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The strong Kronecker product has proved a powerful new multiplication tool 
for orthogonal matrices. This paper obtains algebraic structure theorems and 
properties for this new product. 

The results are then applied to give new multiplication theorems for Hadamard 
matrices, complex Hadamard matrices and other related orthogonal matrices. 

We obtain complex Hadamard matrices of order 8abcd from complex Hadamard 
matrices of order 2a, 2b, 2c, and 2d, and complex Hadamard matrices of order 
32abcdef from Hadamard matrices of orders 4a, 4b, 4c, 4d, 4e, and 4f We also 
obtain a pair of disjoint amicable OD(8hn; 2hn, 2hn)s from Hadamard matrices of 
orders 4h and 4n, and Plotkin's result that a pair of amicable OD( 4h; 2h, 2h)s and 
an OD(8h; 2h, 2h, 2h, 2h) can be constructed from an Hadamard matrix of order 4h 
as a corollary. © 1994 Academic Press, Inc. 

1. INTRODUCTION 

We study the structure and properties of the strong Kronecker product. 
The results obtained are then used to obtain powerful new multiplication 
theorems and structure theorems for Hadamard matrices and related 
orthogonal matrices. 
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of Computer Science and Engineering, University of Nebraska, Lincoln, NE 68588, U.S.A. 
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2. COMPLEX ORTHOGONAL DESIGNS 

Let i denote a square root of - 1. Let Xl, X2' ... , Y 1, Yz, ... be commuting 
real indeterminates. We let fJ} and 22 be the sets {± Xj' ± iXj Ii = 1, 2, ... } 
and < ± Yj' ± iYj Ij = 1, 2, ... }. If A = (aij) is a matrix whose non-zero entries 
are from fJ}, we say it is a (0, fJ})-matrix, and A * denotes the matrix (a}), 
where the aster denotes complex conjugation. If A and a (0,!2 )-matrix 
B= (bij) have the same dimensions, then A /\ B= (aijbij) denotes the 
Hadamard product of A and B. 

Now let U=(Ul,U2, ... ,Ub) and S=(SI,S2, ... ,sa) be integer vectors, and 
write 

a b 

f= L SiX; and g=LUjYj. (1) 
i=l j~l 

A complex orthogonal design COD(c; s), A, is a square (0, fJ})-matrix such 
that 

AA* = fIe. 

Such a matrix may be written uniquely as a sum 

A = L xjB;+ iI XjCj ' 
j 

where Bj and C] are (0, 1, -1 )-matrices such that BjB! + Cj CJ is a 
diagonal matrix, for j =I i, 

and, for all j and k, 

BkC! + BjCr = CkB! + CjBf. 

We consider some cases where Bj and Cj are weighing matrices. If Cj = ° 
for all j, then the matrices Bj are weighing matrices, and A is a real matrix 
which is called an orthogonal design OD(c; s). If Bj(Cj ) has elements 0, 1, 
-1 then Bj /\ Bj (C, /\ Cj ) has elements 0, 1. Hence if the rows (columns) 
of Bj (CJ have constant weights, as for a weighing matrix, then Bj /\ Bj 

(Cj /\ C j ) has constant row sum. Hence if Bj and C j are weighing matrices, 
then the matrix A /\ A has constant row sum, and 

D = L xjBj + i L YjCj , 

j 

is a COD, where each indeterminate has only real coefficients or only com
plex coefficients. A COD will be said to be sharp if every indeterminate in 
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the design, say Zb has only real coefficients or only complex coefficients. If 
D /\ D has constant row sum f - g, then D is a sharp complex orthogonal 
design SCOD (c; s; u). (Note the careful use of the second semi-colon.) 

Now suppose fl and i!J> are disjoint and a (0, fl)-matrix B is a COD(d; u); 
then A and B are said to be amicable if 

AB* = BA*, 

and anti-amicable if 

AB*= -BA*. 

Note that A and B are amicable if and only if A and iB are anti-amicable. 
A sharp COD corresponds to a set of disjoint weighing matrices which 

divides into two sets such that a pair of matrices chosen from the same set 
are antiamicable and all other pairs are amicable. More complex amicability 
relations could be embodied by adding more commuting square roots of - 1. 
A pair of (anti- )amicable SCODs corresponds to a set of weighing matrices 
with strong amicability and disjointness properties. 

