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Abstract

A sequence of random variables is said to be extended negatively dependent (END) if the
tails of its finite-dimensional distributions in the lower-left and upper-right corners are
dominated by a multiple of the tails of the corresponding finite-dimensional distributions
of a sequence of independent random variables with the same marginal distributions. The
goal of this paper is to establish the strong law of large numbers for a sequence of END
and identically distributed random variables. In doing so we derive some new inequalities
of large deviation type for the sums of END and identically distributed random variables
being suitably truncated. We also show applications of our main result to risk theory and
renewal theory.
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1. Introduction

Random variables Xk, k = 1, . . . , n, are said to be lower extended negatively dependent
(LEND) if there is some M > 0 such that, for all xk, k = 1, . . . , n,

Pr

( n⋂
k=1

(Xk ≤ xk)

)
≤ M

n∏
k=1

Pr(Xk ≤ xk); (1.1)

they are said to be upper extended negatively dependent (UEND) if there is some M > 0 such
that, for all xk, k = 1, . . . , n,

Pr

( n⋂
k=1

(Xk > xk)

)
≤ M

n∏
k=1

Pr(Xk > xk); (1.2)

and they are said to be extended negatively dependent (END) if they are both LEND and
UEND. A sequence of infinitely many random variables {Xk, k = 1, 2, . . .} is said to be
LEND, UEND, or END if, for each positive integer n, the random variables Xk, k = 1, . . . , n,
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Strong law of large numbers for END random variables 909

are LEND, UEND, or END, respectively. Sometimes we need to specifically mention the
dominating constant M associated with the LEND, UEND, or END structures.

When M = 1, inequalities (1.1) and (1.2) describe lower and upper negative dependencies,
respectively. The concept of negative dependence has been extensively investigated since it was
proposed in Ebrahimi and Ghosh (1981) and Block et al. (1982). In particular, Matuła (1992)
established the strong law of large numbers for pairwise negatively dependent random variables.
A key step of Matuła’s (1992) derivation is that, by Hoeffding’s identity, the covariance of two
negatively dependent random variables, being suitably truncated, is nonpositive. Hence, the
pairwise negative dependence greatly prevents the partial sums from diverging to infinity. In
general, this implication is not true for END random variables. Therefore, the approach we
shall employ in this paper is essentially different from Matuła’s (1992). Recent developments
of the strong law of large numbers for negatively dependent random variables can be found in
Bingham and Nili Sani (2004), Gerasimov (2009), and Baek et al. (2009), among others.

As a natural generalization of negative dependence, the concept of END was proposed in
Liu (2009) and further promoted in Chen et al. (2010) in the study of precise large devia-
tions. The END structure covers all negative dependence structures and, more interestingly, it
covers certain positive dependence structures. A sufficient condition for LEND or UEND
is given in Lemma 2.1 below. In particular, by this lemma, every n-dimensional Farlie–
Gumbel–Morgenstern (FGM) distribution describes a specific END structure. Recall that an
n-dimensional FGM distribution has the form

F1,...,n(x1, . . . , xn) =
( n∏

k=1

Fk(xk)

)(
1 +

∑
1≤i<j≤n

aij F̄i(xi)F̄j (xj )

)
,

where Fk = 1 − F̄k, k = 1, . . . , n, are corresponding marginal distributions and aij are real
numbers chosen such that F1,...,n is a proper n-dimensional distribution. We refer the reader
to Kotz et al. (2000, Chapter 44.13) for a general account on multivariate FGM distributions.
Owing to its transparent structure and great flexibility of adjusting dependence strength, this
family of multivariate distributions is often used in modelling dependent investment returns in
finance or dependent claim sizes in insurance; see, for example, Tang and Vernic (2007) and
Cossette et al. (2008), among many others. Hashorva (2001) established limit theorems for a
sequence of random variables with FGM finite-dimensional distributions.

Our main result is the following.

Theorem 1.1. Let {Xk, k = 1, 2, . . .} be a sequence of END random variables with common
distribution F . Denote by Sn its nth partial sum, n = 1, 2, . . .. Then Sn/n

a.s.→ µ as n → ∞
for some real number µ if and only if E |X1| < ∞, and for each case µ = E X1.

The rest of this paper consists of three sections: in Section 2 we prepare a series of important
lemmas, in Section 3 we prove Theorem 1.1, and in Section 4 we propose two applications of
Theorem 1.1 to risk theory and renewal theory.

