 Sharpening the claim

Working in MPl = 1 units, we are making a conjecture about mass/charge ratios

(M/Q) <∼ 1 (19)

To find a sharper conjecture, we have to decide (a) what states should satisfy this bound

and (b) what to mean by “1”. For the last point, it is natural to take the (M/Q) ratio that

is equal to one for large extremal black holes. As for the states to consider, there are three

natural possibilities:

(I)

(

Mqmin

qmin

)

≤ 1, for the state of minimal charge;

(II)

(

Mmin

qMmin

)

≤ 1, for the lightest charged particle;

(III)

(

M

q

)

min

≤ 1, for the state with smallest mass/charge ratio.

Of course, for these statements to have a sharp meaning, the state must be exactly stable

for M to be meaningful. The particle of smallest charge is not guaranteed to be stable—for
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instance, a heavy charged particle of charge +1 can decay into two lighter charged particles

of charge −2, +3. If the particles with charges −2 and +3 are light, they will form a

Kepler/Coulomb bound state of charge +1. This state will be stable but its M/Q ratio may

be larger than for the states with charges −2 and +3. In particular, it may be larger than

one.

Furthermore, there are easy counterexamples to the conjecture (I) in string theory, even

when the minimally charged particles are exactly stable. For instance, in the weakly coupled

SO(32) heterotic string, the spinor of SO(32) is exactly stable and has minimal half-integral

charges under the U(1)’s inside the SO(32), but is heavy and can violate our bounds. A

generalization of these are the half-integrally charged winding strings considered by Wen and

Witten [7], that have fractionally charges but are also heavy. So (I) can’t be right.

Of course the lightest charged particle is exactly stable, as is the particle with smallest

(M/Q) (as follows trivially from the triangle inequality), so both (II) and (III) are well-

defined conjectures. Obviously (II) is the stronger of the two (and it clearly implies (III))

and forces the effective theory to contain a light charged particle. Conjecture (III) can

in principle be satisfied by a heavy state with large Q which would reduce the impact of

the inequality on physics at low energies. Even though we have no counterexamples for

conjecture (II) most of our evidence only supports the weaker conjecture (III).

When there are several U(1)’s, the generalization of the conjecture is clear. In every

direction in charge space, including electric and magnetic charges, at large values of the

charges, we have extremal black hole solutions. The conjectures (II) and (III) then imply

the existence of light charged particles with (M/Q) < (M/Q)extremal in certain directions of

charge space. More precisely, there should always exist a set of directions in the charge space

that form a basis of the full space where the inequality is satisfied.

It is interesting to see what the spectrum of a theory which violates our conjectures looks

like. Suppose for simplicity that there is only one “elementary” particle with minimal charge

1, but with M > Q. Since the net force between two of these particles is attractive, there

is a Kepler bound state of two of these particles, with charge 2, but with a mass smaller

than 2M , so that the mass/charge ratio decreases. We can continue to add further particles

to make further bound states, with (M/Q) continually decreasing. This proceeds till the

bound state eventually turns into an extremal black holes, and asymptotically, we reach

(M/Q) = 1. It is easy to see that all of these particles are exactly stable: since (M/Q) is a

decreasing function of Q, none of these states can decay into a collection of particles with

smaller charges.
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On the other hand, if there are any states with (M/Q) < 1, then the macroscopic black

holes can always decay, and the number of exactly stable particles will be finite. Suppose

that, among the states with (M/Q) < 1, the one with smallest charge has charge Qmin.

Then, by the same argument as above, we expect that the lightest particles with charges

smaller than Qmin are exactly stable.

So our mass/charge ratio conjecture (III) can be seen to follow from a very simple general

conjecture valid for both charged and uncharged particles: The number of exactly stable

particles in a theory of quantum gravity in asymptotically flat space is finite. Actually this

statement is not quite correct. Clearly we can have an infinite number of exactly stable BPS

states, and many of these are safely bound; consider for instance dyons of electric/magnetic

charge (n, 1) for large n. However, the number of exactly stable (and safely bound) states

in any given direction in charge space is finite.

Even for neutral particles, this implies that the number of massless degrees of freedom

is finite, and such a restriction is indeed suggested by the species problem associated with

the Bekenstein bound. If there is a principle dictating the number of exactly stable particles

to be finite, it is reasonable to expect that in all the vacua in the landscape, the number of

exactly stable states is typically of order a few. In this case, the minimal charge Qmin for

which (M/Q) < 1 should not be too large, since as we saw above the number of exactly

stable states grows with Qmin. This then substantiates our loose conjectures m <∼ gMPl.