3. THE STRONG KRONECKER PRODUCT 

Suppose Nand M are matrices whose non-zero entries are in i!J> and fl, 
respectively. In this paper, we let N x M denote the usual Kronecker 
product of Nand M. 

Now let M and N be respectively presented as r x t and t x u block 
matrices. We may write 

[MH Ml2 

M"] [N" 
N12 ... N'"] M21 M22 

... :" and 
N21 N22 ... N 2u 

M= . N= . . , 

Mrl Mr2 N tl N t2 N tu rt 

where each M ij (i = 1, 2, ... , rand j = 1, 2, ... , t) is an m x p matrix, and each 
N ij (i = 1, 2, ... , t and j = 1, 2, ... , u) is a n x q matrix. Now consider the 
following operation denoted by 0, 

[L" 
Ll2 

L'"] Mo N= Ltl 
L22 L;2U , 

Lrl Lr2 ... L ru 
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where each 

is an mn x pq matrix. We call L the r x t times t x u strong Kronecker 
product of M and N. It is important to note that the operation is fully 
determined only after the parameters r, t, and u are set. Generally, the par
titioning of the matrices will be clear from the context, and then we call L 
the strong Kronecker product of M and N. 

We will see that this operation preserves orthogonality. We first give a 
result which strengthens a theorem of Seberry and Zhang [9]. 

LEMMA 1 (Structure Lemma). Let A = [AkJ and C= [CkJ, where 
A kj and Ckj are m x p matrices, be r x t block (0, &)-matrices, and let 
B = [BkJ and D = [DkJ, where Bkj and Dkj are n x q matrices, be t x u 
block (0, 22)-matrices. Write(A 0 B)( Co D)* = [LabJ, where a, b = 1, ... , r, 
then 

(2) 

In particular, if BD* is a txt block matrix where all off-diagonal block 
matrices are zero, then 

(3) 

and, if BD* is of the form It x E, then 

(4) 

or, equivalently, 

(A 0 B)(C 0 D)* = AC* x E. (5) 

Moreover, if C = A, D = B, AA * = firm, and BB* = gItn, where f and g are 
defined in Eq. (1) above, then 

if a#b 

if a = b. 
(6) 
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Proof The following calculation proves Eg. (2). 

u 

Lab = L (Aal X B ls + Aa2 X B 2s + '" + Aat X B ts ) 
5=1 

t 

= L L L (AajXBjs)(C;kXDZs) 
s~lj~lk~l 

To prove Eg. (3), note that, if BD* is a txt block matrix where all off
diagonal block matrices are zero, then, for j =1= k, 

L BjsDZs=O. 
s~l 

To prove Egs. (4) and (5), note that 

u 

L BjsDj~=E, 
s= 1 

and apply Eg. (3). Eg. (6) follows from Eg. (4) once it is noted that E=gIn 
and 

if a =1= b 
if a = b. 

Note that in the Structure Lemma we find orthogonal matrices but not 
(complex) orthogonal designs or complex weighing matrices because we 
cannot guarantee that the general block matrix 

Cij= [A 0 BJij= L Aik=BkJ 
k~l 

has the correct entries. In fact the greatest effort in this paper will be 
devoted to ensuring A 0 B has appropriate entries. A little trial and error 
will convince the reader that only one combination always (without other 
special conditions) gives a useful results. 

COROLLARY 1. Suppose A and B are Hadamard matrices of order 2m 
and 2n respectively. Then 

~A 0 B 

is a W(2mn, mn). 
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In general though, we have: 

COROLLARY 2. Suppose A and B satisfy 

AA* =fItm and BB* = gItn. 

Write A and B as txt block matrices. Then C = A 0 B of order tmn satisfies 

CC* = fgI"nn' 

4. Two ALGEBRAIC PROPERTIES OF THE STRONG KRONECKER PRODUCT 

All operations in this section are over a commutative ring. 

THEOREM 1. Strong Kronecker multiplication is associative. 

