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ABSTRACT. Let S, = Xt + ■ ■ ■ +X, where {X,} are i.i.d random variables with £X¡*
= oo. An integral test is given for each of the three possible alternatives lim(S„//i) = +oo

a.s.; lim(S„//i) = —oo a.s.; lim sup(S„/n) = +oo and lim in!(Sñ/n) = -oo a.s. Some

applications are noted.

1. Introduction. Let {X„} be a sequence of independent identically distributed

random variables and put S„ = Xx H-+X„, n > 1. It is well known that if EXX

is defined in the sense that one or both of EX*, EXX~ (x* = max(x,0),

x~ = max(-x,0)) is finite then

(1.1) p|nlim(5„/«) = £*,} = 1.

If however EX* = EXX~ = oo then EXX is undefined and (1.1) is meaningless. In

this case Kesten [5, Corollary 3, p. 1195] has proved the following.

Theorem 1. If EX* = EXX~ = oo then one of the following alternatives must

prevail:

(i)/>{lim(S„/«) = +oo} = 1;

(ii)P{lim(S„/«) = -oo} = 1;

(iii) £{lim sup(S„/«) = +00 and lim inf (£„/«) = -oo} = I.

In this paper we shall give a simple necessary and sufficient criterion, in the

form of an integral test, for each of OH1")-

2. Notation and statement of results. Let X stand for any of the random

variables {X¡} and assume P{X = 0} ¥- 1. Put F(t) = P{X < t} and define the

following quantities:
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372 K. B. ERICKSON

m.(x) = /_°x F(y)dy = xF(-x) +/_° \y\dF(y),

m+(x) = £ [1 - F(y)]dy - *[1 - F(x)] + fQ*ydF(y),

^'MX)'£^dF(x),

The integrand in J+, J. is bounded near x = 0 whenever £(0 -) ¥* 0 or

1 - £(0) # 0 respectively. If P{X < 0} = £(0 -) = 0 define /+ - EX

= EX+ and if P{X > 0} = 1 - £(0) = 0 define JL = £|A-| = EX~.
Note the following properties: as / -* oo, m+(t) -* EX+, /"_(/) -* EX~ and,

since m+ and m_ are nondecreasing,

(2.1) J+ < cEX+,      J. < cEX~

for some c < oo whether or not EX*, EX~ are finite.

Theorem 2. (No assumptions on £A',±.)

(a)y+ = oo if and only if P {Mm sup(S„/«) = +00} = 1;

(b) JL = 00 if and only if P'{lim inf(S„/«) = -00} = 1;

(c)7, < J+ = 00 if and only if P{lim(Sn/ri) = +00} = 1;

(d) J+ < /_ = 00 if and only if P{lim(Sn/n) = -00} = 1.

Remark. It follows from the four alternatives presented in Theorem 2 and the

Hewitt-Savage 0-1 law that if both J+ and J. are finite the sequence {S„/n} must

be bounded with probability 1. But this is the case if and only if £|A¡ | < 00 (and

then Hm(S„/«) = EXX a.s.). From this and (2.1) we conclude

/+ + jL < 00   if and only if   £|.Y¡ | < 00.

This is a purely analytic fact. For a direct analytic proof that /+ + JL < 00

implies £|A", I < 00, see note 7 below.

Corollary 1. Assume E\XX \ = 00. Then at most one ofJ+, JL is finite and

(a) £{lim(S„/«) = +00} = 1 /JJL < 00;

(b) «{lim(S„/«) = -00} = ljj[J+ < 00;

(c) P{\Jm(Sn/n) = -00 and lim(S„/ri) = +00} = 1 iffJ+ = JL = 00.

Proof. This corollary follows immediately from Theorem 2 and the preceding

remark.

Corollary 2. // £1*, | = 00 and P{XX < 0} # 0 then P{Sn > 0 i.o.} = 0 or 1

according as 2" (l/n)P{S„ > 0} converges or diverges, according as

Sot (x/f¿ F(-y)dy)dF(x) is finite or infinite.
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Proof. Corollary 1 and Spitzer's test [4, p. 415, Theorem 2].