2. Lemmas

Let the random variables Xk, k = 1, . . . , n, follow distributions Fk, k = 1, . . . , n, respec-
tively, and let C(u1, . . . , un) : [0, 1]n �→ [0, 1] be their copula, so that, by Sklar’s theorem, it
holds, for all xk, k = 1, . . . , n, that

Pr

( n⋂
k=1

(Xk ≤ xk)

)
= C(F1(x1), . . . , Fn(xn)). (2.1)
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In particular, if Fk, k = 1, . . . , n, are continuous then the copula C(u1, . . . , un) fulfilling (2.1)
is unique and is identical to the joint distribution of the uniform variates F(Xk), k = 1, . . . , n.
See Joe (1997) and Nelsen (2006) for comprehensive treatments on copulas.

For every nonempty subset I of {1, . . . , n}, the corresponding marginal copula is

C(ui : i ∈ I ) = C(u1, . . . , un)|uj =1 forj∈{1,...,n}\I
and the corresponding marginal copula density, if it exists, is equal to

c(ui : i ∈ I ) =
(∏

i∈I

∂

∂ui

)
C(ui : i ∈ I ).

Trivially, if the copula density c(u1, . . . , un) is bounded over (u1, . . . , un) ∈ [0, 1]n, so is every
marginal copula density.

Motivated by Corollary 3.1 of Ko and Tang (2008), in the following lemma we show a
sufficient condition for the random variables Xk, k = 1, . . . , n, to be LEND or UEND.

Lemma 2.1. Assume that random variables Xk, k = 1, . . . , n, have continuous distributions
Fk, k = 1, . . . , n, respectively, and possess a copula C(u1, . . . , un) with a copula density
c(u1, . . . , un) well defined on (0, 1)n.

(a) If every marginal copula density is bounded in a neighbourhood of the origin (whose
coordinates are all 0) then the Xk, k = 1, . . . , n, are LEND.

(b) If every marginal copula density is bounded in a neighbourhood of the ultimate vertex
(whose coordinates are all 1) then the Xk, k = 1, . . . , n, are UEND.

Proof. We only prove (a) since (b) can be proven in the same way. Let ε ∈ (0, 1) and
M∗ > 0 be two constants such that every marginal copula density is bounded by M∗ as long
as all its arguments fall into the interval (0, ε]. Then, for arbitrarily given xk, k = 1, . . . , n,
denote by I the set of all i for which Fi(xi) ≤ ε and by I c its complement, I c = {1, . . . , n} \ I .
When I is nonempty, we have

Pr

( n⋂
k=1

(Xk ≤ xk)

)
≤ Pr

(⋂
i∈I

(Xi ≤ xi)

)

= C(Fi(xi) : i ∈ I )

=
∫

· · ·
∫

0<ui≤Fi(xi ), i∈I

c(ui : i ∈ I )
∏
i∈I

dui

≤ M∗ ∏
i∈I

Fi(xi)

≤ M∗ ∏
i∈I

Fi(xi)
∏
j∈I c

Fj (xj )

ε

≤ M∗

εn

n∏
k=1

Fk(xk).

Clearly, if I is empty then we have

Pr

( n⋂
k=1

(Xk ≤ xk)

)
≤ 1 ≤ 1

εn

n∏
k=1

Fk(xk).

Thus, inequality (1.1) holds with M = ε−n(M∗ ∨ 1). This completes the proof.
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Let us collect some preliminaries regarding the concept of END for later use. Throughout this
paper, for a real number x, write x+ = x∨0 and x− = (−x)∨0 as the positive and negative parts
of x, respectively. The following lemma is essentially a refinement of Lemma 3.1 of Liu (2009).

Lemma 2.2. Let Xk, k = 1, . . . , n, be random variables, and let gk, k = 1, . . . , n, be real
functions.

(a) If the Xk, k = 1, . . . , n, are UEND with some dominating coefficient M > 0 then

E

( n∏
k=1

X+
k

)
≤ M

n∏
k=1

E X+
k .

(b) Assume that the Xk, k = 1, . . . , n, are LEND, UEND, or END with some dominating
constant M > 0. If the gk, k = 1, . . . , n, are all nondecreasing then the gk(Xk), k =
1, . . . , n, are still LEND, UEND, or END, respectively, while if the gk, k = 1, . . . , n,
are all nonincreasing then the gk(Xk), k = 1, . . . , n, are UEND, LEND, or END,
respectively. For each case, the dominating constant M > 0 remains unchanged.

Proof. (a) By Fubini’s theorem and inequality (1.2), we have

E

( n∏
k=1

X+
k

)
= E

(∫
· · ·

∫
(x1,...,xn)∈[0,∞)n

( n∏
k=1

1{xk<X+
k }

) n∏
k=1

dxk

)

=
∫

· · ·
∫

(x1,...,xn)∈[0,∞)n
Pr

( n⋂
k=1

(Xk > xk)

) n∏
k=1

dxk

≤ M

∫
· · ·

∫
(x1,...,xn)∈[0,∞)n

n∏
k=1

Pr(Xk > xk)

n∏
k=1

dxk

= M

n∏
k=1

E X+
k . (2.2)

Note that the derivation of (2.2) is still valid even when E X+
k = ∞ for some k = 1, . . . , n.