Proof Let A = [A ,k ], B= [Bkl ], and C= [Clj] be matrices presented 
as a x b, b x c, and c x d block matrices, respectively. The following calcula
tion is sufficient to prove the theorem. 

= [Aid 0 [~BkIX Clj] 

= [Aik] 0 ([Bkl ] 0 [Clj])' I 

COROLLARY 3. Let 

Proof Apply associativity to the following matrix. 

I 
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THEOREM 2. Let [HsrJ, [ArtJ, [KsrJ and [BrtJ be presented as respec-
tively a x b, b x c, a x band b x c block matrices. Then 

Proof Let 

([HsrJ 0 [ArtJ) A ([KsrJ 0 [Brt ])=[ ~HsrXArtJ A [~KsuXButJ 

= [~ (Hsr A Ksu) x (Art ABut)] 

= [Hsr A KsuJ 0 [Art A Butl I 

5. DISJOINTNESS 

We say a (0, gIl)-matrix A and a (0, 2l)-matrix B are disjoint if A A B=O. 
We begin with a simple but surprising lemma. 

LEMMA 2. Let A, B, C, and D be (1, -1 )-matrices. Then (A x C + B x D) 
and (A x D - B x C) are disjoint. 

Proof Consider the general terms 

and 

Observe that 

The next result, which follows from Theorem 2 generalises this result. 

THEOREM 3. Let [HsrJ, [ArtJ, [K"J, and [Brt ] be respectively a x b, 
b x c, a x b, and b x c block matrices. Then [HsrJ 0 [ArtJ and [KsrJ 0 [BrtJ 
are disjoint if and only if the a x b2 times b2 x c strong Kronecker product 

is zero. 

EXAMPLE [Alternative Proof of Lemma 2 l Observe that 

[(AxC)+(BxD)]=[A BJo[~l 
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and 

[(AxD)-(BxC)]=[A B]O[_~l 

By Theorem 3 these are disjoint if and only if 

[A /\ A A /\ B B /\ A 
[ 

C /\ D] 
-C/\C 

B /\ B] 0 =0, D/\D 
-D /\ C 

which is clearly true. 

As a consequence of Theorem 3, we have the pretty result. 

COROLLARY 4. Let H, A, K, and B be (0, fllJ)-matrices; then He A and 
K 0 B are disjoint if and only if K C A and He B are disjoint. 

COROLLARY 5. Let Hi' Ai' K i, and Bi be (0, P?)-matrices; then 

if and only if 

~:J) /\ ([~~ 

HI /\ Kl Hl /\ KI 

H 3 /\ K4 H 4 /\ K 3 

!:J) =0 

In particular, suppose H = K and Hi, Ai' and Bi are (1, -1)-matrices, then 
Ho A and Ko B are disjoint if B3= -AI /\ A3 /\ BI and B4= -A2 /\ 
A4/\ B l . If H I "# ±Hl then B3 = -AI /\ A3 /\ BI is necessary and similarly 
if H3"# ±H4 then B4 = -A2 /\ A4 /\ B2 is necessary. 

A consequence of this corollary is that 

COROLLARY 6. Let Hi and Ai be (0, f??)-matrices of suitable dimensions; 
then 
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6. CONFERRED PROPERTIES 

The concepts of amicability and anti-amicability have been of con
siderable importance in the study of Hadamard matrices. In this section, we 
show that the strong Kronecker product often preserves (anti)-amicability. 

THEOREM 4 (Conferred Amicability and Anti-Amicability Theorem). Let 
A=[AkJ and C=[Ckj ], where A kj and Ckj are mxp matrices, be rxt 
block (0, &)-matrices, and let B = [BkJ and D = [D kj ], where B kj and Dkj 
are nxq matrices, be txu block (O,~)-matrices. Let CXE{O, 1, -1,i, -i}, 
and set T=A 0 D, U=A 0 B, and V= CoB. 

(1) If BD*=cxDB*, then TU*=cxUT*. 

(2) IfBB* =gIand AC*=cxCA*, then UV*=cxVU*. 