Corollary 3. Let {S,}, t > 0, be a process on Rx with stationary independent

increments and

I jog Eeies, = ib9 - y 02 + J (e** - 1 - 7^2 ) dX(x).

Put X_( y) = X{(-oo,y)}, y < 0, and assume X_(-2a) ¥* Ofor some a > 0. Then

lim sup — = +00   a.s. iff J    lx/ j  X.(-y)dy) dX(x) = oo.

Proof. Write S, = S't + S", (in distribution) where

\ log £<?'«'- = ib'O -%-02+[{    (e** - 1 - iOx)dX(x),
I £• j\x\<a

\ log £«*»'■ - f     (e** - \)dX(x).

Then lim,_œ(5',/i) = ES\, finite, (E\S\\r < oo for all r > 0) and hence

S S"
lim sup -~ = +00   a.s. iff lim sup —i = +oo   a.s.

/-♦CO ' i-»00 *

Now S", is a compound Poisson process: S", = Xx A-i-XNl, see [3, p. 504, p.

555 and p. 571] where the i.i.d. random variables {Xa} have distribution

P{Xn E 1} = ß~xX{I n [-a,a]c}, )S = X{[-a,tz]c} (0 < ß < oo by X_(-2a)

# 0 and properties of Levy measures) and the Poisson process N, has rate ß.

Therefore lim,^(#,//) = ß a.s., so

/}~'lim sup —'- = lim sup —-í   a.s.
I-»oo ' />-»« "

and the conclusion of the corollary follows from Theorem 2(a).

3. Notes. (1) Suppose F(x) < 1 - c/x" for x > b > 0 and /.?«, \x\ßdF(x)

< oo for some 0 < a < ß < 1. Then EXX* = oo and /_ <c, J.0«, \x\adF(x)

< oo. Hence Sjn -> +co with probability 1. This example is due to C. Derman

and H. Robbins [2].

(2) Suppose F(x) = L(|x|)/|.x|a, x < -a < 0 where Lis slowly varying at oo

and 0 < a < 1. Then by Karamata's theorem on regularly varying functions, see

[4, p. 281], we have

L(x),
EXX- >cf° ^dx = oo

Ja       X
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374 K. B. ERICKSON

and

(1 - a)x"       1 - a
x/m.(x) ~ x/ja"y-"L(y)dy ~

L(x) F(-x)

as x -» oo. Hence by Corollary 1

(3.1) /»{lim S„ = -oo} = £{lim(SB/n) - -oo} = 1

if and only if

(3.2) £(l/£(-A-,+)) < oo.

This example is due to Williamson [7, part (i) of Theorem on p. 866].

In that same paper Williamson conjectured that for arbitrary £ (3.2) is

necessary and sufficient for (3.1). Here is a counterexample: Let £have a density

F'(x) = f(x) such that

f(x)---.-, f(~x)-yr,-T77T, X -* 00.
Jy        x2logx       Jy x2(log x)1/2

Then 1 - F(x) ~ (x log x)-1, m+(x) — log log x, F(-x) ~ x-l(log x)~l/2 and

m_(x) ~ 2(log x)y2 as x -» oo. Hence 7+ < oo and JL = oo and (3.1) holds. But

(3.2) fails since £(l/£(-AV")) ~XT *~'0og x)-{'2dx = oo.
(3) If the tails of £ satisfy

(3.3) 0 < c, < (1 - F(t))/F(-t) < c2 < oo,       / > 0,

then an integration by parts shows that 7+ and /_ both diverge or converge

together. Hence the random walk {S„} generated by an F satisfying (3.3) and

£|A¡ | = oo is always of the oscillating type; case (iii) of Theorem 1, whether or

not it is transient.

