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The stroke-prone spontaneously hypertensive rat: still
a useful model for post-GWAS genetic studies?

Toru Nabika1, Hiroki Ohara1, Norihiro Kato2 and Minoru Isomura1

The stroke-prone spontaneously hypertensive rat (SHRSP) is a unique genetic model of severe hypertension and cerebral stroke.

SHRSP, as well as the spontaneously hypertensive rat, the parental strain of SHRSP, has made a tremendous contribution to

cardiovascular research. However, the genetic mechanisms underlying hypertension and stroke in these rats have not yet been

clarified. Recent studies using whole-genome sequencing and comprehensive gene expression analyses combined with classical

quantitative trait loci analyses provided several candidate genes, such as Ephx2, Gstm1 and Slc34a1, which still need further

evidence to define their pathological roles. Currently, genome-wide association studies can directly identify candidate genes for

hypertension in the human genome. Thus, genetic studies in SHRSP and other rat models must be focused on the pathogenetic

roles of ‘networks of interacting genes’ in hypertension, instead of searching for individual candidate genes.
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INTRODUCTION

The stroke-prone spontaneously hypertensive rat (SHRSP) is a unique
genetic model of severe hypertension and cerebral stroke. Two decades
have passed since the first pioneering studies on quantitative trait loci
(QTLs) of blood pressure (BP) in SHRSP.1,2 In spite of all efforts, the
genetic mechanisms underlying hypertension or cerebral stroke in this rat
model remain unknown. During this period, genetic analyses in humans
have progressed dramatically. Technologies have made it possible to
genotype a large number of samples and analyze an enormous amount of
single-nucleotide polymorphism data. Genome-wide association studies
(GWAS) that rely on such advanced technologies have revealed a number
of loci associated with increased BP in humans.3–10

Under such circumstance, what is the role of SHRSP and other
models in genetic studies of cardiovascular diseases? In this review, we
will address this issue and summarize the genetic studies performed
thus far in SHRSP.

ESTABLISHMENT OF SHRSP

SHRSP was established from a substrain of spontaneously hyperten-
sive rats (SHR; substrain A in Figure 1a) in 1974 by Okamoto et al.11

SHRSP was created under the following circumstances: (1) the
selection was started using 24th generation SHR, (2) a high stroke
susceptibility was fixed only after three generations of selection and (3)
severe hypertension was simultaneously fixed with the stroke suscept-
ibility.11 The established strain had a high incidence of stroke (80 vs.
10%) and severe hypertension (220–240 vs. 180–200mmHg) when
compared with SHR.11

Although it is unknown whether strict inbreeding was applied in
the initial breeding process of SHR, the genetic pool was expected
to be small at the 24th generation. According to the National
BioResource Project for the Rat database (http://www.anim.med.
kyoto-u.ac.jp/nbr/default.aspx),12 which collected genotypes of
357 simple sequence length polymorphism markers in 179 inbred
rat strains, 7 substrains of SHR (CH, CL, B2 and Izm) and SHRSP
(A1-sb, A3 and Izm), which were originally developed at Kyoto
University (Figure 1a), shared 1 or 2 alleles at each of the 332
markers (93%). A total of 3 or 4 alleles were found at the other
25 simple sequence length polymorphisms among those 7 substrains.
Considering the simple sequence length polymorphism markers
were polymorphic enough to have 5 to 19 (or more) alleles among
the 179 strains, we think it reasonable to assume the majority of
the genome of SHR and SHRSP has been derived from a pair of
‘ancestral’ rats.
In contrast, it is important to note that the larger strain difference in

the genome that does not contribute to hypertension is observed
between WKY and SHR/SHRSP. This finding is principally because
WKY was established independently from another pair of ‘ancestral’
rats in the same closed colony (Figure 1a).
SHR, SHRSP and WKY were distributed to several laboratories

before they were established as fully inbred strains (Figure 1b). This
process of distribution has introduced another source of variations in
genetic make-up among these strains, which imposes additional
difficulties when performing genetic analyses in SHR/SHRSP (see
the discussion below).
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GENETIC STUDIES ON HYPERTENSION AND CEREBRAL