(b) As all assertions can be proven in the same way, we only prove that if the Xk, k =
1, . . . , n, are LEND with some dominating constant M > 0 and the gk, k = 1, . . . , n, are
all nondecreasing, then the gk(Xk), k = 1, . . . , n, are still LEND with the same dominating
constant M . For each k = 1, . . . , n and each real number yk , the event (gk(Xk) ≤ yk) is
equivalent to either �k = (Xk ≤ xk) or �k = (Xk < xk) for xk = sup{x : gk(x) ≤ yk} ∈
[−∞, ∞]. For the latter case, �k = (Xk < xk) can be approximated by (Xk ≤ x∗

k ) as
x∗
k → xk−. Therefore, by relation (1.1) and the continuity of the probability measure, we have

Pr

( n⋂
k=1

(gk(Xk) ≤ yk)

)
= Pr

( n⋂
k=1

�k

)
≤ M

n∏
k=1

Pr(�k) = M

n∏
k=1

Pr(gk(Xk) ≤ yk).

This completes the proof.

The following generalized Borel–Cantelli lemma is due to Kochen and Stone (1964) and
was retrieved recently in Yan (2006).
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Lemma 2.3. Let {An, n = 1, 2, . . .} be a sequence of events such that
∑∞

n=1 Pr(An) = ∞.
Then

Pr(An infinitely often) ≥ lim sup
n→∞

∑
1≤i<j≤n Pr(Ai) Pr(Aj )∑

1≤i<j≤n Pr(AiAj )
.

Let F be a distribution on (−∞, ∞). For arbitrarily fixed δ > 0, define auxiliary functions
fδ and f ±

δ as

fδ(x) = x−δ

∫
|y|≤x

|y|1+δF (dy)

= x−δ

∫
0≤y≤x

y1+δF (dy) + x−δ

∫
−x≤y≤0

(−y)1+δF ( dy)

= f +
δ (x) + f −

δ (x), x > 0. (2.3)

These auxiliary functions will be crucial for establishing our key inequalities for the tail
probabilities of the sums of END random variables. The following result is elementary.

Lemma 2.4. For the auxiliary functions fδ and f ±
δ defined in (2.3), as x → ∞,

(a) if x Pr(X > x) → 0 then f +
δ (x) → 0;

(b) if x Pr(X < −x) → 0 then f −
δ (x) → 0;

(c) if x Pr(|X| > x) → 0 then fδ(x) = f +
δ (x) + f −

δ (x) → 0.

Proof. We only prove (a) since (b) can be proven in the same way and (c) is an immediate
consequence of (a) and (b). By Fubini’s theorem,

f +
δ (x) = 1 + δ

xδ

∫ x

0

(∫ y

0
zδ dz

)
F(dy)

= 1 + δ

xδ

∫ x

0

∫ x

z

zδF (dy) dz

≤ 1 + δ

xδ

∫ x

0
zδF̄ (z) dz.

For every ε > 0, there is some z0 > 0 such that F̄ (z) ≤ εz−1 for all z > z0. Thus,

f +
δ (x) ≤ 1 + δ

xδ

(∫ z0

0
zδF̄ (z) dz + ε

∫ x

z0

zδ−1 dz

)

≤ 1 + δ

xδ

(∫ z0

0
zδF̄ (z) dz + ε

δ
xδ

)
.

By the arbitrariness of ε, we conclude that f +
δ (x) → 0 as x → ∞. This completes the proof.

Let {Xk, k = 1, 2, . . .} be a sequence of UEND random variables with common distribution
F and mean 0. For arbitrarily fixed 0 < v < 1, define

X̃k = −vx 1{Xk<−vx} +Xk 1{−vx≤Xk≤vx} +vx 1{Xk>vx}, k = 1, 2, . . . , (2.4)

which, by Lemma 2.2(b), are still UEND random variables. Write

S̃n =
n∑

k=1

X̃k, n = 1, 2, . . . ,

and µ± = E X±
1 . Trivially, µ+ = µ− since E X1 = 0.
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Strong law of large numbers for END random variables 913

We are going to establish some key inequalities of large deviation type for the sums S̃n, n =
1, 2, . . .. An important feature of the following result is that it does not require X1 to have a
finite moment of order higher than 1. The obtained inequality is new even for the independent
case.