Proof We prove part (2): the proof of the first part is similar and 
easier. Let UV* = (Lab) and VU* = (R ab ), where a, b = 1, ... , r. By the 
Structure Lemma, 

Similarly, 

t 

= L A aj C0x g/. 
j~l 

= L CajAtjxgI. 
j~l 

Note AC* = cxCA * implies that, for a, b = 1, ... , r. 

t r 

L AajCZ=cx L CajAZ· 

So Lab=cxRab and UV*=cxVU* as required. I 

7. CONSTRUCTED PROPERTIES 

We now show the strong Kronecker product guarantees the existence of 
amicable or anti-amicable matrices. 
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LEMMA 3 (Constructed Amicability or Anti-Amicability Lemma). Sup
pose AA * = jltm and BB* = gftn' where A and B are matrices of order tm 
and tn, respectively, t = 2,4,8. Then there are t orthogonal matrices, Cb 

k = 1, ... , t of order tmn, satisfying, for j, k = 1, ... , t, 

and 

Proof For t = 2 the matrices are 

or 

respectively. 
For t = 4, define 

Q,{ J Q, ~ [ ±~ 
f 

J f 0 
f 0 

±f 

Q, ~ [ ±~ 
0 f 

±~] Q'~[ ~ 
0 0 

~] 0 0 0 f 

0 0 o ' ±f 0 o . 
f 0 0 ±f 0 0 0 

Then the matrices are 

or 

For t = 8 define Qi analogously using an 8 x 8 representation of the 
quaternions. Then the two sets are obtained similarly. 

8. AMICABLE AND ANTI-AMICABLE ORTHOGONAL DESIGNS FROM 

HADAMARD MATRICES 

Plotkin [7] first showed that the existence of an Hadamard matrix of 
order 2h implied the existence of an OD(2h; h, h). Seberry and Zhang [9] 
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recently obtained the same result while investigating the strong Kronecker 
product. We extend this result below. But first we make some remarks. 

Let P be any anti-symmetric monomial matrix (i.e., P = - p T and P /\ P 
is a permutation matrix). Let R = HP, U = !(R + H), and V = hR - H). 
Then U and V are disjoint (0,1, -I)-matrices such that UV T = - VU T 

and VV T = UUT = i(RR T + HHT) = hI2h . It follows that Ux! + VX2 is an 
OD(2h; h, h). 

The results of the following theorem are related to the results of Plotkin 
[7; 6, p. 127J that if there is an Hadamard matrix of order 2h then there 
exists an OD( 4h; h, h, h, h) and an OD(8h; h, h, h, h, h, h, h, h). 

THEOREM 5. Let 2h be the order of an Hadamard matrix. Then there 
exist four W(2h; h) matrices R, S, T, U such that R, U and S, Tare anti
amicable pairs, all other pairs are amicable, and Rand U, Rand S, Sand T 
and T and U are disjoint pairs. In particular, there exist 

(i) a pair of amicable OD(2h; h, h), and 

(ii) a pair of anti-amicable sharp COD(2h; h; h). 

Proof Let 

W= [
-1 

1 x=[~ -1J 
1 ' 

y=[ 1 
-1 ~l z=[~ 

We note that WW T = XX T = yyT = ZZT = 212 and WX T = XW T, 
WyT = YW T, WZ T = _ZWT, XyT = _ YX T, XZ T = ZX T, YZT = ZyT. 

Write 

H=[H! H 2J, 
H3 H4 

R=!HO W, S=!HOX, T=!HO y, 

and U=!H 0 Z. 

By the Structure Lemma RRT = SST = TTT = UUT = hI21" and by the 
Conferred Amicability and Anti-Amicability Theorem RST = SR T, 
RTT = TR T, RUT = - UR T, STT = - TST, SUT = US T, TU T = UT T. By 
Corollary 1, R, S, T, and U are W(2h, h). The disjointness properties follow 
directly from Corollary 6. 