4 Evidence for the conjecture

Our conjecture is now phrased sharply enough that we can look for non-trivial checks of it

in known stringy backgrounds. Clearly in highly supersymmetric situations where U(1)’s

are associated with central charges, there will be BPS states saturating our inequality. This

will for instance be the case in theories with 32 supercharges. However, already with 16

supercharges non-trivial checks are possible, for instance in compactifications of the heterotic

string on tori with generic Wilson lines, where most of the U(1)’s are not central charges.

Consider for instance the SO(32) heterotic string compactified on T 6. At a generic point

on moduli space, there is a U(1)28 gauge symmetry. We will check our conjecture for electric

charges only; by S-duality, this check will carry over to magnetic charges as well. A general

set of electric charges is a 28-dimensional vector

Q =

(

QL

QR

)

(20)
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where QL is 22-dimensional vector and QR is 6-dimensional vector. The charges are quan-

tized, lying on the 28-dimensional even self-dual lattice with

Q2
L − Q2

R ∈ 2Z (21)

Moving around in moduli space corresponds to making SO(22, 6) Lorentz transformations

on the charges.

Q = M

Q

M

Figure 4. The charge M of the heterotic string states of charge Q approaches

the M = Q line from below. The yellow area denotes the allowed region.

The extremal black hole solutions in this theory were constructed by Sen [8]. For Q2
R −

Q2
L > 0, there are BPS black hole solutions with mass

M2 =
1

2
Q2

R (22)

where we work in units with MPl = 1. For Q2
L − Q2

R > 0, the black holes are not BPS; still,

the extremal black holes have mass

M2 =
1

2
Q2

L . (23)

We can compare this with the spectrum of perturbative heterotic string states, given by

M2 =
1

2
Q2

R + NR =
1

2
Q2

L + NL − 1 (24)

where NR,L are the string oscillator contributions and where we chose units with α′ = 4.

The −1, coming from the tachyon in the left-moving bosonic string, is crucial. Note that

this spectrum nicely explains the BH spectrum of the theory, as the highly excited strings

are progenitors of extremal black holes. Consider large QL, QR , with Q2
R > Q2

L. Then,
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the minimal M2 compatible with these charges will have NR = 0, NL = 1
2
(Q2

R − Q2
L) + 1,

which are BPS, with M2 = 1
2
Q2

R. On the other hand, for Q2
L > Q2

R, the minimal M2 is

with NL = 0, and NR = 1
2
(Q2

L − Q2
R) − 1. These are not BPS, but for large Q2

L, they have

M2 = 1
2
Q2

L.

But the string spectrum also guarantees that, as we go down to smaller charges along

a basis of directions in charge space, we are guaranteed to find a state with a mass/charge

ratio smaller than for extremal BH’s. The inequality is saturated for the BPS states which

have Q2
R > Q2

L, but for Q2
L > Q2

R the extremal black holes have M2 = 1
2
Q2

L while there is

always a state with mass

M2 =
1

2
Q2

R =
1

2
Q2

L − 1 (25)

since there is a charge vector with Q2
L − Q2

R = 2 on the charge lattice.

4.1 Gauge symmetries vs. global symmetries

It is possible to generalize this argument to any perturbative heterotic string compactifica-

tion, including compactifications on K3 and arbitrary Calabi-Yau threefolds, as a straight-

forward generalization of the familiar argument that all global symmetries in this theory are

gauged. For any integral U(1) gauge symmetry coming from the left-movers of heterotic

string, there is a worldsheet current J(z). Because it is a (1, 0) primary field, one can con-

struct the (1, 1) vertex operator J(z) ∂̄Xµ eikX(z, z̄) with k2 = 0 for a spacetime gauge field

and prove that the corresponding symmetry is a gauge symmetry. (Analogously, a symme-

try coming from the right-movers would be associated with a current J̃(z̄), a (0, 1) primary

field, and the vertex operator would be J̃(z̄) ∂Xµ eikX(z, z̄) with k2 = 0.) We can take the

worldsheet CFT to consist of the U(1) part together with the rest. We can bosonize the

current with level k as

J(z) ∼
√

k ∂φ(z) . (26)

Then, the operator

O(z) = :ei
√

kφ(z) : (27)

is always in the CFT. There are a number of ways to see this. One way is to note that this

operator has local OPE with all the operators in the theory. In fact using the integrality of

the U(1) charge, the content of any operator will be of the form

V ∼: exp(ipφ/
√

k) : ·V ′

where p is an integer-valued charge and where V ′ has no exponential parts in φ. It is easy

to see that O(z) will have local OPE with this operator. Therefore, the completeness of
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the CFT spectrum (i.e. the statement that the operator content of the theory is maximal

consistent with local OPE, as follows from modular invariance) forces us to have O(z) as an

allowed operator in the theory.