STROKE IN SHRSP

After the seminal works published in 1991,1,2 many QTLs for BP have
been identified in SHR/SHRSP. Because of their polygenic nature, the
chromosomal regions responsible for hypertension varied among pairs
of hypertensive and normotensive rat strains used in QTL analyses. In
fact, the Rat Genome Database (http://rgd.mcw.edu/) has compiled
more than 300 QTLs influencing BP in rats,13 and a substantial part of
these QTLs were identified in experimental crosses between SHR/
SHRSP and normotensive rat strains. In spite of many QTLs being
identified, few causative genes have been identified thus far. In the
following sections, several recent genetic studies on hypertension and
stroke in SHRSP are reviewed.

Candidate genes detected by QTL analysis
Soluble epoxide hydrolase (Ephx2). Soluble epoxide hydrolase (sEH),
encoded by the Ephx2 gene, is an enzyme that metabolizes epoxyei-
cosatrienoic acids. Because epoxyeicosatrienoic acids act as vasodila-
tors, as well as inhibitors of sodium reabsorption at the renal tubules,
sEH is a good functional candidate gene responsible for hyperten-
sion.14 Fornage et al.14 found that mRNA expression of sEH was
greatly decreased in SHRSP/Bbb (SHRSP of the Heidelberg colony)
and WKY/NCrl when compared with sEH levels in WKY/Bbb and
SHR/NCrl. The authors argued that the genetic variation of sEH was
unlikely to contribute to the pathogenesis of hypertension in SHR,
because the expression level was not in accordance with the status of
hypertension among substrains of WKY and SHR. However, the fact
that sEH mRNA expression was not consistently lower in all of the
WKY-related strains compared with all of the SHR-related strains may
not be enough to exclude a possible role for sEH in the regulation
of BP.
They showed later that molecular variants in the Ephx2 promoter

were responsible for the difference in sEH expression between SHRSP/
Bbb and SHR/NCrl, suggesting that low expression of sEH may be a
risk factor for the stroke seen in SHRSP.15

An independent study by Monti et al.16 showed that a genetic
variation in the Ephx2 promoter and the resulting change in sEH
expression influenced the susceptibility to heart failure in SHHF,
which is a model rat for heart failure derived from SHRSP.
The sEH expression was evaluated in substrains of SHR and SHRSP

in several other studies.17–19 Figure 2 summarizes the results collected
from these studies. As indicated, the substrains of WKYand SHR had
two haplotypes of the Ephx2 gene, which lead to high and low sEH
expression levels. We examined the Ephx2 haplotype and sEH mRNA
expression in SHR, SHRSP and WKY/Izm rats, and confirmed that
SHRSP/Izm had the same haplotype as that of SHRSP/Bbb, whereas
SHR/Izm and WKY/Izm shared the haplotype with SHR/NCrl. The
sEH expression levels in SHRSP/Izm and WKY/Izm were low and
high, respectively, which was consistent with the pattern expected
from the individual haplotype (observation by Okuda et al.17 and
unpublished observation by Nabika et al.). The haplotype and
expression patterns were discordant with hypertensive status among
the rats examined (Figure 2). This result implied that Ephx2 was not
involved in the pathogenesis of hypertension in SHR or SHRSP. In
contrast, Sellers et al.20 reported that intracerebroventricular injection
of an sEH inhibitor caused a significant increase in BP in SHR/NCrl,
but not in WKY/NCrl. This is an interesting observation suggesting
that a high sEH level in the brain of SHR opposes hypertension. In
contrast, sEH expression was low in SHRSP, which may be responsible
for the additional BP increase in this strain.

Figure 1 Origins of the SHRSP, SHR and WKY substrains. (a) The original

substrains established by Okamoto and his colleagues. (b) The substrains

currently used in the world.