Now let x, y, a, b be commuting indeterminates, and put A = xS + yT, 
B = aR + bU, C = xR + iyS, and D = aU + ibT. From above, A and Bare 
OD(2h; h, h )s, and C and D are sharp COD(2h; h, h )s. Moreover, 
ABT = (xS + yT)(aRT + bUT) = BAT, and CD* = (xR + iyS)(aU T - ibTT) 
= -DC*. So A and B are amicable and C and D are anti-amicable. I 
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We see Plotkin's results reproved in the next corollary: 

COROLLARY 7. If there exists an Hadamard matrix of order 2h, then 
there is an OD(4h; h, h, h, h), disjoint amicable AOD(4h; h, h, h, h), a sharp 
COD(4h; h, h, h, h), and an OD(8h; h, h, h, h, h, h, h, h). 

Proof Let A and B be the matrices in the proof of the previous result; 
then 

is the required OD(4h; h, h, h, h). The designs 

[
XS YTJ 
yT xS 

and [
CR dUJ 
dU cR 

are the disjoint amicable AOD( 4h; h, h; h, h) and the design 

[
XS + icR yT + idUJ 
yT+ ixS dU + icR 

is the required sharp COD( 4h; h, h; h, h). 
Now an OD(8h; h, h, h, h, h, h, h, h) similar to that of Plotkin, may be 

written 

[ xS+ yT 
zS+wT -as+bT CR+dU] 

-zS+ wT xS-yT -cR-dU -as+bT 
I W= 

as+bT cR+dU xS-yT -zS-H;T . 

cR+dU -as-bT -zS+wT -xS- yT 

We note that, in the argument of the proof of Theorem 5, we may 
replace the Hadamard matrices, W, X, Y, and Z of order 2 with the following 
Hadamard matrices of order 2k 

to obtain designs where the parameter h is replaced by hk. Of course, the 
existence of designs with these parameters also follows from Theorem 5 and 
Agaian's result, which gives an Hadamard matrix of order 2hk; so we will 
not state the apparently more general result here. 
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9. MULTIPLICATION THEOREMS USING 2 x 2 STRONG KRONECKER PRODUCT 

THEOREM 6 (Multiplication Theorem). Let [HI H 2 ] be an Hadamard 
matrix of order 2a and let [A'[ AD be a COD(2b; u) with entries from f!Ji; 
then the matrix 

is a COD(2ab, au). 

Proof Observe 

D = ~ (HI + H 2 ) x A j + ~ (HI - H 2 ) X A 2 . 

Plainly, its entries are in f!Ji. The Structure Theorem ensures the matrix is 
orthogonal, and indeed, because the entries are all in f!Ji, it ensures each 
indeterminate appears the correct number of times in each row and 
column. I 

The next corollary contains some results of Agaian [1], Craigen [4], 
and Seberry and Zhang [9]. 

COROLLARY 8. If there is an Hadamard matrix of order 2a, then 

(i) if there is a complex Hadamard matrix of order 2b, there is a 
complex Hadamard matrix of order 2ab; 

(ii) if there is an OD(2b; U j , u2 , ... ,uc ), there is an OD(2ab; 
aUI, au 2 , ... , auc); 

(iii) if there is an Hadamard matrix of order 2b, there is an Hadamard 
matrix of order 2ab; 

(iv) if there is a weighing matrix W(2b, k) there is a W(2ab, ak). 

Proof To obtain the required designs, apply Theorem 6 with the design 
(Ai]) set equal to the initial CODs mentioned in items (i)-(iv). I 

10. A MULTIPLICATION THEOREM USING A 4 x 4 
STRONG KRONECKER PRODUCT 

The next theorem is very close to a method for "multiplying" Hadamard 
matrices of orders 4h and 4n together to obtain an Hadamard matrix of 
order 4hn. Given Hadamard matrices of orders 4h and 4n, it is possible to 
construct a disjoint pair of amicable W( 4hn, 2hn )s. If that pair had been 
anti-amicable, their sum would have been an Hadamard matrix of order 
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4hn. Here, we extend this result using the properties of the strong 
Kronecker product. Previous results give the existence of an Hadamard 
matrix of order 8hn and hence disjoint pairs of (anti-) amicable 
W(8hn, 4hn )s. A consequence of our extended result is a set of four disjoint 
W(8hn, 2hn)s with amicability properties. Indeed, we obtain a pair of 
disjoint amicable OD(8hn; 2hn, 2hn )s. 