(4) Suppose F'(—x) — *-2log log x and F'(x) ~ x~2, x -* oo . Here the left

tail predominates: 1 - F(x) = o(F(-x)) as x -* oo; nevertheless, lim sup(£„/«)

= +00 and lim inf(S„/«) = -oo with probability 1, since m+(x) ~ log jc, and

m.(x) ~ log x log log x as x -* oo, so for some a > 0,

7+ > lim /   —:--.—j-= lim log log log x]L = oo,
+  — <-.» Ja   X log X log log X        /-oo      o     o     o    ¡a

(< log log X j
y_ > urn |   ——.—E— dx = oo.

— (-.oo Ja     X log X

One should note that the random walk {s„} of this example is transient, i.e.

lim \Sn | = oo a.s. This follows from the asymptotic estimates 11 — <p(9)\

~ |0|»i+(l/|0|), Re(l - (p(0)) = 0(|1 - <p(t9)|/log(l/|i9|)) as 9 -* 0 where <p(0)
= Eéxl. See [3, Lemma 1].
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(5) Theorem 1 guarantees that lim sup \S„ /n\ = oo with probability 1 whenev-

er EX* = EXf = oo. However, it need not happen that

(3.4) i>{liminf|5n/«| = oo}= 1.

In fact, given any nonnegative number c there is a random walk {Sn} with

EX* = oo such that

P{lim sup|S„/«| = oo and lim inf|S„/«| = c} = 1.

For the proof see [5, Theorem 7, p. 1196].

Problem. Find a simple integral test equivalent to (3.4). In this connection note

Remark 2, p. 1182 in [5].

(6) Put <p(0) = Ee'xe. The following assertions are equivalent (see Binmore-

Katz [1], also [5, Theorem 6 and Remark 5, p. 1195]:

(3.5) lim(S„/«) = +00 a.s.

for every a > 0;

(3-7) f -P{S„ < an} < oo,   for every a > 0.

(The convergence of this series, for one a, is of course, Spitzer's criterion for

P{S„ - an < 0 i.o.} = 0.) Thus (3.5)-(3.7) are each equivalent to JL < oo,

J+ = oo.

Problem. Find a "nonprobabilistic" proof that (3.6) is equivalent to JL < oo,

J+ = oo.

(7) As noted previously the assertions

(3.8) J+ + /_ < oo

and

(3.9) £|A,|<oo

are equivalent due to Theorem 2 and (2.1). Here is another proof that (3.8) =>

(3.9).

Proposition. Let H be a distribution on [0, oo) with H(0) < 1 and put m(x)

= So [1 - H(y)]dy; then

I{H) = C 7nJx)dH{x) <co^C xdH(x) < "•
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Proof that (3.8) => (3.9) from the Proposition. Let H(x) = P(\XX \ < x) =

F(x) - F(-x -), x > 0, then

m{x) =//[!" F(y) + £(-y)]<7y = m+(*) + m_(x)

and

^Wo^'W-l^^«

^f ^"^'^
Consequently, J+ + JL < oo => /(/7 )< oo => Jo" *¿#M = /_^ |*| </£(*) is

infinite.

Proof of the Proposition. The implication /0°° x dH(x) < oo => /(// ) < oo is

clear so let us assume /(//) < oo. Note first that m is absolutely continuous on

bounded intervals and

m'(x) = 1 - H(x) < m(x)/x   a.e. x > 0

(the exceptional set where m' does not exist is at most countable); consequently

the function x -» x/m(x), x > 0, is absolutely continuous on intervals [a, b],

0 < a < ¿> < oo and is nondecreasing because

(3.10) [x/m(4 = W(X) " II : TO] > 0   a.e.
«r(.x)

Since /(// ) < oo we see that

and it follows on integrating by parts in/" (x/m(x))dH(x) that

JH [1 - WW]¿(x/ffl(x))

is finite for any ¿» > 0. Choosing b > 0 so large that 1 - c(x:) > \ for x > Z> and

noting (3.10) and the absolute continuity of log m(x) on bounded intervals [b,B],

b > 0, gives

,.    ,     mit)       /•» «j'(x) ,     . „ r<*> m'(x)t.       , ., ,

-2fb"[l-H(x)]d(;fa)<«>.