Figure 2 Haplotypes and gene expression levels of Ephx2 in the SHRSP, SHR and WKY strains. Data were compiled from the references indicated in the

figure: (1) The Ephx2 haplotype and expression pattern in WKY/Bbb appeared discrepant between Corenblum et al.15 and Monti et al.16 (2) Although the

expression was low, it was still significantly greater than that of the SHRSP/Bbb.16 u, unpublished observation by Nabika et al.
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We performed a QTL analysis on BP using an F2 cross between
SHRSP/Izm and SHR/Izm. We found a suggestive peak on Chr 15,
which included the Ephx2 locus (Figure 3, unpublished observation).
This finding may support the role of this gene on the BP difference
observed between SHR and SHRSP.

Glutathione S-transferase m-type-1 (Gstm1). McBride et al.21 found
that a fragment on Chr 2 was responsible for the BP difference
between SHRSP/Gcrc (SHRSP of the Glasgow colony) and WKY/
Gcrc through a QTL analysis and the subsequent congenic studies. On
the basis of a comprehensive gene expression analysis using micro-
arrays, they identified Gstm1, which had significantly lower expression
in SHRSP/Gcrc, as a functional candidate gene in this chromosomal
region.21 They found that the Gstm1 haplotype of SHRSP/Gcrc
differed from that of WKY/Gcrc, which was responsible for a differ-
ential expression level of Gstm1 between the two strains.22

In contrast, we found that SHRSP/Izm and WKY/Izm shared the
same haplotype as SHRSP/Gcrc, and no apparent difference in Gstm1
expression was observed between the two strains. This result was
consistent with that of our QTL analysis, which showed no significant
QTLs for BP on Chr 2 in the F2 cross between SHRSP/Izm and WKY/
Izm (data not shown).
For both of sEH and Gstm1, the haplotype and the mRNA

expression level were discordant with hypertensive status when sub-
strains of WKY and SHR/SHRSP were studied. This result did not
seem to support the candidacy of those genes in BP pathogenesis.
However, exclusion of these genes from the list of the candidate genes
should be cautiously considered; WKY may share some hypertension
genes with SHR, which may raise BP only when acting in concert with
other genes (see Figure 4 and the discussion below).

Sodium-dependent phosphate transport protein 2A (Slc34a1). As dis-
cussed in the first part of this review, SHR and SHRSP were derived
from a small genetic pool. It is thus expected that these strains will
share the same alleles in much of their genome. Doris and his
colleagues23 used such identity-by-decent areas to exclude the genomic
regions that do not contribute to BP differences between SHR/B2
and SHRSP/A3. Combining the identity-by-decent information with a
QTL analysis, they identified a small non-identity-by-decent area
on Chr 17, which could harbor a gene (or genes) contributing to
the BP difference between the two strains. On the basis of compre-
hensive gene expression data, they further suggested that Slc34a1, a
sodium/phosphate co-transporter expressed in renal tubules, was a
candidate gene.23

This is a unique strategy in that they took advantage of the
common genetic backgrounds shared between SHR and SHRSP.

Unfortunately, this QTL signal was not replicated in our classical
QTL analysis using the F2 between SHRSP/Izm (¼SHRSPA3) and
SHR/Izm (¼SHRB1; Figure 3). Thus, further studies are required to
obtain a definite conclusion.
It is highly likely that substrains of SHR/SHRSP share many of the

same alleles that promote hypertension. On the basis of this assump-
tion, Doris and his colleagues24 attempted to identify candidate genes
for hypertension by exploring genes differentially expressed between
the substrains of SHR/SHRSP and those of WKY. It was rather
surprising that only 36 genes were selected under this criterion.
They further refined the list of candidates using other criteria con-
cerning polymorphisms in the promoter regions and gene location to
select four genes as candidates. Functional studies on these genes in
hypertension are expected.