THEOREM 7. Suppose 4h and 4n are the orders of Hadamard matrices 
then there exist four W( 4hn, 2hn)s R, S, T, and U such that R, Sand T, U 
are disjoint pairs, R, U and S, T are anti-amicable pairs and all other pairs 
are amicable. Indeed, there exists a pair of amicable seo D( 4hn; 2hn; 2hn )s, 
a SeOD(8hn; 2hn, 2hn; 2hn, 2hn), and a pair of disjoint amicable OD(8hn; 
2hn,2hn)s. 

Proof Write the Hadamard matrices in the form 

and 

where Hi are 4h x h matrices and Ni are n x 4n matrices. Now let 

X~[~ 
0 0 

jJ Y~ [ ~ 
0 0 

~] In 0 0 In 
and 

0 -In -In 0 o . 
0 0 -In 0 0 0 

Set 

H,] () [~ 
0 

~}{~] R= ~ [HI H2 H3 
-1 0 

0 
0 -1 N4 

H,] 0 [~ 
0 

} (NX) S=~ [HI H2 H3 
-1 0 

0 
0 -1 

H,] c{~ 
0 

~] 0 (NY), T=~ [HI H2 H3 
-1 0 

0 
0 -1 
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1 0 
-1 0 

o 1 

o 1 

~] 0 (NXY). 

-1 

We note that 

and 

R = ~ «HI + H 2 ) x NI + (HI - H 2) X N2 + (H3 + H4) X N3 

+ (H3 - H 4) x N 4), 

S=~«HI +H2 )xNI +(HI-H2)xN2-«H3+H4)xN3 

+ (H3 - H4) x N4», 

T= ~ «H3 + H 4) x N2 + (H3 - H 4) X NI - «HI + H 2 ) x N4 

+ (HI - H 2) x N 3», 

u = ~ «H3 + H4) x N2 + (H3 - H 4) X NI + (HI + H 2) X N4 

+ (HI - H 2) x N 3); 

so Rand Sand T and U are pairs of disjoint (0, 1, -1 )-matrices. Note the 
matrices 14n , X, Yand XY have amicability properties which, by the Con
ferred Amicability and Anti-amicability Theorem, are inherited by R, S, T, 
and U. Finally, by the Structure Lemma RRT = SST = TTT = UU T = 
2hnI4hn ; so R, S, T, and U are the required weighing matrices. 

Now let a, b, x, and y be distinct commuting indeterminates. The 
designs C = aR + ibS and D = xT + iyU are the required amicable 
SCOD(4hn; 2hn; 2hn)s. Either 

[
iC DJ 
D iC 

or 

is the required SCOD(8hn; 2hn, 2hn; 2hn, 2hn), and such a design is equiv
alent to the required pair of disjoint amicable OD(8hn; 2hn, 2hn)s. I 

11. CONSTRUCTED AMICABILITY 

We note that Theorem 6 preserves sharpness; so it may be viewed as 
constructing new sets of disjoint weighing matrices with amicability proper
ties from old. Note that just one (complex) orthogonal design is used. Our 
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purpose here is to show how the Conferred Amicability and Anti
amicability Theorem may be used to construct new sets of matrices with 
amicability properties from more than one (complex) orthogonal design. 
To avoid cumbersome detail, our results are stated for ODs only; similar 
results can be proved for (sharp) CODs. 

THEOREM 8. Suppose there is an Hadamard matrix of order 2a and that 
Band Care (anti-) amicable OD(2b; u) and OD(2b, s); then the designs 
below are (anti-) amicable OD(2ab; au) and OD(2ab; as). 

lHO[1 1JOB 
2 1 -1 ' 

-HI", I [1 
2 ~ 1 1J 0 C. 

-1 

Proof Apply the conferred Amicability and Anti-Amicability Theorem. 

I 
Many pairs of amicable orthogonal designs are known [10]. The simplest 

pair gives a simpler proof of part (1) of Theorem 5. 

COROLLARY 9. If there is an Hadamard matrix of order 2a, then there is 
a pair of amicable OD(2a; a, a). 

Proof Let w, x, y, and z be distinct commuting indeterminants. The 
designs are 

and 

1 [1 1J [ Z WJ 2HO 0 . 
1 - -w z I 

The designs in the next corollary can be "plugged" into orthogonal 
design to produce orthgonal designs on more variables. 