Lemma 2.5. Consider the truncated random variables defined in (2.4), where the Xk, k =
1, 2, . . ., are UEND random variables with common distribution F , mean 0, and a dominating
constant M > 0. Then, for every v > 0, γ > 0, 0 < δ ≤ 1, and 0 < θ < 1, there is some
x0 = x0(v, γ, δ, θ) > 0 such that, for all n = 1, 2, . . . and x ≥ (γ n) ∨ x0,

Pr(S̃n > x) ≤ M(f +
δ (vx) + vxF̄ (vx))(1−θ)/v, (2.5)

where the auxiliary function f +
δ is defined in (2.3).

Proof. By Lemma 2.2(b), for every v > 0 and h > 0, the random variables hX̃k, k =
1, 2, . . ., are still UEND with the same dominating constant M unrelated to v or h. Let h = h(x)

be a positive function of x whose exact form will be specified later such that h(x) → 0 as
x → ∞. By Markov’s inequality and Lemma 2.2(a), we have

Pr(S̃n > x) ≤ e−hx E ehS̃n ≤ Me−hx(E ehX̃1)n. (2.6)

Now we focus on the estimation of the exponential moment E ehX̃1 . Clearly,

E ehX̃1 =
(∫

−vx≤y≤0
+

∫
0≤y≤vx

)
(ehy − 1)F (dy) + (ehvx − 1)F̄ (vx)

+ (e−hvx − 1)F (−vx − 0) + 1

≤
(∫

−vx≤y≤0
+

∫
0≤y≤vx

)
(ehy − 1)F (dy) + (ehvx − 1)F̄ (vx) + 1

= I1(x) + I2(x) + I3(x) + 1. (2.7)

We use an idea of Tang and Yan (2002) to deal with I1(x). It holds for y ≤ 0 that

0 ≤ ehy − 1 − hy

h
≤ y(ehy − 1) ≤ −y.

Then, by the dominated convergence theorem,

lim
x→∞

I1(x)

h
=

∫ 0

−∞
lim

h→0+
ehy − 1 − hy

h
F(dy) − µ− = −µ−.

This means that
I1(x) = −µ−h + o1(h), (2.8)

where o1(h) is a real function of h > 0 satisfying o1(h)/h → 0 as h → 0+. For arbitrarily
fixed 0 < δ ≤ 1, by the monotonicity of the function (ehy − 1 − hy)/y1+δ for y > 0, we have

I2(x) ≤
∫ vx

0

ehy − 1 − hy

y1+δ
y1+δF (dy) + µ+h

≤ ehvx − 1

(vx)1+δ

∫ vx

0
y1+δF (dy) + µ+h

= ehvx − 1

hvx
f +

δ (vx)h + µ+h. (2.9)
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Rewrite I3(x) as

I3(x) = ehvx − 1

hvx
(vxF̄ (vx))h. (2.10)

We specify h to be

h = 1

vx
ln

(
1 + 1

f +
δ (vx) + vxF̄ (vx)

)
. (2.11)

Note that h → 0+ is equivalent to x → ∞. Actually, the fact that h → 0+ implies that
x → ∞ is trivial since both f +

δ (vx) and vxF̄ (vx) are bounded for x > 0. For the other
implication, with some x∗ > 0 such that F(vx∗) − F(0) > 0, it holds for all x ≥ x∗ that

h ≤ 1

vx
ln

(
1 + 1

f +
δ (vx)

)
≤ 1

vx
ln

(
1 + (vx)δ∫ vx∗

0 y1+δF (dy)

)
∼ δ ln x

vx
.

Substituting (2.8)–(2.11) into (2.7) and noting that both f +
δ (vx) and vxF̄ (vx) converge to 0 as

x → ∞, we obtain

E ehX̃k ≤ o1(h) + ehvx − 1

hvx
(f +

δ (vx) + vxF̄ (vx))h + 1

= o1(h) + h

ln(1 + 1/(f +
δ (vx) + vxF̄ (vx)))

+ 1

= o2(h) + 1, (2.12)

where o2(h) is a real function of x > 0 satisfying o2(h)/h → 0 as x → ∞. Substituting
(2.12) into (2.6) and using the elementary inequality 1 + z ≤ ez for every real number z, we
have, for all n = 1, 2, . . . and x ≥ γ n,

Pr(S̃n > x) ≤ M exp{o2(h)n − hx} ≤ M exp

{( |o2(h)|
γ h

− 1

)
hx

}
.

For arbitrarily fixed 0 < θ < 1, there is some large x0 > 0 such that, for all x ≥ x0,

|o2(h)|
γ h

≤ θ.

It follows that, for all n = 1, 2, . . . and x ≥ (γ n) ∨ x0,

Pr(S̃n > x) ≤ M exp{−(1 − θ)hx} = M

(
1 + 1

f +
δ (vx) + vxF̄ (vx)

)−(1−θ)/v

,

yielding inequality (2.5). This completes the proof.