But this implies lim,^ m(t) = f0x [1 - H(x)]dx < oo which in turn implies

J?xdHQc)<co.
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Note. One can also prove the above proposition by observing 1(H) < oo

> fo ydH(y) —• m(x) as x -* oo, hence

r */{£ydiKy))m:*)<»

and then f0" xdH(x) < oo by the Abel-Dini theorem.

4. Proof of Theorem 2. We prove Theorem 2 in a series of lemmas, each having

independent interest.

Lemma 1. Let G be any probability distribution concentrated on [0, oo) (but not all

the mass at the origin). Put

U(t) = £ G*(t\      m(t) = /' [1 - G(x)]dx

where G"' is the n-fold convolution. Then

(4.1) 1 < m(t)U(t)/t < 2  for all t > 0

and

(4.2) min(l,a/2) < U(at)/U(t) < max(l,2a)

for allt>0,a> 0.

Proof. U satisfies the renewal equation U = 1 + G * U, see [4, p. 186] or,

equivalently,

1 = fo" [1 - G(x - y)]dU(y)(2),      x > 0.

Integrating this over 0 < x < t gives

t = JT' dU(y) £ [1 - G(x - y)]dx = jT' m(t - y)dU(y).

Since m is nondecreasing

and (4.1) follows. To get (4.2) note that m and U are nondecreasing so

i < M^i) <      2a/ 2ar
1 S  U(t) S m(flr)f4r) S m(i)t/(0 S ^

for a > 1, r > 0. Similarly, U(at)/U(t) > a/2 for a < 1.

(2) Intervals of integration are closed unless otherwise indicated.
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Corollary. An integral of the form f0°° 2n*-o G"'(ax)dF(x) either converges for all

a > 0 or diverges for all a > 0, according as $¡¡l(x/m(x))dF(x) converges or

diverges, m(x) = Jo* U ~ G(y)]dy.

For Lemmas 2-5 let {X„} be a sequence of i.i.d. random variables with

distribution £ such that £(0 -) = P{XX < 0} * 0.

Lemma 2. Let a > 0 be fixed and put A0 = fi = certain event, Ax = {Xx > 0}

andA„ = {X„-+--- +X~_X < aX„*}, « > 1.

(i)//2r-o£04n)< <*>'«*"

lim sup(A"/ /(Aj" + • • • +*"„")) < -   a.s.

(")//Sr=o £(4.)- oo then

lim supOC/ÍAT + • • • +*,")) > I   a.s.

(We define X*(u)/0 = oo if X„(<S) > 0.)

Proof. Assertion (i) follows from the first Borel-Cantelli lemma. To prove (ii)

assume 2 P(An) = °°- Since P(A„ i.o.) is either 0 or 1 by the Hewitt-Savage 0-1

law, it suffices to show

(4.3) P(An i.o.) > 0.

Now for m > «, A„ n Am C A„ n {Z^, + • ■ • +X~ < aA^} so

(4.4) P(An n /lm) < £(^B)£(^m_B)

by independence and stationarity of {X„}. Put Z, = 2*-o ¡Ak = number of Ak

which occur up to time «. Then (4.4) gives

EZ2 < 2 2 P(A,) 2 £04,-,) < 2[2 £(^f)]2 = 2(£Z„)2
,=o j-i L=o J

and hence

/»{lim sup(Z„/£ZB) > 1} > 0

by the generalized Borel-Cantelli lemma, cf. [6]. But this clearly implies (4.3)

since £Z„ = 23 P(Ak) -» oo.

Lemma 3. lim sup(X* /(Xx~ + • • • +X~)) = 0 or oo with probability 1, accord-

ing as J+ = Sol x/m_(x)dF(x) is finite or infinite where m.(x) = Jo* F(-y)dy.

Proof. Let An be as in Lemma 2. Then since X~ = 0 on .4, we have
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P{XX- + • • • +X- < aXn+} - P(A„)

= £ P{XX- + ■■■ +*„--! < ay}P{X: G dy}

= £ GW(ay -)dF(y)

< £ GW(ay)dF(y)

where G(t) = P(XX~ < t), t > 0. If 0 < b < a then clearly

P(An) > £ G*-»'(by)dF(y).