Intermediate phenotype: sympathetic nerve activity
A strong QTL for BP on Chr 1 was identified in SHRSP/Izm, which
was confirmed in congenic rats.25–27 Simultaneously, our search of
intermediate phenotypes indicated sympathetic hyper-responsiveness
to stresses in the congenic strains constructed for this QTL.28–30 A
follow-up study using preparations of isolated neonatal brain stem
confirmed that the electrophysiological nature of neurons in the
rostral ventrolateral medulla, one of the most important centers for
sympathetic activity regulation, were influenced by the Chr 1 QTL,
suggesting that rostral ventrolateral medulla is one of the primary
targets of the gene(s) in this QTL.31 The congenic interval was further
narrowed to a 1.8-Mbp region on Chr 1, in which the responsible
genes are now being explored.32

If networks of interacting genes underlie the pathogenesis of
hypertension, it is a difficult task to clarify them as a whole. Inter-
mediate phenotypes may be regulated directly by the individual genes
included in such ‘causal networks’, and it may be more feasible to

Figure 3 QTL analysis of BP in an F2 cross between SHRSP/Izm and SHR/

Izm. Lod scores for BP on Chr 15 and 17 are plotted with the location of

the Ephx2 and Slc34a genes. A total of 294 F2 rats were used in the

analysis (male and female data were combined).

Figure 4 Hypothetical genetic composition of hypertension in SHRSP and

SHR. Networks composed of multiple interacting genes are hypothesized.
They have full-blown effects on BP only when all of the included genes are

the ‘hypertensive’ allele (shown in capital letters). Consequently, even

though Strain 1 harbors one hypertensive allele (‘A’), it is still normotensive.

If SHR and Strain 1 are used in a QTL analysis, ‘gene A’ would not be

detected as a hypertensive gene. An SHR-based congenic strain, in which

allele ‘a’ is substituted for ‘A’ would have normal BP, whereas a Strain-1-

based congenic rat in which the allele ‘B’ is substituted for ‘b’ would not be

hypertensive, because of the lack of alleles ‘C’ and ‘D’. SHRSP may have

another network that affects BP as well as stroke susceptibility.
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identify genes responsible for changes in intermediate phenotypes. Of
course, many intermediate phenotypes have their own complex nature
as well, and this is the key to searching for adequate target phenotypes.
Information about such genes for intermediate phenotypes would be a
useful resource in the investigation of gene networks underlying
hypertension. The most visible example of such an intermediate
phenotype is expression QTLs; this method analyzes cis and trans
elements of the genes regulating mRNA expression.33

Stroke susceptibility
SHRSP shows a high incidence of cerebral stroke. The incidence of
spontaneous stroke is approximately 80% and reaches 100% with a
high-salt diet (Okamoto et al.11 and unpublished observation).
Cerebral stroke in SHRSP is not based on atherosclerosis, as is the
major subtype of cerebral infarction in humans. It is, instead,
similar to brain edema due to malignant hypertension and lacunar
infarction, and cerebral hemorrhage caused by arteriosclerosis or
hyalinosis of small arteries due to severe hypertension.34 Besides
hypertension, additional genetic factors were implicated in the stroke
susceptibility of SHRSP, such as neuronal vulnerability to ischemic
insult, dysfunctional blood–brain barrier and arterial histological
abnormalities.34

QTL studies were performed on infarction tissue volume after
artificial middle cerebral artery occlusion and stroke latency. Rubattu
et al.35,36 identified QTLs for stroke latency on Chr 1, 4 and 5 in an F2
intercross between SHRSP/Bbb and SHR/Bbb, of which the QTL on
Chr 1 was confirmed in congenic strains. A QTL analysis in an F2
cross between SHRSP/Gcrc and WKY/Gcrc by Jeff et al.37 showed a
strong linkage of the markers on Chr 5 with the infarction volume
after middle cerebral artery occlusion. Both studies indicated that the
QTLs identified affected the stroke-related phenotypes independently
of BP. Although the atrial natriuretic peptide gene was focused on in
the Chr 5 QTL,37,38 further studies on this gene and genes in other
QTLs have not yet been performed.