By a symmetrization procedure, it is easy to apply Lemma 2.5 to establish a similar inequality
for the tail probabilities of |S̃n|, n = 1, 2, . . ..

Lemma 2.6. Consider the truncated random variables defined in (2.4), where the Xk, k =
1, 2, . . . , are END random variables with common distribution F , mean 0, and a dominating
constant M > 0. Then, for every v > 0, γ > 0, 0 < δ ≤ 1, and 0 < θ < 1, there is some
x0 = x0(v, γ, δ, θ) > 0 such that, for all n = 1, 2, . . . and x ≥ (γ n) ∨ x0,

Pr(|S̃n| > x) ≤ 2M(fδ(vx) + vx Pr(|X1| > vx))(1−θ)/v,

where the auxiliary function fδ is defined in (2.3).
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Proof. Recall the other two auxiliary functions f ±
δ defined in (2.3). Note that, by Lemma

2.2(b), if the random variables Xk, k = 1, 2, . . ., are LEND then the −X̃k, k = 1, 2, . . ., are
UEND. Therefore, applying Lemma 2.5 to the random variables −X̃k, k = 1, 2, . . . , there is
some x0 = x0(v, γ, δ, θ) > 0 such that, for all n = 1, 2, . . . and x ≥ (γ n) ∨ x0,

Pr(−S̃n > x) ≤ M(f −
δ (vx) + vx Pr(−X1 > vx))(1−θ)/v. (2.13)

A simple combination of inequalities (2.5) and (2.13) yields, for a suitably modified constant
x0 = x0(v, γ, δ, θ) > 0 and all n = 1, 2, . . . , x ≥ (γ n) ∨ x0,

Pr(|S̃n| > x) ≤ M(f +
δ (vx) + vx Pr(X1 > vx))(1−θ)/v

+ M(f −
δ (vx) + vx Pr(X1 < −vx))(1−θ)/v

≤ 2M(fδ(vx) + vx Pr(|X1| > vx))(1−θ)/v.

This proves the assertion of Lemma 2.6.

The following result essentially shows that, once X1 has a finite moment of order higher
than 1, by suitably choosing the values of θ and v in Lemma 2.6, the tail probability Pr(|S̃n| > x)

can decay to 0 faster than any power rate. Such a result is of independent interest, particularly
in the study of large deviations. Lemma 2.3 of Tang (2006) gives a result of the same flavour
for negatively dependent random variables.

Corollary 2.1. Recall the truncated random variables defined in (2.4).

(a) In addition to the conditions of Lemma 2.5, assume that E(X+
1 )1+δ < ∞ for some

0 < δ ≤ 1. Then, for every v > 0, γ > 0, and 0 < θ < 1, there is some
K = K(v, γ, δ, θ) > 0 such that, for all n = 1, 2, . . . and x ≥ γ n,

Pr(S̃n > x) ≤ Kx−δ(1−θ)/v. (2.14)

(b) In addition to the conditions of Lemma 2.6, assume that E |X1|1+δ < ∞ for some
0 < δ ≤ 1. Then, for every v > 0, γ > 0, and 0 < θ < 1, there is some
K = K(v, γ, δ, θ) > 0 such that, for all n = 1, 2, . . . and x ≥ γ n,

Pr(|S̃n| > x) ≤ Kx−δ(1−θ)/v. (2.15)

Proof. (a) Lemma 2.5 asserts that there is some x0 = x0(v, γ, δ, θ) > 0 such that inequality
(2.5) holds for all n = 1, 2, . . . and x ≥ (γ n)∨x0. Using Markov’s inequality on the right-hand
side of (2.5), it holds for all n = 1, 2, . . . and x ≥ (γ n) ∨ x0 that

Pr(S̃n > x) ≤ M

(
(vx)−δ

∫ vx

0
y1+δF (dy) + vx

1

(vx)1+δ
E(X+

1 )1+δ

)(1−θ)/v

≤ M(2v−δ E(X+
1 )1+δ)(1−θ)/vx−δ(1−θ)/v.

Furthermore, it trivially holds for all n = 1, 2, . . . and γ n ≤ x ≤ x0 that

Pr(S̃n > x) ≤ 1 ≤ x
δ(1−θ)/v
0 x−δ(1−θ)/v.

Therefore, inequality (2.14) holds with

K = M(2v−δ E(X+
1 )1+δ)(1−θ)/v ∨ x

δ(1−θ)/v
0

for all n = 1, 2, . . . and x ≥ γ n.
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(b) Applying Corollary 2.1(a) to the random variables −X̃k, k = 1, 2, . . . , there is some
K = K(v, γ, δ, θ) > 0 such that, for all n = 1, 2, . . . and x ≥ γ n,

Pr(−S̃n > x) ≤ Kx−δ(1−θ)/v. (2.16)

A simple combination of inequalities (2.14) and (2.16) yields relation (2.15) with a suitably
modified constant K > 0. This completes the proof.