COROLLARY 10. Let Xl, X 2 , •.. and wand y be distinct commuting 
indeterminates. If there is an Hadamard matrix of order 2a, then the designs 
below are amicable. 

and 

I [1 E='5. Ho 1 1J 0 [ y . \1..'J. 
- -w y 
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Hence, if there is an OD(2b; UI, U2, ... , Ud), then there is an OD(4ab; 
aUI, au l , 2au2, ... , 2aud)· 

The resulting OD has one more indeterminate than the OD(4ab; 
2auI, 2au2, ... , 2aud) obtained by taking the usual Kronecker product with 
the Hadamard matrix. Moreover, we have 

COROLLARY 11. The designs D; and E of Corollary 10 may be plugged 
into a pair of amicable OD(2b; u) and OD(2b; s) to obtain a pair of amicable 
OD(4ab; 2as) and OD(4ab; au l , aUI, 2au2, ... , 2aud). 

Proof Use the design E in the OD(2b; u) and the other designs D; as 
needed. I 

12. USING DISJOINT WEIGHING MATRICES 

Results in previous sections give many pairs of disjoint (anti- )amicable 
weighing matrices. We show how disjoint amicable weighing matrices may 
be used to obtain a pair of amicable orthogonal designs, and how they may 
be used in the strong Kronecker product with an OD to obtain another 
OD. Similar results hold for anti-amicable or complex weighing matrices. 

THEOREM 9. Let WI and W 2 be disjoint amicable W(n, wJ s. Then 

and 

are amicable OD(2n; WI + w2, WI + W2)S. 

Proof Consider the behaviour of the following matrices under multi
plication. 

MI = [In IJ, M2 = [-In In], 

-IJ, M4= [In In]. 

Note M;M J = M j T except when (i, j) E {(I, 2), (3,4)}, and in these two 

cases MiMJ = -MjMj. 
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Observe that 

It follows that the two matrices 

THEOREM 10. Let WI and W 2 be disjoint amicable W(n, wJs, and let K 
be an OD(c; s); then 

is an OD(cn; (11'1 + W2) s). 

Proof Write K as 

Then 

By the Structure Lemma, D is orthogonal, and, by inspection, each row 
contains ±xi precisely (11'1 + 11'2) Si times. I 

A similar result holds for (sharp) CaDs. 

13. ORTHOGONAL PAIRS 

Craigen [2J first introduced the following important idea: 

DEFINITION 1. Two (1, -1 )-matrices C and D of order 2c will be called 
an orthogonal pair if 

and 
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If C and D have elements from {I, -1, i, - i} they are called a complex 
orthogonal pair. If C and Dare (0, &-')-matrices such that 

and 

then they are called a complex orthogonal design pair, written CODP(2c; s). 
If they are real matrices they are called orthogonal design pairs. 

Perhaps the simplest way to construct such pairs follows. 

LEMMA 4. Suppose two (0, &-')-matrices C and D are respectively 
(complex) disjoint OD(c; sd and OD(c; S2) such that 

CD*=DC*; 

then C+D and C-D are an (complex) ODP(c;sJ +S2)· I 

Hence (complex) disjoint pairs of amicable or anti-amicable ODs are a 
fruitful source of (complex) ODPs. Another general way of constructing 
COSPs follows. We begin with a special case. 

LEMMA 5 (Complex Orthogonal Pairs). Suppose C and D are complex 
Hadamard matrices of orders 2c and 2d. Then there exists a complex 
orthogonal pair X, Y of order 2cd. 

Proof Write C and D as 

and D=[~J, 
where Ci is of size 2c x c and Dj is of size d x 2d. Then the required pairs 
are X = C J X D J and Y = C 2 X D 2· I 
More generally, we have the following. 

LEMMA 6 (Complex Orthogonal Design Orthogonal Pairs). Suppose C 
is a (complex)W(2c; d) and D is a (complex) OD(2e; s). Then there exists 
an orthogonal design pair ODP(2ce; ds) which is complex tf either C or D 
is complex. 

We now indicate the power of this idea. 