Another way to understand the existence of the operator O(z) is to note that it cor-

responds to spectral flow by 1 unit in the U(1). This simply corresponds to changing the

boundary conditions on the circle by exp(2πi θ p) where p denotes the U(1) charge and θ

goes from 0 to 1.

We thus see that the state corresponding to O(z) exists in the spectrum of CFT. Since

by assumption this is a left-mover state, this corresponds to NL = 0 and so M2 = 1
2
Q2

L − 1,

while asymptotically, the excited strings correspond to extremal black holes with M2 = 1
2
Q2

L,

so our string state is indeed sub-extremal.

5 Possible relation to subluminal positivity constraints

It is natural to conjecture that since there must exist states for which (M/Q) < 1 while

the extremal black holes have (M/Q) = 1, the extremal limit for (M/Q) for black holes

is approached from below, that is, that the leading corrections to the extremal black hole

masses from higher-dimension operators should again decrease the mass. This implies some

positivity constraint on some combination of higher-dimension operators.

It is interesting that similar positivity constraints have been discussed in [9], where it

was found that certain higher-dimension operators must have positive coefficients in order

to avoid the related diseases of superluminal signal propagation around configurations with

a nonzero field strength and bad analytic properties of the S-matrix. For instance, consider

the theory of a U(1) gauge field in four dimensions. The leading interactions are F 4 terms,

and the effective Lagrangian is of the form

− F 2
µν + a(F 2)2 + b(FF̃ )2 + · · · (28)

If the scale suppressing the dimension 8 operators is far beneath the Planck scale, we can

ignore gravity, and the claim of [9] is that a, b must be positive to avoid superluminal prop-

agation of signals around backgrounds with uniform electric or magnetic fields, and also to

satisfy analyticity and dispersion relation for the photon-photon scattering amplitude.

Of course these higher dimension operators also change the mass/charge relation for

extremal black holes. Indeed, there are many other operators which do this as well; at the

leading order they include R2 and RF 2 type terms as well. But we can imagine that the F 4
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terms dominate in the limit where the scale suppressing the F 4 terms is far smaller than the

Planck scale. Treating the a, b terms as perturbations, we can solve for the modified Black

Hole background to first order in a, b, and find the new bound on M which has a horizon

and no naked singularity. To first order in a, b, we find that for a black hole with electric

and magnetic charges (Qe, Qm) and working with MPl = 1

M2
extr = (Q2

e + Q2
m) − 2a

5

(Q2
e − Q2

m)2

(Q2
e + Q2

m)2
− 32b

5

Q2
eQ

2
m

(Q2
e + Q2

m)2
(29)

So, for purely electric or magnetic black holes, we have

M2
extr = Q2 − 2a

5
(30)

which indeed decreases for the “right” sign of a > 0. The same statement holds for the

dyonic black holes as long as b > 0 which is also the “right” sign. The result (29) has, in

fact, an SO(2) symmetry mixing Qe and Qm for a = 4b, much like the stress-energy tensor

derived from (28) for the same values a = 4b.1 The effect of other four-derivative terms on

the extremal black hole masses will be studied elsewhere [10].

There is another hint of a connection between our work and [9]. The superluminal-

ity/analyticity constraints were shown to be violated by the Dvali-Gabadadze-Porrati [11]

brane-world model for modifying gravity in the IR. Interestingly, this model represents an-

other example of trying to make interactions in the theory much weaker than gravity: the

model has a 5D bulk with Planck scale M5, but with a large induced Einstein-Hilbert action
∫

d4x
√−gind M2

PlR
(4) on the brane. With MPl ≫ M5, this (quasi)-localizes gravity on the

4D brane. Again naively, there is nothing wrong with taking MPl large, as it seems to make

the theory more weakly coupled; in this way it is similar to taking the limit of tiny gauge

couplings in our examples, but we can here prove that the theory leads to superluminality

and acausality in the IR, and is inconsistent with the standard analyticity properties of the

S-matrix.