3. Proof of Theorem 1.1

3.1. Proof of the necessity part

Assume that Sn/n
a.s.→ µ as n → ∞. This condition implies that Xn/n

a.s.→ 0 as n → ∞,
and, hence, that both X+

n /n
a.s.→ 0 and X−

n /n
a.s.→ 0 as n → ∞. Define An = (X+

n > n) for
n = 1, 2, . . .. We have Pr(An infinitely often) = 0. This implies that

∞∑
n=1

Pr(An) < ∞,

because otherwise, by Lemma 2.3 and the pairwise UEND of {Xk, k = 1, 2, . . .}, we would
have

Pr(An infinitely often) ≥ lim sup
n→∞

∑
1≤i<j≤n Pr(Ai) Pr(Aj )∑

1≤i<j≤n Pr(AiAj )
≥ 1

M
.

Hence,

E X+
1 =

∞∑
n=0

∫ n+1

n

Pr(X1 > x) dx ≤ 1 +
∞∑

n=1

Pr(An) < ∞.

In the same way, we can prove that E X−
1 < ∞. Therefore, E |X1| < ∞. Finally, by the

sufficiency part of Theorem 1.1 which we are to prove below, the finiteness of E |X1| implies
that Sn/n

a.s.→ E X1 as n → ∞. Hence, µ = E X1.

3.2. Proof of the sufficiency part

Write S
(±)
n =∑n

k=1 X±
k for n = 1, 2, . . . and write µ± = E X±

1 as before. Clearly, it suffices
to prove that both S

(+)
n /n

a.s.→ µ+ and S
(−)
n /n

a.s.→ µ− hold as n → ∞. We prove only the former
since the latter can be proven in the same way.

For arbitrarily fixed v > 0 and n = 1, 2, . . ., similarly as in (2.4) we define

X̃+
k,n = −vn 1{X+

k −µ+<−vn} +(X+
k − µ+) 1{−vn≤X+

k −µ+≤vn} +vn 1{X+
k −µ+>vn}

for k = 1, . . . , n. Write S̃
(+)
n = ∑n

k=1 X̃+
k,n. Let ε > 0 and α > 1 be arbitrarily fixed and, as

usual, denote by [z] the largest integer that is not larger than z. By Lemma 2.6, with suitably
chosen 0 < v < 1 and 0 < θ < 1 such that (1 − θ)/v = 1, there is some positive integer
n0 = n0(v, ε, δ, θ) such that, for all n ≥ n0,

Pr

(∣∣∣∣ S̃
(+)
n

n

∣∣∣∣ > ε

)
≤ 2M

(
(vεn)−δ

∫
|y|≤vεn

|y|1+δF̃+(dy) + vεn Pr(|X+
1 − µ+| > vεn)

)
,

where F̃+ denotes the distribution of X+
1 − µ+. It follows that

∞∑
n=1

Pr

(∣∣∣∣
S̃

(+)
[αn]

[αn]
∣∣∣∣ > ε

)
≤ logα n0 + 2M(vεα−1)−δ�1 + 2Mvε�2, (3.1)
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with

�1 =
∞∑

n=1

α−δn

∫
|y|≤vεαn

|y|1+δF̃+(dy), �2 =
∞∑

n=1

[αn] Pr(|X+
1 − µ+| > vε[αn]).

Interchanging the order of the sum and integral in �1, we see that, for some constant K1 > 0,

�1 =
∫ ∞

−∞

( ∑
n≥(logα |y|−logα vε)∨1

α−δn

)
|y|1+δF̃+(dy)

=
∫ ∞

−∞
α−δ((logα |y|−logα vε)∨1)

1 − α−δ
|y|1+δF̃+(dy)

≤ K1

∫ ∞

−∞
|y|F̃+(dy)

= K1 E |X+
1 − µ+|

< ∞. (3.2)

Moreover, it holds for some constant K2 > 0 that

�2 ≤
∞∑

n=1

[αn]
[(α − 1)αn−1]

[(α−1)αn−1]∑
k=1

Pr(|X+
1 − µ+| > vε([αn−1] + k))

≤ K2

∞∑
n=1

Pr(|X+
1 − µ+|) > vεn

≤ K2

vε
E |X+

1 − µ+|
< ∞, (3.3)

where the summation
∑[(α−1)αn−1]

k=1 produces a value 0 in the case where [(α − 1)αn−1] = 0.
Substituting (3.2) and (3.3) into (3.1) yields

∞∑
n=1

Pr

(∣∣∣∣
S̃

(+)
[αn]

[αn]
∣∣∣∣ > ε

)
< ∞.