Systematic gene expression analysis: Cd36
The study on Cd36 was another seminal work that first applied
comprehensive gene expression analysis in the QTL/congenic strategy,
which provided a prototype for studies performed thereafter.39

Aitman et al.39 showed that an SHR/NIH derived strain had a deletion
of Cd36 located in a QTL region, suggesting that this gene was
contributing to insulin resistance in this strain. Using transgenic
rescue studies, Pravenec et al.40,41 definitively demonstrated that
genetic deficiency in the expression of Cd36 can contribute to both
insulin resistance and increased BP in rats derived from the SHR/NIH
strain. In the following studies on rats and humans, substantial
evidence was accumulated supporting the role of Cd36 in hyperten-
sion and insulin resistance.42 On the other hand, it was reported that
SHR/Izm, which is a substrain of SHR used in Japan, did not have the
Cd36 deletion though it still showed insulin resistance as well as
hypertension.43 This observation indicated that Cd36 did not have a
major role in insulin resistance and hypertension in SHR/Izm.43,44

Although the role of Cd36 in insulin resistance was not denied, further
studies on the insulin resistance in SHR are necessary to obtain a
comprehensive view of this issue.

ROLE OF GENETIC ANALYSIS OF SHR AND SHRSP IN THE

POST-GWAS ERA

As discussed above, it is quite common that genetic analyses gave
discrepant results when different sets of SHR/SHRSP and normoten-
sive rat strains were employed.

If the goal of QTL analyses is set to identify candidate genes in rat
models, the inconsistency among the QTL studies does not matter;
identified genes in rats are examined as candidates in humans anyway.
Ten years ago, we did not have the tools to dissect candidate genes
from the human genome, and thus, the candidate genes found in rats
gave us important clues. In contrast, we are now able to extract many
candidate genes (or single-nucleotide polymorphisms) directly from
the human genome through large-scale GWAS.3–10 If species differ-
ences between rodents and humans are considered, the importance of
genetic model rats as a ‘supplier’ of candidate genes is relatively
diminished.
Under such conditions, what is the role of genetic analyses in SHR/

SHRSP? To answer this question, it may be useful to focus on the
genetic composition of hypertension in SHR/SHRSP.
There are four possible models for this application:

(a) Single gene model: This is not likely if accumulated results of
classical segregation studies as well as a number of QTL analyses
are taken into consideration.

(b) Polygenic additive model: This assumes many weak causative
genes distributed throughout the genome, which affect BP in an
additive manner. This model is currently assumed in human
GWAS. In the case of SHR/SHRSP, this model is not likely
when only two to three generations were necessary to achieve
substantial increases in BP during the original development
process.45

(c) Oligogenic additive model: A limited number of causative genes
with large effects additively contribute to hypertension. This may
be applicable to SHR/SHRSP; however, under this model,
asymmetrical effects of some QTLs in reciprocal congenic strains
may be difficult to interpret (Figure 5a).

(d) Oligogenic synergistic model: Synergistic interactions among a
few genes are required. This model may be the best to describe
the genetic composition of hypertension in SHR/SHRSP. Many
studies on congenic strains suggested that one QTL was com-
posed of several genes interacting with one another.46 In spite of
a lack of sufficient evidence, similar interactions can be hypothe-
sized among QTLs on separate chromosomes.

If hypertension in SHR/SHRSP is realized under the model (D), it is
less useful to examine the individual candidate gene identified in SHR/
SHRSP in the current genetic studies performed in humans, because
in GWAS and other genetic studies in humans, gene–gene interactions
are not generally considered. Instead, SHR/SHRSP needs to be
analyzed as ‘a total gene network’ underlying hypertension and
cardiovascular complications.
According to the National BioResource Project for the Rat database,