THEOREM 11. Suppose there are two disjoint (complex) W(2a, b) s A and 
B, a (complex) W(2c; d) C and a (complex) OD(2e; s) D; then there is a 
(complex) OD(4ace; bds) E. In particular, if A, B, C, and D are weighing 
matrices then so is E, and, if any of A, B, C or D is complex, then so is E. 
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Proof Apply Lemma 6 to C and D to obtain an ODP(2ce; ds) X and 
y. Then the required design is given by 

AxX+Bxy' I 

14. PRODUCTS OF FOUR ORTHOGONAL MATRICES 

Agaian [1 J has proved that, if there are Hadamard matrices of orders 4a 
and 4b, there is an Hadamard matrix of order 8ab. This was extended by 
Craigen, Seberry, and Zhang [5J who showed that, if there are Hadamard 
matrices of orders 4a, 4b, 4c, 4d, there is an Hadamard matrix of order 
16abcd. Here we obtain new results in a similar vein. 

THEOREM 12. Suppose there are complex Hadamard matrices of orders 
2a and 2b and Hadamard matrices of orders 4c and 4d then there is a 
complex Hadamard matrix of order 8abcd. 

Proof By Theorem 7, we have a pair of disjoint W(4cd, 2cd) A and B, 
say. Now use Theorem 11. I 

The following corollary follows from the method of proof of the last 
result. 

COROLLARY 12 (Product of Four Complex Hadamard Matrices). If 
there exist complex Hadamard matrices of order 2a, 2b, 2c, 2d then there 
exists a complex Hadamard matrix of order 8abcd. 

Proof Any complex Hadamard matrix of order 2c gives an Hadamard 
matrix of order 4c; so there exist Hadamard matrices of orders 4c and 4d. 
Now use the argument in the proof of the previous result. I 

Similarly, a complex Hadamard matrix of order 8abcd can be obtained 
from three complex Hadamard matrices of orders 2a, 2b, and 2c and one 
Hadamard matrix of order 4d. We do not know whether Theorem 12 is 
true if the complex Hadamard matrix of order 2b is replaced by an 
Hadamard matrix of order 4b. 

Using Craigen, Seberry, and Zhang's result for 4 Hadamard matrices 
and Agaian's result for 2 Hadamard matrices, the best one can do is obtain 
a Hadamard matrix of order 64abcdef from Hadamard matrices of orders, 
4a, 4b, 4c, 4d, 4e, 4f The next corollary to Theorem 12 ensures we may 
obtain a complex Hadamard matrix of order 32abcdef and hence an 
Hadamard matrix of the block form 
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COROLLARY 13. Suppose there are Hadamard matrices of orders 4a, 4b, 
4c, 4d, 4e, 4f; then there is a complex Hadamard matrix of order 32abcdef 

Proof Use the first four Hadamard matrices to obtain complex Hadamard 
matrices of orders 4ab and 4cd. Now apply Theorem 12. I 

It is worth noting that at present we do not know how to obtain a com
plex Hadamard matrix of order 16abcdef from complex Hadamard 
matrices of orders 2a, 2b, 2c, 2d, 2e, 2f Finally, we point out the following 
very general method of constructing (complex) orthogonal designs. 

THEOREM 13 (Two Hadamard Matrices, a (Complex) Weighing Matrix 
and a (Complex) Orthogonal Design). Suppose there exist Hadamard 
matrices of orders 4a and 4b, a (complex) W(2c, d) C and a (complex) 
OD(2e; s) D; then there exists a (complex) OD(8abce, abds) which is 
complex if either C or D is complex. 

Proof Use the Hadamard matrices to obtain disjoint W( 4ab, 2ab) A 
and B; then use Theorem 11. 

15. CONCLUSION 

We have shown the power of the strong Kronecker product and the use
fulness of orthogonal pairs and disjoint weighing matrices in reducing 
the power of two in the multiplication of orthogonal matrices while 
concurrently increasing the structure. 

We believe only a small advance is now needed to be able to multiply 
Hadamard matrices without increasing the power of two and perhaps also 
to obtain OD(4h; h, h, h, h) from an Hadamard matrix of order 4h. 
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