Hence,

Pr

(∣∣∣∣
S

(+)
[αn]

[αn] − µ+
∣∣∣∣ > ε infinitely often

)

≤ Pr

(∣∣∣∣
S̃

(+)
[αn]

[αn]
∣∣∣∣ > ε infinitely often

)
+ Pr

(
S

(+)
[αn]

[αn] − µ+ 
= S̃
(+)
[αn]

[αn] infinitely often

)

≤ lim
m→∞ Pr

( ∞⋃
n=m

(
S̃

(+)
[αn]

[αn] > ε

))
+ lim

m→∞ Pr

( ∞⋃
n=m

[αn]⋃
k=1

(X+
k − µ+ 
= X̃+

k,[αn])
)

≤ lim sup
m→∞

∞∑
n=m

Pr

(
S̃

(+)
[αn]

[αn] > ε

)
+ lim sup

m→∞

∞∑
n=m

[αn] Pr(Xk − µ+ > v[αn])

= 0,

where in the last step the convergence of the last series can be verified in the same way as (3.3).

https://doi.org/10.1239/jap/1294170508 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1294170508


918 Y. CHEN ET AL.

This proves that

lim
n→∞

S
(+)
[αn]

[αn]
a.s.= µ+. (3.4)

For every positive integer n, there is a unique positive integer kn such that [αkn−1] ≤ n < [αkn ].
Hence,

[αkn−1]
[αkn ]

S
(+)

[αkn−1]
[αkn−1] =

S
(+)

[αkn−1]
[αkn ] ≤ S

(+)
n

n
≤

S
(+)

[αkn ]
[αkn−1] = [αkn ]

[αkn−1]
S

(+)

[αkn ]
[αkn ] . (3.5)

It follows from (3.4) and (3.5) that

µ+
α

a.s.≤ lim inf
n→∞

S
(+)
n

n
≤ lim sup

n→∞
S

(+)
n

n

a.s.≤ αµ+.

By the arbitrariness of α we obtain S
(+)
n /n

a.s.→ µ+ as n → ∞.

4. Applications

4.1. Application to risk theory

Let {Xk, k = 1, 2, . . .} be a sequence of random variables with partial sums Sn, n =
1, 2, . . . , and let N be a nonnegative integer-valued random variable independent of {Xk, k =
1, 2, . . .}. The study of the tail behaviour of the random sum

SN =
N∑

k=1

Xk (4.1)

is of fundamental interest in various areas of applied probability. Robert and Segers (2008)
interpreted SN as the total amount of claims of an insurance portfolio in earthquake insurance.
Assuming that N has a consistently varying tail and that the Xk, k = 1, 2, . . . , are independent,
identically distributed, and nonnegative, with tails relatively lighter than that of N , they showed
that the tail behaviour of SN is mainly determined by that of N . See also Aleškevičienė et al.
(2008) and Denisov et al. (2010) for some extensions.

With the help of Theorem 1.1 and Corollary 2.1, we are able to relax the independence
assumption on {Xk, k = 1, 2, . . .} to END. This is particularly relevant in insurance, in view of
the fact that claims from an insurance portfolio, or within a given reference period, are generated
in the same or similar situations and, hence, they should be dependent.

A distribution G on [0, ∞) is said to be of consistent variation, written as G ∈ C, if

lim
y→1− lim sup

x→∞
Ḡ(xy)

Ḡ(x)
= 1, or, equivalently, lim

y→1+ lim inf
x→∞

Ḡ(xy)

Ḡ(x)
= 1.

Note that the class C contains all distributions of regular variation. Clearly, if G ∈ C then,
necessarily, Ḡ(xy) = O(Ḡ(x)) for every y > 0. Furthermore, by Lemma 3.5 of Tang and
Tsitsiashvili (2003), there is some constant p > 0 such that

x−p = o(Ḡ(x)). (4.2)
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Theorem 4.1. Consider the random sum (4.1) in which {Xk, k = 1, 2, . . .} is a sequence of
END random variables with common distribution F , mean µ > 0, and E |X1|1+δ < ∞ for
some δ > 0, while N follows a distribution G ∈ C. As x → ∞, the relation

Pr(SN > x) ∼ Ḡ

(
x

µ

)
(4.3)

holds under one of the following groups of conditions:

(a) x Pr(|X1| > x) = o(Ḡ(x));

(b) E N < ∞ and Pr(|X1| > x) = o(Ḡ(x)).