6 Discussion

In this note, we have argued that there is a simple but powerful constraint on low-energy

effective theories containing gravity and U(1) gauge fields. An effective field theorist would

not see any problem with an arbitrarily weak gauge coupling g, but we have argued that

1While our inequality Mextr < |Q| holds uniformly for a > 0, b > 0, we would also be able to satisfy our
constraint and find a basis of directions where the inequality holds whenever at least one parameter (a or b)
is positive.
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in fact there is a hidden ultraviolet scale Λ ∼ gMPl, where the effective field theory breaks

down, and that there are light charged particles with mass smaller than Λ. While this

statement is completely unexpected to an effective field theorist, it resonates nicely with the

impossibility of having global symmetries in quantum gravity, and the associated ability for

large charged black holes to dissipate their charge in evaporating down to the Planck scale.

The specific forms of our conjecture are sharp, and if they are wrong it should be pos-

sible to find simple counter-examples in string theory, though we have not found any. The

strongest form is that for the lightest charged particle along the direction of some basis

vectors in charge space, the (M/Q) ratio is smaller than for extremal black holes. Such an

assumption allows all extremal black holes to decay into these states. The weaker statement

says that there should exist some state with mass/charge ratio smaller than for extremal

black holes. In all the examples we have seen, this state has a “reasonably small” charge, so

it is light; however, the weaker form allows the possibility that the smallest M/Q is realized

for some large charge Q∗ and objects that are “nearly” extremal black holes. While the

number of exactly stable states would be finite in this case, it would still be extremely large.

If this weaker form of the conjecture is true it is likely that there is some distribution of Q∗

peaked for charges of order 1, but perhaps with sporadic exceptions at larger Q∗.

M PlGUTM ln (E)

1/g 2
Pl

g M

Figure 5. Because the gauge couplings at very high scales are smaller than

one, our conjecture naturally predicts the existence of a new scale beneath the

Planck scale.

If true, our conjecture shows that gravity and the other gauge forces can not be treated

independently. In particular, any approach to quantum gravity that begins by treating pure

gravity and is able to add arbitrary low-energy field content with any interactions is clearly

excluded by our conjecture. Of course in string theory all the interactions are unified in a
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way that makes treating them separately impossible. In particular, if we take the standard

model gauge (augmented by SUSY or split SUSY or other particles leading to precision gauge

coupling unification), we have perturbative gauge couplings at a very high energy scale, and

our conjecture then implies that there must be new physics at a scale beneath the Planck

scale, given by Λ ∼
√

α/GN which is close to the familiar heterotic string scale ∼ 1017 GeV.

Our conjecture also offers a new experimental handle on ultraviolet physics, by searching

for extremely weak new gauge forces. Indeed, if a new gauge force coupling to, say, B −
L is discovered, with coupling g ∼ 10−15, in the current generation sub-millimeter force

experiments, we would claim that there must be new physics at an ultraviolet scale ∼
gMPl ∼ TeV. Forces of this strength naturally arise in the context of large extra dimensions

with fundamental scale near a TeV [12]; what is interesting is our claim that new physics

must show up near the TeV scale.

It would be interesting to investigate whether there is an analogous conjecture in Anti-

de-Sitter spaces, since here it can be translated into a statement about the spectrum of

operators in the dual CFT that can perhaps be proved on general grounds.

Finally, it is interesting that the constraint implied by our conjecture seems to at least

parametrically exclude apparently natural models for inflation based on periodic scalars with

super-Planckian decay constants, which seem perfectly sensible from the point of view of a

consistent effective theory. Of course, in the real world we don’t need a parametrically large

decay constant to get parametrically large numbers of e-foldings of inflation—60 e-foldings

will do. If the strong form of our conjecture is true, one might be tempted to conclude that

there is a sharp obstacle to getting this sort of inflation in quantum gravity. If as is more

likely the weaker form is true, then one might say that even though the low-energy theorists’

notion of technical naturalness is misleading and such models are non-generic, there might be

sporadic examples where they are possible. Clearly these are two very different pictures. The

latter is more consistent with much of the philosophy of exploration in the landscape so far:

things like a small cosmological constant are taken to be non-generic, tuned, but possible.

But it is extremely interesting that phenomena of clear physical interest, like inflation with

trans-Planckian excursions for the inflaton, which might even be forced on us experimentally

by the discovery of primordial gravitational waves, seem to be pushing up against the limits

of what quantum gravity seems to want to allow. Further exploration of the boundaries

between the swampland and the landscape should shed more light on these issues.
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