Therefore from the corollary to Lemma 1 2" P{X\~ H-•"■^if < aX„+} con-

verges or diverges for all a > 0 according as 7+ is finite or infinite. The desired

conclusion now follows immediately from Lemma 2.

Lemma 4. //

(4.5) lim sup(A„+ /(Xx~ + ■•• +Xn~)) = oo   a.s.,

then EXX+ = oo and lim sup(S„/«) = oo as., where S„ = Xx H-\-X„.

Proof. Equation (4.5) implies that the event X* > 2(XX~ H-r-X„~L\) takes

place with probability 1 for infinitely many «. For such an n we have

s„ = x; - (a-,- + • • • +*-) + a-,+ + • • • +x;.x

> \xx\ + \x2\ + ■ ■ ■+\xn.x\.

Hence, Sn /« > (\XX | + • • • +|A'B_, |)/« infinitely often with probability 1. Howev-

er, this implies

(4-6) Hmsup^>liminf^l+--+I^   a.s.
v n  ~ n

But

(4.7) liml*.l+^-+|*J = £W   „

(whether or not £1^, | is finite), and

(4.8) EX+ = limxx+ + ---+x; > g,
' n — y n

since Xx+ + ■ • ■ +Xn+ > Xx + • • ■ +Xn = S„.lt follows from (4.6H4.8) that EXX+

> E\XX\ which, since we are assuming P(XX < 0) > 0, is impossible unless

EXX+ = E\XX\ = oo. From (4.6) and (4.7) it now follows that lim sup(S„/n)

= oo with probability 1.
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Lemma 5. // £A,+ = oo and if P{S„ > 0 i.o.} > 0, then

lim sup(AB+/(A," + • • • +A„")) = oo   with probability 1.

This remarkable fact is due to Kesten [5, Theorem 5, p. 1190]. We omit the proof.

Proof of Theorem 2. Note first that we may assume

P{XX < 0} ■ £{A, > 0} * 0.

(If, for example, £{A, > 0} = 1, £{A, = 0} # 1 then £A, = £A,+ < oo if and

only if JL < oo ; see note 7, §3, and Theorem 2 follows from (1.1).)

Clearly the theorem is symmetric in + and - (replace Xñ by A. = —Xn, then

J+ becomes /_, etc.). Thus, (b) follows from (a) and (d) follows from (c).

Proof of (a.). If J+ = oo then, by Lemmas 3 and 4, £{lim sup(S„/«) = +00}

= 1. Suppose that £{lim sup(5n/«) = +00} = 1. Then £A,+ = 00 (for other-

wise by (1.1) we would have lim (S,/«) = £A,+ - £A,~ # +00), and obviously

P{S„ > 0 i.o.} = 1. Hence, by Lemmas 5 and 3, J+ = 00.

Proof of (c). Assume J+ = 00 and JL < 00. We want to show

(4.9) £{lim(S„/«) = +00} = 1.

By parts (a) and (b) we have

(4.10) £{lim snp(S„/n) = +00 and lim inf(5B/«) > -00} = 1.

Also, £A,+ = 00 by (2.1). If £A,~ < 00 then (4.9) follows from (1.1). If, however,

£A,~ = 00 then (4.9) follows from Theorem 1; we must be in case (i) by (4.10).

The converse that (4.9) implies JL = 00 and JL < 00 follows from parts (a) and

(b) since (4.9) implies

P{\im sup(5„/«) = lim inf(5n/n) = +00 ¥= -00} = 1.

Added in proof. I have recently learned of a paper A note on fluctuations of

random walks without the first moment by Tashio Mori, Yokohama Math. J. 20

(1972), 51-55. He has obtained, independently, an integral criterion for P(S„

> 0 i.o.) = 1 when £|A,| = 00. His criterion is not expressed in terms of the

tails of £, however. Mr. Mori's remark in § 1 of his paper that Williamson's result

is not true without regular variation of £~ is somewhat misleading: Williamson's

result is false even if the tails are regularly varying, (with exponent 1), see Note

2 in §3 above.
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