Proof. For arbitrarily fixed 0 < ε < 1, it is easy to see that

Pr(SN > x) ≤
∑

1≤n≤(1−ε)x/µ

Pr(Sn > x) Pr(N = n) + Pr

(
N >

(1 − ε)x

µ

)

= I (x) + Pr

(
N >

(1 − ε)x

µ

)
. (4.4)

Similarly as in (2.4), for arbitrarily fixed v > 0, define

X̃k = −vx 1{Xk−µ<−vx} +(Xk − µ) 1{−vx≤Xk−µ≤vx} +vx 1{Xk−µ>vx}, k = 1, 2, . . . .

Thus,

I (x) ≤
∑

1≤n≤(1−ε)x/µ

Pr(Sn − nµ > εx) Pr(N = n)

≤
∑

1≤n≤(1−ε)x/µ

(
n Pr(|X1 − µ| > vx) + Pr

( n∑
k=1

X̃k > εx

))
Pr(N = n). (4.5)

For the second term above, by Corollary 2.1(a), for v, ε, and δ given above and arbitrarily fixed
0 < θ < 1, there is some K = K(v, ε, δ, θ) > 0 such that, for all n = 1, 2, . . . ,

Pr

( n∑
k=1

X̃k > εx

)
≤ Kx−δ(1−θ)/v. (4.6)

Recall relation (4.2). We may suitably adjust the values of v and θ such that δ(1 − θ)/v > p.
Substituting (4.6) into (4.5), under either condition (a) or condition (b), we have

I (x) ≤ Pr(|X1 − µ| > vx) E N 1{N≤(1−ε)x/µ} +Kx−p = o(Ḡ(x)).

It follows from this and (4.4) that

lim sup
x→∞

Pr(SN > x)

Pr(N > x/µ)
≤ lim

ε→0+ lim sup
x→∞

Pr(N > (1 − ε)x/µ)

Pr(N > x/µ)
= 1. (4.7)
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To establish the asymptotic lower bound for Pr(SN > x), with arbitrarily fixed 0 < ε < 1
we derive

Pr(SN > x) ≥
∑

n>(1+ε)x/µ

Pr(Sn > x) Pr(N = n)

≥
∑

n>(1+ε)x/µ

Pr

(
1

n
Sn − µ > − εµ

1 + ε

)
Pr(N = n)

∼ Pr

(
N >

(1 + ε)x

µ

)
,

where in the last step we used the fact that, by Theorem 1.1,

lim
x→∞ sup

n>(1+ε)x/µ

∣∣∣∣ Pr

(
1

n
Sn − µ > − εµ

1 + ε

)
− 1

∣∣∣∣.

It follows that

lim inf
x→∞

Pr(SN > x)

Pr(N > x/µ)
≥ lim

ε→0+ lim inf
x→∞

Pr(N > (1 + ε)x/µ)

Pr(N > x/µ)
= 1. (4.8)

A combination of (4.7) and (4.8) gives the desired asymptotic relation (4.3).

4.2. Application to renewal theory

Let {Nt, t ≥ 0} be a quasi-renewal counting process defined as

Nt = max

{
n = 1, 2, . . . :

n∑
k=1

Yk ≤ t

}
, t ≥ 0, (4.9)

where the interarrival times Yk, k = 1, 2, . . ., form a sequence of nonnegative, END, and iden-
tically distributed random variables with common distribution G and finite, positive mean 1/λ.

Theorem 4.2. Consider the quasi-renewal counting process defined by (4.9). As t → ∞,

(a) Nt/(λt)
a.s.→ 1;

(b) E N
p
t ∼ (λt)p for every p > 0.

Proof. (a) We follow the proof of Proposition 5.1.4 ofAsmussen (2003). By Theorem 1.1(b),

lim
n→∞

1

n

n∑
k=1

Yk
a.s.= 1

λ
.

It trivially follows that Nt
a.s.→ ∞ as t → ∞. Note that

Nt∑
k=1

Yk ≤ t <

Nt+1∑
k=1

Yk.

Dividing each side of the above by Nt , then letting t → ∞, we obtain t/Nt
a.s.→ 1/λ.
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(b) Following the proof of Theorem 1 of Kočetova et al. (2009) with some modifications in
relation to the idea used in deriving (2.6), we have, for every a > 1 and some b > 1,

lim
t→∞

∑
n>aλt

bn Pr(Nt ≥ n) = 0. (4.10)

Split the moment E N
p
t into two parts as

E N
p
t =

( ∑
1≤n≤aλt

+
∑

n>aλt

)
np Pr(Nt = n) = I1(t) + I2(t). (4.11)

By the dominated convergence theorem,

lim
t→∞

I1(t)

(λt)p
= lim

t→∞ E

(
Nt

λt

)p

1{1≤Nt≤aλt} = 1.

By (4.10), as t → ∞,

I2(t) = o(1)
∑

n>aλt

bn Pr(Nt ≥ n) = o(1).

Substituting these estimates into (4.11) leads to E N
p
t ∼ (λt)p as t → ∞.
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