SHRSP is the strain showing the highest BP among 179 strains.47 This
finding implies that SHRSP has a unique set of hypertension genes
that makes it distinct from any other rat strain. Although some genes
in this set may be shared with other strains, it is likely that gene–gene
interactions are necessary for these genes to manifest a full-blown
effect on BP (Figure 4).
It is, therefore, vital to clarify the gene network as a whole in SHRSP

rather than to identify individual candidate genes. Knowledge about
such a network will be useful to reveal the pathogenesis of human
hypertension even if the individual genes involved in the network are
not identical.
Still, many single-nucleotide polymorphisms influencing BP have

been identified in human GWAS, and there are strong arguments against
the clinical significance of these single-nucleotide polymorphisms due to
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their weak effects.48,49 If a network of interacting genes is shown to be
essential in the pathogenesis of hypertension in rats, it may provide new
insights into the pathogenic mechanisms of human hypertension.
In this regard, whole-genome sequencing of multiple rat strains,

including several SHR and SHRSP substrains, which is ongoing in the
EuraTrans project (http://www.euratrans.eu/), will provide useful
information. A comprehensive analysis of the genome sequence
combined with the analysis of a gene expression network recently
succeeded in identifying a new gene responsible for type I diabetes
mellitus.50 A similar bioinformatics strategy may be able to dissect the
network underlying hypertension in SHR/SHRSP.19,51

In addition to such bioinformatics studies, another tool may be
useful to promote physiological, cell biological and biochemical
studies: a ‘reconstructed’ SHR with a few genomic fragments of
SHR/SHRSP on the WKY background.
The initial process of development of SHR as well as a classical

segregation study by Tanase et al.52 suggested that only a limited
number of genetic loci (or QTLs) were involved in hypertension in
SHR.45 This observation implies that the appropriate combination of

several genomic regions of SHR/SHRSP can ‘reconstruct’ hypertension
on the WKY background to some extent. Such a ‘reconstructed’
SHR/SHRSP can then be used to evaluate the effects of interacting
QTLs on various biochemical and physiological processes in combina-
tion with WKY.
To test this possibility, we performed a QTL analysis on an F2

cohort constructed by crossing WKYpch1.0 (a WKY-based congenic
strain for the Chr 1 QTL) and SHRSP. Under this study design, the
Chr 1 QTLwas fixed as homozygous for the SHRSP allele in all the F2
progenies; and thus, additional detected QTLs would be those inter-
acting with the Chr 1 QTL (Figure 5b and c). The results indicated
that two regions on Chr 9 and 13 showed a weakly suggestive linkage
with BP (unpublished observation). However, as these linkage signals
were detected in an F2 cross between WKY and SHRSP, it did not
seem that these QTLs interacted with the Chr 1 QTL originally
identified. In fact, a confirmation study using double and triple
congenic strains for these QTLs showed no apparent increase in BP,
translating to a failure of ‘reconstructing’ SHR on the WKY
background (Figure 5d, unpublished observation). This result may

Figure 5 A trial to show interactions among QTLs in SHRSP. (a) Reciprocal congenic rats for the Chr 1 QTL do not show reciprocal effects of the QTL on BP.

WKYpch1.0 and SHRSPwch1.0 are reciprocal congenic strains constructed for the Chr 1 QTL.29,31,32 (b) The study design of a QTL analysis using a

congenic rat (WKYpch1.0) and SHRSP. In all the F2 rats, the Chr 1 QTL is fixed as homozygous for the SHRSP allele. (c) An expected, result of the QTL

analysis illustrated in (b). A new QTL may appear only in the F2 between the congenic rat (WKYpch1.0) and SHRSP, because of the requirement of

interactions with the Chr 1 QTL. (d) BP of double and triple congenic rats. On the basis of the QTL analysis shown in (b), double congenic rats for Chr 1 and

9 (shown as 1_9) and for Chr 1 and 13 (1_13) QTLs and a triple congenic rat for the three QTLs (1_9_13) were constructed. Evaluation of BP indicated

that no significant rise in BP was observed in these congenic strains.
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indicate that complex interactions between more than two QTLs are
necessary to raise BP. We continue the attempt to ‘reconstruct’ SHR in
our laboratory.

CONCLUSIONS

SHRSP will continue to have an important role in the genetic research
of hypertension, if the putative networks of interacting genes in this
model become better understood. To obtain direct and more convin-
cing evidence, additional information and resources for better under-
standing of the genetic and genomic architecture of SHR/SHRSP are
required.
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